
Deep Extended Hazard Models for Survival Analysis

Qixian Zhong
Department of Statistics and Data Science

School of Economics and Wang Yanan Institute for Studies in Economics (WISE)
Xiamen University

qxzhong@xmu.edu.cn

Jonas Mueller
Amazon Web Services
jonasmue@amazon.com

Jane-Ling Wang
Department of Statistics

UC Davis
janelwang@ucdavis.edu

Abstract

Unlike standard prediction tasks, survival analysis requires modeling right cen-
sored data, which must be treated with care. While deep neural networks excel in
traditional supervised learning, it remains unclear how to best utilize these models
in survival analysis. A key question asks which data-generating assumptions of
traditional survival models should be retained and which should be made more
flexible via the function-approximating capabilities of neural networks. Rather
than estimating the survival function targeted by most existing methods, we intro-
duce a Deep Extended Hazard (DeepEH) model to provide a flexible and general
framework for deep survival analysis. The extended hazard model includes the con-
ventional Cox proportional hazards and accelerated failure time models as special
cases, so DeepEH subsumes the popular Deep Cox proportional hazard (DeepSurv)
and Deep Accelerated Failure Time (DeepAFT) models. We additionally provide
theoretical support for the proposed DeepEH model by establishing consistency
and convergence rate of the survival function estimator, which underscore the
attractive feature that deep learning is able to detect low-dimensional structure of
data in high-dimensional space. Numerical experiments also provide evidence that
the proposed methods outperform existing statistical and deep learning approaches
to survival analysis.

1 Introduction

Across areas such as biomedical science and reliability engineering, survival data analysis is critically
used to study the time until certain events occur (e.g. patient death in clinical applications, component
failure in industrial applications). A key issue stems from the fact that many occurrence-times fail
to be recorded due to natural data censoring. For example, a patient may relocate and drop out of a
longitudinal clinical study, leading to the loss of follow-up observations for the remaining period of
the study. For such right censored data, we only know that the true event time is greater than the last
available observation time for this individual (but not by how much), and thus standard regression
approaches are not applicable to most survival data. A naive approach that removes all censored
individuals from the data would induce bias, as these tend to be individuals with longer event times.
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Learning the distribution of the event time in the presence of censorship is a fundamental task
in survival analysis. A wide array of statistical methodologies have been developed to study this
distribution. Among them, Kaplan and Meier [37] considered a product of successive conditional
probabilities to estimate the survival function, which encodes tail probabilities of the event time
distribution. As a nonparametric approach, the Kaplan-Meier estimator assumes no particular form
for either the underlying distribution of event time or the relationship between individuals’ observed
feature-values and the outcome event time. Alternatively, the Nelson-Aalen estimator considers the
cumulative hazard function from a counting process perspective [1, 48]. The classical Nelson-Aalen
estimator was improved by leveraging more powerful supervised learning methods, in particular
random forests, which lead to the random survival forest model [33].

While the Kaplan-Meier estimator has been extended to assess the effect of multiple subject fea-
tures (covariates) on the associated event time [5], it struggles to work with even moderately high-
dimensional features. A semi-parametric approach, the Cox proportional hazards (CoxPH) model
[14], has thus been popularly adopted as a dimension reduction approach. However, the CoxPH
model is restrictive as it assumes that the conditional log hazard functions for individuals are parallel
to each other. When this assumption fails to be realistic, the accelerated failure time (AFT) model
[35, 62] often emerges as an alternative, which simply assumes a linear regression model for the
log event time against the individuals’ feature-values. Like the CoxPH model, the AFT model is
also semi-parametric because the error distribution in the regression model is unspecified. An even
simpler approach is to adopt a parametric approach for survival data by assuming that the distribution
of event time obeys a certain known law, such as the Weibull or Gamma distribution [44]. While
non-parametric methods are more flexible, a semi-parametric or parametric approach can be more
effective when there are limited data, if the distribution of event times can be closely approximated
by a certain semi-parametric or parametric form.

Rapid advances in data collection and analysis have encouraged researchers to explore the potential
of deep learning in the field of survival analysis. Faraggi and Simon [20] proposed to replace the
linear predictor of the CoxPH model with a single hidden-layer neural network, but this extension
failed to provide reliable improvements in terms of concordance index [63]. Under the same CoxPH
framework, Katzman et al. [38] and Kvamme et al. [41] applied neural networks of greater complexity
to obtain more flexible nonlinear models. Zhu et al. [67] and Tarkhan et al. [57] used convolutional
architectures to explore the relationship between event time and unstructured features like images,
and domain-specific variants of these models have been developed for particular applications, such as
genomic data [10, 26], clinical research [49], pedestrian waiting time in urban areas [34] and heart
failure rehospitalization [36].

Beyond the CoxPH framework, deep learning has been used to model survival data in various
alternative forms, including: neural network versions of the Beta-Logistic model [32], recurrent
neural networks applied with time-discretization [22, 51], generative adversarial modeling of time-
to-event distributions [8], generalized forms of regression [40, 43], and more flexible extensions of
the Kaplan-Meier estimator [9, 56] and the Weibull distribution [50]. Among existing deep learning
methods for survival analysis, the distribution free approaches [9, 12, 28, 40, 43] make almost no
assumptions on the underlying survival function structure, but these very general models may exhibit
poor sample complexity, requiring very large data to accurately estimate the survival function.

In this paper, we adapt neural networks to generalize the extended hazard (EH) model [11], which
includes both the CoxPH and AFT models as special cases. The proportional hazards assumption
are often violated in practice and can lead to misinterpretation of the results, especially when there
is heterogeneity among individuals [2]. In contrast, the AFT framework directly considers the
relationship between feature values and the event time, which results in a time-dependent hazard
ratio that is more realistic. Keiding et al. [39] also show that, relative to CoxPH, AFT models are
more stable when accounting for unobserved features. Other studies of CoxPH and AFT models have
however reported conflicting results [46], and thus practitioners may find it difficult to choose which
model to use in their applications. The EH model [19, 58, 59], under which feature values can affect
both the baseline hazard rate and hazard ratio, flexibly combines the CoxPH and AFT models into a
more general framework. EH models also subsume a wider range of survival models such as Weibull
and Gamma distributions. Compared with the current practice of deep learning under the CoxPH or
AFT framework, our deep extensions of EH model retain the advantages of standard EH model over
CoxPH and AFT, and achieve better empirical performance on real survival data.
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While deep learning has enjoyed a number of breakthroughs in survival data analysis, mathematical
understanding of its success is still lagging far behind. Leveraging neural networks’ capacity for
nonparametric function approximation [4, 17, 29, 53, 65], this paper provides theoretical support for
our Deep Extended Hazard (DeepEH) model, which replaces the two linear risk predictors in the
standard EH model with two nonparametric functions (cf. h1 and h2 in (4)). Using neural networks
to model these nonparametric functions, we show that the resulting estimators of h1, h2 and survival
functions are asymptotically consistent and enjoy fast convergence rates. Specially, the convergence
rates are determined by the intrinsic dimension of the underlying functions rather than the original
high-dimension input features. Our results formally illustrate how neural networks are able to identify
low-dimensional structure of the data, hence circumventing the curse of dimensionality.

2 Background

In survival analysis, we are interested in modeling the time T until some event of interest (i.e.
survival time), whose probability distribution is typically characterized in one of four equivalent
ways: probability density function, survival function, hazard function, or cumulative hazard function.
The survival function S(t) is the probability of a individual surviving beyond time t:

S(t) = P(T > t) = 1−
∫ t

0

f(s)ds,

where f is the probability density function of survival times. The hazard function, denoted by λ(t),
characterizes the chance that an event occurs in an infinitesimal interval after time t, given it has not
yet occurred at time t:

λ(t) = lim
δ→0

P(t ≤ T < t+ δ|T ≥ t)
δ

.

This results in the relationship: S(t) = exp{−Λ(t)}, where Λ(t) =
∫ t
0
λ(s)ds is the cumulative

hazard function.

In practice, a survival study of n subjects will contain less than n completely observed event times
due to right censoring. For instance, the event of some individuals may not have occurred yet at the
time when the study is concluded or the subject may have dropped out of the study. For the i-th
subject in the study, Ti and Ci denote, respectively, the event time and the potential censoring time;
and Xi ∈ Rp denotes the observed features (covariates). Thus, the observed data from a typical
survival study contain independent observations D = {Xi, Oi,∆i}ni=1, where the observed time
Oi = min(Ti, Ci) and the event indicator ∆i = 1, if the observed time is Ti, i.e. Ti ≤ Ci, otherwise
∆i = 0, the subject is censored at Ci. Given the feature values Xi, the event time Ti and censoring
time Ci are typically assumed to be independent. We aim to estimate the survival function and hazard
function using censored data in which the true event times may be unavailable. Conditional on the
features X , the overall log-likelihood of the censored survival data D [15] is:

Ln =
1

n

n∑
i=1

[
∆i log f(Oi|Xi) + (1−∆i) logS(Oi|Xi)

]
=

1

n

n∑
i=1

[
∆i log λ(Oi|Xi)− Λ(Oi|Xi)

]
,

(1)
where f(t|X), S(t|X), λ(t|X) and Λ(t|X) denote the conditional density, survival, hazard, and
cumulative hazard function of T |X , respectively, and the last equality is derived from the aforemen-
tioned relationship between the (cumulative) hazard function and the density/survival function. To
obtain maximum likelihood estimates, one can assume that the conditional distribution of T follows
a particular parametric distribution. However to avoid restrictive assumptions, it is advantageous to
use more flexible alternatives such as the CoxPH and AFT models.

2.1 Cox Proportional Hazard Model

Given features X , the Cox proportional hazard (CoxPH) model [13] for event time T , is a semi-
parametric model whose hazard function has a multiplicative form in terms of a baseline hazard
function λ0(t) and an exponential risk function of X:

λ(t|X) = λ0(t) exp(β>X),
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where the baseline hazard function λ0(t) and parameter β are both unknown. The function λ0(t)
represents the baseline hazard rate when all features take the baseline value of zero. It is difficult to
estimate λ0 and β directly from the likelihood function (1) because the optimization with respect
to λ0, a nonparametric function, would be challenging. In fact, this likelihood is unbounded due to
the unconstrained nature of the nonparametric function λ0. Luckily the partial likelihood method
[13, 14] has been developed to handle the parametric component of the model without involving the
nonparametric component λ0(t). Specifically, the partial likelihood technique first estimates β by
maximizing the log-partial likelihood:

Ln(β) =
1

n

n∑
i=1

∆i[β
>Xi − log(

n∑
j=1

Yj(Oi)e
β>Xj )],

where Yj(t) = 1(Oj ≥ t). Intriguingly, the log-partial likelihood does not involve the nonparametric
baseline hazard function λ0, which is a major advantage in accomplishing dimension reduction. Once
the parameter β has been estimated through the log partial likelihood, the cumulative baseline hazard
function Λ0(t) =

∫ t
0
λ0(s)ds can be estimated through the Breslow estimator [6]. Here the simple

parameter β0 can be estimated directly through the partial likelihood without requiring nonparametric
estimation of λ0. Thanks to the appeal of this straightforward estimation, the Cox proportional
hazards model has dominated the field of survival analysis for nearly fifty years.

2.2 Accelerated Failure Time

The accelerated failure time (AFT) model [62] is an alternative to CoxPH when the proportional
hazards (PH) assumption is violated. Given feature values X, the hazard function for an AFT model
is of the form:

λ(t|X) = λ0(teβ
>X)eβ

>X , (2)
where λ0 is an unknown baseline hazard function and β is an unknown parameter. Unlike the CoxPH,
the AFT model allows the feature X to influence the time curve of the baseline hazard function as
well. AFT with β > 0 assumes that a subject with a larger X value will have double jeopardy through
a higher risk factor eβ

>X and a faster hazard schedule λ0(teβ
>X) compared to the baseline hazard

λ0(t), hence the name “accelerated failure”.

2.3 Extended Hazard Model

In practice, it may be unclear whether a CoxPH or AFT model is more suitable for the data in hand.
The Extended Hazard (EH) model [11] includes both the CoxPH and AFT model as special cases,
thereby providing a more flexible and larger class of models to use in such practical applications.
While AFT (2) allows for only one feature effect β, the EH model extends this is to allow two
different feature effects β1 and β2:

λ(t|X) = λ0(teβ
>
1 X)eβ

>
2 X . (3)

Note that the EH model collapses to the CoxPH model when β1 = 0, and the AFT model when
β1 = β2. The EH model can thus flexibly leverage the complementary strengths of the CoxPH and
AFT model, adaptively exploiting whichever assumptions are more appropriate for a given dataset.

3 Methods

3.1 Deep Extended Hazard Model

Our DeepEH model is derived by extending the standard EH model in (3) to the following hazard
function:

λ(t|X) = λ0(teh1(X))eh2(X) (4)
where h1(X) and h2(X) are unknown functions and λ0 is an unknown and non-negative baseline
hazard function. When h1 = 0, it collapses to the popular DeepSurv [38]. When h1 = h2, we
call this the Deep Accelerated Failure Time (DeepAFT) model as it is a deep version of the AFT
model (2) that has been previously unexplored. All of our theory and methodology for DeepEH
extends to DeepAFT as well, and we also present empirical results for DeepAFT in this work. Let
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Λ0(t) =
∫ t
0
λ0(s)ds be the cumulative baseline hazard function. By the definition of conditional

survival function S(t|X) = exp{−
∫ t
0
λ(s|X)ds}, the survival function of DeepEH is expressed as

S(t|X) = exp{−
∫ t

0

λ0(seh1(X))eh2(X)ds} = exp{−Λ0(teh1(X))eh2(X)−h1(X)}. (5)

Since the log-likelihood is unbounded, direct maximization of the likelihood function will not work.
Instead, a pseudo likelihood may be employed instead Tseng and Shu [59]. Specifically, we first
use a kernel smoothing method to approximate the hazard function with fixed h1 and h2 and then
plug the the smoothed hazard function into the log-likelihood function (1). This yields the following
pseudo-likelihood function for our DeepEH model:

Ln(h1, h2) =
1

n

n∑
i=1

∆i[h2(Xi)−Ri(h1)] +
1

n

n∑
i=1

∆i log
[ 1

nb

n∑
j=1

∆jK
(Rj(h1)−Ri(h1)

b

)]
− 1

n

n∑
i=1

∆i log
[ 1

n

n∑
j=1

eh2(Xj)

eh1(Xj)
Φ
(Rj(h1)−Ri(h1)

b

)]
,

where K(·) is a known kernel function satisfying Assumption (A4) below and we adopt the Gaussian
kernel in our implementation, Ri(h1) = log(Oie

h1(Xi)), b is a positive bandwidth constant, and
Φ(t) =

∫ t
−∞K(s)ds.

We use two neural networks to approximate the unknown functions h1(X) and h2(X) in (4). More
specifically, we learn:

(ĥ1, ĥ2) = arg min
g1,g2∈G

{−Ln(g1, g2) + ρJ(g1, g2)} (6)

where G again denotes a certain family of neural networks and J is a regularization term weighted by
ρ ≥ 0 and it is set to be a L2 regularization for the weights and biases of g1 and g2 in this paper. We
estimate respectively the baseline hazard and cumulative baseline hazard functions via:

λ̂0(t) =
1
nt

∑n
i=1 ∆iKb(Ri(ĥ1)− log t)

1
n

∑n
i=1

eĥ2(Xi)

eĥ1(Xi)

∫ Ri(ĥ1)−logt
−∞ Kb(s)ds

and Λ̂0(t) =

∫ t

0

λ̂0(s)ds,

where Kb(·) = K(·/b)/b. Our implementation employs a Riemann sum of the estimated baseline
hazard function λ̂0 to obtain Λ̂0, which leads to an estimate of the survival function based on (5):

Ŝ(t|X) = exp{−Λ̂0(teĥ1(X))eĥ2(X)−ĥ1(X)}. (7)

3.2 Theoretical Analysis

To study the asymptotic properties of our estimators, we assume the data follow the survival model
specified in (4), and that our multilayer feedforward neural networks obey a special structure with
parameters d, s,M and A described below. Here a M -layer neural network with parameter d =
(d0, · · · , dM+1) is a composition of functions:
g(x) = WMgM−1(x) + µM , gM−1(x) = σ(WM−1gM−2(x) + µM−1), · · · , g0(x) = σ(W0x+ µ0)

with activation function σ, weight matrices Wk ∈ Rdk+1×dk and bias vectors µk ∈ Rdk , for
k = 0, · · · ,M. We consider a particular family of neural networks

G(M,d) = {g : g is an M -layer network with parameters d and max
k=0,··· ,M

‖Wk‖∞ ∨ ‖µk‖∞ ≤ 1},

where a ∨ b = max(a, b) and ‖ · ‖∞ denotes the supremum norm of a matrix/vector. Neural
networks used in practice often contain many parameters, which can lead to overfitting. To address
this, Srivastava et al. [55] proposed dropout regularization, which randomly sets some of network’s
activations to zero during training. Inspired by dropout, we further consider another neural network
family

G(d, s,M,A) = {g ∈G(M,d) :

M∑
k=1

‖Wk‖0 + ‖µk‖0 ≤ s, and ‖g‖∞ ≤ A}, (8)
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where ‖ · ‖0 is the number of non-zero entries of matrix/vector and ‖g‖∞ is the uniform norm of
function g.

Our theory also assumes the underlying nonparametric estimands belong to the Hölder class of
smooth functions with parameters α,B > 0 and domain D ⊂ Rp defined as:

Hαp (D, B) = {h : D→ R :
∑

β:|β|<α

‖∂βh‖∞ +
∑

β:|β|=bαc

sup
x,y∈D,x 6=y

|∂βh(x)− ∂βh(y)|
‖x− y‖α−bαc∞

≤ B},

where bαc is the largest integer strictly smaller than α, ∂β := ∂β1 . . . ∂βp if β = (β1, · · · , βp),
and |β| =

∑p
k=1 βk. Many common functions satisfy the Hölder property, including: polynomials,

trigonometric functions, exponential and logarithmic functions, as well as Lipschitz continuous
functions when α = 1. For some L ≥ 0 and p = (p0, . . . , pL+1) ∈ NL+2, we also consider a
composite Hölder function:

h = hL ◦ hL−1 ◦ · · · ◦ h1 ◦ h0
where hl : [al, bl]

pl → [al+1, bl+1]pl+1 , l = 0, · · · , L. Denote hl = (hl1, · · · , hlpl+1
)T and let plj

be the unique number of features that each hlj depends on. Define p∗l = pl1 ∨ · · · ∨ plpl+1
. For

illustration, if

h(x1, . . . , x9) = h11(h01(x1, x2, x3), h02(x4, x5, x6), h03(x7, x8, x9)), (9)

we have p∗0 = p∗1 = 3. Further, we assume each hlj ∈ Hαlp∗l ([al, bl]
p∗l , B) and define the underlying

function space

H(L,p,p∗, α,B) = {h =hL ◦ hL−1 ◦ · · · ◦ h1 ◦ h0 : hl = (hl1, · · · , hlpl+1
)T ,

hlj ∈ Hαlp∗l ([al, bl]
p∗l , B), for some |al| ∨ |bl| ≤ B},

(10)

where p = (p0, · · · , pL+1), p∗ = (p∗0, · · · , p∗L) and α = (α0, · · · , αL). For this function space, we
denote α∗l = αl

∏L
i=l+1(αi ∧ 1), l∗ = arg minl=1,...,L{α∗l /(2α∗l + p∗l )}, and

rn = n
−

α∗
l∗

2α∗
l∗+p

∗
l∗ . (11)

Here a ∧ b = min(a, b). Without loss of generality, we assume that each feature has been rescaled
to the unit interval, X ∈ [0, 1]p. Our theoretical results stated below also depend on the following
formal assumptions (proofs are relegated to the Appendix):

(A1) The underlying functions h1 and h2 in (4) belong to the Hölder class

H0 = {h ∈ H(L,p,p∗, α,B) : E[∆h(X)] = 0}.

(A2) The observation times Oi lie in a finite interval [0, τ ], and the underlying baseline hazard λ0 in
(4) is positive with twice continuous derivative in [0, τ).

(A3) The sub-density p(t) := dP(O ≤ t,∆ = 1)/dt is twice differentiable in [0, τ) and there exists
a positive constant c such that P(T ≥ τ |X) ≥ c with probability one.

(A4) The kernel functionK(·), defined on [−1, 1], is symmetric and twice-continuously differentiable
in (−1, 1).

(A5) M = O(log n), s = O(nr2n log n), d1 ∧ . . . ∧ dM = O(nr2n) and d1 ∨ . . . ∨ dM = O(n).

Assumption (A1) is required for the identifiability of h1 and h2. Assumptions (A2) and (A3) are
common smoothness assumptions for right censored data [58], where the study ends at time τ . The
second part of (A3) is typically satisfied in practice when the study must end while some subjects are
still alive. Assumption (A4) ensures that the likelihood function can be well approximated by the
pseudo-likelihood function. Assumption (A5) configures the structure of neural networks in (8) to
ensure larger networks are used as sample size increases.

Theorem 1 Suppose assumptions (A1)-(A5) hold and ρs→ 0 as n→∞ and b = O(n−1/5). Then
for any ε > 0 there exists sufficiently large A > 0 and an estimator ĥ = (ĥ1, ĥ2) ∈ G(d, s,M,A)×
G(d, s,M,A) that optimizes (6) such that

lim
n→∞

P(d(ĥ,h) ≥ ε) = 0,
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where h = (h1, h2) and d(ĥ,h) = ‖ĥ1 − h1‖L2([0,1]p) + ‖ĥ2 − h2‖L2([0,1]p). Moreover, we have

lim
n→∞

P(‖Ŝ(·|X)− S(·|X)‖L2([0,τ ]) ≥ ε) = 0.

The estimator ĥn = ĥ(= (ĥ1, ĥ2)) is based on the n observations {Xi, Oi,∆i}ni=1 in Section 2
and we omit its subscript n for simplicity throughout the paper. From the proof of Theorem 1,
we observe that both the approximation error and estimation error contributes to the error ĥ −
h. The approximation error is the smallest distance between h and the neural networks space
G(d, s,M,A)×G(d, s,M,A), for which more complex G(d, s,M,A) yields smaller approximation
errors. On the other hand, the estimation error is the difference between the minimizer ĥ and the
optimal approximation of h in G(d, s,M,A). With increasing sample sizes n, both the approximation
error and estimation error become smaller. The next theorem shows the exact convergence rates of
the proposed estimators.

Theorem 2 Let α∗ = bα∗l∗c+ 1. Under assumptions (A1)-(A5), if the baseline harzard function λ0
is α∗-th continuously differentiable, b = O(n−1/(2α∗+1)) and ρs = O(r2n), then we have

d(ĥ,h) = Op(rn log2 n) and ‖Ŝ(·|X)− S(·|X)‖L2([0,τ ]) = Op(rn log2 n).

Theorem 2 shows that the resulting convergence rates are jointly determined by the smoothness and
intrinsic dimension of the true functions, which are similar to Schmidt-Hieber [53] for nonparametric
regression and Zhong et al. [66] for the partially linear Cox model. For example, if the functions
h1 and h2 have the form in (9) with twice differentiable functions hkl, the convergence rate of the
proposed method is of the order n−2/7 log n, but classical nonparametric smoothing methods, such
as kernel smoothing and B-splines, would yield a slower convergence rate of order n−2/13. This
illustrates how deep learning is able to alleviate the curse of dimensionality and identify the low
dimensional structure of the data embedded in higher dimensions.

4 Experiments

This section presents the numerical performance of DeepEH in comparison with ten other survival
methods on four real datasets. The Appendix contains additional empirical studies and details
regarding our implementation.

4.1 Evaluation Criteria

Concordance Index. Due to the presence of censoring in survival data, traditional performance
measures such as mean squared error cannot be used to evaluate the accuracy of predictions. Instead,
the concordance-index (C-index, [27]) is one of the most widely used performance measures for
survival models. It assesses how good a model is by measuring the concordance between the rankings
of the predicted event times and the true event times. Specifically, if the predicted event time of
the i-th individual is T̂i, the C-index is defined by C = P(T̂i < T̂j |Oi < Oj ,∆i = 1). However,
it is difficult to obtain the predicted event time in most survival models, so the following C-index
proposed in Antolini et al. [3] is often used in practice:

C = P(Ŝ(Oi|Xi) < Ŝ(Oi|Xj)|Oi < Oj ,∆i = 1). (12)

If {Xi, Oi,∆i}ni=1 and Ŝ(t|Xi) denote observations and predicted conditional probabilities, respec-
tively, the C-index in (12) can be estimated empirically by

Ĉ =

∑n
i=1

∑n
j=1 ∆iI(Ŝ(Oi|Xi) < Ŝ(Oi|Xj))∑n
i=1

∑n
j=1 ∆iI(Oi < Oj)

.

The range of the C-index is [0, 1], and larger values indicate better performance with a random guess
leading to a C-index of 0.5.

Integrated Brier Score. Similar to the mean squared error, the Brier score [7] is a measure of
performance based on the predicted probability for a binary outcome. Graf et al. [24] extended the
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Brier score to right censored data in order to assess the accuracy of an estimated survival function at
some time t. Under right censorship, the Brier score at time t is formally given by

BS(t) =
1

n

n∑
i=1

{ [Ŝ(t|Xi)]
21(Oi ≤ t)∆i

Ĝ(Oi)
+

[1− Ŝ(t|Xi)]
21(Oi > t)

Ĝ(t)

}
,

where Ĝ is the Kaplan-Meier estimator of G(t) := P (C > t) for censoring time C. As a metric to
evaluate the performance of survival estimates, we consider the integrated Brier score (IBS)

IBS =

∫ τ

0

BS(t) dt. (13)

IBS is a proper scoring rule [23], where smaller values of this metric indicate better performance. We
calculate IBS in our experiments via a Riemann sum of the Brier score BS(t).

4.2 Baseline Methods

We compare our proposed models with three traditional survival methods, random survival forest and
six recent deep learning methods.

CoxPH, AFT, EH represent the standard Cox proportional hazard, accelerated failure time and
extended hazard models introduced in Section 2.

RSF leverages the accuracy of random forests for right-censored survival settings [33]. RSF bootstrap
samples from the original data and grows a tree for each bootstrapped data set by splitting on nodes
that maximize the log-rank difference between their sub-nodes. It then applies the Nelson–Aalen
estimator to calculate the cumulative hazard function for each tree and finally averages these estimates.

DeepSurv replaces the linear relationship in the CoxPH model with a neural network [38].

CoxTime extends CoxPH with a time-dependent hazard ratio, learned using a neural network [41].

PCHazard treats the hazard function as piece-wise constant in predefined time-intervals, using a
neural network to maximize this log-likelihood [40].

DeepHit directly estimates the joint distribution of events in discrete time, using a multi-task neural
network trained with a likelihood loss and a ranking loss [43].

DSM develops a deep learning framework to estimate the survival function that can also handle
competing risks in addition to single event survival data [47].

DeepAFT is adapted from the proposed DeepEH when enforcing h1 = h2, and we implement it as a
special case of DeepEH.

Among all the methods considered in this paper, DeepHit is the most general model, but it may
only perform well in applications where data are plentiful (which is not the case in existing survival
studies) and no lower dimensional structures exist for the survival times.

4.3 Data Sets

Here we evaluate the performance of various survival methods using four real survival datasets:
Chemotherapy for Stage B/C colon cancer (COLON), Molecular Taxonomy of Breast Cancer Inter-
national Consortium (METABRIC), Rotterdam tumor bank and German Breast Cancer Study Group
(RotGBSG) and Worcester Heart Attack Study (WHAS) and .

COLON was collected from a sample of 929 subjects to evaluate the effects of the drugs levamisole
and fluorouracil on resected colon carcinoma [45]. By the end of study, 48.6 percent of patients were
dead. Twelve features are included, among which two are continuous features: age, number of lymph
nodes with detectable cancer, and ten are categorical features: treatment, sex, obstruction of colon by
tumour, perforation of colon, adherence to nearby organs, differentiation of tumour, extent of local
spread, time from surgery to registration, more than 4 positive lymph nodes.

METABRIC includes paired DNA-RNA profiles and clinical information of 1,980 breast cancer
patients, among which 57.7 percent are recorded to die from the cancer [16]. Based on Immunohisto-
chemical 4 score plus Clinical Treatment Score (IHC4+CTS, [42]), DeepSurv [38] considered four
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Figure 1: Average Concordance index achieved by each survival model (higher is better) over five
different train/test splits of each dataset.
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Figure 2: Average Integrated Brier Score achieved by each survival model (lower is better) over five
different train/test splits of each dataset.

genes, four clinical indicators, and each patient’s age as features to predict survival. We follow the
same choices in our study. The four genes (MK167, EGFG, PGR and ERBB2) and the patient’s age
are continuous features, while hormone treatment indicator, radiotherapy indicator, chemotherapy
indicator, ER-positive indicator are binary features.

RotGBSG is the breast cancer data extracted from the Rotterdam tumor bank [21] and the German
Breast Cancer Study Group [54]. The data set consists of 2,232 patients and 56.7 percent of patients
have observed death time. During the studies, researchers recorded the standard features: age, tumor
size, number of positive lymph nodes, progesterone and oestrogen receptor status, menopausal status
and tumor grade for each patient. In our analysis, tumor size, number of positive lymph nodes and
tumor grade are coded to be ordinal features, whereas other features are coded to be continuous.

WHAS is a data set of 1,638 subjects for studying the factors of acute myocardial infarction [30]. The
features contain sex, age, body mass index, left heart failure complications, and order of myocardial
infarction, of which age and body mass index are continuous features and others are binary. By the
end of the WHAS study, 42.1 percent of the subjects had died of acute myocardial infarction.

4.4 Results

The evaluation for each dataset is done via 5-fold cross-validation, where we randomly split each
dataset into 5 equal folds that correspond to different train/test sets. Within each fold, 20% of the
training data is reserved as a validation set. Performance is gauged via the C-index and IBS.

Figure 1 and Figure 2 show the average C-index and IBS (on test data) over five different train/test
splits, respectively. More details, including the standard deviations, are displayed in Table 1 of the
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Appendix. In terms of the C-index, DeepEH outperforms the other ten survival methods on three
datasets: COLON, METABRIC and RotGBSG. For the WHAS dataset, RSF is the best method
followed by DeepEH. We also observe that DeepEH improves over its classical predecessor, the
EH model. In addition, DeepEH outperforms all its submodels, i.e., CoxPH, AFT, DeepSurv and
DeepAFT, on all datasets. In terms of IBS, DeepEH performs the best among all eleven survival
methods on COLON, RotGBSG and WHAS, and it outperformed the other ten methods substantially
on RotGBSG. Similiar to C-index, DeepEH also has better performance in IBS than its submodels
(CoxPH, AFT, EH, DeepSurv and DeepAFT) on all datasets.

5 Conclusion

Due to its massive potential, deep learning for survival analysis has attracted considerable attention
across epidemiology and clinical research. A theoretical understanding, however, is still at its infancy.
Mathematically and empirically, this work studied deep extensions of a flexible survival analysis
method, the EH model, which can represent a wider family of survival models. We introduced a
special but widely used neural network structure to facilitate mathematical study of deep survival
analysis. Under the EH model, the neural network estimators of our proposed DeepEH method are
asymptotically consistent, as are the corresponding estimators of the survival function. The favorable
convergence rates of the new estimators reveal that deep learning is a powerful tool to mitigate
the curse of dimensionality with fixed but high dimensional covariates. Empirically, the proposed
DeepEH model achieves superior C-index and IBS than competing methods. Our methods thus
constitute valuable additions to the practical survival modeling toolkit. Their broader impact will
likely be to improve estimation accuracy in existing survival analysis applications.

In the future, practical modifications of the neural network architecture may be investigated to adapt
the deep survival methods presented here for more complex features such as images [67] or gene
expression measurements [10]. While all experiments in this paper were limited to time-invariant
features, extensions to time-varying features (longitudinal data) remain of interest. Longitudinal
covariates bring rich information to the study but pose challenges to conventional survival models,
such as the CoxPH or AFT model, which require continuous measurements of the entire trajectory of
the longitudinal covariates that are unavailable in practice [31, 61]. The (bio)statistics community
has been actively researching how to best model survival data and longitudinal covariate processes
jointly [18, 52, 64]. In particular, joint modeling for EH models with longitudinal covariates has been
explored by Tseng et al. [58, 60]. Thus a natural direction for future work is to extend our DeepEH
models to this setting. In addition, this paper only provides evaluations based on C-index and IBS,
where the former metric measures the discriminative ability of a model while the latter accounts for
both discrimination and calibration. Broader evaluation of deep survival methods remains of interest,
including measures such as 1-calibration and D-calibration [25].
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