
Learning to Scale Logits for Temperature-Conditional GFlowNets

Minsu Kim * 1 2 Joohwan Ko * 2 Taeyoung Yun * 2 Dinghuai Zhang 3 4 Ling Pan 5 Woo Chang Kim 2

Jinkyoo Park 2 Emmanuel Bengio 6 Yoshua Bengio 3 4 7

Abstract
GFlowNets are probabilistic models that se-
quentially generate compositional structures
through a stochastic policy. Among GFlowNets,
temperature-conditional GFlowNets can intro-
duce temperature-based controllability for explo-
ration and exploitation. We propose Logit-scaling
GFlowNets (Logit-GFN), a novel architectural
design that greatly accelerates the training of
temperature-conditional GFlowNets. It is based
on the idea that previously proposed approaches
introduced numerical challenges in the deep net-
work training, since different temperatures may
give rise to very different gradient profiles as well
as magnitudes of the policy’s logits. We find
that the challenge is greatly reduced if a learned
function of the temperature is used to scale the
policy’s logits directly. Also, using Logit-GFN,
GFlowNets can be improved by having better
generalization capabilities in offline learning and
mode discovery capabilities in online learning,
which is empirically verified in various biolog-
ical and chemical tasks. Our code is available
at https://github.com/dbsxodud-11/
logit-gfn

1. Introduction
Generative Flow Networks (GFlowNets) (Bengio et al.,
2021) offer a training framework for learning generative
policies that sequentially construct compositional objects to
be sampled according to a given unnormalized probability
mass or reward function. Whereas other generative models
are trained to imitate a distribution implicitly specified by a

*Equal contribution 1Work performed while the author was at
the Mila – Québec AI Institute 2Korea Advanced Institute of Sci-
ence and Technology 3Mila – Québec AI Institute 4Université
de Montréal 5Hong Kong University of Science and Technol-
ogy 6Recursion 7CIFAR. Correspondence to: Minsu Kim <min-
su@kaist.ac.kr>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

training set, GFlowNets’ target distribution is specified by a
reward function seen as an unnormalized probability mass
function. The primary advantage inherent to GFlowNets
is their capacity to uncover a multitude of highly rewarded
samples from a diverse set of modes (Bengio et al., 2021) of
the given target distribution. This holds great significance in
the context of scientific discovery, exemplified by domains
such as drug discovery (Bengio et al., 2021; Jain et al., 2022;
2023b).

Temperature-conditional GFlowNets are training frame-
works for learning conditional generative models that gen-
erate samples proportional to a tempered reward function:
p(x|β) ∝ R(x)β . In contrast to typical GFlowNets trained
to match a single target distribution with fixed (inverse) tem-
perature β, temperature-conditional GFlowNets learn a fam-
ily of generative policies corresponding to reward functions
raised to different powers. The major benefit of temperature-
conditional GFlowNets is that it can adjust the generative
policy based on the β, thereby allowing for the manage-
ment of the exploration-exploitation trade-off. Furthermore,
temperature-conditional GFlowNets effectively handle the
training difficulties encountered with typical GFlowNets at
lower temperatures (i.e., high β). These lower temperatures
yield distributions that are extremely selective, posing a chal-
lenge for effective training using unconditional GFlowNets.
Our expectation is that temperature-conditional GFlowNets,
when trained at higher temperatures (low β values), should
be able to infer the distributions at lower temperatures (high
β values) more effectively.

Temperature-conditional GFlowNets have already been in-
troduced (Zhang et al., 2022c; Zhou et al., 2023) and have
shown promising results for specific neural architectures,
such as in the case of Topoformer (Gagrani et al., 2022) for
solving scheduling problems (Zhang et al., 2022c). Nonethe-
less, the empirical research on generic architectures remains
limited. This limitation in research underscores the need for
meticulous customization of temperature-conditional archi-
tectures to suit each specific task. Moreover, incorporating
varying temperature parameters in the training process of
neural networks has been observed to create challenges.
These arise from the altered gradient profiles corresponding
to each target temperature distribution, leading to training
instability. For example, a higher temperature results in a

1

https://github.com/dbsxodud-11/logit-gfn
https://github.com/dbsxodud-11/logit-gfn

Learning to Scale Logits for Temperature-Conditional GFlowNets

peakier reward landscape, which poses challenges for stably
training GFlowNets (Malkin et al., 2022a). Thus, there is
an urgent need for thorough empirical research into the be-
havior of temperature-conditional GFlowNets coupled with
developing stable architectures to overcome these training
challenges.

In this paper, we first suggest a new generic architecture
design of temperature-conditional GFlowNets, called Logit-
scaling GFlowNets (Logit-GFN), to obtain a simple yet
stable training framework. Our key idea is to integrate a di-
rect pathway into the architecture. This pathway adjusts the
policy’s logits according to the parameter β, providing an
effective inductive bias that adapts the target distribution’s
temperature. We hypothesize and verify experimentally
that the Logit-GFN, which directly adjusts the logits in the
sampling policy through temperature input, enhances the
generalization and speeds up the training of temperature-
conditional GFlowNets.

Additionally, we introduce an online discovery algorithm
that utilizes Logit-GFN (i.e., p(x|β)) along with a dynamic
control policy, Pexp(β). The algorithm samples β from
the policy during online learning exploration. Then, we
marginalize the Logit-GFN to train with decisions across
multiple GFNs derived from different target distributions.
This approach facilitates the discovery of new compositional
structures within various tempered distributions, eliminating
the need to train individuals GFN at different temperatures
in every iteration. In our empirical study, we explore station-
ary distributions of Pexp(β), including uniform, log uniform,
normal, and dynamic distributions with simulated annealing,
offering insights into the exploration-exploitation trade-off.

In our experimental results, the Logit-GFN architecture sig-
nificantly enhances training stability, characterized by a
smooth and rapid loss convergence. Moreover, it demon-
strates improved offline generalization capability, showcas-
ing its adeptness at generating novel and highly rewarded
samples from fixed datasets. Our online learning with
the Logit-GFN stands out with superior performance com-
pared to GFN and alternative benchmarks, including well-
established techniques in Reinforcement Learning (RL)
(Schulman et al., 2017; Haarnoja et al., 2017) and Markov
Chain Monte Carlo (MCMC) methods (Xie et al., 2020).

2. Related Works
Most generative AI approaches require a dataset to represent
a target distribution to sample from, while GFlowNets are
instead provided with an unnormalized probability mass,
which we can consider as a reward function from an RL
perspective. Methods for training and applying GFlowNets
are rapidly evolving, demonstrating considerable progress
across diverse domains, including causal discovery (Deleu

et al., 2022; 2023), combinatorial optimization (Zhang et al.,
2022c; 2023), biochemical discovery (Jain et al., 2022;
2023a), reinforcement learning (Tiapkin et al., 2024) with
world modeling (Pan et al., 2023c), large language model
inference (Hu et al., 2024), and diffusion-structured genera-
tive models (Zhang et al., 2022a; Lahlou et al., 2023; Zhang
et al., 2024a). The enhancements in GFlowNets are primar-
ily attributed to advancements in training objectives, credit
assignment techniques, and improved exploration strate-
gies. The advent of temperature-conditional GFlowNets
represents an exciting frontier in research, offering signifi-
cant potential to elevate the performance and versatility of
GFlowNets. In this context, we provide a comprehensive
survey covering these directions.

Training objective of GFlowNets. GFlowNets, introduced
by Bengio et al. (2021), open interesting new avenues. One
core feature is the ability to have a greater diversity of modes
of the target distribution compared with existing RL, varia-
tional methods, or MCMC. The other one is their off-policy
training objectives: they can be trained on examples and
trajectories from any distribution with full support, not nec-
essarily from the distribution corresponding to their current
parameters (because that would not allow sufficient explo-
ration and diversity) or from the target distribution (for
which one may not have samples). Recent notable advances
include loss functions like trajectory balance (TB) (Malkin
et al., 2022a), subtrajectory balance (SubTB) (Madan et al.,
2023), and quantile matching (QM) (Zhang et al., 2024b).

Local credit assignment for GFlowNets. Several ap-
proaches have been developed to enhance GFlowNets’ train-
ing efficiency. Forward-Looking GFlowNet (FL-GFN) (Pan
et al., 2023a) calculates intermediate energy from states,
contributing to more stable training over longer trajectories.
Building on this, the transition-based GFlowNet (Zhang
et al., 2023) specializes in combinatorial optimization. Ad-
ditionally, Jang et al. (2024) focus on decomposing energy
into partial energies, achieving more effective local credit
assignment compared with FL-GFN. Finally, Falet et al.
(2024) utilize the inductive bias of sparse graphical models
to avoid having to ever evaluate full trajectories and terminal
states, facilitating rapid learning in probabilistic graphical
models.

Better exploration for GFlowNets. Another research fo-
cus is enhancing the exploration capabilities of GFlowNets.
Pan et al. (2023b) propose a framework for introducing aug-
mented flows into the flow network, which are represented
by intrinsic curiosity-based incentives to encourage explo-
ration in sparse environments. Rector-Brooks et al. (2023)
apply Thompson sampling (Osband et al., 2016) into the
training of GFlowNets, while Shen et al. (2023) have advo-
cated for prioritized replay training, a method that directs
GFlowNets updates to concentrate on regions with higher

2

Learning to Scale Logits for Temperature-Conditional GFlowNets

rewards. Additionally, Kim et al. (2024) incorporates a
back-and-forth refining process (Zhang et al., 2022b) into
its training algorithm. This integration of local search strate-
gies significantly improves the quality of local exploration
in GFlowNets, leading to the acquisition of higher-rewarded
samples during training.

Temperature conditional GFlowNets. Temperature con-
ditioning, applied in combinatorial scheduling problems
(Zhang et al., 2022c), uses a variable temperature factor
to modulate the scheduling objective’s smoothness. In the
Topoformer architecture, Gagrani et al. (2022) implement
this through matrix multiplication with the temperature pa-
rameter in the initial linear layer. Similarly, Zhou et al.
(2023) adopt temperature-conditional GFlowNets for phylo-
genetic inference, presenting a new approach to Bayesian
variational inference with GFlowNets. Although these ap-
plications show promising results, there is a lack of concrete
empirical evidence confirming the specific contribution of
and issues with temperature conditioning. Recent studies in
contrastive learning (Qiu et al., 2023) and the development
of a temperature prediction network for large foundation
models (Qiu et al., 2024) have also investigated the issue of
learning context-dependent temperature values. Our work,
focusing on the impact of temperature conditioning through
extensive empirical research, introduces a novel generic
architecture aimed at stabilizing the training of temperature-
conditional GFlowNets.

3. Preliminaries
This section introduces GFlowNets and temperature condi-
tional GFlowNets more formally; see Figure 1 for concep-
tual understanding and see Bengio et al. (2023) for a full
introduction. Generative flow networks (GFlowNets) consti-
tute a class of deep generative models and a reinforcement
learning (RL) methodology designed to sample composi-
tional objects x ∈ X , given a target distribution specified
by an unnormalized probability mass or positive reward
function. A generated object corresponds to the terminal
state in a Markov decision process starting from a unique
initial state s0. The GFlowNets policy sequentially adds
an action into a partial object (called the state); the com-
plete trajectory τ = (s0 → · · · → sn = x), which leads
to compositional object x, is sequentially generated by the
policy through a corresponding sequence of actions, each
conditioned on the current state.

The space of all possible state sequences (trajectories) from
the initial state to a terminal state is specified by a directed
acyclic graph (DAG) that can incorporate domain-specific
constraints (about which action is allowed in any state). It is
noteworthy that, in opposition to a tree structure, the more
general DAG structure offers a pivotal advantage by en-
abling the modeling of numerous potential action sequences

that converge to identical states. This is different from soft
Q-learning and entropy-regularized RL (Haarnoja et al.,
2017; 2018; Buesing et al., 2020), which are closely related
to GFlowNets but may misbehave in the DAG setting where
there are multiple ways of landing in the same terminal
state (Bengio et al., 2021).

Definition for flows. The trajectory flow, denoted by F (τ),
is a non-negative function that maps complete trajectories
to unnormalized probabilities, representing the flow of prob-
ability from the initial state to a terminal state along that
trajectory, with the idea that the total flow into a terminal
state x should match the reward function value at x, R(x).

This flow is further dissected into state flows and edge flows.
The state flow, represented by F (s), is the sum of F (τ) over
all trajectories τ containing state s. Similarly, F (s→ s′) is
the sum of flows of trajectories with a transition from state
s to state s′.

Relationship between flow and policy. The forward policy,
PF (st+1|st), quantifies the probability of transitioning from
a state to any of its child states, while the backward policy,
PB(st|st+1), captures the probability of transitioning from
a state to one of its parent states. When F is a Markovian
flow, the forward policy and backward policy can derived
as follows: PF (s

′|s) = F (s → s′)/F (s) and PB(s|s′) =
F (s→ s′)/F (s′).

Marginal distribution of GFlowNets. Eventually, we de-
fine the key concept, a marginal distribution, denoted as
P⊤
F (x) :=

∑
τ→x PF (τ), which aggregates probabilities

of trajectories terminating at a specific state x. The learn-
ing problem of GFlowNet is approximately achieving the
following conditions:

P⊤
F (x) =

∑
τ→x

PF (τ) =
R(x)∑

x∈X R(x)
, (1)

where R(x) > 0 refers to a reward for a terminal state x.

Learning objective of GFlowNets. Equation (1) can be
satisfied by minimizing a GFlowNet training objective. The
most commonly used objective is trajectory balance (TB)
(Malkin et al., 2022b). Given the GFlowNet with parame-
ters θ, the core principle of TB mandates that the flow of
a trajectory computed forward (from the initial state to a
terminal state) must match the flow computed backward
(from a terminal state to the initial state):

Zθ

n∏
t=1

PF (st+1|st; θ) = R(x)

n∏
t=1

PB(st|st+1; θ). (2)

Here, Zθ estimates the flow through the initial state s0 and
it also estimates the partition function, the sum of all tra-
jectory flows: Zθ =

∑
τ∈T F (τ) =

∑
x∈X R(x) when

the constraint is satisfied, i.e., when the corresponding mis-
match loss is minimized.

3

Learning to Scale Logits for Temperature-Conditional GFlowNets

Industrial & Systems Engineering

Generative Flow Networks

1

𝑅(𝑥1)𝑥1

Partition
Function

𝑅(𝑥2)

𝑍 = σ𝑥∈𝑋 𝑅(𝑥)

𝑥2

𝑠0

𝑠1 𝑝 𝑥

𝑥1 𝑥2

𝑝
(𝑥
|𝛽

=
0
)

𝑥1 𝑥2

Illustration of GFlowNets:
Flow Models on Directed Acyclic Graph

Generative Distribution
of GFlowNets

𝑝
(𝑥
|𝛽

=
∞
)

𝑥1 𝑥2

𝑝
(𝑥
|𝛽

=
1
)

𝑥1 𝑥2

Generative Distribution
of Temperature Conditional GFlowNets

Terminal state

Initial
state

Figure 1. Illustration of GFlowNets and temperature conditional GFlowNets.

Industrial & Systems Engineering

Contents

1

𝜷

𝑓𝜃 : Logit Scaling Net

concat (optional)

Logits

𝑓𝜃
1 𝑓𝜃

2

𝑷𝑭(𝒔
′|𝒔; 𝑻, 𝜷, 𝜽)

𝛼𝜃 : Policy Net

Layer Embedding

direct scaling of logit SoftMax temperature
𝜷

concat

Logits

𝑷𝑭(𝒔
′|𝒔 𝜷, 𝜽)

𝛼𝜃 : Policy Net

Layer Embedding

𝑔𝜃 : Layer Conditioning Net

Vanllia Temperature Conditional GFN
(Layer-GFN)

Proposed Logit Scaling Temperature Conditional GFN
(Logit-GFN)

Embedding

Vector

Neural

Network

Figure 2. Architecture design of vanilla temperature conditional GFN and our Logit-GFN. The vanilla implementation of the temperature-
conditional GFN integrates the embedding vector from β by concatenating it with the layer embedding of the policy network. In contrast,
the proposed method directly modulates the logit Softmax temperature.

Other loss functions have been proposed to satisfy Equa-
tion (1), such as sub-trajectory balance (Madan et al., 2023),
guided-trajectory balance (Shen et al., 2023) and detailed
balance (Bengio et al., 2023).

3.1. Temperature conditional GFlowNets

The goal of the temperature-conditional GFlowNets is to
train conditional generative models proportional to a tem-
pered reward function, p(x|β) ∝ R(x)β ; see Figure 1 for
illustration. The models have to take the (inverse) temper-
ature β as an additional input to represent a temperature-
conditional distribution. A conventional approach for con-
structing a conditional model involves concatenating the
conditioning values directly into model layers (Song et al.,
2021; Ho et al., 2020; Zhang et al., 2022c). We denote this
approach as layer-conditioned GFlowNet (Layer-GFN) that
integrates temperature embeddings directly into the model
parameterized by θ. The temperature embedding is a fixed
or learned function gθ : R → Rd, where d denotes the
dimension of the temperature embedding.

Layer-GFN concatenates the output of the temperature em-
bedding function, gθ(·) with the output of the state-input
embedding module in order to produce logits for the forward

and backward policies (and flows if desired). For example,
the forward policy is parameterized as follows:

PLayer
F (s′|s;β, θ) := exp(αθ(s, s

′, gθ(β)))∑
s′′∈Ch(s) exp(αθ(s, s′′, gθ(β)))

(3)

Limitations While the Layer-GFN is a useful method for
constructing temperature-conditional GFlowNets, our ex-
periments also suggest that training temperature-conditional
GFlowNets is numerically more difficult than training un-
conditional GFlowNets for each temperature. This moti-
vated the variants of logit scaling proposed below.

4. Methodology
We propose Logit-GFN, a novel temperature-conditional
GFlowNet that addresses the numerical challenges identified
in previous versions of temperature-conditional GFlowNets.
Specifically we introduce logit-scaling trick for Logit-GFN
that directly adjusts the output softmax temperature (T)
based on the specified input inverse temperature β. This
provides a direct pathway for controlling the softmax tem-
peratures of the forward policy, creating an effective induc-
tive bias for adapting to changes in the target distribution’s

4

Learning to Scale Logits for Temperature-Conditional GFlowNets

temperature. This, in turn, ensures more stable training. We
verify the effectiveness of the proposed architecture in train-
ing stability and offline generalization capability. Also, we
provide a novel online learning algorithm by leveraging the
Logit-GFNs, which can effectively discover novel combi-
natorial structures (i.e., modes) in scientific discovery tasks.
See the right side of Figure 2 for the overall architecture of
Logit-GFN.

4.1. Logit scaling

The objective of the method aligns with that of layer-
conditioning: to facilitate the training of temperature-
conditional GFlowNets p(x|β) ∝ R(x)β over varying in-
verse temperatures β. Logit-scaling trick use a simple skip
connection to adjust the softmax temperature T of logits of
PF as a direct function of β. More specifically, logit-scaling
into policy net αθ can be defined as follows:

PF (s
′|s;β, θ) := exp (αθ (s, s

′) /fθ (β))∑
s′′∈Ch(s) exp(αθ(s, s′′)/fθ (β))

,

(4)

where αθ : S × S → R now becomes neural net that is
independent of β and fθ : R → R is the logit scaling net,
which transforms the inverse temperature β into a softmax
temperature, T = fθ (β). Note that the logit-scaling method
is agnostic to the policy network; the policy network can
take any form, including a layer-conditioning network.

For a detailed parameterization of logit-scaling, the logit-
scaling network, fθ, consists of an encoder and a decoder.
The encoder, f1

θ : R → RD, maps a scalar input to a D-
dimensional embedding vector. Conversely, the decoder,
f2
θ : RD → R, converts this embedding vector back into a

scalar. The overall transformation is represented by the com-
position f = f1

θ ◦ f2
θ , seamlessly integrating the encoder

and decoder functionalities. Given the logit scaling net, the
softmax temperature T = fθ (β) determines the confidence
level of PF as a lower T makes a sharper decision, and a
higher T gives a smoother decision. By adjusting the scalar
value T as a function of β, we can adjust the output gen-
erative distribution easily without heavy parameterization.
The training objective makes the logit scaling net, fθ, adjust
the target temperature-conditional forward policy towards
matching the tempered reward function.

Layer-conditioning with logit scaling. Utilizing the logit
scaling network, fθ, the Logit-GFN provides the flexibility
to incorporate layer-conditioning using a simple yet intu-
itive technique. We start by taking the output of the encoder,
f1
θ (β), which serves as a latent temperature embedding

vector. This vector can then be seamlessly concatenated
with the layer embedding of the policy net, αθ, as depicted
in Figure 2. Since the expressive power of logit-scaling is
limited when αθ is used unconditionally with respect to β,

integrating it with the layer-conditioning method can be a vi-
able option to achieve full expressive power for temperature
conditioning. We explore it further in the Appendix C.

4.2. Training objective

The training procedure for our experiments is based on the
trajectory balance (TB) loss, so we aim to minimize the TB
loss given a training replay buffer or dataset D similar to
prior work (Shen et al., 2023). The difference is that we train
the GFlowNets with multiple values of β ∼ Ptrain(β):

L(θ;D) = EPtrain(β)EPD(τ)

[(
log

Zθ(β)
∏n

t=1 PF (·)
R(x)β

∏n
t=1 PB(·)

)2
]
.

(5)

where PF (·) = PF (st|st−1;β, θ)

PB(·) = PB(st−1|st;β, θ)

When considering the parameterization of deep neural net-
works (DNNs) using θ, a key implementation feature lies in
the conditioning of the partition function Z on the inverse
temperature β, i.e., we write Zθ(β) as a learned function
rather than a learned constant. Additionally, the conditional
dependencies of PF and PB on β are established by the
DNN fθ. This architecture necessitates the incorporation
of two auxiliary DNNs, namely Zθ and fθ; however, it’s
worth noting that these mappings operate from a scalar to
a scalar, mitigating the need for an excessive number of
parameters. This training objective and the mathematical
theory for conditional GFlowNets was originally proposed
by (Bengio et al., 2023).

4.3. Online discovery algorithm with Logit-GFN

In scientific discovery (e.g., molecule optimization), we aim
to discover a set of diverse candidate objects x ∈ X with
high reward R(x), e.g., molecules with high binding affinity
to some protein. What we care about is not only the top
rewards among these candidates but also their diversity and
the number of modes (a local peak in which the reward is
above a certain threshold) (Jain et al., 2022), due to the
uncertainty and imperfections of the reward functions.

Typically, training of GFlowNets involves an exploratory
policy that generates trajectories that can be put in a pri-
oritized replay buffer and are then used to perform gradi-
ent updates on the GFlowNets parameters. We can signif-
icantly enhance the exploratory phase of GFlowNets by
querying multiple values of β with temperature-conditional
GFlowNets when forming samples for the replay buffer.
This enables the model to generate a diverse set of candi-

5

Learning to Scale Logits for Temperature-Conditional GFlowNets

dates sampled from various generative distributions:

D ← D ∪ {τ1, . . . , τM} (6)

τ1, . . . , τM ∼
∫
β

PF (τ |β)dPexp(β). (7)

The dynamic control policy Pexp(β) controls the range of
β for exploration, and it may be chosen differently from
Ptrain(β) in Eq. 5. We provide several empirical observa-
tions for different Pexp in Section 5.4 and Appendix D.2.
See Algorithm 1 for full pseudocode.

5. Experiments
We present experimental results on 4 biochemical tasks:
QM9, sEH, TFBind8, and RNA-binding. Following recent
work (Shen et al., 2023), we formulate the problem as a se-
quence prepend/append MDP, where the actions add a token
either to the leftmost or rightmost end of a partial sequence
or molecule. This setting results in multiple trajectories τ
for each sample x, where the DAG structure is crucial for
exploring the trajectory space. We describe the tasks below.

QM9 This task requires generating a small molecule graph.
We build a graph using 12 building blocks with 2 stems,
and each molecule consists of 5 blocks. Our objective is to
maximize the HOMO-LUMO gap (Zhang et al., 2020).

sEH This task requires generating a small molecule graph.
We build a graph using 18 building blocks with 2 stems,
and each molecule consists of 6 blocks. Our objective is to
maximize binding affinity (Bengio et al., 2021).

TFBind8 This task requires generating a string of 8 nu-
cleotides. The objective is to maximize the DNA binding
affinity to a human transcription factor, SIX6, from (Tra-
bucco et al., 2022).

RNA-Binding This task requires generating a string of 14
nucleobases. The objective is to maximize the binding
affinity to the target transcription factor. We use L14-RNA1
as the target factor, introduced by Sinai et al. (2020).

5.1. Evaluation of training stability

We first assess the training stability of temperature-
conditional GFlowNets.

To evaluate stability, we compute the TB loss using samples
generated by the forward policy under extremely high β
conditions (β = 5, 000). During off-policy training (with
exploration), we sample multiple β values from a range of
relatively low temperatures, (β ∼ U [10,50]). For uncondi-
tional GFlowNets, we implement an unconditional policy
that is independent of the temperature and put the original
reward to the power of 5,000. For additional details on the
experimental setup, please see Appendix A.3.1.

Figure 3. Loss of Temperature-conditional GFlowNets and uncon-
ditional GFlowNets as a function of a number of training steps
on the TFBind8 and RNA-Binding tasks. Logit-GFN yields more
stable training curves and converges faster. We draw curves with
three different random seeds and highlight the mean over seeds.

Figure 3 illustrates the loss curves for both temperature-
conditional and unconditional GFlowNets in TFbind8 and
RNA-binding tasks. It is evident that training unconditional
GFlowNets with high β values leads to extreme instability.
Although Layer-GFN alleviates this issue to some extent, it
still exhibits considerable instability. Our novel approach,
Logit-GFN, stands out by maintaining stable loss levels
even when operating with high, previously unseen inverse
temperatures. This underscores the training stability of our
proposed logit scaling in the development of temperature-
conditional GFlowNets.

5.2. Evaluation of offline generalization

In this section, we examine the controllability of
temperature-conditional GFlowNets, specifically the ability
to induce a relationship: p(x|β) ∝ R(x)β . To verify this,
we prepare an offline datasetD = {(xi, R(xi))}Ni=1, similar
to offline model-based optimization (Trabucco et al., 2022).

We train temperature-conditional GFlowNets with relatively
low values of β and generate samples by querying high β
to verify that we can find high-scoring samples that sur-
pass the offline dataset via out-of-distribution generaliza-
tion. We also train unconditional GFlowNets trained with
a high, fixed β independently for comparison. To evaluate
performance, we use 25th percentile and median reward
of samples generated from trained models, which can be
used as an indicator of how trained policies adaptively re-
spond to varying temperatures. Note that we train a single
temperature-conditional model and investigate its general-
ization performance by querying with different β values.
For details on the experiment setting, please refer to Ap-
pendix A.3.2.

Figure 4 shows the offline generalization performance of
GFlowNets in three biochemical tasks: QM9, TFBind8,
and RNA-binding. The shaded region indicates the training
range for temperature-conditional GFlowNets. We refer
to it as in-distribution and consider querying outside of

6

Learning to Scale Logits for Temperature-Conditional GFlowNets

Figure 4. Performance of Temperature-conditional GFlowNets and unconditional GFlowNet in offline generalization. Shaded regions
denote the temperature range used in training. Logit-GFN generates high-rewarding samples that surpass the offline datasets when
conditioned on high β values.

Figure 5. Reward distribution of samples from Temperature-conditional GFlowNets and unconditional GFlowNet in offline generalization.
Logit-GFN dynamically shifts its reward distribution towards a high-reward region when conditioned on high β values.

the shaded region as an out-of-distribution generalization.
The figure demonstrates that Logit-GFN exhibits powerful
generalization performance in high β and is able to gener-
ate high-rewarding samples that surpass the offline dataset,
corresponding to the queried values. However, training
unconditional GFlowNets with high β results in degraded
performance despite their specialization to the fixed high β.
While Layer-GFN often shows promising results on high
β, it seems that Layer-GFN does not adaptively respond to
different temperatures and tends to return relatively high-
reward samples.

Figure 5 demonstrates Logit-GFN’s ability in accurately
capturing the reward distribution of samples across various
temperatures. While Layer-GFN is unable to effectively
shift its reward distribution according to β, the figure dis-
tinctly highlights that Logit-GFN dynamically adapts to
different β values. Unconditional GFlowNets individually
trained with their respective β values converge to generate
sub-optimal samples, necessitating temperature-conditional
GFlowNets, which can generalize across temperatures.

Mapping from β to T . Figure 6 depicts the learned map-
ping from β to T in QM9 and TFBind8 tasks. We note that
for both tasks, T tends towards zero with the increase in
β. It is a reasonable behavior since lower T makes a nar-

Figure 6. Learned relationship between β and T captured by Logit-
GFN. Logit-GFN suggests low softmax temperature when the
policy is conditioned on high temperature (low β).

row decision-making and accentuates the minor differences
between probabilities.

5.3. Evaluation of online mode seeking capability

The preceding sections have demonstrated that Logit-GFN
provides enhanced training stability and better controllabil-
ity compared to unconditional GFlowNets and Layer-GFN.
In this section, we aim to validate the usefulness of Logit-
GFN in solving online mode-seeking problems.

The online mode-seeking problem is an important problem

7

Learning to Scale Logits for Temperature-Conditional GFlowNets

Figure 7. Number of modes discovered over training. Logit-GFN outperforms established baselines including Layer-GFN for all tasks.

Figure 8. Left: Different distributions for sampling temperatures. The simulated annealing strategy is more effective than uniform
sampling in online mode-seeking problems. Middle: Ablation on different β for unconditional GFlowNets. Logit-GFN outperforms all
GFlowNets trained on specific β. Right: Ablation on Layer-conditioning for Logit Scaling. Both outperforms Layer-GFN.

in biochemical tasks as we require generating both diverse
and high-reward samples due to the lack of robustness and
misspecification of the estimated reward function (Bengio
et al., 2021). The use of temperature-conditional GFlowNet
is particularly beneficial in this setting as we can more easily
balance exploration and exploitation by querying different
β values, which is very useful for discovering a greater
diversity of modes of the reward function.

Baselines. To evaluate the proposed methods, we first com-
pare them with the established unconditional GFlowNet.
We also consider MARS (Xie et al., 2020), which is an
MCMC-based method known to work well in this molecule
sampling domain, and RL-based methods which include
A2C with Entropy Regularization (Mnih et al., 2016), Soft
Q-Learning (Haarnoja et al., 2018), and PPO (Schulman
et al., 2017) as baselines. All experiments are conducted
with three different random seeds to evaluate reliability.

Distribution for sampling temperature. Online mode
seeking problems involve two stages of sampling temper-
atures, Ptrain(β) and Pexp(β). Ptrain(β) is used for training
temperature-conditional policy via off-policy manner, and
Pexp(β) is for sampling objects using trained policy in the
online round. For both stages, we employ a uniform dis-
tribution as a default setting. We discuss various types of
distribution, such as simulated annealing, in the next section.

Figure 7 showcases the number of modes discovered during
the training of our proposed approach compared to estab-
lished baselines in four distinct biochemical tasks. Our
method not only outperforms both the unconditional GFN
and other reward maximization techniques in the number
of modes uncovered but also exhibits remarkable efficiency
in detecting these modes with a limited number of online
evaluation rounds. This underscores the effective capability
of temperature-conditional GFlowNets to strike a balance
between exploitation and exploration strategies.

5.4. Different distribution for sampling temperatures

We explore diverse distributions for sampling temperatures,
especially during the exploration phase, namely Pexp(β).
One of the most widely used heuristics in combinatorial
optimization is simulated annealing, which gradually shifts
the distribution of β towards a high region (Kirkpatrick
et al., 1983). Accordingly, we implement both simulated
annealing and its inverse (shift distribution from high to low
β region). The effects of these exploration strategies in the
QM9 task are illustrated in Figure 8 (Left). The simulated
annealing strategy demonstrates high efficiency in discov-
ering modes compared to the uniform strategy. While the
inverse simulated annealing strategy exhibits fast conver-
gence at the early stage of training rounds, but encounters

8

Learning to Scale Logits for Temperature-Conditional GFlowNets

a significant decrease in efficiency as the rounds advance.
It indicates that carefully adjusting the balance between
exploration and exploitation can effectively enhance the
performance of temperature-conditional GFlowNets for on-
line mode-seeking problems. We conduct more extensive
experiments on Pexp(β) in Appendix D.2.

5.5. Ablation studies

We can adjust the β of unconditional GFlowNets and train
them independently to find the most effective configuration
for a given task. Figure 8 (Middle) shows the number of
modes discovered by GFlowNets trained with various β
values. We observe that all methods trained with fixed β
are outperformed by Logit-GFN, which trains conditional
GFlowNets and balances exploitation and exploration with
different β values.

We validate the effectiveness of layer-conditioning for Logit-
GFN in online mode-seeking problems. As depicted in Fig-
ure 8 (Right), it seems layer-conditioning has a marginal
effect on the performance of Logit-GFN, while still out-
performing Layer-GFN. We discuss layer-conditioning in
Appendix C in more detail.

We perform additional experiments on several design
choices of temperature-conditional GFlowNets, such as ther-
mometer embedding for Layer-GFN, the number of gradient
steps per batch (K), and different GFlowNet training meth-
ods such as DB and SubTB in Appendices B.1, B.3 and B.4.

6. Conclusion
We introduced the Logit-GFN, a novel architecture de-
sign that improves the training process of temperature-
conditional GFlowNets. This approach addresses the numer-
ical challenges of prior temperature-conditional GFlowNets
by adopting the logit scaling net to scale the logits of policy
directly. Empirical evaluations confirm that Logit-GFN can
stabilize the training of temperature-conditional GFlowNets
and exhibit strong generalization performance and effec-
tiveness in diverse biochemical tasks. Additionally, while
it demonstrates strong offline generalization and training
stability in the tested biochemical tasks, further validation
across a broader range of application domains is necessary
to confirm its robustness and adaptability. A potential lim-
itation of the Logit-GFN is that its effectiveness in very
high-dimensional or highly complex generative tasks has
not been fully explored.

Impact Statement
Our research is a part of the ongoing developments in the
field of generative modeling and encompasses various soci-
etal implications typical of such advancements. However,

we believe there are no specific consequences that require
particular emphasis in this work.

Acknowledgement
The authors acknowledge the financial support provided
by CIFAR, NSERC, Samsung, FACS Acuité, and NRC
AI4Discovery. This research was supported by the Institute
of Information & Communications Technology Planning &
Evaluation (IITP) grant funded by the Korean government
(MSIT) (2022-0-01032, Development of Collective Collab-
oration Intelligence Framework for Internet of Autonomous
Things). This research was supported in part by the com-
putational resources supplied by the Digital Research Al-
liance of Canada (https://alliancecan.ca), Mila
(https://mila.quebec), NVIDIA. Additionally, J.
Ko and W. Kim received support from the National Re-
search Foundation of Korea (NRF) grants funded by the
Ministry of Science and ICT (NRF-2022M3J6A1063021
and RS-2023-00208980).

References
Bengio, E., Jain, M., Korablyov, M., Precup, D., and Ben-

gio, Y. Flow network based generative models for non-
iterative diverse candidate generation. Advances in Neu-
ral Information Processing Systems, 34:27381–27394,
2021.

Bengio, Y., Lahlou, S., Deleu, T., Hu, E. J., Tiwari, M., and
Bengio, E. Gflownet foundations. Journal of Machine
Learning Research, 24(210):1–55, 2023. URL http:
//jmlr.org/papers/v24/22-0364.html.

Buckman, J., Roy, A., Raffel, C., and Goodfellow, I. Ther-
mometer encoding: One hot way to resist adversarial
examples. In International Conference on Learning
Representations, 2018. URL https://openreview.
net/forum?id=S18Su--CW.

Buesing, L., Heess, N., and Weber, T. Approximate infer-
ence in discrete distributions with monte carlo tree search
and value functions. In International Conference on Ar-
tificial Intelligence and Statistics, pp. 624–634. PMLR,
2020.

Deleu, T., Góis, A., Emezue, C., Rankawat, M., Lacoste-
Julien, S., Bauer, S., and Bengio, Y. Bayesian structure
learning with generative flow networks. In Uncertainty
in Artificial Intelligence, pp. 518–528. PMLR, 2022.

Deleu, T., Nishikawa-Toomey, M., Subramanian, J., Malkin,
N., Charlin, L., and Bengio, Y. Joint bayesian inference
of graphical structure and parameters with a single gen-
erative flow network. Advances in Neural Information
Processing Systems, 36, 2023.

9

https://alliancecan.ca
https://mila.quebec
http://jmlr.org/papers/v24/22-0364.html
http://jmlr.org/papers/v24/22-0364.html
https://openreview.net/forum?id=S18Su--CW
https://openreview.net/forum?id=S18Su--CW

Learning to Scale Logits for Temperature-Conditional GFlowNets

Falet, J.-P. R., Lee, H. B., Malkin, N., Sun, C., Secrieru,
D., Zhang, D., Lajoie, G., and Bengio, Y. Delta-AI:
Local objectives for amortized inference in sparse graph-
ical models. In The Twelfth International Conference
on Learning Representations, 2024. URL https://
openreview.net/forum?id=LemSSn8htt.

Gagrani, M., Rainone, C., Yang, Y., Teague, H., Jeon, W.,
Bondesan, R., van Hoof, H., Lott, C., Zeng, W., and
Zappi, P. Neural topological ordering for computation
graphs. Advances in Neural Information Processing Sys-
tems, 35:17327–17339, 2022.

Haarnoja, T., Tang, H., Abbeel, P., and Levine, S. Re-
inforcement learning with deep energy-based policies.
In International Conference on Machine Learning, pp.
1352–1361. PMLR, 2017.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft actor-
critic: Off-policy maximum entropy deep reinforcement
learning with a stochastic actor. In International Con-
ference on Machine Learning, pp. 1861–1870. PMLR,
2018.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. Advances in Neural Information Process-
ing Systems, 33:6840–6851, 2020.

Hu, E. J., Jain, M., Elmoznino, E., Kaddar, Y., Lajoie,
G., Bengio, Y., and Malkin, N. Amortizing intractable
inference in large language models. In The Twelfth
International Conference on Learning Representations,
2024. URL https://openreview.net/forum?
id=Ouj6p4ca60.

Jain, M., Bengio, E., Hernandez-Garcia, A., Rector-Brooks,
J., Dossou, B. F., Ekbote, C. A., Fu, J., Zhang, T., Kil-
gour, M., Zhang, D., et al. Biological sequence design
with gflownets. In International Conference on Machine
Learning, pp. 9786–9801. PMLR, 2022.

Jain, M., Deleu, T., Hartford, J., Liu, C.-H., Hernandez-
Garcia, A., and Bengio, Y. Gflownets for ai-driven scien-
tific discovery. Digital Discovery, 2(3):557–577, 2023a.

Jain, M., Raparthy, S. C., Hernández-Garcıa, A., Rector-
Brooks, J., Bengio, Y., Miret, S., and Bengio, E. Multi-
objective gflownets. In International Conference on Ma-
chine Learning, pp. 14631–14653. PMLR, 2023b.

Jang, H., Kim, M., and Ahn, S. Learning energy decompo-
sitions for partial inference in GFlownets. In The Twelfth
International Conference on Learning Representations,
2024. URL https://openreview.net/forum?
id=P15CHILQlg.

Kim, M., Berto, F., Ahn, S., and Park, J. Bootstrapped train-
ing of score-conditioned generator for offline design of
biological sequences. arXiv preprint arXiv:2306.03111,
2023.

Kim, M., Yun, T., Bengio, E., Zhang, D., Bengio, Y., Ahn,
S., and Park, J. Local search GFlownets. In The Twelfth
International Conference on Learning Representations,
2024. URL https://openreview.net/forum?
id=6cFcw1Rxww.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kirkpatrick, S., Gelatt Jr, C. D., and Vecchi, M. P. Opti-
mization by simulated annealing. science, 220(4598):
671–680, 1983.

Lahlou, S., Deleu, T., Lemos, P., Zhang, D., Volokhova,
A., Hernández-Garcıa, A., Ezzine, L. N., Bengio, Y., and
Malkin, N. A theory of continuous generative flow net-
works. In International Conference on Machine Learning,
pp. 18269–18300. PMLR, 2023.

Madan, K., Rector-Brooks, J., Korablyov, M., Bengio, E.,
Jain, M., Nica, A. C., Bosc, T., Bengio, Y., and Malkin, N.
Learning gflownets from partial episodes for improved
convergence and stability. In International Conference
on Machine Learning, pp. 23467–23483. PMLR, 2023.

Malkin, N., Jain, M., Bengio, E., Sun, C., and Bengio,
Y. Trajectory balance: Improved credit assignment in
gflownets. Advances in Neural Information Processing
Systems, 35:5955–5967, 2022a.

Malkin, N., Lahlou, S., Deleu, T., Ji, X., Hu, E. J., Ev-
erett, K. E., Zhang, D., and Bengio, Y. Gflownets and
variational inference. In The Eleventh International Con-
ference on Learning Representations, 2022b.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap,
T., Harley, T., Silver, D., and Kavukcuoglu, K. Asyn-
chronous methods for deep reinforcement learning. In
International Conference on Machine Learning, pp. 1928–
1937. PMLR, 2016.

Osband, I., Blundell, C., Pritzel, A., and Van Roy, B. Deep
exploration via bootstrapped dqn. Advances in Neural
Information Processing Systems, 29, 2016.

Pan, L., Malkin, N., Zhang, D., and Bengio, Y. Better
training of gflownets with local credit and incomplete
trajectories. In International Conference on Machine
Learning, pp. 26878–26890. PMLR, 2023a.

Pan, L., Zhang, D., Courville, A., Huang, L., and Bengio,
Y. Generative augmented flow networks. In The Eleventh
International Conference on Learning Representations,

10

https://openreview.net/forum?id=LemSSn8htt
https://openreview.net/forum?id=LemSSn8htt
https://openreview.net/forum?id=Ouj6p4ca60
https://openreview.net/forum?id=Ouj6p4ca60
https://openreview.net/forum?id=P15CHILQlg
https://openreview.net/forum?id=P15CHILQlg
https://openreview.net/forum?id=6cFcw1Rxww
https://openreview.net/forum?id=6cFcw1Rxww

Learning to Scale Logits for Temperature-Conditional GFlowNets

2023b. URL https://openreview.net/forum?
id=urF_CBK5XC0.

Pan, L., Zhang, D., Jain, M., Huang, L., and Bengio, Y.
Stochastic generative flow networks. In Conference on
Uncertainty in Artificial Intelligence, 2023c.

Qiu, Z.-H., Hu, Q., Yuan, Z., Zhou, D., Zhang, L., and
Yang, T. Not all semantics are created equal: Contrastive
self-supervised learning with automatic temperature indi-
vidualization. arXiv preprint arXiv:2305.11965, 2023.

Qiu, Z.-H., Guo, S., Xu, M., Zhao, T., Zhang, L., and
Yang, T. To cool or not to cool? temperature network
meets large foundation models via dro. arXiv preprint
arXiv:2404.04575, 2024.

Rector-Brooks, J., Madan, K., Jain, M., Korablyov, M., Liu,
C.-H., Chandar, S., Malkin, N., and Bengio, Y. Thompson
sampling for improved exploration in gflownets. arXiv
preprint arXiv:2306.17693, 2023.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Shen, M. W., Bengio, E., Hajiramezanali, E., Loukas, A.,
Cho, K., and Biancalani, T. Towards understanding and
improving gflownet training. In International Conference
on Machine Learning, pp. 30956–30975. PMLR, 2023.

Sinai, S., Wang, R., Whatley, A., Slocum, S., Locane, E.,
and Kelsic, E. D. Adalead: A simple and robust adap-
tive greedy search algorithm for sequence design. arXiv
preprint arXiv:2010.02141, 2020.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A.,
Ermon, S., and Poole, B. Score-based generative mod-
eling through stochastic differential equations. In In-
ternational Conference on Learning Representations,
2021. URL https://openreview.net/forum?
id=PxTIG12RRHS.

Tiapkin, D., Morozov, N., Naumov, A., and Vetrov, D. P.
Generative flow networks as entropy-regularized rl. In
International Conference on Artificial Intelligence and
Statistics, pp. 4213–4221. PMLR, 2024.

Trabucco, B., Geng, X., Kumar, A., and Levine, S. Design-
bench: Benchmarks for data-driven offline model-based
optimization. In International Conference on Machine
Learning, pp. 21658–21676. PMLR, 2022.

Xie, Y., Shi, C., Zhou, H., Yang, Y., Zhang, W., Yu, Y.,
and Li, L. Mars: Markov molecular sampling for multi-
objective drug discovery. In International Conference on
Learning Representations, 2020.

Zhang, D., Chen, R. T. Q., Malkin, N., and Bengio, Y.
Unifying generative models with gflownets. ArXiv,
abs/2209.02606, 2022a.

Zhang, D., Malkin, N., Liu, Z., Volokhova, A., Courville,
A., and Bengio, Y. Generative flow networks for discrete
probabilistic modeling. In International Conference on
Machine Learning, pp. 26412–26428. PMLR, 2022b.

Zhang, D., Dai, H., Malkin, N., Courville, A., Bengio, Y.,
and Pan, L. Let the flows tell: Solving graph combinato-
rial optimization problems with gflownets. Advances in
Neural Information Processing Systems, 36, 2023.

Zhang, D., Chen, R. T. Q., Liu, C.-H., Courville, A., and
Bengio, Y. Diffusion generative flow samplers: Im-
proving learning signals through partial trajectory op-
timization. In The Twelfth International Conference
on Learning Representations, 2024a. URL https:
//openreview.net/forum?id=OIsahq1UYC.

Zhang, D., Pan, L., Chen, R. T. Q., Courville, A., and Ben-
gio, Y. Distributional GFlownets with quantile flows.
Transactions on Machine Learning Research, 2024b.
ISSN 2835-8856. URL https://openreview.
net/forum?id=vFSsRYGpjW. Expert Certification.

Zhang, D. W., Rainone, C., Peschl, M., and Bondesan, R.
Robust scheduling with gflownets. In The Eleventh Inter-
national Conference on Learning Representations, 2022c.

Zhang, S., Liu, Y., and Xie, L. Molecular mechanics-driven
graph neural network with multiplex graph for molecular
structures. arXiv preprint arXiv:2011.07457, 2020.

Zhou, M., Yan, Z., Layne, E., Malkin, N., Zhang, D., Jain,
M., Blanchette, M., and Bengio, Y. Phylogfn: Phylo-
genetic inference with generative flow networks. arXiv
preprint arXiv:2310.08774, 2023.

11

https://openreview.net/forum?id=urF_CBK5XC0
https://openreview.net/forum?id=urF_CBK5XC0
https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=OIsahq1UYC
https://openreview.net/forum?id=OIsahq1UYC
https://openreview.net/forum?id=vFSsRYGpjW
https://openreview.net/forum?id=vFSsRYGpjW

Learning to Scale Logits for Temperature-Conditional GFlowNets

A. Detailed experimental setting
A.1. Implementation

In our GFlowNet implementations, we adhere closely to the methodologies outlined in (Shen et al., 2023). We take the
approach of re-implementing only those methods that do not already exist in the literature.

All of our GFlowNet models incorporate the parametrization mapping of relative edge flow policy (SSR), as originally
proposed by (Shen et al., 2023).

When dealing with pairs of states (s, s′), we encode each state into a one-hot encoding vector and concatenate them as
input for the forward and backward policy networks. For QM9 and sEH tasks, we employ a two-layer architecture with
1024 hidden units, while for the other tasks, we choose to use a two-layer architecture with 128 hidden units. Both forward
and backward policies use the same architecture but with different parameters. We initialize logZθ to 5.0 for the baseline
implementation.

For temperature-conditional GFlowNets, we introduce a two-layer MLP with a 32-dimensional hidden layer and a Leaky
ReLU activation function for embedding inverse temperature β. For Layer-GFN, we use the output of the MLP as an
embedding and concatenate with state embedding before passing forward policy networks. For Logit-GFN, we introduce an
additional two-layer MLP, which has 32 hidden units and returns scale value, which represents T . To ensure that T should
be greater than zero, we use the Softplus activation function for the last layer. For parameterizing Zθ(β), we use a two-layer
MLP with a 32-dimensional hidden layer and Leaky ReLU.

A.2. Hyperparameters

Regarding the hyperparameters for GFlowNets, we also follow the initial settings proposed by (Shen et al., 2023) without
alteration. Across all tasks, we employ the Adam optimizer (Kingma & Ba, 2014) with the following learning rates: 1×10−2

for Zθ and 1× 10−4 for both the forward and backward policy. Furthermore, we apply distinct reward exponents (e) and
reward normalization constants for each task, following the guidelines suggested by (Shen et al., 2023). As a result, we
power the reward e× β times for temperature-conditional GFlowNets conditioned on β. Table 1 summarizes the reward
exponent and normalization constants for different task settings.

In the implementation of RL baselines, we utilize the same MLP architecture as employed in the GFlowNet baselines.
The optimization of hyperparameters is achieved through a grid search approach on the QM9 task, with a focus on
determining the optimal number of modes. For the A2C algorithm with entropy regularization, we segregate parameters
for the actor and critic networks. The selected learning rate of 1 × 10−4 is chosen from a range of options, including
{1× 10−5, 1× 10−4, 1× 10−4, 5× 10−3, 1× 10−3}, and we incorporate an entropy regularization coefficient of 1× 10−2

selected from {1 × 10−4, 1 × 10−3, 1 × 10−2}. In the case of Soft Q-Learning, we opt for a learning rate of 1 × 10−4

selected from the same set of values: {1 × 10−5, 1 × 10−4, 1 × 10−4, 5 × 10−3, 1 × 10−3}. For the PPO algorithm,
we introduce an entropy regularization term of 1 × 10−2 and employ a learning rate of 1 × 10−4, similarly chosen
from {1 × 10−5, 1 × 10−4, 1 × 10−4, 5 × 10−3, 1 × 10−3}. The entropy regularization coefficient is selected from
{1× 10−4, 1× 10−3, 1× 10−2}.

Table 1. GFlowNet hyperparameters for various tasks

Tasks Reward Exponent Reward Normalization Constant

QM9 5 100.0
sEH 6 10.0
TFBind8 3 10.0
RNA-binding 8 10.0

12

Learning to Scale Logits for Temperature-Conditional GFlowNets

A.3. Experiment details

A.3.1. TRAINING STABILITY

To evaluate the training stability, we compute the loss on samples generated from the forward policy conditioned on
β = 5, 000. For each active round, we generate 32 samples for evaluating loss. After sampling, we train GFlowNets
in an off-policy manner. We utilize the reward prioritized replay buffer (PRT) suggested in (Shen et al., 2023) to obtain
samples for computing the loss of off-policy training for all models. We perform 1 gradient step per active round and use
32 samples from PRT to compute loss. During off-policy training, both Logit-GFN and Layer-GFN samples β from the
uniform distribution, i.e., β ∼ U [10,50].

A.3.2. OFFLINE GENERALIZATION

For offline generalization, we train temperature-conditional GFlowNets in a relatively small β during training and generate
samples by querying with various β from low to high values to see their generalization performance. For the QM9
task, we train temperature-conditional GFlowNets with β ∼ U [5,10] and query with β = {1, 5, 10, 50, 100, 500, 1000}.
For TFBind8 and RNA-binding tasks, we train temperature-conditional GFlowNets with β ∼ U [10,50] and query with
β = {1, 5, 10, 50, 100, 500, 1000, 5000}. As querying β = 5, 000 for the QM9 task leads to numerical instability due to the
reward scaled to 100, we exclude the process from this experiment. Unconditional GFlowNets are trained with a fixed β
independently for each β. All methods are run for 1,000 training steps and we generate 2,048 samples from the trained
policy to measure the performance.

A.3.3. ONLINE MODE SEEKING

For online mode-seeking problems, we run experiments with T = 2, 000 training rounds for QM9, sEH, and TFBind8 and
T = 5, 000 training rounds for RNA-Binding tasks. As sEH and RNA-binding tasks have a large combinatorial space to
explore, we apply PRT for all GFlowNets methods to enhance sample efficiency. For each training round, we collect 32
online samples. During the off-policy training phase, we sample 32 samples from the replay buffer and update the policy
via gradient descent K times, where K holds a significant role in the training of GFlowNets. A low number of gradient
updates before sampling new trajectories can result in underfitting, while an excessive number of gradient updates may lead
to overfitting. In contrast to the unconditional GFlowNets, we observed that temperature-conditional GFlowNets require
more training iterations at each round to adapt to various temperature conditions effectively. We present ablations on K in
Appendix B.3 with more details.

For online mode-seeking problems, the distribution of β for training and exploration is crucial. As a default setting, we
choose a uniform distribution for both the training and exploration phases. We summarize the distribution we used for
different biochemical tasks in Table 2.

Table 2. Temperature Distributions of Temperature-conditioned GFlowNets for various tasks

Tasks Training Phase, Ptrain(β) Exploration Phase, Pexp(β) K

QM9 U [1,3] U [1,3] 4
sEH U [1,5] U [1,5] 5
TFBind8 U [1,3] U [1,3] 4
RNA-Binding U [2,3] U [2,3] 1

13

Learning to Scale Logits for Temperature-Conditional GFlowNets

A.4. Offline dataset details

We verify the controllability of Logit-GFN with offline generalization. We prepare a sub-optimal offline dataset similar to
offline model-based optimization for training GFlowNets. We describe the details of the dataset for each task.

• QM9: In QM9 task, we build an offline dataset D using under 50th percentile data, which consists of 29,382 samples.

• TFBind8: In TFBind8 task, we follow the method suggested in Design-bench (Trabucco et al., 2022). We build an
offline dataset D using under 50th percentile data, which consists of 32,898 samples.

• RNA-Binding: In the RNA-binding task, we follow the method suggested in BootGen (Kim et al., 2023). We prepare
an offline dataset consisting of 5,000 randomly generated RNA sequences.

A.5. Mode metrics details

We define the measure of the number of modes in a sampled dataset as the count of data points with a reward above a
specified threshold, where each data point is dissimilar from the others. The threshold is determined by the reward of the top
0.5% of samples Additionally, we use the Tanimoto diversity metric for molecule optimization tasks to measure dissimilarity.
We only accept samples as modes that are far away from previously accepted samples in terms of Tanimoto diversity. We set
the threshold as 0.5. For RNA-binding tasks, we define mode as a local optimum among its 2-hamming ball neighborhoods.
For the TFBind8 task, since there is already a well-pre-defined set of modes considering both optimality and diversity, we
use that pre-defined set for evaluation.

14

Learning to Scale Logits for Temperature-Conditional GFlowNets

A.6. Additional results in offline generalization

We also visualize the reward distribution obtained from QM9 and RNA-binding tasks in Figures 9 and 10, which show the
reward distribution of samples when querying with different β values. For all tasks, it is observed that Logit-GFN focuses on
high-scoring samples when querying with high β, and reacts more adaptively to changes in β compared to Layer-GFN. The
performance of Unconditional GFN methods degrades when trained with excessively high β values, highlighting the need
for temperature-conditional GFlowNets with enhanced generalization capabilities. Additionally, histograms are presented in
Figure 11 to facilitate a direct comparison between different GFlowNets using the same β values.

Note that our objective is not to achieve state-of-the-art performance in offline MBO setting (Trabucco et al., 2022). Our
aim is to verify that Logit-GFN can generate out-of-distribution high-scoring samples by querying with high β through
generalization capability learned from training with various β values.

Figure 9. Reward distribution of samples generated from between Temperature-conditional GFlowNets and unconditional GFlowNet in
offline generalization. Task is QM9.

Figure 10. Reward distribution of samples generated from between Temperature-conditional GFlowNets and unconditional GFlowNet in
offline generalization. Task is RNA-binding.

Figure 11. Reward distribution of samples generated from between temperature-conditional GFlowNets and unconditional GFlowNet in
offline generalization. Task is TFBind8.

15

Learning to Scale Logits for Temperature-Conditional GFlowNets

B. Additional Experiments
B.1. Study on thermometer encoding

It is often challenging to retrieve useful features from scalar input, which in our case is β. One way to overcome this is to
utilize an additional encoding function in the very first of the embedding function. Among different encoding techniques,
Buckman et al. (2018) introduced the thermometer encoding for such inputs to increase the robustness of neural networks,
and Jain et al. (2023b) proved its effectiveness in preference-conditional GFlowNets.

Therefore, we ablate the effectiveness of thermometer encoding for Layer-GFN in online mode-seeking problems. Figure 12
shows the performance of Layer-GFN with and without thermometer encoding in various tasks. As shown in the figure,
Layer-GFN with thermometer encoding outperforms naive Layer-GFN in TFBind8 but underperforms in QM9 and sEG. It
seems applying thermometer encoding is not always useful, and its effectiveness varies across tasks. Therefore, we do not
use thermometer encoding for Layer-GFN in the main experiments.

Figure 12. Ablation on Thermometer Encoding for Layer-GFN (Number of Modes)

We also analyze the loss curve across training Layer-GFN with and without thermometer encoding. As Figure 13 illustrates,
thermometer encoding generally stabilizes the training of Layer-GFN while it is not always helpful in seeking modes.

Figure 13. Ablation on Thermometer Encoding for Layer-GFN (Loss Curve)

16

Learning to Scale Logits for Temperature-Conditional GFlowNets

B.2. Ablation on β of unconditional GFlowNets

In the main section, we ablate on β of unconditional GFlowNets in QM9. We also conduct similar experiments in other
biochemical tasks. Figure 14 shows the performance of unconditional GFlowNets with different β in QM9 and TFBind8
tasks. As shown in the figure, Logit-GFN outperforms all the other unconditional GFlowNets tailored by a fixed β value,
demonstrating the effectiveness of Logit-GFN in seeking online modes.

Figure 14. Ablation on different β for unconditional GFlowNets

B.3. Ablation on number of steps per batch (K)

The number of gradient steps per batch, K, holds a significant role in training GFlowNets. As a default setting, we choose
K = 1 for unconditional GFlowNets as increasing K can lead to overfitting on current observations and converge to the
local optimum. Figure 15 shows the performance of unconditional GFlowNets with increasing K. As illustrated in the
figure, even if we increase K, Logit-GFN still outperforms unconditional GFlowNets by a large margin.

Figure 15. Ablation on different K for unconditional GFlowNets

17

Learning to Scale Logits for Temperature-Conditional GFlowNets

B.4. Ablation on different GFlowNet training methods

Apart from TB, there are other loss functions for training GFlowNets that satisfy Equation (1), such as detailed balance (DB)
and sub-trajectory balance (SubTB). In principle, our logit-scaling trick can accommodate any loss function. To verify this,
we evaluate the effectiveness of our method with DB and SubTB training objectives as well. For SubTB, we use λ = 0.9.
To implement DB and SubTB objectives, we need to predict state flow. We introduce a temperature-conditional state flow
F (s;β, θ) : S × R → R to parameterize state flow for Logit-GFN. We choose a two-layer MLP with a 32-dimensional
hidden layer and a Leaky ReLU activation. The temperature-conditioned version of DB and SubTB can be written as:

LDB(θ;D) = EPtrain(β)EPD(τ)

[
n−1∑
t=1

(
log

F (st−1;β, θ)PF (st|st−1;β, θ)

F (st;β, θ)PB(st−1|st;β, θ)

)2

+

(
log

F (sn−1;β, θ)PF (x|sn−1;β, θ)

R(x)βPB(sn−1|x;β, θ)

)2
]
.

(8)

LSubTB(θ;D) = EPtrain(β)EPD(τ)

[∑
0≤i<j≤n λ

j−iLi,j
SubTB(θ; τ)∑

0≤i<j≤n λ
j−i

]
. (9)

Li,j
SubTB(θ; τ) =


(
log

F (si;β,θ)
∏n

t=i+1 PF (st|st−1;β,θ)

R(x)β
∏n

t=i+1 PB(st−1|st;β,θ)

)2

if j = n,(
log

F (si;β,θ)
∏j

t=i+1 PF (st|st−1;β,θ)

F (sj ;β,θ)
∏j

t=i+1 PB(st−1|st;β,θ)

)2

otherwise.
(10)

Figures 16 and 17 shows the number of discovered modes over training with different objectives in QM9 and TFBind8.
Logit-GFN consistently outperforms unconditional GFN across various objectives, demonstrating its effectiveness.

Figure 16. Ablation on different GFlowNet Training Methods in QM9 Task.

Figure 17. Ablation on different GFlowNet Training Methods in TFBind8 task

18

Learning to Scale Logits for Temperature-Conditional GFlowNets

B.5. Experiments on non-biochemical tasks

As GFlowNets are not limited to biochemical domains, though they show significant promise in that area, our approach,
Logit-GFN, is capable of performing well in other non-biochemical domains. One of the most critical areas for application
is combinatorial optimization (CO). Specifically, we trained Logit-GFN in the graph combinatorial optimization domain,
including tasks such as maximum independent sets (MIS) and maximum clique (MC) on top of detailed balance (DB)
GFlowNet. We followed the implementation provided in Zhang et al. (2023) 1. As shown in Table 3, Logit-GFN outperforms
GFlowNet across various experiments within the combinatorial optimization domain, demonstrating its generalizability.

Table 3. Experiments in non-biochemical domains. We sample 20 solutions for each graph configuration and take the best result.
MIS (Small) MIS (Large) MC (Small) MC (Large)

Logit-GFN (DB) 19.20 ± 0.07 35.65 ± 0.61 16.54 ± 0.20 34.08 ± 3.15
GFN (DB) 17.93 ± 0.69 34.19 ± 0.37 15.56 ± 0.11 29.36 ± 0.01

1https://github.com/zdhNarsil/GFlowNet-CombOpt

19

https://github.com/zdhNarsil/GFlowNet-CombOpt

Learning to Scale Logits for Temperature-Conditional GFlowNets

C. Logit-GFN with Layer-conditioning
We investigate the impact of incorporating layer-conditioning into Logit-GFN. In our approach, the embedding produced by
the encoder of the logit scaling network, denoted as f1

θ , is concatenated with the state embedding. This combined embedding
is then input into the forward policy networks. The process of concatenation is illustrated in Figure 2.

C.1. Experiments on Gridworld

We conduct experiments on Gridworld to quantify the discrepancy between target and sampled distributions. In these
experiments, we measure the L1 distance between the true distributions and the generative distributions, following the
methodology outlined in previous works (Bengio et al., 2021).

As shown in the tables below, Logit-GFN (both Layer-conditioning and Logit-only) achieves more accurate sampling
compared to Layer-GFN and GFlowNet. Moreover, layer-conditioning yields the smallest L1 distance from the true
underlying distribution. This suggests that integrating logit-scaling with the layer-conditioning method enhances the
expressive power for temperature conditioning.

Table 4. Experiments on GridWorld (n=3, H=32). Train with β ∼ U [1, 3] for Temperature-conditional GFlowNets, GFN are trained with
specialized β.

L1(×10−5) β = 1 β = 2 β = 3 β = 4 β = 5

Logit-GFN (Layer-conditioning) 3.607 ± 0.074 2.376 ± 0.231 1.490 ± 0.075 1.284 ± 0.199 1.957 ± 0.470
Logit-GFN (Logit only) 3.926 ± 0.043 2.777 ± 0.119 2.130 ± 0.158 2.426 ± 0.114 2.579 ± 0.160
Layer-GFN 3.621 ± 0.025 2.470 ± 0.228 1.479 ± 0.193 2.926 ± 0.849 5.507 ± 0.039
GFN 3.689 ± 0.037 2.484 ± 0.071 5.363 ± 0.003 5.370 ± 0.001 5.363 ± 0.001

Table 5. Experiments on GridWorld (n=4, H=16). Train with β ∼ U [1, 3] for Temperature-conditional GFlowNets, GFN are trained with
specialized β.

L1(×10−5) β = 1 β = 2 β = 3 β = 4 β = 5

Logit-GFN (Layer-conditioning) 2.392 ± 0.020 1.396 ± 0.033 0.733 ± 0.047 0.908 ± 0.011 1.226 ± 0.050
Logit-GFN (Logit only) 2.397 ± 0.017 1.463 ± 0.035 1.099 ± 0.008 1.210 ± 0.046 1.190 ± 0.010
Layer-GFN 2.415 ± 0.020 1.416 ± 0.033 0.840 ± 0.062 1.644 ± 0.035 2.902 ± 0.018
GFN 2.426 ± 0.015 1.403 ± 0.011 0.812 ± 0.022 3.060 ± 0.001 3.075 ± 0.000

20

Learning to Scale Logits for Temperature-Conditional GFlowNets

C.2. Experiments on offline generalization

Figure 18 visualizes the results of Logit-GFN with layer-conditioning in offline generalization tasks. As depicted in the figure,
Logit-GFN with layer-conditioning performs similarly or occasionally better than Logit-GFN without layer-conditioning. In
certain scenarios, incorporating a concatenated path can enhance the performance of Logit-GFN. This improvement can
be attributed to the simplicity and ease of training of the logit-only method, which results in good performance despite its
limited expressiveness compared to Logit-GFN with layer-conditioning.

Figure 18. Ablation on Layer-conditioning with Logit Scaling in offline generalization.

C.3. Experiments on online mode-seeking

We also conducted experiments to evaluate the effect of layer conditioning on Logit-GFN in online mode-seeking problems.
Figure 19 illustrates the number of modes discovered during training when applying layer-conditioning to Logit-GFN in the
QM9 and TFBind8 tasks. As shown in the figure, while layer-conditioning has a marginal impact on the performance of
Logit-GFN, it still outperforms Layer-GFN, demonstrating the superiority of logit scaling.

Figure 19. Ablation on Layer-conditioning with Logit Scaling in online mode seeking problems.

21

Learning to Scale Logits for Temperature-Conditional GFlowNets

D. Online Discovery Algorithm
D.1. Algorithm PseudoCode

Algorithm 1 Scientific Discovery with Temperature-Conditional GFlowNets

1: Set D ← ∅ ▷ Initialize dataset.
2: for t = 1, . . . , T do ▷ Training T rounds
3: β1, . . . , βM ∼ Pexp(β) ▷ Sample temperatures from exploration query prior.
4: for m = 1, . . . ,M do
5: τm ∼ PF (τ |β = βm; θ) ▷ Sample trajectories from Logit-GFN.
6: D ← D ∪ {τm}
7: end for
8: for k = 1, . . .K do ▷ Training K epochs per each training rounds
9: Use ADAM for gradually minimizing L(θ;D).

10: end for
11: end for
12: Output: D

We present the pseudocode of our online discovery algorithm in Algorithm 1. For each training round t, we sample M
(inverse) temperatures from the query prior, Pexp(β). Then, we generate trajectories using the policy PF (·|β; θ) conditioned
on the sampled β values. Finally, we iterate the procedure by updating the policy parameters using the TB loss for K epochs
per training round.

D.2. Ablation on different temperature sampling distribution

In this section, we present experiments conducted on different temperature sampling distributions, Pexp(β), which is a
crucial component for balancing exploration and exploitation in online mode seeking problems. While we use a uniform
distribution as a default setting, there are various options available. We present extensive experiment results on various
distributions we have tried in this research.

D.2.1. STATIONARY DISTRIBUTIONS

We first implement various stationary distributions. Among various options, we choose widely used distributions for
evaluation as listed below:

• Uniform: This is a default setting of our algorithm. We sample β from the uniform distribution, i.e, β ∼ U [a,b].

• LogUniform: We sample β from the loguniform distribution, which leads to sample high values of β with more
probability, i.e, β ∼ log(U [ea,eb]).

• ExpUniform: We sample β from the expuniform distribution, which leads to sample low values of β with more
probability, i.e, β ∼ eU

[log a,log b]

.

• Normal: We sample β from the normal distribution, i.e, β ∼ N (µ, σ2).

Figure 20 (Left) shows the number of modes discovered during training with different query distributions. As shown in
the figure, there is no big difference between uniform, lognormal and expuniform distribution. Normal distribution shows
slightly better results than other distributions.

In the Figure 20 (Middle), we present the average reward computed by samples generated from the policy every 250 training
rounds. We find that samples generated from LogUniform and Normal distribution generally give high rewards compared to
a naive uniform distribution. Conversely, samples generated from ExpUniform distribution are placed in relatively low score
regions. It tells us that our Logit-GFN can generate appropriate samples according to the conditioning variable, β. Figure 20
(Right) shows the histogram of generated β values for ease of understanding.

22

Learning to Scale Logits for Temperature-Conditional GFlowNets

D.2.2. DYNAMIC DISTRIBUTIONS

We also apply dynamic temperature sampling distributions, which change the distribution across training. Among various
options, we implement simulated annealing, one of the most widely used heuristics in combinatorial optimization. We
prepare two variants of simulated annealing strategies as follows:

• Simulated Annealing: We first define uniform distribution with range 0.5, and shift the mean across the training rounds
t ∈ [1, T] from the lower bound to the upper bound, i.e, µ = (b− a)× (t/T) + a, β ∼ U [max(a,µ−0.5),min(µ+0.5,b)].

• Simulated Annealing (Inverse): In the inverse setting, we shift the mean across the training rounds from the upper
bound to the lower bound, i.e, µ = (b− a)× (1− t/T) + a, β ∼ U [max(a,µ−0.5),min(µ+0.5,b)].

As shown in the Figure 21, Simulated annealing demonstrates superior performance compared to a naive uniform distribution.
While the inverse approach also exhibits fast convergence at the early stage, it encounters a significant decrease in efficiency
as the rounds advance.

We also visualize the average reward of generated samples from the policy at every 250 training rounds in Figure 21. We
observe that simulated annealing makes the average reward of samples drastically towards high reward regions. It seems
exploration with low β at the early stage and focusing on exploitation with high β at the later stage can boost the performance
in online mode seeking problems. Figure 21 (Right) shows the histogram of generated β values at training round t = 800
for ease of understanding.

Figure 20. Ablation on different temperature sampling distribution. (LogUniform, ExpUniform, Normal)

Figure 21. Ablation on different temperature sampling distribution. (Simulated Annealing)

23

