
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GENERALIZATION AWARE MINIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Sharpness-Aware Minimization (SAM) optimizers have improved neural network
generalization relative to stochastic gradient descent (SGD). The goal of SAM is
to steer model parameters away from sharp regions of the training loss landscape,
which are believed to generalize poorly. However, the underlying mechanisms of
SAM – including whether its bias toward flatter regions is why it improves gen-
eralization – are not fully understood. In this work, we introduce Generalization-
Aware Minimization (GAM), derived by directly applying the goal of guiding
model parameters toward regions of the landscape that generalize better. We do
so by showing mathematically through a Bayesian derivation that the landscape
of expected true (test) loss is a rescaled version of the observed training loss land-
scape, and that a sequence of perturbative updates in place of SAM’s single per-
turbative update can optimize the expected test loss. We present a practical online
algorithm to implement GAM’s perturbative steps during training. Finally, we em-
pirically demonstrate that GAM has superior performance over SAM, improving
generalization performance on a range of benchmarks. We believe that GAM pro-
vides valuable insights into how sharpness-based algorithms improve generaliza-
tion, is a superior optimizer for generalization, and may inspire the development
of still-better optimizers.

1 INTRODUCTION

Generalization is a fundamental challenge in training deep neural networks, where the goal is to
perform well on unseen data rather than just fitting the training set. One promising approach to
enhance generalization is Sharpness-Aware Minimization (SAM) (Foret et al., 2021), which has
empirically demonstrated success by guiding model parameters away from sharp minima in the
training loss landscape. The underlying intuition is that flatter minima correspond to solutions that
are less sensitive to perturbations and thus generalize better to new data.

Despite its empirical effectiveness, the theoretical understanding of why SAM improves generaliza-
tion remains limited. Recent studies have questioned whether SAM’s bias toward flatter regions is
the primary reason for its success (Wen et al., 2023). This ambiguity highlights the need for a deeper
exploration of the mechanisms through which SAM and similar algorithms enhance generalization.
Understanding the mechanisms behind SAM is crucial for developing more effective optimization
algorithms that consistently improve generalization across various architectures and datasets.

In this work, we adopt a Bayesian perspective to investigate what the observed training loss land-
scape reveals about the expected test loss. Analytically, we derive a relationship between the training
and test loss landscapes under the assumption of general quadratic loss functions, a reasonable as-
sumption in many conditions. Our analysis reveals that the expected test loss landscape is a rescaled
version of the training loss landscape. This rescaling result implies that it may be possible to directly
optimize the expected test loss, instead of using the indirect hypothesis that promoting flatness is
better for generalization.

Building on this insight, we introduce Generalization-Aware Minimization (GAM), a generalization
of SAM that employs multiple perturbation steps designed to transform the observed training loss
landscape to the rescaled expected test loss landscape. GAM moves beyond SAM’s heuristic of
flatness by directly targeting the expected test loss, thereby enabling better generalization. Moreover,
we develop a practical online algorithm that adapts the perturbation sizes during training by using

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

the training loss on auxiliary minibatches as a proxy for the test loss and demonstrate superior
performance.

Our contributions are as follows:

• Theoretical Insight: We demonstrate that for quadratic loss functions, the expected test
loss landscape is a rescaled version of the observed training loss landscape. This provides
a direct link between training dynamics and generalization performance.

• Gradient Transformation: We show that the gradient of the expected test loss can be
obtained by evaluating the gradient of the training loss after applying a specific sequence
of parameter perturbations. This finding bridges the gap between optimizing for training
loss and directly targeting test loss.

• Algorithm Design: Based on our theoretical results, we propose GAM, an algorithm that
extends SAM by using multiple perturbation steps with higher-order derivatives and by
tuning perturbation sizes online during training. This makes GAM practical for use in large-
scale neural network training. We recover SAM as the one-step perturbation specialization
of GAM.

• Empirical Validation: We empirically validate GAM on benchmark datasets including
MNIST, CIFAR-10, SVHN and ImageNet. Our results show that GAM consistently leads
to better generalization than baselines.

2 RELATED WORK

2.1 SHARPNESS-AWARE MINIMIZATION (SAM) ALGORITHMS

Sharpness-Aware Minimization (SAM) algorithms were introduced to improve the generalization of
neural networks by favoring solutions in flatter regions of the training loss landscape, which have
empirically been linked to better generalization performance (Foret et al., 2021). SAM perturbs
model parameters in the direction of the loss gradient and then optimizes using a second gradient
step, effectively minimizing the sharpness of the loss function. Numerous extensions and variants of
SAM have since been proposed, focusing on improving computational efficiency and generalization
(Mi et al., 2022; Liu et al., 2022a;b; Du et al., 2022a;b; Li et al., 2024; Wu et al., 2024).

Despite its empirical success, the theoretical understanding of SAM remains limited and an active
area of research (Andriushchenko et al., 2023; Zhuang et al., 2022; Chen et al., 2024; Si & Yun,
2024; Dai et al., 2024). Recent studies have raised questions about whether SAM’s generalization
improvements stem directly from its bias toward flatter regions of the loss landscape. For instance,
some works argue that SAM’s effectiveness may not always be directly attributable to sharpness,
but instead to other implicit regularization effects introduced by the perturbation procedure (Wen
et al., 2023; Andriushchenko & Flammarion, 2022). Our work builds on this debate by introducing
a generalized framework that moves beyond the sharpness heuristic and directly targets the expected
test loss.

2.2 BAYESIAN OPTIMIZATION

Bayesian optimization is a well-established framework for optimizing functions that are expensive
to evaluate, and it has been successfully applied in hyperparameter tuning and low-dimensional op-
timization problems (Snoek et al., 2012; Frazier, 2018). The fundamental principle of Bayesian
optimization is to maintain a probabilistic model of the objective function and update it using new
observations, guiding the search toward areas of the input space that are likely to yield better out-
comes.

While Bayesian optimization has shown promise in various applications, its applicability to high-
dimensional settings, such as neural network training, has been limited. Methods that rely on Gaus-
sian processes or other surrogate models struggle to scale due to the curse of dimensionality and high
computational costs. Although some efforts have extended Bayesian optimization to use gradient-
based information for more scalable updates (Wu & Frazier, 2016; Wu et al., 2017; Shekhar &
Javidi, 2021), these approaches have yet to achieve widespread practical adoption in deep learning
beyond hyperparameter optimization.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3 GENERALIZATION AWARE MINIMIZATION

In this section, we present our theoretical framework and introduce Generalization-Aware Minimiza-
tion (GAM), a novel optimization algorithm designed to directly improve generalization by aligning
the training loss landscape with the expected test loss landscape.

3.1 PROBLEM SETUP AND NOTATION

Consider a parametric model with parameters θ ∈ Rd. Let L(θ) denote the true (test) loss function,
which measures the expected loss over the data distribution D. In practice, we have access only
to the empirical training loss L̃(θ) computed over a finite training dataset sampled from D. Our
objective is to find the parameter vector θ that minimizes L(θ), even though we can only observe
and optimize L̃(θ).

To formalize our analysis, we consider a quadratic loss function. Note that any general smooth loss
landscape can be approximated locally as a quadratic, so we expect our analysis to hold for general
losses within a small enough local neighborhood. In what will follow, we will derive an optimization
rule assuming that the quadratic approximations are local, and therefore may vary over the course of
training. Specifically, we consider the true loss function L(θ) and the observed training loss function
L̃(θ) given by:

L(θ) =
1

2
(θ − θ∗)TM(θ − θ∗) + c, (1)

L̃(θ) =
1

2
(θ − θ̃∗)T M̃(θ − θ̃∗) + c̃, (2)

where θ∗, θ̃∗ ∈ Rd represent the minima of the loss functions, M, M̃ ∈ Rd×d are symmetric matri-
ces characterizing the curvature of the loss landscapes, and c, c̃ ∈ R are constants. The parameters
θ∗,M, c of the test loss are unknown, while θ̃∗, M̃ , c̃ of the training loss can be estimated from data.
Our goal is to understand how the expected test loss landscape relates to the observed training loss
landscape and to devise an optimization strategy that minimizes L(θ) by appropriately manipulating
L̃(θ).

3.2 EXPECTED TEST LOSS LANDSCAPE RESCALES THE TRAINING LOSS LANDSCAPE

We begin by examining the relationship between the expected test loss landscape and the observed
training loss landscape under the assumption of quadratic losses. We show that, under certain con-
ditions, the expected test loss can be expressed as a rescaled version of the training loss.

The intuition behind this result is that, while the training loss provides an estimate of the true loss,
it is subject to sampling variability and noise. By modeling the loss functions as random quadratics,
we can analyze how the expected test loss relates to the observed training loss. Specifically, we aim
to determine how the curvature (represented by the Hessian matrices) and the minima of the two
loss functions are related in expectation.

Theorem 1. Consider an unknown quadratic loss function:

L(θ) =
1

2
(θ − θ∗)TM(θ − θ∗) + c (3)

where θ∗ ∈ Rd, M ∈ Rd×d and c ∈ R are drawn from a known distribution. Without loss of
generality, we assume M is symmetric. Suppose we observe another random quadratic loss L̃(θ):

L̃(θ) =
1

2
(θ − θ̃∗)T M̃(θ − θ̃∗) + c̃ (4)

where θ̃∗, M̃ and c̃ are random variables dependent on θ∗, M and c. Again, suppose M̃ is symmet-
ric. Assume, θ∗, θ̃∗ ⊥ M, M̃, c, c̃ and M ⊥ c̃|M̃ , where ⊥ indicates independence. Furthermore,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

assume pθ∗,θ̃∗ = pθ̃∗,θ∗ , where p denotes probability density. We also assume the following rotation
invariance conditions:

pM |M̃ (UMUT |UM̃UT) = pM |M̃ (M |M̃) (5)

for all orthogonal matrices U and E[M |M̃] is diagonal when M̃ is diagonal. Suppose for all θ,

E[L̃(θ)|θ∗,M, c] = L(θ) (6)

Denote Q̃Λ̃Q̃T the diagonalization of M̃ for some diagonal matrix Λ̃ and orthogonal matrix Q̃.
Then,

E[L(θ)|θ̃∗, M̃ , c̃] =
1

2
(θ − θ̃∗)T Q̃D(Λ̃)Q̃T (θ − θ̃∗) + C(θ̃∗, M̃ , c̃) (7)

for some function D that outputs a diagonal matrix and function C outputting a scalar.

Please see Appendix A for a proof and Appendix C for justifications of our theoretical assumptions
(including the rotational invariance of conditional distributions and independence assumptions). The
proof involves leveraging the rotational invariance and the independence assumptions to show that
the expected test loss maintains the same eigenvectors as the training loss but with rescaled eigen-
values. This implies that the curvature (Hessian) of the expected test loss is a rescaled version of
that of the training loss, aligned along the same principal directions.

Theorem 1 intuitively suggests that the curvature directions of the expected test loss are aligned with
those of the training loss but rescaled in each direction. This rescaling affects the sharpness of the
loss landscape in different directions, suggesting that optimizing for flatter regions in the training
loss (as in SAM algorithms) may not necessarily correspond to optimizing the expected test loss
without additional assumptions.

3.3 A SERIES OF PERTURBATIONS TRANSFORMS THE TRAINING LOSS TO THE TEST LOSS

Having established the relationship between the expected test loss and the training loss, we now
explore how to better approximate the gradient of the test loss using the training loss. We show
that a sequence of perturbations applied to the parameters allows us to transform the training loss
gradient into an approximation of the test loss gradient.

The key idea is that higher-order derivatives of the training loss can capture information about the
curvature of the true loss landscape. By recursively computing these derivatives through pertur-
bations, we can construct a series that approximates the effect of rescaling the eigenvalues in the
Hessian of the training loss, effectively transforming it into the Hessian of the test loss.

Theorem 2. Consider two quadratic loss functions:

L̃(θ) =
1

2
(θ − θ̃∗)T M̃(θ − θ̃∗) + c̃ (8)

L̄(θ) =
1

2
(θ − θ̃∗)T Q̃f(Λ̃)Q̃T (θ − θ̃∗) + c̄ (9)

where M̃ ∈ Rd×d is symmetric with eigendecomposition M̃ = Q̃Λ̃Q̃T , and f is an elementwise
continuous function satisfying f(0) = 0, f ′(0) = 1. Suppose elements of Λ̃ are bounded. Define
Dt(θ) ∈ Rd recursively as:

D1(θ) = ∇L̃(θ) (10)

Dt(θ) =
∂

∂ζ
D1(θ + ζDt−1(θ))|ζ=0 (11)

for t > 1. Then, for all ϵ > 0, there exists a sequence γ1, γ2, ...γT ∈ R such that:

||∇L̄(θ)−∇L̃(θ̂)|| ≤ ϵ||θ − θ̃∗|| (12)

where

θ̂ = θ +

T∑
t=1

γtD
t(θ) (13)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 1: Schematic diagram of generalization aware minimization (GAM) vs stochastic gradient
descent (SGD). Black and red contour lines indicate the observed and expected loss landscapes. Note
that the expected loss landscape corresponds to the observed loss landscape with rescaled contour
lines. SGD takes a gradient step directly against the gradient of the observed loss (black arrow).
GAM first makes a series of perturbations in the parameters (orange dashed arrows), computes the
update step from the observed loss at the perturbed value (red dashed arrow), and applies the step
at the original parameter value (red arrow). This direction corresponds to gradient descent on the
expected loss.

Please see Appendix B for a proof. The proof constructs the perturbation coefficients γt to ap-
proximate the effect of the function f on the eigenvalues of M̃ . By iteratively applying directional
derivatives along the sequence Dt(θ), we adjust the gradient of the training loss to closely match
that of the transformed loss L̄(θ). See Appendix C for justifications of our theoretical assumptions
(including assumptions on the function f). Notably, we assume the eigenvalue transformation f is
elementwise, differing from the more general eigenvalue transformation derived in Theorem 1; in
essence, this assumes orthogonal directions in the parameter space can be treated independently.

Theorem 2 provides a method to approximate the gradient of the expected test loss by applying
a series of specific perturbations to the parameters and computing higher-order derivatives of the
training loss. This result suggests that we can design an optimization algorithm that adjusts the
parameter updates based on these perturbations to directly minimize the expected test loss.

3.4 A PRACTICAL ONLINE ALGORITHM TO LEARN PERTURBATIONS

We now extend the theoretical approach to general loss functions by considering local quadratic
approximations. We propose a practical algorithm that continually adapts the perturbation sizes
over the course of training to improve generalization.

Algorithm Design Based on Theorem 2, we design the Generalization-Aware Minimization
(GAM) algorithm. GAM uses multiple perturbation steps with higher-order derivatives and tunes
the perturbation coefficients γt online during training. This allows GAM to approximate gradients
of the expected test loss instead of using training loss gradients as illustrated in Figure 1. The key
components of GAM are:

• Higher-Order Perturbations: We compute a sequence of directional derivatives Dt(θ) to
capture higher-order information about the loss landscape.

• Adaptive Perturbation Sizes: We update the perturbation coefficients γt by minimizing a
discrepancy function ∆ between the gradient on perturbed parameters and an estimate of
the test loss gradient; in practice, we use negative dot product as our discrepancy measure.

• Auxiliary Minibatches: We use the training loss on auxiliary minibatches as a proxy for
the test loss to guide the adaptation of γt.

Notably, if the number of perturbation steps is fixed at one and γ1 is fixed at a constant value, we
recover SAM exactly: thus, SAM is a special case of GAM.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm Details Algorithm 1 outlines the steps of GAM.

Algorithm 1 Generalization Aware Minimization
Require: Initial parameters θ0, training set D, GAM steps T , training iterations N , gradient dis-

crepancy function ∆, small constant ϵ > 0
1: Initialize γ1, γ2, ...γT = 0
2: Initialize θ = θ0

3: Sample minibatch X̄, Ȳ ∼ D
4: for iteration = 1, ..., N do
5: Sample minibatch X,Y ∼ D
6: d1 = ∇L(θ, (X,Y))
7: for t = 2, ...T do
8: dt = 1

ϵ (∇L(θ + ϵdt−1, (X,Y))− d1)
9: end for

10: θ̂ = θ +
∑T

t=1 γtd
t

11: gθ = ∇L(θ̂, (X,Y))
12: ḡθ = ∇L(θ, (X̄, Ȳ))
13: gγ = ∂

∂γ1,γ2,...γT
∆(gθ, ḡθ)

14: Update γ following −gγ
15: Update θ following −gθ
16: end for
17: Return θ

Explanation of Steps

• Lines 6–9 (Higher-Order Derivatives): We recursively compute the directional deriva-
tives dt using finite differences. The small constant ϵ ensures numerical stability.

• Line 10 (Perturbed Parameters): We obtain the perturbed parameter vector θ̂ by combin-
ing the directional derivatives weighted by the coefficients γt.

• Lines 11–12 (Gradient Computation): We compute the gradient at the perturbed param-
eters gθ and the gradient on the auxiliary minibatch ḡθ, which serves as a proxy for the test
loss gradient.

• Line 13 (Perturbation Coefficient Update): We compute the gradient of the discrepancy
between gθ and ḡθ with respect to the perturbation coefficients and update γt accordingly.

• Line 14 (Parameter Update): We perform a standard gradient descent update on the pa-
rameters using gθ.

Practical Considerations

• Computational Overhead: Computing higher-order derivatives increases computational
cost. However, since we use finite differences and a small number of perturbation steps T ,
the overhead remains manageable.

• Stability and Convergence: The choice of ϵ and the learning rates ηγ , ηθ can affect the
stability of the algorithm. In practice, these hyperparameters are tuned based on validation
performance.

• Extension to Non-Quadratic Losses: While theoretically motivated for quadratic losses,
GAM can be applied to general loss functions by assuming local quadraticity. This allows
GAM to be used with complex neural networks and loss functions encountered in deep
learning.

Empirical Validation To empirically validate that GAM effectively learns the perturbation coef-
ficients γt, we conduct experiments on a synthetic quadratic optimization problem where the exact
relationship between the observed (training) loss and the expected (test) loss is known. In Ap-
pendix D, we find that GAM can indeed approximate the correct transformation mapping from the
training loss landscape to the expected test loss landscape.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Test set accuracies of various network architectures trained on the MNIST, CIFAR-10
and SVHN datasets with different methods: stochastic gradient descent (SGD), sharpness aware
minimization (SAM) with different parameter values γ1, and generalization aware minimization
(GAM). Mean results and standard errors are reported over 5 trials where applicable. Best results
are bolded.

MNIST CIFAR-10 SVHN Imagenet

Method 3-layer MLP 3-layer CNN 3-layer MLP 5-layer CNN 14-layer CNN 3-layer MLP 5-layer CNN 14-layer CNN ResNet-50

SGD 0.97368 0.96216 0.54500 0.66334 0.83430 0.79729 0.87824 0.93852 0.64928
± 0.00072 ± 0.00117 ± 0.00216 ± 0.00104 ± 0.00237 ± 0.00223 ± 0.00055 ± 0.00084

SAM 0.001 0.97356 0.96224 0.54552 0.66716 0.83138 0.79909 0.87919 0.93937 -
± 0.00082 ± 0.00111 ± 0.00241 ± 0.00123 ± 0.00231 ± 0.00246 ± 0.00033 ± 0.00069

SAM 0.01 0.97352 0.96244 0.54404 0.66974 0.83328 0.80234 0.87853 0.94156 -
± 0.00032 ± 0.00117 ± 0.00216 ± 0.00232 ± 0.00213 ± 0.00169 ± 0.00033 ± 0.00048

SAM 0.1 0.97466 0.96298 0.55394 0.68100 0.84288 0.80627 0.88334 0.94252 0.65232
± 0.00046 ± 0.00088 ± 0.0017 ± 0.0014 ± 0.00345 ± 0.0022 ± 0.00095 ± 0.00143

CRSAM 0.97038 0.93852 0.55402 0.69444 0.85892 0.80181 0.89792 0.95383 -
± 0.00149 ± 0.01727 ± 0.00148 ± 0.00117 ± 0.00059 ± 0.00221 ± 0.00119 ± 0.00113

GAM 0.97518 0.96392 0.56356 0.69396 0.85074 0.81175 0.88357 0.94299 0.65924
± 0.00063 ± 0.00036 ± 0.00162 ± 0.00154 ± 0.00122 ± 0.00217 ± 0.00057 ± 0.00025

4 RESULTS

4.1 EXPERIMENTAL SETUP

In this section, we evaluate the performance of Generalization-Aware Minimization (GAM) in com-
parison to Sharpness-Aware Minimization (SAM), Curvature-regularized SAM (CRSAM) Wu et al.
(2024), and standard stochastic gradient descent (SGD) on standard image classification bench-
marks: MNIST (Deng, 2012), CIFAR-10 (Krizhevsky et al., 2009), SVHN (Netzer et al., 2011) and
ImageNet (Deng et al., 2009).

For SAM, which corresponds to a special case of GAM with T = 1 and fixed perturbation size γ1,
we experiment with perturbation magnitudes γ1 ∈ {0.001, 0.01, 0.1} to evaluate its sensitivity to
this hyperparameter. GAM adaptively learns the perturbation coefficients γt during training using
multiple perturbation steps (T > 1) and higher-order gradient information.

All methods are trained using the same optimization settings, including learning rates, batch sizes,
and training epochs, to ensure a fair comparison. Detailed architectures, hyperparameter settings
and training procedures are provided in Appendix E. Appendix F Figure 6 shows the performance of
GAM under different hyperparameter settings; in summary, we find that GAM can become unstable
under large T , performs best at small batch sizes, and is relatively insensitive to ϵ.

4.2 GAM OUTPERFORMS SAM ON BENCHMARKS

Table 1 presents the test accuracies achieved by each method across different datasets and network
architectures. The results demonstrate that GAM consistently and statistically significantly outper-
forms both SAM and standard SGD on all benchmarks. For instance, for ResNet–50 trained on
ImageNet, GAM achieves a test accuracy of 65.92%, surpassing SAM’s performance of 65.23%.
Nevertheless, on certain architectures, CRSAM outperforms GAM by a notable margin indicating
GAM may not be universally better than all SAM variants.

Appendix F Figure 5 shows the test error over the course of training for each method. Notably, GAM
may underperform relative to other methods during the early stages of training as it learns the op-
timal perturbation coefficients γt. However, as training progresses, GAM adjusts these coefficients
effectively, leading to superior generalization performance by the end of training. This adaptive
learning of perturbations allows GAM to fine-tune its optimization strategy based on the evolving
loss landscape. These results suggest that GAM’s ability to adaptively learn perturbation sizes and
use higher-order gradient information contributes to its enhanced generalization performance across
different models and datasets.

4.3 ANALYZING THE TRANSFORMATION FROM TRAINING TO TEST LOSS

To gain further insight into how GAM improves generalization, we analyze the transformation ap-
plied by GAM to the loss landscape. Specifically, we examine how GAM modifies the eigenvalues

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) MNIST, 3-layer MLP (b) MNIST, 3-layer CNN

(c) CIFAR-10, 3-layer MLP (d) CIFAR-10, 5-layer CNN (e) CIFAR-10, 14-layer CNN

(f) SVHN, 3-layer MLP (g) SVHN, 5-layer CNN (h) SVHN, 14-layer CNN

Figure 2: Visualization for different dataset-architecture combinations of Hessian eigenvalue trans-
formation of different training methods: stochastic gradient descent (SGD), sharpness aware mini-
mization (SAM) with different parameter values γ1, and generalization aware minimization (GAM).
Input eigenvalue corresponds to the observed loss Hessian while the output eigenvalue corresponds
to the transformed loss Hessian. Margins for GAM indicate standard errors over 5 trials.

of the Hessian of the training loss, which correspond to the curvature along different parameter
directions. Figure 2 visualizes the relationship between the original Hessian eigenvalues (input
eigenvalues) and the transformed eigenvalues (output eigenvalues) for different methods. For GAM,
we compute the effective transformation induced by the learned perturbation coefficients γt. We
observe that GAM tends to sharpen already sharp directions (i.e., directions with large eigenval-
ues), qualitatively similar to SAM. As GAM is tuned specifically to optimize for generalization, the
results suggest that SAM generalizes well because of its similarity to GAM. Interestingly, GAM’s
transformation exhibits a higher contrast between small and large curvature directions than SAM,
selectively sharpening sharp directions while maintaining others. This more complex behavior arises
from the higher-order gradient information used by GAM, ultimately yielding better generalization.

4.4 MITIGATING GAM’S COMPUTATIONAL COST

One of GAM’s disadvantages is its computational cost relative to SGD and SAM: it requires com-
puting the derivative of parameter updates with respect to perturbation coefficients γt which can
be quite costly. We propose mitigating this cost by updating the γt periodically instead of at each
training step as done in Algorithm 1. As shown in Figure 3, when updating the γt every time step,
GAM’s computational cost is roughly 4× that of SGD (relative to roughly 1.3× for SAM). How-
ever, this cost can be reduced to roughly 3× when updating the perturbation coefficients periodically.
Although this reduces test accuracy, the accuracy of GAM still exceeds that of SAM or SGD.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 3: Test set accuracies and training time of a 5-layer CNN model trained on the CIFAR-
10 dataset with stochastic gradient descent (SGD), sharpness aware minimization (SAM) with γ1 =
0.01, and generalization aware minimization (GAM). The x-axis indicates the period at which GAM
updates its perturbation coefficients. Mean results and standard errors are reported over 5 trials.
Training times are on an NVIDIA RTX 4090 GPU.

5 DISCUSSION

In this work, we introduced Generalization-Aware Minimization (GAM), a novel optimization al-
gorithm that directly targets the expected test loss by using higher-order gradient information and
adaptive perturbations. Unlike Sharpness-Aware Minimization (SAM) algorithms, which rely on
the heuristic that flatter regions of the loss landscape generalize better, GAM is grounded in a theo-
retical framework that aligns the optimization process with the expected test loss. By demonstrating
that the expected test loss landscape is a rescaled version of the observed training loss landscape for
quadratic losses, we provided a principled approach to improve generalization.

The surprising similarity between the update mechanisms of SAM and GAM offers a new perspec-
tive on why SAM improves generalization. Our analysis suggests that SAM may implicitly approx-
imate the expected test loss through its single-step perturbations, which could explain its empirical
success. However, GAM’s use of multiple perturbation steps and higher-order derivatives allows it
to more accurately capture the transformation between the training and test loss landscapes. Our
empirical results on benchmark datasets confirm that GAM consistently outperforms SAM, high-
lighting the benefits of directly optimizing for generalization.

GAM shows promising results in real settings, however it relies on using higher-order derivatives,
which may be computationally challenging for large or non-differentiable networks. Future work
could explore approximations or scalable implementations of higher-order derivatives. We also note
the possibility of integrating GAM with newer variants of SAM such as CRSAM which in some
cases can outperform GAM.

We believe that GAM opens new avenues for developing optimization algorithms that can further
enhance generalization in deep learning models, potentially leading to more robust and reliable AI
systems. By incorporating higher-order gradient information and adaptive strategies, future optimiz-
ers can more effectively navigate the loss landscape to find solutions that generalize well. We hope
that our work inspires further research into optimization techniques that bridge theoretical insights
and practical performance, ultimately contributing to the advancement of generalization in machine
learning.

REFERENCES

Maksym Andriushchenko and Nicolas Flammarion. Towards understanding sharpness-aware mini-
mization. In ICML, pp. 639–668. PMLR, 2022.

Maksym Andriushchenko, Dara Bahri, Hossein Mobahi, and Nicolas Flammarion. Sharpness-aware
minimization leads to low-rank features. In NeurIPS, volume 36, pp. 47032–47051, 2023.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Zixiang Chen, Junkai Zhang, Yiwen Kou, Xiangning Chen, Cho-Jui Hsieh, and Quanquan Gu. Why
does sharpness-aware minimization generalize better than sgd? In NeurIPS, volume 36, 2024.

Yan Dai, Kwangjun Ahn, and Suvrit Sra. The crucial role of normalization in sharpness-aware
minimization. In NeurIPS, volume 36, 2024.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE
Signal Processing Magazine, 29(6):141–142, 2012.

Jiawei Du, Hanshu Yan, Jiashi Feng, Joey Tianyi Zhou, Liangli Zhen, Rick Siow Mong Goh, and
Vincent YF Tan. Efficient sharpness-aware minimization for improved training of neural net-
works. In ICLR, 2022a.

Jiawei Du, Daquan Zhou, Jiashi Feng, Vincent Tan, and Joey Tianyi Zhou. Sharpness-aware training
for free. In NeurIPS, volume 35, pp. 23439–23451, 2022b.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimiza-
tion for efficiently improving generalization. In ICLR, 2021.

Peter I Frazier. A tutorial on bayesian optimization. arXiv preprint, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition, 2016.

Diederik P Kingma. Adam: A method for stochastic optimization. In ICLR, 2015.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Tao Li, Pan Zhou, Zhengbao He, Xinwen Cheng, and Xiaolin Huang. Friendly sharpness-aware
minimization. In CVPR, pp. 5631–5640, 2024.

Yong Liu, Siqi Mai, Xiangning Chen, Cho-Jui Hsieh, and Yang You. Towards efficient and scalable
sharpness-aware minimization. In CVPR, pp. 12360–12370, June 2022a.

Yong Liu, Siqi Mai, Minhao Cheng, Xiangning Chen, Cho-Jui Hsieh, and Yang You. Random
sharpness-aware minimization. In NeurIPS, volume 35, pp. 24543–24556. Curran Associates,
Inc., 2022b. URL https://proceedings.neurips.cc/paper_files/paper/
2022/file/9b79416c0dc4b09feaa169ed5cdd63d4-Paper-Conference.pdf.

Peng Mi, Li Shen, Tianhe Ren, Yiyi Zhou, Xiaoshuai Sun, Rongrong Ji, and Dacheng
Tao. Make sharpness-aware minimization stronger: A sparsified perturbation ap-
proach. In NeurIPS, volume 35, pp. 30950–30962. Curran Associates, Inc., 2022. URL
https://proceedings.neurips.cc/paper_files/paper/2022/file/
c859b99b5d717c9035e79d43dfd69435-Paper-Conference.pdf.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al.
Reading digits in natural images with unsupervised feature learning. In NIPS workshop on deep
learning and unsupervised feature learning, pp. 4. Granada, 2011.

Shubhanshu Shekhar and Tara Javidi. Significance of gradient information in bayesian optimization.
In ICAIS, pp. 2836–2844. PMLR, 2021.

Dongkuk Si and Chulhee Yun. Practical sharpness-aware minimization cannot converge all the way
to optima. In NeurIPS, volume 36, 2024.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. NeurIPS, 25, 2012.

10

https://proceedings.neurips.cc/paper_files/paper/2022/file/9b79416c0dc4b09feaa169ed5cdd63d4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9b79416c0dc4b09feaa169ed5cdd63d4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/c859b99b5d717c9035e79d43dfd69435-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/c859b99b5d717c9035e79d43dfd69435-Paper-Conference.pdf

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Karl Weierstrass. Über die analytische darstellbarkeit sogenannter willkürlicher functionen einer
reellen veränderlichen. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften
zu Berlin, 2(633-639):364, 1885.

Kaiyue Wen, Tengyu Ma, and Zhiyuan Li. How does sharpness-aware minimization minimize
sharpness? In ICLR, 2023.

Jian Wu and Peter Frazier. The parallel knowledge gradient method for batch bayesian optimization.
NeurIPS, 29, 2016.

Jian Wu, Matthias Poloczek, Andrew G Wilson, and Peter Frazier. Bayesian optimization with
gradients. NeurIPS, 30, 2017.

Tao Wu, Tie Luo, and Donald C Wunsch II. Cr-sam: Curvature regularized sharpness-aware min-
imization. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp.
6144–6152, 2024.

Juntang Zhuang, Boqing Gong, Liangzhe Yuan, Yin Cui, Hartwig Adam, Nicha Dvornek, Sekhar
Tatikonda, James Duncan, and Ting Liu. Surrogate gap minimization improves sharpness-aware
training. In ICLR, 2022.

A PROOF OF THEOREM 1

Proof. First, observe that

E[L(θ)|θ̃∗, M̃ , c̃] = E[
1

2
(θ − θ∗)TM(θ − θ∗) + c|θ̃∗, M̃ , c̃]

=
1

2
θTE[M |θ̃∗, M̃ , c̃]θ − θTE[Mθ∗|θ̃∗, M̃ , c̃] + E[c|θ̃∗, M̃ , c̃] (14)

Since θ∗ and θ̃∗ are independent of M̃ and c̃, and M is independent of θ̃∗, we have:

=
1

2
θTE[M |M̃, c̃]θ − θTE[M |M̃, c̃]E[θ∗|θ̃∗] + E[c|θ̃∗, M̃ , c̃] (15)

Factoring:

=
1

2
(θ − E[θ∗|θ̃∗])TE[M |M̃, c̃](θ − E[θ∗|θ̃∗]) + 1

2
E[θ∗|θ̃∗]TE[M |M̃, c̃]E[θ∗|θ̃∗] + E[c|θ̃∗, M̃ , c̃]

(16)
Letting C(θ̃∗, M̃ , c̃) = 1

2E[θ
∗|θ̃∗]TE[M |M̃, c̃]E[θ∗|θ̃∗] + E[c|θ̃∗, M̃ , c̃]:

E[L(θ)|θ̃∗, M̃ , c̃] =
1

2
(θ − E[θ∗|θ̃∗])TE[M |M̃, c̃](θ − E[θ∗|θ̃∗]) + C(θ̃∗, M̃ , c̃) (17)

Next, we use the fact that E[L̃(θ)|θ∗,M, c] = L(θ). Expanding using the definition of L̃(θ) and
L(θ):

1

2
(θ − θ∗)TM(θ − θ∗) + c =

1

2
θTE[M̃ |θ∗,M, c]θ − θTE[M̃ θ̃∗|θ∗,M, c] + E[c̃|θ∗,M, c] (18)

Once again using the independence between θ∗ and θ̃∗ from M and c, and the independence of M̃
is θ∗:

1

2
(θ − θ∗)TM(θ − θ∗) + c =

1

2
θTE[M̃ |M, c]θ − θTE[M̃ |M, c]E[θ̃∗|θ∗] + E[c̃|θ∗,M, c] (19)

Since this holds for all θ, we may equate coefficients:

M = E[M̃ |M, c] (20)

θ∗ = E[θ̃∗|θ∗] (21)

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Next, note that pθ∗,θ̃∗ = pθ̃∗,θ∗ implies that θ∗ and θ̃∗ have the same marginal distributions, and
same conditional distributions conditioned on each other. Since θ∗ = E[θ̃∗|θ∗], by symmetry, we
must have:

θ̃∗ = E[θ∗|θ̃∗] (22)

Thus, we may write the expectation of L(θ) as:

E[L(θ)|θ̃∗, M̃ , c̃] =
1

2
(θ − θ̃∗)TE[M |M̃, c̃](θ − θ̃∗) + C(θ̃∗, M̃ , c̃) (23)

Next, we consider E[M |M̃, c̃]. Since M ⊥ c̃|M̃ , we have E[M |M̃, c̃] = E[M |M̃]. Expanding:

E[M |M̃, c̃] =
∑
M

MpM |M̃ (M |M̃) (24)

We denote the eigendecomposition of M̃ = Q̃Λ̃Q̃T . Note that since M̃ is symmetric, Q̃ is orthogo-
nal. Substituting:

E[M |M̃, c̃] =
∑
M

MpM |M̃ (M |Q̃Λ̃Q̃T) (25)

By the rotation invariance of pM |M̃ , we have:

E[M |M̃, c̃] =
∑
M

MpM |M̃ (Q̃TMQ̃|Λ̃) (26)

Making a change of variables in the summation, M ′ = Q̃TMQ̃:

E[M |M̃, c̃] = Q̃[
∑
M ′

M ′pM |M̃ (M ′|Λ̃)]Q̃T (27)

Note that the term in the brackets is simply E[M |Λ̃] which is diagonal by assumption. Thus, for
some diagonal matrix D(Λ̃), we may write

E[M |M̃, c̃] = Q̃D(Λ̃)Q̃T (28)

Finally, the expectation of L(θ) becomes:

E[L(θ)|θ̃∗, M̃ , c̃] =
1

2
(θ − θ̃∗)T Q̃D(Λ̃)Q̃T (θ − θ̃∗) + C(θ̃∗, M̃ , c̃) (29)

B PROOF OF THEOREM 2

Proof. First, observe that
Dt(θ) = M̃ t(θ − θ̃∗) (30)

We may see this by induction. D1(θ) = ∇L̃(θ) = M̃(θ − θ̃∗). If Dt(θ) = M̃ t(θ − θ̃∗), then

Dt+1(θ) =
∂

∂ζ
D1(θ + ζDt(θ))|ζ=0 =

∂

∂ζ
M̃ [θ + ζM̃ t(θ − θ̃∗)− θ̃∗]|ζ=0

=
∂

∂ζ
M̃(θ − θ̃∗) + ζM̃ t+1(θ − θ̃∗)|ζ=0 = M t+1(θ − θ̃∗) (31)

Now consider ∇L̄(θ) and ∇L̃(θ̂).

∇L̄(θ) = Q̃f(Λ̃)Q̃T (θ − θ̃∗) (32)

and

∇L̃(θ̂) = M̃(θ̂ − θ̃∗) = M̃(θ − θ̃∗ +

T∑
t=1

γtM̃
t(θ − θ̃∗)) = (M̃ +

T∑
t=1

γtM̃
t+1)(θ − θ̃∗) (33)

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Using the eigendecomposition of M̃ , we have:

∇L̃(θ̂) = Q̃(Λ̃ +

T∑
t=1

γtΛ̃
t+1)Q̃T (θ − θ̃∗) (34)

Now, we compare f(Λ̃) to Λ̃ +
∑T

t=1 γtΛ̃
t+1. Observe that the function P (λ̃) = λ̃+

∑T
t=1 γtλ̃

t+1

can represent any polynomial with intercept P (0) = 0 and slope P ′(0) = 1. By the Weierstrass
approximation theorem (Weierstrass, 1885), because the elements of Λ̃ are bounded and f is contin-
uous, we may construct the following uniform bound:

||Λ̃ +

T∑
t=1

γtΛ̃
t+1 − f(Λ̃)||F ≤ ϵ (35)

for all ϵ > 0 and diagonal Λ, for some choice of sequence γ1, γ2, ...γT . By the rotation invariance
of the Frobenius norm, we have:

||Q̃(Λ̃ +
T∑

t=1

γtΛ̃
t+1)Q̃T − Q̃f(Λ̃)Q̃T ||F ≤ ϵ (36)

Finally, since the Frobenius norm is an upper bound on the maximum eigenvalue of a matrix, we
have:

||Q̃(Λ̃+

T∑
t=1

γtΛ̃
t+1)Q̃T (θ− θ̃∗)− Q̃f(Λ̃)Q̃T (θ− θ̃∗)|| = ||∇L̃(θ̂)−∇L̄(θ)|| ≤ ϵ||θ− θ̃∗|| (37)

C JUSTIFICATION OF THEORETICAL ASSUMPTIONS

In this section, we provide practical justifications for the theoretical assumptions made in Theorems
1 and 2. These assumptions are critical for the validity of our theoretical results and are grounded in
common practices and observations in machine learning.

Assumption 1: M and M̃ are symmetric matrices. Explanation: In the context of quadratic
loss functions, M and M̃ represent the Hessian matrices (second derivatives) of the true loss L(θ)
and the training loss L̃(θ), respectively. By definition, Hessian matrices of scalar-valued functions
are symmetric because mixed partial derivatives commute (i.e., ∂2L

∂θi∂θj
= ∂2L

∂θj∂θi
) when the function

is twice continuously differentiable. In practice, loss functions used in machine learning, such as
mean squared error and cross-entropy loss, satisfy these smoothness conditions. Therefore, assum-
ing that M and M̃ are symmetric is both standard and justifiable.

Assumption 2: θ∗ and θ̃∗ are independent of M , M̃ , c, and c̃. Explanation: This assumption
simplifies the analysis by decoupling the location of the minima from the curvature and offset of
the loss functions. In practical terms, it means that the position of the minimum (i.e., the parameter
values that minimize the loss) does not influence the curvature of the loss landscape or the constant
term. This is a reasonable approximation when considering local behavior around θ, especially in
high-dimensional parameter spaces where the curvature is determined by the structure of the model
and the data distribution rather than the specific parameter values.

Assumption 3: M is independent of c̃ given M̃ , i.e., M ⊥ c̃ | M̃ . Explanation: This assump-
tion asserts that, conditioned on the training loss curvature M̃ , the curvature of the true loss M is
independent of the constant offset c̃ of the training loss. In practical scenarios, the constant term
c̃ does not affect the gradient or Hessian of the loss function and, therefore, does not influence the
optimization process. Since c̃ merely shifts the loss landscape vertically without changing its shape
or curvature, it is reasonable to consider M independent of c̃ given M̃ .

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Assumption 4: The joint distribution of θ∗ and θ̃∗ is symmetric, i.e., pθ∗,θ̃∗ = pθ̃∗,θ∗ . Explana-
tion: This symmetry assumption implies that the statistical relationship between the true minimum
θ∗ and the observed training minimum θ̃∗ is bidirectional and unbiased. In practical terms, it sug-
gests that there is no preferential direction in the estimation errors between θ∗ and θ̃∗. This is a
reasonable assumption when the training data is a representative sample of the underlying data dis-
tribution, and there are no systematic biases affecting the estimation of the minima. It facilitates the
theoretical analysis by ensuring consistent behavior regardless of the direction of estimation.

Assumption 5: Rotation invariance condition: pM |M̃ (UMUT |UM̃UT) = pM |M̃ (M |M̃) for all
orthogonal matrices U . Explanation: The rotation invariance assumption states that the con-
ditional distribution of the true loss curvature M given the training loss curvature M̃ is invariant
under orthogonal transformations (rotations) of the parameter space. Practically, this means that the
orientation of the coordinate system does not affect the statistical relationship between M and M̃ .
This assumption is justified in many machine learning models where the parameter space does not
have a natural orientation, especially in isotropic settings where all directions are treated equally.
It allows us to generalize results without loss of generality and simplifies the analysis by enabling
diagonalization of matrices through rotations.

Assumption 6: The conditional expectation E[M |M̃] is diagonal when M̃ is diagonal. Expla-
nation: This assumption suggests that if the training loss curvature matrix M̃ is diagonal (indicating
no interaction between different parameters), then the expected test loss curvature matrix M con-
ditioned on M̃ is also diagonal. In practical terms, when the training loss landscape exhibits axis-
aligned curvature, it is reasonable to expect that the true loss landscape will have similar properties
in expectation. Without this assumption, we must break the symmetry provided by the training loss
landscape by assuming the expected test loss has a different and arbitrary set of curvature axes.

Assumption 7: For all θ, the expected training loss equals the true loss, i.e., E[L̃(θ)|θ∗,M, c] =
L(θ). Explanation: This assumption embodies the idea that, conditioned on the true loss parame-
ters, the training loss is an unbiased estimator of the true loss at any point θ. Practically, this means
that the training data provides an accurate reflection of the true loss landscape on average. This
assumption is justified when the training data is an independent and identically distributed (i.i.d.)
sample from the same distribution as the test data, and there are no systematic errors or biases in the
data collection process. It underpins the validity of using the training loss to make inferences about
the true loss.

Assumption 8: The function f is element-wise. Explanation: In Theorem 1, recall that the
eigenvalues of the observed Hessian and the expected test loss Hessian are related by an arbitrary
function D(Λ̃). Here, we make the assumption that the function is applied independently to each
eigenvalue. We believe this is reasonable because in many machine learning models, especially
those with large numbers of parameters, the interactions between different parameters can often
be approximated as negligible. This means that curvature transformation between train and test
landscapes for one principle parameter direction is independent of the transformation for another
principle parameter direction.

Assumption 9: The function f is element-wise continuous with f(0) = 0 and f ′(0) = 1.
Explanation: In Theorem 2, f is used to modify the eigenvalues of the training loss curvature
matrix M̃ to approximate the curvature of the true loss. The conditions f(0) = 0 and f ′(0) = 1
ensure that f behaves smoothly near zero and that small eigenvalues are not disproportionately
affected, which is important for stability. In practice, we believe it is reasonable to expect that very
flat directions of the expected test loss correspond to similarly flat directions of the training loss and
vice versa, which is what these conditions on f imply.

Assumption 10: The elements of Λ̃ are bounded. Explanation: The boundedness of the eigen-
values in Λ̃ prevents extreme curvature in the training loss landscape. In practice, deep learning
models are initialized with weights near 0 and activation functions with bounded derivatives; thus,
it is reasonable to expect curvature to be practically boundable.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

D EMPIRICAL VALIDATION OF GAM

Figure 4: True versus inferred eigenvalue transformation: Red line: Estimated transformation of
eigenvalues from training to true loss landscape. Blue line: Actual Hessian eigenvalue transforma-
tion. Blue dots: eigenvalues in the observed loss.

To empirically validate that GAM effectively learns the perturbation coefficients γt, we conduct ex-
periments on a synthetic quadratic optimization problem where we control the relationship between
the observed (training) loss and the expected (test) loss. This setup allows us to directly assess
whether GAM can learn the true transformation from the training loss landscape to the expected test
loss landscape.

We consider observed and true quadratic loss landscapes with the same Hessian eigenvectors, but
different Hessian eigenvalues. To simulate the observed training Hessian M̃ , we define a nonlinear
transformation f that relates the observed eigenvalues λ̃ to the true eigenvalues λ:

λ̃ = f(λ) =
1

2
λ+

1

20
sin(10λ). (38)

This transformation introduces both scaling and oscillatory behavior, mimicking complex discrep-
ancies between the training and test loss landscapes. Our objective is to learn the perturbation
coefficients γt such that the gradient of the perturbed training loss ∇L̃(θ̂) closely approximates the
gradient of the true loss ∇L(θ); we use squared error as our discrepancy metric ∆. See Appendix E
for further details.

As shown in Figure 4, the estimated transformation approximates the true transformation across
the range of Hessian eigenvalues in the observed loss. This indicates that the learned perturbation
coefficients effectively capture the nonlinear mapping between the training and test loss landscapes.
We highlight, however, that the transformation may be inaccurate outside of the range of observed
Hessian eigenvalues.

E EXPERIMENTAL DETAILS

All experiments were run on a 24 GB GPU.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

E.1 SYNTHETIC QUADRATIC PROBLEM

We set the parameter dimension to d = 15 and use T = 12 perturbation steps. We use a finite
difference constant of ϵ = 0.1 to approximate higher order derivatives. The perturbation coefficients
γt are optimized using the Adam (Kingma, 2015) optimizer with a learning rate of 10−3 over 100000
training iterations.

We generate the true Hessian M by sampling:

• A random orthogonal matrix Q ∈ Rd×d via QR decomposition of a random Gaussian
matrix.

• True eigenvalues λ ∈ Rd sampled uniformly from [1, 2], ensuring positive definiteness.

The true Hessian is then constructed as M = Q diag(λ)QT .

To simulate noise in the observed Hessian (as would occur due to sampling variability in real
datasets), we add Gaussian noise to the true eigenvalues:

λnoisy = λ+ σ · η, (39)

where η ∼ N (0, I) and σ = 0.01. The observed eigenvalues are then computed as λ̃ = f(λnoisy)
using the transformation in Equation 38.

E.2 MNIST

We consider two networks, 1) a softplus-activated MLP network with 3 fully-connected layers of
hidden layer size 256, 2) a softplus-activated CNN with 2 stride-2, kernel-3 convolutional layers
with channel sizes 32 and 64, followed by global average pooling and a final linear layer. Each
learnable weight layer is preceeded by batch normalization.

We train all methods for 10 epochs with batch size 100 using Adam optimizer (Kingma, 2015) at
learning rate 10−3. For GAM, we use T = 3 perturbation steps and tune γs using Adam at learning
rate 10−3. All experiments are conducted over 5 random seeds. For GAM, we use the following
discrepancy function: ∆(gθ, ḡθ) = −gTθ ḡθ and set ϵ = 10−3. For CRSAM, we set step size to 0.1,
α = 0.1, β = 0.01.

MNIST is made available to us via a Creative Commons license.

E.3 CIFAR-10 AND SVHN

We consider three networks, 1) a softplus-activated MLP network with 3 fully-connected layers of
hidden layer size 1024, 2) a softplus-activated CNN with 4 stride-2, kernel-3 convolutional layers
with channel sizes 32, 64, 128 and 256, followed by global average pooling and a final linear layer,
3) a softplus-activated convolutional neural network with 13 convolutional layers followed by global
average pooling and a final linear layer. In the 14-layer CNN, all convolutions have stride 1 except
for the sixth and tenth, and have channel sizes 16, 32, 32, 32, 32, 64, 64, 64, 64, 128, 128, 128, 128.
Each learnable weight layer is preceeded by batch normalization.

We train all methods for 20 epochs with batch size 100 using Adam optimizer (Kingma, 2015) at
learning rate 10−3. For GAM, we use T = 2 perturbation steps and tune γs using Adam at learning
rate 10−3. All experiments are conducted over 5 random seeds. For GAM, we use the following
discrepancy function: ∆(gθ, ḡθ) = −gTθ ḡθ and set ϵ = 10−3. For CRSAM, we set step size to 0.1,
α = 0.1, β = 0.01.

SVHN is made available to us for non-commercial use only.

E.4 IMAGENET

We consider a softplus-activated ResNet-50 He et al. (2016) with standard settings; the only replace-
ment is ReLU with softplus.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

We train all methods for 20 epochs with batch size 32 using Adam optimizer (Kingma, 2015) at
learning rate 10−3. For GAM, we use T = 2 perturbation steps and tune γs using Adam at learning
rate 10−3. Due to computational constraints, we run one experimental trial. For GAM, we use the
following discrepancy function: ∆(gθ, ḡθ) = −gTθ ḡθ and set ϵ = 10−3.

ImageNet is made available to us for non-commercial use only.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

F ADDITIONAL RESULTS

(a) MNIST, 3-layer MLP (b) MNIST, 3-layer CNN

(c) CIFAR-10, 3-layer MLP (d) CIFAR-10, 5-layer CNN (e) CIFAR-10, 14-layer CNN

(f) SVHN, 3-layer MLP (g) SVHN, 5-layer CNN (h) SVHN, 14-layer CNN

Figure 5: Test error over the course of training for various networks trained on MNIST, CIFAR-10
and SVHN with different methods: stochastic gradient descent (SGD), sharpness aware minimiza-
tion (SAM) with different parameter values γ1, and generalization aware minimization (GAM).
Margins indicate standard errors over 5 trials.

Figure 6: Test set accuracies of a CNN model trained on the CIFAR-10 dataset with generalization
aware minimization (GAM) under different hyperparameter choices. By default, we use T = 2,
batch size of 100, and ϵ = 10−3. Mean results and standard errors are reported over 5 trials.

18

	Introduction
	Related Work
	Sharpness-Aware Minimization (SAM) Algorithms
	Bayesian Optimization

	Generalization Aware Minimization
	Problem Setup and Notation
	Expected Test Loss Landscape Rescales the Training Loss Landscape
	A Series of Perturbations Transforms the Training Loss to the Test Loss
	A Practical Online Algorithm to Learn Perturbations

	Results
	Experimental Setup
	GAM outperforms SAM on benchmarks
	Analyzing the transformation from training to test loss
	Mitigating GAM's computational cost

	Discussion
	Proof of Theorem 1
	Proof of Theorem 2
	Justification of Theoretical Assumptions
	Empirical Validation of GAM
	Experimental Details
	Synthetic Quadratic Problem
	MNIST
	CIFAR-10 and SVHN
	ImageNet

	Additional Results

