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Abstract
Time series forecasting uses historical data to
predict future trends, leveraging the relation-
ships between past observations and available
features. In this paper, we propose RAFT, a
retrieval-augmented time series forecasting
method to provide sufficient inductive biases and
complement the model’s learning capacity. When
forecasting the subsequent time frames, we di-
rectly retrieve historical data candidates from the
training dataset with patterns most similar to the
input, and utilize the future values of these can-
didates alongside the inputs to obtain predictions.
This simple approach augments the model’s ca-
pacity by externally providing information about
past patterns via retrieval modules. Our empirical
evaluations on ten benchmark datasets show that
RAFT consistently outperforms contemporary
baselines with an average win ratio of 86%.

1. Introduction
Accurately predicting future trends is crucial for making
informed decisions in various fields. Time series forecast-
ing, which analyzes past data to anticipate future outcomes,
plays a vital role in diverse areas like climate model-
ing (Zhu & Shasha, 2002), energy (Martı́n et al., 2010),
economics (Granger & Newbold, 2014), traffic flow (Chen
et al., 2001), and user behavior (Benevenuto et al., 2009).
By providing reliable predictions, it empowers us to develop
effective strategies and policies across these domains.

Over the past decade, deep learning models such as
CNNs (Bai et al., 2018; Borovykh et al., 2017) and
RNNs (Hewamalage et al., 2021) have proven their

*Equal contribution 1Department of AI Convergence, GIST,
Gwangju, South Korea. This work is done while the author was
in KAIST. 2School of Computing, KAIST, Daejeon, South Ko-
rea 3Data Science for Humanity Group, Max Planck Institute for
Security and Privacy, Bochum, Germany 4Google Cloud AI, Sun-
nyvale, United States. Correspondence to: Jinsung Yoon <jin-
sungyoon@google.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Forecast

Retrieve relevant historical patterns

Use retrieved results alongside the input

Figure 1. Illustration of a motivating example of retrieval in time-
series forecasting.

effectiveness in capturing patterns of change in historical
observations, leading to the development of various deep
learning models tailored for time series forecasting. Espe-
cially, the advent of attention-based transformers (Vaswani
et al., 2017) has made a significant impact on the time
series domain. The architecture has shown to be effective in
modeling dependencies between inputs, resulting in variants
like Informer (Zhou et al., 2021), AutoFormer (Wu et al.,
2021), and FedFormer (Zhou et al., 2022). Additionally,
recent methods utilize time series decomposition (Wang
et al., 2023), which isolates trends or seasonal patterns,
and multi-periodicity analysis which involves downsam-
pling/upsampling of the series at various periods (Lin et al.,
2024; Wang et al., 2024). Furthermore, lightweight models
like multi-layer perceptrons (MLP) have demonstrated
strong performance along with these decomposition
techniques and multi-periodicity analysis (Chen et al., 2023;
Zeng et al., 2023; Zhang et al., 2022).

However, real-world time series exhibit complex, non-
stationary patterns with varying periods and shapes. These
patterns may lack inherent temporal correlation and arise
from non-deterministic processes, resulting in infrequent
repetitions and diverse distributions (Kim et al., 2021). This
raises concerns about the effectiveness of models in extrap-
olating from such infrequent patterns. Moreover, the advan-
tages of indiscriminately memorizing all patterns, including
noisy and uncorrelated ones, are questionable in terms of
both generalizability and efficiency (Weigend et al., 1995).

We show an advancement in time-series forecasting mod-
els by expanding the models’ capacity (implicitly via the
trained weights) to learn patterns. We directly provide infor-
mation about historical patterns that are complex to learn,
as a way of bringing relevant information via the input
to reduce the burden on the forecasting model. Inspired
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by the retrieval-augmented generation (RAG) approaches
used in large language models (Lewis et al., 2020), our
method retrieves similar historical patterns from the training
dataset based on given inputs and utilizes them along with
the model’s learned knowledge to forecast the next time
frame (see Figure 1).

Our new approach, Retrieval-Augmented Forecasting of
Time-series (RAFT), offers two key advantages. First, by
directly utilizing retrieved information, the useful patterns
from the past become explicitly available at inference time,
rather than utilizing them via the learned information in
model weights. Learning hence covers patterns that lack
temporal correlation or do not share common characteristics
with other patterns, thereby reducing the learning burden
and enhancing generalizability. Second, even if a pattern
rarely appears in historical data and is difficult for the model
to memorize, the retrieval module allows the model to easily
leverage historical patterns when they reappear (Miller
et al., 2024; Laptev et al., 2017).

We demonstrate that the proposed judiciously-designed
inductive bias, implemented through a simple retrieval
module, enables an MLP architecture to achieve strong
forecasting performance. Inspired by existing literature that
downsamples series at various period intervals (Lin et al.,
2024; Wang et al., 2024), RAFT also generates multiple
series by downsampling the given series at different periods
and attaches a retrieval module to each series. This allows
for effectively capturing both short-term and long-term pat-
terns for more accurate forecasting. As demonstrated on ten
time-series benchmark datasets, RAFT outperforms other
contemporary baselines with an average win ratio of 86%.
Overall, our contributions can be summarized as follows:1

• We propose a retrieval-augmented time series forecast-
ing method, RAFT, which retrieves observations with
similar temporal patterns from the training dataset
and effectively leverage retrieved patterns for future
predictions.

• Our empirical studies on ten different benchmark
datasets show that RAFT outperforms other contem-
porary baselines with an average win ratio of 86%.

• We further explore the scenarios where retrieval mod-
ules can be beneficial for forecasting by conducting
analyses using synthetic and real-world datasets.

2. Related Work
2.1. Deep learning for time-series forecasting

A large body of research employs deep learning for
time-series forecasting. Existing methods can be broadly

1Code is in https://github.com/archon159/RAFT

categorized based on the employed architecture. Prior to the
advent of transformers (Vaswani et al., 2017), time series
analysis often relied on CNNs to capture local temporal pat-
terns (Bai et al., 2018; Borovykh et al., 2017) or RNNs to
model sequential dependencies (Hewamalage et al., 2021).
Following the advent of transformers, several approaches
emerged to better tailor the transformer architecture for
time-series forecasting. For example, LogTrans (Li et al.,
2019) used a convolutional self-attention layer, while In-
former (Zhou et al., 2021) employed a ProbSparse attention
module along with a distilling technique to efficiently
reduce network size. Both Autoformer (Wu et al., 2021) and
FedFormer (Zhou et al., 2022) decomposed time series into
components like trend and seasonal patterns for prediction.

Despite advancements in transformer-based models, (Zeng
et al., 2023) reported that even a simple linear model
can achieve strong forecasting performance. Sub-
sequently, lightweight MLP-based time-series models
such as TiDE (?), TSMixer (Chen et al., 2023), and
TimeMixer (Wang et al., 2024) were introduced with the ad-
vantages in both forecasting latency and training efficiency.
These models utilize various approaches such as series de-
composition similar to transformer-based studies (Zeng
et al., 2023) or introduced multi-periodicity analysis by
downsampling or upsampling the series at various period
intervals (Lin et al., 2024), to accurately extract the rele-
vant information from time-series for MLPs to effectively
fit on them. Recently, several studies have constructed a
large time-series databases to build large foundation models,
achieving strong zero-shot and few-shot performance (Das
et al., 2024; Woo et al., 2024).

Our proposed RAFT is based on a shallow MLP architecture,
following simplicity and efficiency motivations. Through
the retrieval module, the model retrieves subsequent pat-
terns that follow the patterns most similar to the current
input from the single time series, allowing it to reference
past patterns for future predictions without the burden of
memorizing all temporal patterns during training. Our re-
trieval differs from transformer variants that typically learn
relationships only within a fixed lookback window. RAFT
goes beyond the lookback window by retrieving relevant
data points from the entire time series and incorporating
them into the input.

2.2. Retrieval augmented models

Retrieval-augmented models typically work by first retriev-
ing relevant instances from a dataset based on a given input.
Then, they combine the input with these retrieved instances
to generate a prediction. Retrieval-augmented generation
(RAG) in natural language domain is an active research
area that utilizes this scheme. (Lewis et al., 2020; Guu
et al., 2020). RAG retrieves document chunks from external
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corpora that are relevant to the input task, helping large lan-
guage models (LLMs) generate responses related to the task
without hallucination (Shuster et al., 2021; Borgeaud et al.,
2022). This not only supplements the LLM’s limited prior
knowledge but also enables the LLM to handle complex,
knowledge-intensive tasks more effectively by providing
additional information from the retrieved documents (Gao
et al., 2023).

Beyond natural language processing, retrieval-augmented
models have also been used to solve structured data prob-
lems. A simple illustrative example is the K-nearest neigh-
bor model (Zhang, 2016). Other approaches have intro-
duced kernel-based neighbor methods (Nader et al., 2022),
prototype-based approaches (Arik & Pfister, 2020), or con-
sidered all training samples as retrieved instances (Kossen
et al., 2021). More recently, models leveraging attention-
like mechanisms have incorporated the similarity between
retrieved instances and the input into the prediction, achiev-
ing superior performance compared to traditional deep tab-
ular models (Gorishniy et al., 2024). There also exists a
method that has explored the potential of retrieving similar
entities in time-series forecasting, involving multiple time
series entities (Iwata & Kumagai, 2020; Yang et al., 2022).
Assuming the training set contains various types of time
series entities, they aggregate the information needed for
each entity’s prediction based on the similarities across all
time series entities.

In this paper, we aim to demonstrate that retrieval can be ef-
fective, even when applied to the single time-series. Similar
to how RAG supplements LLMs with additional informa-
tion for knowledge-intensive tasks, our approach seeks to
reduce the learning complexity in time-series forecasting.
Instead of forcing the model to learn every possible com-
plex pattern, the retrieval module provides information that
simplifies the learning process.

3. Method
3.1. Overview

Problem formulation. Given a single time series
S ∈ RC×T of length T with C observed variates (i.e.,
channels), RAFT utilizes historical observation x ∈ RC×L
to predict future values y ∈ RC×F that is close to the actual
future values y0 ∈ RC×F . L denotes look-back window
size and F denotes forecasting window size.

Given an input x, RAFT utilizes a retrieval module to find
the most relevant patch from S. Then, the subsequent
patches of the relevant patch are retrieved as additional
information for forecasting. The retrieval process follows
an attention-like structure, where the importance weights are
calculated based on the similarity between the input and the
patches, and the retrieved patches are aggregated through a

weighted sum (Sec. 3.2). The main difference of our model
from attention-based forecasting models, such as transform-
ers, lies in its ability to retrieve relevant data from the entire
time series rather than relying on a fixed lookback window.
Since the time series shows distinct characteristics across
periods, we utilize the retrieval modules into multiple peri-
ods. RAFT generates multiple time series by downsampling
the time series S with different periods and applies the re-
trieval module to each time series. The retrieval results from
multiple series are processed through linear projection and
aggregated by summation. Finally, the input and the aggre-
gated retrieval result are concatenated and passed through
a linear model to produce the final prediction (Sec. 3.3).
Details of each component are described below.

3.2. Retrieval module architecture

We transform the time series S to be appropriate for re-
trieval. First, we find all key patches within S that are to be
compared with given x ∈ RC×L. Using the sliding window
method of stride 12, we extract patches of window size L
and define this collection as K = {k1, ...,kT−(L+F )+1},
where i indicates the starting time step of the patch
ki ∈ RC×L. Note that any patch that overlaps with the
given x must be excluded from K during the training phase.
Then, we find all value patches that sequentially follow each
key patch ki ∈ K in the time series. We define the collection
of value patches as V ∈ {v1, ...,vT−(L+F )+1}, where each
vi ∈ RC×F sequentially follows after ki in the time series.

After preparing the key patch set K and value patch set V
for retrieval, we use the input x as a query to retrieve similar
key patches along with their corresponding value patches
with following steps. We first account for the distributional
deviation between the query, key, and value patches used
in the retrieval process. Let us define x = {xt}t∈{1,...,L},
where xt ∈ RC denotes the values of C variates at t-th time
step within the input x (i.e., xt = {xt1, ..., xtC}). Inspired
by existing literature (Zeng et al., 2023), we treat the final
time step value in each patch as an offset and subtract this
value from the patch as a form of preprocessing to make the
patterns more meaningful to compare:

x̂ = {xt − xL}t∈{1,...,L}, (1)

where x̂ represent the input queries with the offset sub-
tracted. Similarly, we subtract the offset from all key patches
ki ∈ K and vi ∈ V , denoting them as k̂i ∈ K̂ and v̂i ∈ V̂ ,
respectively. Then, we calculate the similarity ρi between
given x̂ and all key patches in K̂ using similarity function s:

ρi = s(x̂, k̂i), k̂i ∈ K̂. (2)

Here, we use Pearson’s correlation as a similarity function
s to exclude the effects of scale variations and value offsets

2The stride can be adjusted according to the demand of compu-
tational efficiency.
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Figure 2. Illustration of retrieval module architecture. First, we consider consecutive time frames from the entire time series S as key-value
pairs and construct a candidate set using a sliding window approach. Given an input time series as the query, the retrieval module computes
the similarity between the query and the keys in the candidate set that do not overlap temporally. Based on the similarity, the top-m
candidates are selected, and attention weights are calculated via SoftMax. The final result is obtained through a weighted sum of the
corresponding values.

in the time series, focusing on capturing the increasing and
decreasing tendencies3. We then retrieve the patches with
top-m correlation values:

J = arg top-m ({ρi | 1 ≤ i ≤ |K̂|}), (3)

where J denotes the indices of top-m patches. Given
temperature τ , we calculate the weight of value patches
with following equation:

wi =

{
exp (ρi/τ)∑

j∈J exp (ρj/τ)
, if i ∈ J

0. otherwise
(4)

Note that this is equivalent to conduct SoftMax only with
top-m correlation values. Finally, we obtain the final
retrieval result ṽ ∈ RC×F as the weighted sum of value
patches:

ṽ =
∑

i∈{1,...,|V̂|}

wi · v̂i. (5)

Figure 2 illustrates the architecture of our retrieval module.

3.3. Forecast with retrieval module

Single period. Consider the given input x ∈ RC×L and the
retrieved patch ṽ ∈ RC×F . Similar to the retrieval module,
we subtract the offset from x and define x̂ as the input with
the offset removed. Next, we concatenate f(x̂) with g(ṽ),
and process concatenated result through h to obtain ŷ:

ŷ = h(f(x̂)⊕ g(ṽ)), (6)

3See Appendix C.1 for comparison results with different simi-
larity metrics.

where linear projections f maps RL to RF , g maps RF to
RF , h maps R2F to RF , and ⊕ represents concatenation
operation.

Multiple periods. Time series at different periods display
unique characteristics – patterns in a small time window
typically reveal local patterns, while patterns in a large time
window might correspond to global trends. We extend the
retrieval process to consider n periods P . For each p ∈ P ,
we downsample the query x, all key patches in K, and all
value patches in V of period 1 by average pooling with
period p. This results in x(p) ∈ RC×b

L
p c, K(p), and V(p)

as the respective query, key patch set, and value patch set
for period p, where a key patch k

(p)
i ∈ RC×b

L
p c and a

value patch v
(p)
i ∈ RC×b

F
p c. Then, we conduct the retrieval

process described in Sec. 3.2 using x(p), K(p), and V(p),
and obtain the retrieval result ṽ(p) ∈ RC×b

F
p c for each

p. Each ṽ(p) is processed through a linear layer g(p) to
project all retrieval results in the same embedding space,
mapping Rb

F
p c to RF , respectively. Finally, we concatenate

x̂ with sum of linear projections and process it through linear
predictor h, which replaces Eq. 6 to following equation:

ŷ = h(f(x̂)⊕
∑
p∈P

g(p)(ṽ(p))) (7)

Denoting ŷt as the value at the t-th time step within ŷ, we
restore the original offset by adding xL to ŷ, resulting in
the final forecast y:

y = {ŷt + xL}t∈{1,...,F}. (8)

We train the model by minimizing the following MSE loss:

L = MSE(y, y0) (9)
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Figure 3. Illustration of the proposed architecture, RAFT. The input time series x and the entire past observed time series S are first
downsampled to generate multiple series with different periods. Then, a retrieval module is applied to each series to retrieve information
relevant to the current input. The retrieved results are projected to the same dimension via a linear layer, and the results from different
periods are summed to aggregate the information. Finally, the input time series is concatenated with the aggregated retrieved results, and a
linear layer is applied to produce the final prediction.

Figure 3 illustrates our model’s forecasting process with
multiple periods of retrieval. Hyperparameters such as m
are chosen based on the performance in the validation set.

4. Experiments
We evaluate RAFT across multiple time series forecasting
benchmark datasets. We analyze how our proposed retrieval
module contributes to performance improvement in time-
series forecasting, and in which scenarios retrieval is partic-
ularly beneficial. The full results, visualizations, and addi-
tional analyses of our model are provided in the Appendix.

4.1. Experimental settings

Datasets. We consider ten different benchmark datasets,
each with a diverse range of variates, dataset lengths, and
frequencies: (1-4) The ETT dataset contains 2 years of
electricity transformer temperature data, divided into four
subsets—ETTh1, ETTh2, ETTm1, and ETTm2 (Zhou et al.,
2021); (5) The Electricity dataset records household electric
power consumption over approximately 4 years (Trindade,
2015); (6) The Exchange dataset includes the daily exchange
rates of eight countries over 27 years (1990–2016) (Lai et al.,
2018); (7) The Illness dataset includes the weekly ratio of pa-
tients with influenza-like illness over 20 years (2002-2021)4;
(8) The Solar dataset contains 10-minute solar power fore-
casts collected from power plants in 2006 (Liu et al., 2022a);
(9) The Traffic dataset contains hourly road occupancy rates
on freeways over 48 months5; and (10) The Weather dataset

4https://gis.cdc.gov/grasp/fluview/
fluportaldashboard.html

5https://pems.dot.ca.gov/

consists of 21 weather-related indicators in Germany over
one year6. Data summary is provided in the Appendix A.

Baselines. We compare against 9 contemporary time-series
forecasting baselines, including: (1) Autoformer (Wu
et al., 2021), (2) Informer (Zhou et al., 2021), (3) Sta-
tionary (Liu et al., 2022b), (4) Fedformer (Zhou et al.,
2022), and (5) PatchTST (Nie et al., 2023), all of which
use Transformer-based architectures; (6) DLinear (Zeng
et al., 2023), which are lightweight models with simple
linear architectures; (7) MICN (Wang et al., 2023), which
leverages both local features and global correlations
through a convolutional structure; (8) TimesNet (Wu
et al., 2023), which utilizes Fourier Transformation to
decompose time-series data within a modular architecture;
and (9) TimeMixer (Wang et al., 2024), which utilizes
decomposition and multi-periodicity for forecasting7.

Implementation details. RAFT employs the retrieval mod-
ule with following detailed settings. The periods are set to
{1, 2, 4} (n = 3), following existing literature (Wang et al.,
2024), and the temperature τ is set to 0.1. Batch size is set to
32. The initial learning rate, the number of patches used in
the retrieval (m), and the size of the look-back window (L)
are determined via grid search based on performance on the
validation set, following the prior work (Wang et al., 2024).
For fair comparison, hyper-parameter tuning was performed
for both our model and all baselines using the validation
set. The learning rate is chosen from 1e-5 to 0.05, look back

6https://www.bgc-jena.mpg.de/wetter/
7We compare our model with general time-series forecasting

models. Other retrieval-based time-series models mentioned in the
related work assume the presence of multiple time-series instances,
which are outside the scope of our study.
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Table 1. Comparison of RAFT and baseline methods across 10 datasets using MSE. For all datasets except Illness, results are averaged
over forecasting horizons of 96, 192, 336, and 720. For the Illness dataset, forecasting horizons of 24, 36, 48, and 60 are used. Best
performances are bolded, and our framework’s performances, when second-best, are underlined.

Methods RAFT TimeMixer PatchTST TimesNet MICN DLinear FEDformer Stationary Autoformer Informer

ETTh1 0.420 0.447 0.516 0.495 0.475 0.461 0.498 0.570 0.496 1.040
ETTh2 0.359 0.364 0.391 0.414 0.574 0.563 0.437 0.526 0.450 4.431
ETTm1 0.348 0.381 0.406 0.400 0.423 0.404 0.448 0.481 0.588 0.961
ETTm2 0.254 0.275 0.290 0.291 0.353 0.354 0.305 0.306 0.327 1.410
Electricity 0.160 0.182 0.216 0.193 0.196 0.225 0.214 0.193 0.227 0.311
Exchange 0.441 0.386 0.564 0.416 0.315 0.643 1.195 0.461 1.447 2.478
Illness 2.097 2.024 1.480 2.139 2.664 2.169 2.847 2.077 3.006 5.137
Solar 0.231 0.216 0.287 0.403 0.283 0.330 0.328 0.350 0.586 0.331
Traffic 0.434 0.484 0.529 0.620 0.593 0.625 0.610 0.624 0.628 0.764
Weather 0.241 0.240 0.265 0.251 0.268 0.265 0.309 0.288 0.338 0.634

window size from {96, 192, 336, 720}, and the number of
patches used in retrieval m from {1, 5, 10, 20}. The cho-
sen values of each setting are presented in the Appendix B.
For implementation, we referred to the publicly available
time-series repository (TSLib)8. For all experiments, the
average results from three runs are reported, with each exper-
iment conducted on a single NVIDIA A100 40GB GPU. For
more details about the computational complexity analysis
of RAFT, see Appendix D.

Evaluation. We consider two metrics for evaluation: MSE
and MAE. We varied the forecasting horizon length to mea-
sure performance (i.e., F = 96, 192, 336, 720), and each ex-
periment setting was run with three different random seeds
to compute the average results. For the Illness dataset, fore-
casting horizons of 24, 36, 48, and 60 are used, following
the prior work (Nie et al., 2023; Wang et al., 2024). The
evaluation was conducted in multivariate settings, where
both the input and forecasting target have multiple channels.

4.2. Experimental results on forecasting benchmarks

Table 1 presents comparisons between the performance
of time series forecasting methods and RAFT. The results
represent the average MSE performance evaluated across
different forecasting horizon lengths. We observe that
our model consistently outperforms other contemporary
baselines on average, supporting the effectiveness of
retrieval in time series forecasting. Full results and
comparisons using a different evaluation metric (i.e., MAE)
are provided in Appendix G.

5. Discussions
In this section, we explore scenarios where retrieval shows
substantial advantage by empirically analyzing its effect,

8https://github.com/thuml/
Time-Series-Library

using both benchmark time series datasets and synthetic
time series datasets.

5.1. Better retrieval results lead to better performance.

Two criteria are important for our retrieval method to
enhance the forecasting performance. First, the value
patches V identified through the similarity between the input
query x and key patches K should closely match the actual
future value y0 which sequentially follows the input query.
Second, the model should efficiently leverage the informa-
tion in the value patches for forecasting. From these, we can
draw the insight that higher similarity between input query
and key patches (i.e., key similarity) will lead to the higher
similarity between the actual value and value patches (i.e.,
value similarity), eventually resulting in better performance.

Figure 4 presents the correlation analysis conducted on the
ETTh1 dataset. Figure 4a shows that retrieving key patches
with higher similarity leads to value patches that are more
closely aligned with the actual future value. Figure 4b il-
lustrates that the value patches with greater similarity to
the actual future values tend to improve RAFT’s perfor-
mance more significantly. This trend is also consistent
across datasets; datasets with higher key similarity show
higher value similarity, resulting in larger performance gains.
Spearman’s correlation coefficient validate this trend, show-
ing a correlation of 0.60 between key similarity and value
similarity, and a correlation of −0.54 between value simi-
larity and performance gain across datasets. The negative
correlation with performance is due to the use of MSE as
the metric (lower the better). These results demonstrate
that better retrieval results from the retrieval module lead to
improved performance of RAFT.

5.2. Retrieval is helpful when rare patterns repeat.

RAFT can complement scenarios where a particular pattern
does not frequently appear in the training dataset, making it
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(a) Scatter plot of key and value similarity (b) Scatter plot of value similarity and MSE change (%)

Figure 4. Analysis of the correlation between (a) the key similarity and value similarity, and (b) the value similarity and model performance
changes measured by MSE (%). Each dot represents each input patch from the ETTh1 test dataset. Key similarity refers to the average
similarity between input query (x) and all retrieved key patches (K). Value similarity refers to the average similarity between actual future
value (y0) and all retrieved value patches (V).

difficult for the model to memorize. By utilizing retrieved
information, the model can overcome this challenge. To an-
alyze this effect, we conducted experiments using synthetic
time series datasets.

Synthetic data generation with autoregressive model.
The synthetic time series was constructed by combining
three components: trend, seasonality, and event-based short-
term patterns. Trend and seasonality were generated using
sinusoidal functions with varying periods, amplitudes, and
offsets, representing long-term consistent patterns. Short-
term patterns, modeled as event-based dynamics, were cre-
ated using an autoregressive model:

xt =

20∑
i=1

ϕixt−i + εt, (10)

where ϕi are autoregressive parameters, and εt is noise sam-
pled from a uniform distribution. The short-term pattern
length was fixed at 200. To test retrieval effectiveness for
rare patterns, we generated three distinct short-term patterns
and varied their frequency in the training dataset. Forecast-
ing accuracy (MSE) was evaluated when each short-term
pattern appeared in the test set, with input and forecasting
horizon lengths fixed at 96. Additional dataset details and
figures are available in Figure 5a and Appendix E.

Results. Table 2 presents the number of occurrences of
the short-term patterns and the corresponding performance
of RAFT with and without retrieval, as well as baseline
models. Note that, in this experiment, we did not consider
multiple periods in order to isolate the effect of retrieval,
so RAFT without retrieval has an identical structure to
the NLinear (Zeng et al., 2023). The results show that our
model, utilizing retrieval, consistently outperformed the
model without retrieval on the synthetic dataset; 9.2∼14.7%
increase in performance depending on the pattern occur-
rences. Notably, as the pattern occurrences decreased, the

Table 2. Analysis between forecasting accuracy and the rarity of
the pattern over the synthetic time series with an autoregressive
model. Forecasting accuracy was evaluated using MSE, averaged
across 120 different time series and short-term patterns. The num-
bers in the last row indicate the ratio by which the MSE decreases
when retrieval is appended.

Pattern occurrences 1 2 4

TimeMixer 0.2360 0.2166 0.2276
TimesNet 0.2282 0.1970 0.1925
MICN 0.2285 0.2331 0.2033
DLinear 0.2640 0.2552 0.2502

RAFT without Retrieval 0.2590 0.2310 0.2344
RAFT with Retrieval 0.2209 0.2064 0.2128

MSE decrease ratio -14.7% -10.7% -9.2%

reduction in MSE was more significant. Similar to RAFT
without retrieval, the baseline models exhibited a decrease
in performance as the pattern occurrences decreased. When
we also visualize the predictions of models with and without
retrieval modules over the rare pattern (see Figure 5b),
the model utilizing retrieval aligns well with the pattern’s
periodicity and offset during forecasting, while the model
relying solely on learning fails to capture these aspects. This
suggests that the model struggles to learn rare patterns, and
the retrieval module effectively complements this deficiency.

5.3. Retrieval is helpful when patterns are temporally
less correlated.

If short-term patterns are very similar across time, there’s
less unique information for the model to learn, making it
easier to achieve accurate predictions. On the other hand,
if the short-term patterns in time series data are similar to
a random walk without any specific temporal correlation,
the model would need to memorize all changes within
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Figure 5. Visualization of a synthetic time series with short-term patterns and the corresponding predictions over the rare short-term
pattern from models with and without the retrieval module. MSE of predictions in this example without retrieval is 0.087, while with
retrieval, it improves to 0.035.

short-term pattern for accurate forecasting. Based on this
hypothesis, we expect the retrieval module to be especially
helpful when patterns are temporally less correlated, as
retrieval can easily detect similarities between patterns that
temporal correlation alone cannot capture. We again use
the synthetic dataset for validation.

Synthetic data generation with random walk model.
Instead of generating short-term patterns using the autore-
gressive model as before, we utilize random walk-based
change patterns, following the equation:

xt = xt−1 + εt. (11)

The step size for the walk εt was sampled from a uniform
distribution within the range of [-20, 20]. The generated
short-term patterns were then inserted into the training data,
as in the previous synthetic time-series approach.

Table 3. Forecasting accuracy over the rarity of the pattern. Syn-
thetic time series with random walk based patterns (temporally
less correlated) is used. Forecasting accuracy was evaluated using
MSE, averaged across 120 different time series and short-term
patterns. The numbers in the last row indicate the ratio by which
the MSE decreases when retrieval is appended.

Pattern occurrences 1 2 4

TimeMixer 0.2863 0.2305 0.2249
TimeNet 0.2448 0.1877 0.1938
MICN 0.2536 0.2445 0.2450
DLinear 0.3175 0.2059 0.2798

RAFT without retrieval 0.2694 0.2649 0.1894
RAFT with retrieval 0.1845 0.1818 0.1592

MSE decrease ratio -31.5% -31.4% -16.0%

Results. Table 3 shows the results of applying the same
experiment as in Table 2, but with different synthetic time-

series data. Again, the retrieval module improves perfor-
mance across all cases, particularly for rare patterns. Fur-
thermore, the performance improvement is more signifi-
cant for temporally less correlated patterns (16.0∼31.5%
decrease of MSE depending on pattern occurrences), com-
pared to temporally more correlated ones shown in Table 2
(9.2∼14.7%). The baseline models exhibited a similar trend
to that observed in Table 2, while the performance gap
compared to RAFT with retrieval has become more signif-
icant. This confirms that the proposed retrieval module is
more beneficial when dealing with temporally less corre-
lated or near-random patterns that are more challenging for
the model to learn.

5.4. Retrieval is also helpful for Transformer-variants

We investigate the effectiveness of the retrieval module
Transformer-variants, using AutoFormer. Instead of modi-
fying the internal Transformer architecture to integrate our
retrieval module, we directly added retrieval results to Aut-
oFormer’s predictions at the final stage. Table 4 demon-
strates that our retrieval module successfully enhances the
forecasting performance of the Transformer-based model,
highlighting its broader applicability to other architectures.

Table 4. Performance comparison between AutoFormer and Aut-
oFormer with our proposed retrieval module. The average MSE
across different forecasting horizon lengths is reported.

ETTh1 ETTh2 ETTm1 ETTm2

Autoformer 0.496 0.450 0.588 0.327
+ Retrieval 0.471 0.444 0.454 0.326
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6. Conclusion
In this paper, we introduce RAFT, a time-series forecasting
method that leverages retrieval from training data to aug-
ment the input. Our retrieval module lessens the model to
absorb all unique patterns in its weights, particularly those
that lack temporal correlation or do not share common char-
acteristics with other patterns. This overall is demonstrated
as an effective inductive bias for deep learning architectures
for time-series. Our extensive evaluations on numerous real-
world and synthetic datasets confirm that RAFT achieves
performance improvements over contemporary baselines.
As various retrieval-based models are being proposed, there
remains room for improvement in retrieval techniques
specifically tailored for time-series data (beyond the simple
approaches used), including determining when, where, and
how to apply retrieval based on dataset characteristics and
capture more complex similarity measures that depend on
nonlinear and nonstationary characteristics. Our work is
expected to open new avenues in the time-series forecasting
field through the use of retrieval-augmented approaches.
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A. Dataset Details
In this work, we use widely-used 10 time series datasets. The detailed information of each dataset are shown in Table 5. The
dataset size is presented in (Train, Validation, Test). The targets used in the univariate setting are as follows: oil temperature
for the ETTh1, ETTh2, ETTm1, ETTm2 datasets; the consumption of a client for the Electricity dataset; the exchange rate
of Singapore for the Exchange Rate dataset; the weekly ratio of patients for Illness dataset; 10-minute solar power forecasts
collected from power plants for the Solar dataset; the road occupancy rates measured by a sensor for the Traffic dataset; and
CO2 (ppm) for the Weather dataset.

Table 5. Basic information of datasets used for evaluation.

Dataset # of variates Dataset Size Frequency

ETTh1 7 (8449, 2785, 2785) Hourly
ETTh2 7 (8449, 2785, 2785) Hourly
ETTm1 7 (34369, 11425, 11425) 15 min
ETTm2 7 (34369, 11425, 11425) 15 min
Electricity 321 (18221, 2537, 5165) Hourly
Exchange Rate 8 (5120, 665, 1422) Daily
Illness 7 (485, 2, 98) Weekly
Solar 137 (36601, 5161, 10417) 10 min
Traffic 862 (12089, 1661, 3413) Hourly
Weather 21 (36696, 5175, 10444) 10min
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B. Implementation Details
RAFT employs a retrieval module with the following detailed settings. The periods are set to 1, 2, 4 (n = 3), following
existing literature (Wang et al., 2024). The temperature τ is set to 0.1. The remaining settings, including the look back
window size L, the learning rate, and the number of patches used in retrieval m are determined through grid search based on
validation set performance, consistent with prior work (Wang et al., 2024). The effect of hyper-parameters (L, m, τ ) on the
performance are analyzed in the Section C.3-C.4.

Table 6 provides the parameter settings of our model for each dataset. We observed that some parameters vary across
different datasets.

Table 6. The chosen parameter values of each setting via grid search over the validation set.

Forecasting horizon size Look back window size Learning rate Number of retrievals

ETTh1 96 720 1.00E-03 20
192 720 1.00E-02 20
336 720 1.00E-02 20
720 720 1.00E-04 20

ETTh2 96 720 1.00E-02 10
192 720 1.00E-03 10
336 720 1.00E-03 20
720 720 1.00E-04 20

ETTm1 96 720 1.00E-02 1
192 720 1.00E-03 20
336 720 1.00E-03 20
720 720 1.00E-02 20

ETTm2 96 720 1.00E-03 5
192 720 1.00E-03 20
336 720 1.00E-04 20
720 720 1.00E-04 20

Electricity 96 720 1.00E-02 1
192 720 1.00E-03 1
336 720 1.00E-03 1
720 720 1.00E-03 1

Exchange 96 720 1.00E-04 1
192 720 1.00E-03 1
336 720 1.00E-03 10
720 720 1.00E-04 20

Illness 96 96 1.00E-02 1
192 96 1.00E-02 1
336 96 1.00E-02 20
720 96 1.00E-02 20

Solar 96 720 1.00E-03 1
192 720 1.00E-02 1
336 720 1.00E-03 1
720 720 1.00E-03 1

Traffic 96 720 1.00E-02 1
192 720 1.00E-03 1
336 720 1.00E-03 1
720 720 1.00E-03 1

Weather 96 720 1.00E-02 1
192 720 1.00E-03 1
336 720 1.00E-03 1
720 720 1.00E-03 1
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C. Component Analysis
In this section, we analyze the impact of each component of RAFT on performance.

C.1. Different Similarity Metrics for Retrieval

We compared RAFT using various similarity metrics, including Pearson’s correlation, cosine similarity, cosine similarity
with projection, and negative L2 distance. Cosine similarity with projection employs a trainable linear projection head for
the input query and key vectors, respectively, and measures cosine similarity between the embeddings after projection rather
than between the raw query and key. Table 7 presents the comparison results across datasets, where Pearson’s correlation
shows the best performance among the various similarity metrics. We also observe that the linear projection provide a
comparable performance to measuring similarity with the raw query and key.

Beyond performance, this projection-based approach offers computational advantages. By mapping sparse, high-dimensional
inputs into dense, lower-dimensional embeddings, it reduces the time complexity of retrieval - especially when integrated
with preprocessing, parallelization, and efficient vector search techniques such as approximate nearest neighbor (ANN)
methods. Additionally, the projection mechanism enables incorporation of external features or correlated time series. In
such scenarios, separate encoders can project external segments and input features into a shared embedding space. Once
aligned, cosine similarity can be used to retrieve relevant external segments for each input query. These retrieved segments
can then be leveraged alongside the original input to enhance predictive performance, with both encoders optimized jointly
during training.

Table 7. Comparison of various similarity metrics with RAFT in the univariate setting.

Pearson’s Correlation Cosine Similarity Cosine Sim with Projection Negative L2 Distance

ETTh1 0.0559 0.0561 0.0562 0.0562
ETTh2 0.1231 0.1235 0.1298 0.1271
ETTm1 0.0299 0.0298 0.0294 0.0296
ETTm2 0.0647 0.0649 0.0699 0.0666
Electricity 0.3307 0.3343 0.3981 0.3388
Exchange Rate 0.0915 0.0917 0.0933 0.0922
Traffic 0.2737 0.2773 0.2943 0.2925
Weather 0.0118 0.0129 0.0026 0.0278

C.2. Ablation Study on Retrieval Module

To thoroughly analyze the impact of the proposed retrieval design on performance, we conducted an ablation study on
the retrieval module. The ablations were as follows: (1) Random Retrieval – Key patches are retrieved randomly, without
considering similarity to the query; (2) Without Attention – When aggregating value patches, we use equal weights instead
of similarity-based weights (Eq. 5); (3) With One Period – Only period 1 is used for retrieval (P = {1}); (4) Without
Retrieval – Retrieval is entirely removed, leaving only the linear predictor. The experiments were conducted under identical
hyper-parameter and learning settings and evaluated on multivariate forecasting tasks. Table 8 presents the MSE results for
each dataset across the ablations. As shown in the results, our model with all components included consistently achieved the
best performance compared to the baselines across all datasets. Notably, we observed that when retrieval was conducted
randomly, without attention or with one period, performance was sometimes even worse than without retrieval, which
demonstrates that retrieving relevant data is crucial for achieving high performance.
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Table 8. Ablation study on retrieval module in the multivariate setting.

ETTh1 ETTh2 ETTm1 ETTm2 Electricity Exchange Rate Traffic Weather

RAFT 0.367 0.276 0.302 0.164 0.133 0.091 0.378 0.165
Random Retrieval 0.382 0.282 0.305 0.171 0.150 0.092 0.413 0.188
Without Attention 0.379 0.281 0.300 0.165 0.148 0.090 0.409 0.172
With One Period 0.369 0.276 0.303 0.164 0.133 0.088 0.379 0.168
Without Retrieval 0.379 0.282 0.306 0.167 0.143 0.089 0.410 0.182

C.3. Effect of Look Back Window Size (L)

We analyze the effect of look back window size (L) on forecasting performance. Keeping all other experimental settings
fixed, we varied the look back window size between 96, 192, 336, and 720 to observe performance changes. The experiments
were conducted in a multivariate setting across four datasets, with the prediction length set to 96. Table 9 compares the MSE
results for different look back window sizes. Consistent with prior works (Wang et al., 2024; Zeng et al., 2023), we observed
that RAFT, based on a linear model, also achieves better forecasting performance as the look back window size increases.

Table 9. Comparison results over different look back window size.

Look back window size (L) 96 192 336 720

ETTh1 0.387 0.390 0.386 0.367
ETTh2 0.296 0.292 0.281 0.276
ETTm1 0.348 0.310 0.306 0.302
ETTm2 0.179 0.171 0.166 0.164

C.4. Hyper-Parameter Analysis

RAFT has two key internal model parameters. The first is the number of patches retrieved by the retrieval module, and the
second is the temperature τ used in the softmax function to calculate weights. Each hyper-parameter is optimally tuned for
each dataset based on the validation set. Table 10-11 below illustrates examples of performance variations (MSE) across
four datasets with different hyper-parameter values. As shown, the optimal values of the hyper-parameters vary depending
on the dataset.

Table 10. Effect of the number of retrievals (m) on performance.

The number of retrievals (m) 1 5 10 20

ETTh1 0.370 0.368 0.367 0.367
ETTh2 0.280 0.278 0.276 0.275
ETTm1 0.302 0.300 0.298 0.297
ETTm2 0.164 0.164 0.164 0.164

Table 11. Effect of the temperature (τ ) on performance.

Temperature (τ ) 0.01 0.1 1 10

ETTh1 0.383 0.367 0.378 0.381
ETTh2 0.285 0.276 0.280 0.281
ETTm1 0.303 0.302 0.300 0.304
ETTm2 0.165 0.164 0.165 0.167
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C.5. Effect of Training Time Series Length

When the available time series is short, the number of historical patches for retrieval naturally decreases, potentially limiting
performance gains. To investigate this phenomenon, we conducted additional experiments comparing our model with and
without retrieval, varying the length of the training data from our benchmark datasets and evaluated performance on a fixed
test set while adjusting the training data proportion to 20%, 60%, and 100%. The results presented in Table 12 indicate that
the impact of the training dataset’s length on performance gains varies significantly across different datasets. However, our
approach consistently outperformed the baseline model, even with limited historical data.

Table 12. Effect of training time series length on RAFT performance.

Dataset Training data proportion 20% 60% 100%

ETTh1 RAFT without retrieval 0.590 0.444 0.379
RAFT with retrieval 0.562 0.428 0.367

ETTh2 RAFT without retrieval 0.251 0.255 0.282
RAFT with retrieval 0.260 0.255 0.276

ETTm1 RAFT without retrieval 1.492 0.692 0.306
RAFT with retrieval 0.975 0.684 0.302

ETTm2 RAFT without retrieval 1.364 0.608 0.167
RAFT with retrieval 1.312 0.603 0.164
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D. Computational Complexity for Retrieval
Our model incorporates a retrieval process to find similar patches in the given data. For efficient training, the retrieval
process is pre-computed for the training and validation data, requiring computation only once during training. We analyzed
the wall time (in seconds) for retrieval pre-computation, training, and inference on the ETTm1 dataset (see Table 13). The
lookback window size was set to 720, and the forecasting horizon length was set to 96.

Table 13. Wall time for each process of RAFT over ETTm1.

Pre-computation Training time per epoch Total Inference time

Wall time (sec) 42.2 7.3 1.9

The pre-computation speed for retrieval of our model is O(N2), where N denotes the size of the time-series in the training
data. To reduce this time, one approach is to increase the stride of the sliding window beyond 1, speeding up the search
process. Table 14 records the changes in wall time as the stride of the sliding window increases. As the stride increases, the
time required for the search process decreases significantly.

Table 14. Wall time across different number of strides over ETTm1.
Stride 1 2 4 8

Wall time for pre-computation (sec) 42.2 19.8 9.3 4.7

Lastly, we examined the impact of increasing the stride on forecasting performance. Table 15 presents the changes in MSE
across four datasets (ETTh1, ETTh2, ETTm1, ETTm2) as the stride increases. While increasing the stride introduced a
performance trade-off, we observed that the decrease in performance was not significant.

Table 15. MSE changes of RAFT over four datasets across the different number of strides.

Stride 1 2 4 8

ETTh1 0.367 0.379 0.381 0.383
ETTh2 0.276 0.279 0.279 0.280
ETTm1 0.302 0.298 0.299 0.300
ETTm2 0.164 0.164 0.165 0.165
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E. Synthetic Dataset Generation Details
The synthetic time series was created by combining three different components. Two of these components represent
trend and seasonality, which exhibit long-term consistent patterns throughout the entire time series. The third component
represents event-based short-term patterns. The generation details for each component are as follows:

Trend and seasonality components. To generate the trend and seasonality components, we synthesized sinusoidal
functions with varying periods, amplitudes, and offsets. The total length of the time series was set to 18,000. The period
of the sinusoidal function for the trend was sampled from a uniform distribution between [1000, 4000], while the period
for seasonality was shorter, sampled from [500, 1000]. The amplitude of each component was randomly chosen from the
ranges [200, 300] for the trend and [100, 200] for the seasonality. Offsets were sampled from the range [100, 200].

Short-term patterns from the autoregressive model. The length of each short-term pattern was set to 200. In the case
of the autoregressive model, the value of the next time step was determined by the previous 20 time steps, following the
equation below:

xt =

20∑
i=1

ϕixt−i + εt, (12)

where ϕi represents the parameters in the autoregressive model, and εt is the noise. The parameters were sampled from a
uniform distribution within [-5, 5], and the noise was sampled from a uniform distribution within [-10, 10]. The length of
the short-term pattern was set to 200. To prevent the short-term patterns from producing extreme values compared to the
trend and seasonal components, we clamped the values within the range [-100, 100].

Short-term patterns from the random-walk model. In the case of the random-walk model, the length of the short-term
pattern was also fixed at 200. Unlike the autoregressive model, in the random-walk model, the value of the next time step
depends only on the previous time step, as described by the equation:

xt = xt−1 + εt., (13)

where the step size for the walk was sampled from a uniform distribution within the range of [0, 20]. Again, to prevent the
short-term patterns from producing extreme values compared to the trend and seasonal components, we clamped the values
within the range [-100, 100].

Finally, the trend, seasonality, and short-term patterns were combined to create the synthetic time series. Example
visualizations of the autoregressive short-term pattern, the random-walk pattern, and the resulting synthetic time series can
be seen in Figure 6.
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(d) Synthetic data with random-walk patterns

Figure 6. Visualization of an example synthetic time series with short-term patterns.
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F. Qualitative Analysis on Retrieval
In this section, we provide examples of our retrieval results. Figure 7-9 illustrate a comparison between the input query and
the retrieved key patch, as well as a comparison between the ground truth and the retrieved value patch, with retrievals by 1,
2, and 4 periods. Note that we retrieve the key patch with the top-1 similarity and its following value patch. The results
demonstrate that our retrieval module effectively delivers useful information for forecasting future predictions.
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(a) Input query and retrieved key patch (period 1)
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(b) Ground truth and retrieved value patch (period 1)
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(c) Input query and retrieved key patch (period 2)
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(d) Ground truth and retrieved value patch (period 2)
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(f) Ground truth and retrieved value patch (period 4)

Figure 7. The example of our retrieval results on ETTh1 dataset. The key patches retrieved by period 1, 2, and 4 are compared with input
query in (a), (c), and (e), respectively. The value patches retrieved by period 1, 2, and 4 are compared with ground truth in (b), (d), and (f),
respectively. Note that the figures in the right side sequentially follows after the figures in the left side within the time series.
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(f) Ground truth and retrieved value patch (period 4)

Figure 8. The example of our retrieval results on Exchange Rate dataset. The key patches retrieved by period 1, 2, and 4 are compared
with input query in (a), (c), and (e), respectively. The value patches retrieved by period 1, 2, and 4 are compared with ground truth in (b),
(d), and (f), respectively. Note that the figures in the right side sequentially follows after the figures in the left side within the time series.
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Figure 9. The example of our retrieval results on Traffic dataset. The key patches retrieved by period 1, 2, and 4 are compared with input
query in (a), (c), and (e), respectively. The value patches retrieved by period 1, 2, and 4 are compared with ground truth in (b), (d), and (f),
respectively. Note that the figures in the right side sequentially follows after the figures in the left side within the time series.
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G. Full Results
G.1. Evaluation Results with MSE

Table 16. Full evaluation results with MSE are provided, with some baseline results excerpted from prior works (Wang et al., 2024; Nie
et al., 2023).

Methods Ours TimeMixer PatchTST TimesNet MICN DLinear FEDformer Stationary Autoformer Informer

ETTh1 96 0.367 0.375 0.460 0.384 0.426 0.397 0.395 0.513 0.449 0.865
192 0.411 0.429 0.512 0.436 0.454 0.446 0.469 0.534 0.500 1.008
336 0.436 0.484 0.546 0.638 0.493 0.489 0.530 0.588 0.521 1.107
720 0.467 0.498 0.544 0.521 0.526 0.513 0.598 0.643 0.514 1.181

Avg 0.420 0.447 0.516 0.495 0.475 0.461 0.498 0.570 0.496 1.040

ETTh2 96 0.276 0.289 0.308 0.340 0.372 0.340 0.358 0.476 0.346 3.755
192 0.347 0.372 0.393 0.402 0.492 0.482 0.429 0.512 0.456 5.602
336 0.376 0.386 0.427 0.452 0.607 0.591 0.496 0.552 0.482 4.721
720 0.436 0.412 0.436 0.462 0.824 0.839 0.463 0.562 0.515 3.647

Avg 0.359 0.365 0.391 0.414 0.574 0.563 0.437 0.526 0.450 4.431

ETTm1 96 0.302 0.320 0.352 0.338 0.365 0.346 0.379 0.386 0.505 0.672
192 0.329 0.361 0.390 0.374 0.403 0.382 0.426 0.459 0.553 0.795
336 0.355 0.390 0.421 0.410 0.436 0.415 0.445 0.495 0.621 1.212
720 0.406 0.454 0.462 0.478 0.489 0.473 0.543 0.585 0.671 1.166

Avg 0.348 0.381 0.406 0.400 0.423 0.404 0.448 0.481 0.588 0.961

ETTm2 96 0.164 0.175 0.183 0.187 0.197 0.193 0.203 0.192 0.255 0.365
192 0.219 0.237 0.255 0.249 0.284 0.284 0.269 0.280 0.281 0.533
336 0.275 0.298 0.309 0.321 0.381 0.382 0.325 0.334 0.339 1.363
720 0.359 0.391 0.412 0.408 0.549 0.558 0.421 0.417 0.433 3.379

Avg 0.254 0.275 0.290 0.291 0.353 0.354 0.305 0.306 0.327 1.410

Electricity 96 0.133 0.153 0.190 0.168 0.180 0.210 0.193 0.169 0.201 0.274
192 0.149 0.166 0.199 0.184 0.189 0.210 0.201 0.182 0.222 0.296
336 0.161 0.185 0.217 0.198 0.198 0.223 0.214 0.200 0.231 0.300
720 0.197 0.225 0.258 0.220 0.217 0.258 0.246 0.222 0.254 0.373

Avg 0.160 0.182 0.216 0.193 0.196 0.225 0.214 0.193 0.227 0.311

Exchange 96 0.091 0.095 0.084 0.107 0.102 0.081 0.148 0.111 0.197 0.847
192 0.205 0.201 0.180 0.226 0.172 0.157 0.271 0.219 0.300 1.204
336 0.353 0.350 0.510 0.367 0.272 0.305 0.460 0.421 0.509 1.672
720 1.115 0.898 1.480 0.964 0.714 0.643 1.195 1.092 1.447 2.478

Avg 0.441 0.386 0.564 0.416 0.315 0.297 0.519 0.461 0.613 1.550

Illness 24 2.076 1.896 1.319 2.317 2.684 2.215 3.228 2.294 3.483 5.764
36 2.183 1.928 1.579 1.972 2.667 1.963 2.679 1.825 3.103 4.755
48 2.073 2.132 1.553 2.238 2.558 2.130 2.622 2.010 2.669 4.763
60 2.058 2.141 1.470 2.027 2.747 2.368 2.857 2.178 2.770 5.264

Avg 2.097 2.024 1.480 2.139 2.664 2.169 2.847 2.077 3.006 5.137

Solar 96 0.192 0.189 0.265 0.373 0.257 0.290 0.286 0.321 0.456 0.287
192 0.247 0.222 0.288 0.397 0.278 0.320 0.291 0.346 0.588 0.297
336 0.240 0.231 0.301 0.420 0.298 0.353 0.354 0.357 0.595 0.367
720 0.246 0.223 0.295 0.420 0.299 0.357 0.380 0.375 0.733 0.374

Avg 0.231 0.216 0.287 0.403 0.283 0.330 0.328 0.350 0.593 0.331

Traffic 96 0.378 0.462 0.526 0.593 0.577 0.650 0.587 0.612 0.613 0.719
192 0.391 0.473 0.522 0.617 0.589 0.598 0.604 0.613 0.616 0.696
336 0.402 0.498 0.517 0.629 0.594 0.605 0.621 0.618 0.622 0.777
720 0.434 0.506 0.552 0.640 0.613 0.645 0.626 0.653 0.660 0.864

Avg 0.402 0.485 0.529 0.620 0.593 0.625 0.610 0.624 0.628 0.764

Weather 96 0.165 0.163 0.186 0.172 0.198 0.195 0.217 0.173 0.266 0.300
192 0.211 0.208 0.234 0.219 0.239 0.237 0.276 0.245 0.307 0.598
336 0.260 0.251 0.284 0.246 0.285 0.282 0.339 0.321 0.359 0.578
720 0.327 0.339 0.356 0.365 0.351 0.345 0.403 0.414 0.419 1.059

Avg 0.241 0.240 0.265 0.251 0.268 0.265 0.309 0.288 0.338 0.634
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G.2. Evaluation Results with MAE

Table 17. Full evaluation results with MAE are provided, with some baseline results excerpted from prior works (Wang et al., 2024; Nie
et al., 2023).

Methods Ours TimeMixer PatchTST TimesNet MICN DLinear FEDformer Stationary Autoformer Informer

ETTh1 96 0.397 0.400 0.447 0.402 0.446 0.412 0.424 0.491 0.459 0.713
192 0.427 0.421 0.477 0.429 0.464 0.441 0.470 0.504 0.482 0.792
336 0.442 0.458 0.496 0.469 0.487 0.467 0.499 0.535 0.496 0.809
720 0.478 0.482 0.517 0.500 0.526 0.510 0.544 0.616 0.512 0.865

Avg 0.436 0.440 0.484 0.450 0.481 0.458 0.484 0.537 0.487 0.795

ETTh2 96 0.344 0.341 0.355 0.374 0.424 0.394 0.397 0.458 0.388 1.525
192 0.393 0.392 0.405 0.414 0.492 0.479 0.439 0.493 0.452 1.931
336 0.425 0.414 0.436 0.452 0.555 0.541 0.487 0.551 0.486 1.835
720 0.473 0.434 0.450 0.468 0.655 0.661 0.474 0.560 0.511 1.625

Avg 0.409 0.395 0.412 0.427 0.532 0.519 0.449 0.516 0.459 1.729

ETTm1 96 0.349 0.357 0.374 0.375 0.387 0.374 0.419 0.398 0.475 0.571
192 0.367 0.381 0.393 0.387 0.408 0.391 0.441 0.444 0.496 0.669
336 0.383 0.404 0.414 0.411 0.431 0.415 0.459 0.464 0.537 0.871
720 0.413 0.441 0.449 0.450 0.462 0.451 0.490 0.516 0.561 0.823

Avg 0.378 0.396 0.408 0.406 0.422 0.408 0.452 0.456 0.517 0.734

ETTm2 96 0.256 0.258 0.270 0.267 0.296 0.293 0.287 0.274 0.339 0.453
192 0.296 0.299 0.314 0.309 0.361 0.361 0.328 0.339 0.340 0.563
336 0.336 0.340 0.347 0.351 0.429 0.429 0.366 0.361 0.372 0.887
720 0.392 0.396 0.404 0.403 0.522 0.525 0.415 0.413 0.432 1.338

Avg 0.320 0.323 0.334 0.333 0.402 0.402 0.349 0.347 0.371 0.810

Electricity 96 0.232 0.247 0.296 0.272 0.293 0.302 0.308 0.273 0.317 0.368
192 0.247 0.256 0.304 0.322 0.302 0.305 0.315 0.286 0.334 0.386
336 0.259 0.277 0.319 0.300 0.312 0.319 0.329 0.304 0.443 0.394
720 0.297 0.310 0.352 0.320 0.330 0.350 0.355 0.321 0.361 0.439

Avg 0.259 0.273 0.318 0.304 0.309 0.319 0.327 0.296 0.364 0.397

Exchange 96 0.209 0.214 0.203 0.234 0.235 0.203 0.278 0.237 0.323 0.752
192 0.324 0.320 0.302 0.344 0.316 0.293 0.380 0.335 0.369 0.895
336 0.431 0.427 0.531 0.448 0.407 0.414 0.500 0.476 0.524 1.036
720 0.801 0.702 0.959 0.746 0.658 0.601 0.841 0.769 0.941 1.310

Avg 0.441 0.416 0.499 0.443 0.404 0.378 0.500 0.454 0.539 0.998

Illness 24 0.956 0.860 0.754 0.934 1.112 1.081 1.260 0.945 1.287 1.677
36 1.008 0.910 0.870 0.920 1.068 0.963 1.080 0.848 1.148 1.467
48 0.972 0.956 0.815 0.940 1.052 1.024 1.078 0.900 1.085 1.469
60 0.974 0.956 0.788 0.928 1.110 1.096 1.157 0.963 1.125 1.564

Avg 0.977 0.920 0.807 0.931 1.086 1.041 1.144 0.914 1.161 1.544

Solar 96 0.251 0.259 0.323 0.358 0.325 0.378 0.341 0.380 0.446 0.323
192 0.323 0.283 0.332 0.376 0.354 0.398 0.337 0.369 0.561 0.341
336 0.300 0.292 0.339 0.380 0.375 0.415 0.416 0.387 0.588 0.429
720 0.311 0.285 0.336 0.381 0.379 0.413 0.437 0.424 0.633 0.431

Avg 0.296 0.280 0.333 0.374 0.358 0.401 0.383 0.390 0.557 0.381

Traffic 96 0.273 0.285 0.347 0.321 0.350 0.396 0.366 0.338 0.388 0.391
192 0.277 0.296 0.332 0.336 0.356 0.370 0.373 0.340 0.382 0.379
336 0.282 0.296 0.334 0.336 0.358 0.373 0.383 0.328 0.337 0.420
720 0.297 0.313 0.352 0.350 0.361 0.394 0.382 0.355 0.408 0.472

Avg 0.282 0.298 0.341 0.336 0.356 0.383 0.376 0.340 0.379 0.416

Weather 96 0.222 0.209 0.227 0.220 0.261 0.252 0.296 0.223 0.336 0.384
192 0.264 0.250 0.265 0.261 0.299 0.295 0.336 0.285 0.367 0.544
336 0.302 0.287 0.301 0.337 0.336 0.331 0.380 0.338 0.395 0.523
720 0.355 0.341 0.349 0.359 0.388 0.382 0.428 0.410 0.428 0.741

Avg 0.286 0.272 0.286 0.294 0.321 0.315 0.360 0.314 0.382 0.548
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