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ABSTRACT

The spontaneous exchange of turns is a central aspect of human communication.
Although turn-taking conventions come to us naturally, artificial dialogue agents
struggle to coordinate, and must rely on hard-coded rules to engage in interactive
conversations with human interlocutors. In this paper, we investigate the condi-
tions under which artificial agents may naturally develop turn-taking conventions
in a simple language game. We describe a cooperative task where success is con-
tingent on the exchange of information along a shared communication channel
where talking over each other hinders communication. Despite these environmen-
tal constraints, neural-network based agents trained to solve this task with rein-
forcement learning do not systematically adopt turn-taking conventions. However,
we find that agents that do agree on turn-taking protocols end up performing better.
Moreover, agents that are forced to perform turn-taking can learn to solve the task
more quickly. This suggests that turn-taking may help to generate conversations
that are easier for speakers to interpret.

1 INTRODUCTION
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Figure 1: Illustration of our proposed
game. Both agents can exchange utter-
ances through a shared communication
channel. At each step of the conversa-
tion, agents can decide to either speak or
stay silent. However, information can-
not be transmitted if both agents decide
to speak at the same time.

Natural conversations involve a rapid exchange of ut-
terances where speakers coordinate on-the-fly to avoid
talking over each other. This turn-taking phenomenon
is ubiquitous across cultures (Stivers et al., 2009) and
is even found in some forms of animal communication
(Pika et al., 2018; Demartsev et al., 2018). The abil-
ity to engage in spontaneous turn-taking develops early
in humans, even before linguistic competence (Nguyen
et al., 2021) and allows us to hold fluent conversations
with very little downtime between utterances (Heldner &
Edlund, 2010). In contrast, fluid turn-taking is difficult
to replicate in artificial dialogue systems. Modern con-
versational agents often rely on explicit cues, for instance
pressing “enter” in text-based chatbots, the use of spe-
cific wake-words (Gao et al., 2020), or long silences of
pre-determined length (Skantze, 2021).

The goal of this paper is to provide a testbed for studying
the conditions under which artificial agents may develop
a turn-taking convention to resolve a cooperative task. We
describe a simple two-player game where agents observe
partial views on an object which they must reconstruct. Agents can exchange information by emit-
ting symbols across a shared communication channel over multiple rounds. The game exhibits two
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key features: first, at each round agents can decide to either talk or stay silent. However, if both
agents decide to talk at the same time, they are not able to hear the other agent’s message. Second,
agents get a higher score if they solve the task in fewer rounds. This creates an explicit pressure
towards a protocol that allows the agents to solve the task quickly while minimizing overlap.

In experiments, we find that simple neural-network-based agents trained with reinforcement learning
do not consistently develop natural turn-taking strategies. However, agents that do develop a turn-
taking protocol are able to achieve a much higher score, sometimes solving the task perfectly. To
shed light on this finding, we perform an in-depth analysis of an asymmetric version of the game,
where one agent has all the information. We show that in this case, there is an optimal strategy
that does not rely on turn-taking. However, we demonstrate empirically that agents fail to solve the
game when they are forced to use this strategy. In contrast, agents that are forced to use strategies in
multiple turns rapidly achieve almost perfect accuracy.

2 RELATED WORK

Schegloff (2000) attributes the first description of turn-taking to Goffman (1955), although the term
“turn-taking” itself was coined much later (Yngve, 1970). Since then, and following early seminal
work in the 70s (Duncan, 1972; Sacks et al., 1978), turn-taking has been the subject of considerable
study under the umbrella of “conversation analysis” (Levinson, 1983). For example, researchers
have sought to characterize linguistic and paralinguistic cues involved in organizing turns (Stephens
& Beattie, 1986; Kendon, 1967; Clancy et al., 1996), to understand the time-scales involved in turn
changes (Stivers et al., 2009; Heldner & Edlund, 2010) or to identify turn-taking conventions in
non-human primates (Rossano, 2013; Rossano & Liebal, 2014; Demartsev et al., 2018).

Research in automated dialogue systems dates back to early efforts in the 60s and 70s (Weizenbaum,
1966; Bobrow et al., 1977). Particularly relevant to our work is a line of research on task-based meth-
ods, which formulates dialogue as a reinforcement learning problem to satisfy some user-relevant
task (Walker, 2000; Levin et al., 2000). After the success of early deep-learning based models
(Vinyals & Le, 2015; Li et al., 2016), most state-of-the-art systems (Adiwardana et al., 2020; Zhang
et al., 2020) are now generally built on top of large pretrained models (Radford et al.; Lewis et al.,
2020). Research in dialogue systems focuses primarily on text-based models, and spoken dialogue
systems are generally implemented as speech recognition/generation scaffolding around a text-based
core (Chen et al., 2018). However, there have been recent on addressing phenomena specific to spon-
taneous spoken dialogue such as filled pauses (Székely et al., 2019) or non-verbal vocalizations and
turn changes (Nguyen et al., 2021).

Our work belongs to a long line of research devoted to the use of computational models for sim-
ulating the emergence of language (Batali, 1998; Cangelosi & Parisi, 2002). With the advent of
deep learning, there has been a surge of interest in emergent communication among neural-network
agents trained with reinforcement learning (Lazaridou et al., 2017; Foerster et al., 2016; Lazaridou &
Baroni, 2020). The overwhelming majority of research in this area focuses on unidirectional sender-
receiver communication (see Havrylov & Titov (2017); Bouchacourt & Baroni (2018); Chaabouni
et al. (2020) inter alia) based on variants of the Lewis signaling game (Lewis, 1969; Skyrms, 2010).
Although several authors have studied bidirectional communication (Kottur et al., 2017; Graesser
et al., 2019), alternating turns are usually hard-coded into the game.

3 METHOD: A TESTBED FOR THE EMERGENCE OF TURN-TAKING

There is evidence in the conversational analysis literature that turn-taking systems in human lan-
guages almost universally tend to favor (1) few instances of overlapping speech and (2) minimal
pauses between turns (Stivers et al., 2009). In this section, we describe a communication game
based on a variant of the Lewis signaling game (Lewis, 1969) which encapsulates these features.

3.1 GAME DESCRIPTION

The game is played between two agents, Agent 1 and Agent 2. Before every episode of the game,
an object x is drawn according to distribution p from a pool X and both agents observe partial views
on the object, x̂1 and x̂2. The goal of the game is for the agents to communicate enough information
to reconstruct the original input x. Throughout the paper, we will experiment with two versions of
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the game: a symmetric variant where both agents observe partial views, and an asymmetric variant
where one agent (by convention, Agent 2) has access to the full object (x̂2 = x).

3.1.1 CONVERSATION OVER A SHARED CHANNEL

During an episode, conversation between both agents proceeds over T communication steps. At
every step t ∈ {1, . . . , T}, each agent i ∈ {1, 2} must choose one of two actions:

• SILENCE: the agent says nothing

• SPEAK: the agent emits a symbol sit taken from a finite vocabulary V = {w1, . . . , w|V |}. The
agent chooses which symbol to send (there are therefore |V | possible SPEAK actions).

Agents choose their respective actions synchronously and independently: they cannot coordinate to
choose their action based on the other agent’s action at the same time-step.

To emulate the presence of a single auditory channel, we introduce an additional environmental
constraint depending on the actions chosen by the agents. Two situations may occur:

1. if at least one agent stays SILENT, communication succeeds. In this case, both agents are able
to observe each other’s actions, including any symbol sent.

2. both agents may attempt to SPEAK at the same time. We call this situation overlap: in this case,
we do not allow the agents to perceive each other’s actions directly, to simulate failure to transmit
information. We detail specific strategies for modeling overlap in Section 3.1.2.

After each step of the conversation, agents can make a guess as to the original object x, based on
the communication history they have observed and receive a reward rt for this communication step.
Importantly, agents are trained to maximize their total reward R =

∑T
t=1 rt. This means that agents

are encouraged to reconstruct the correct object (and thus get maximal reward) as soon as possible,
thus creating a pressure towards efficient communication (Rita et al., 2020).

3.1.2 MODELING OVERLAPS

Central to our game is the special handling of overlaps: agents cannot simply communicate infor-
mation simultaneously. We implement this constraint by perturbing the symbols emitted by each
agent. We experiment with several ways to corrupt the emitted symbols to represent a failure of
communication that may result from agents speaking over each other:

• Noise: instead of observing the symbol emitted by their communication partner, each agent ob-
serves a special <noise> symbol. Both agents are aware that they have attempted to communi-
cate but they do not observe the exact message sent by each other at this specific time-step.

• Misunderstanding: another possibility is that agents misunderstand each other in case of overlap.
We implement this by substituting the emitted symbols with random symbols from the vocabulary.

• Walkie-Talkie: in this more restrictive setting, the communication channel behaves akin to
a walkie-talkie device: when agents speak simultaneously, they perceive the other’s action as
SILENT. This is a more punitive case of overlap because the agents are not able to detect that
they are overlapping.

In most experiments, we adopt the Noise model. However, we will show that the choice of the
overlap model can have large consequences on the emergent protocol.

3.1.3 OBJECTS AND PARTIAL VIEWS

To facilitate analysis and enable fine-grained control of the difficulty of the game, in the remaining
of this paper we consider games where the underlying objects x are simple attribute-value vectors
(Kottur et al., 2017; Chaabouni et al., 2020).1 Specifically, each object x is a vector of Na attributes,
each of which can take Nv distinct values, for a total of NNa

v possible combinations. We represent

1Although the game could be performed on other objects, such as partially obstructed images (Graesser
et al., 2019).
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a partial view x̂ on an object x by masking Nm of its attributes. At every episode of the game, we
sample an object x and randomly mask some of its attributes according to a distribution δm(·|x) to
obtain partial views x̂.

In the asymmetric version of the game, only one partial view is sampled (x̂1) since Agent 2 observes
the original object. In the symmetric variant, both partial views x̂1 and x̂2 are obtained by sampling
masks independently for both.

3.2 MODELING THE AGENTS

3.2.1 GENERAL ARCHITECTURE

During an episode of the game, agents must achieve two tasks: they must exchange information
across the communication channel, and they must be able to reconstruct the original object x based
on their conversation history. For this purpose, each agent i must implement two functions:

• πa(at | Si
t−1), an action policy which defines a distribution over one of the |V | + 1 possible

actions (either stay silent or emit one of the |V | symbols)
• πr(x′

t | Si
t−1), a reconstruction function which defines a distribution over possible reconstruc-

tions of the original input x

Both distributions are conditioned on Si
t−1, the state of the conversation up until step t− 1 from the

point of view of agent i. Si
t−1 encapsulates (1) the original partial view x̂i observed by the agent,

(2) the history of all past actions of the agent ai<t and finally (3) the symbols received from the other
agent j, ŝj<t. Recall that the latter may not correspond exactly to the symbols emitted by the other
agent j if the agents overlapped.

In practice we implement these functions with a shared conversation encoder h(Si
t−1) which maps

the conversation state Si
t−1 := (a<t, ŝ

j
<t, x̂i) onto a continuous representation (for instance by

means of a recurrent neural network). Both the action policy and the reconstruction function are
functions of this encoding (see Figure 2). The action policy is parameterized as a class-based soft-
max (Goodman, 2001), where we first predict the type of action, either SILENT or SPEAK. If the
latter is chosen, a separate softmax operator predicts the emitted symbol. We factor the reconstruc-
tion function into Na independent classifiers, one for predicting the value of each attribute (out of
Nv candidates).

3.2.2 STANDARD TRAINING OBJECTIVES

During training, each agent is then trained to maximize two objectives, a conversation objective Jconv
with respect to its action policy and a reconstruction objective Jrec with respect to its reconstruction
function:

Jconv,i = E x∼p
x̂1,x̂2∼δm

E
S∼πa

1 (·|x̂1)

πa
2 (·|x̂2)

[
R1(S) +R2(S)

]
Jrec,i = E x∼p

x̂1,x̂2∼δm
E
S∼πa

1 (·|x̂1)

πa
2 (·|x̂2)

T∑
t=1

log πr
i (x | Si

t)

where ES∼πa
θ1

(·|x̂1),πa
θ2

(·|x̂2) denotes the expectation taken over all conversations sampled from the
agents’ policies conditioned on x̂1 and x̂2. Both agents learn to maximize the joint reward R1+R2,
making the game fully cooperative. We will refer to this objective as the Standard objective.

To encourage agents to communicate about their missing information, we experiment with an al-
ternative objective where agents must not only reconstruct their masked attributes, but also predict
which attributes are masked for their interlocutor. We call this objective Reciprocal, since agent i
must be able to reconstruct x̂j and not x.

4 EXPERIMENTAL SETTINGS

4.1 GAME PARAMETERS
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Agent 1
Agent 2 

Figure 2: Overview of a step of the game from
the point of view of Agent 1. The agent takes
in S1

t−1 and tries to reconstruct the object, yield-
ing reward r1t . Simultaneously, the agent sam-
ples an action a1t and observes symbol ŝ2t emitted
by agent 2. The conversation state S1

t is updated
based on both agent’s actions.

In all experiments, inputs are vectors of Na =
10 attributes with Nv = 16 possible values, re-
sulting in ≈ 1012 total combinations. Unless
specified otherwise, agents are optimized on a
training set of 106 examples. We also sample a
validation and test set of 1,000 examples each.
We set the number of masks Nm = 2. During
training, the positions of the masked attributes
are sampled uniformly on-the-fly. At evalua-
tion time, we exhaust all possible combinations
of masks for the first agent. In the symmetric
setting, we sample another pair of mask inde-
pendently for the second agent.

We set the size of the vocabulary to |V | = 8.
Importantly, we are careful to choose a com-
munication channel that is small enough to dis-
qualify trivial strategies where each agent simply describes the entirety of its partial view. Indeed, a
single agent needs Nv log[|V |+1] Na steps to fully describe a vector of Na attributes with Nv values
using a vocabulary of size |V |.2 With a vocabulary size of 8 this corresponds to ≈ 13 steps per agent
(26 in the symmetric setting). Therefore we limit the size of the channel to T = 8 in the asymmetric
variant and 16 in the symmetric variant. This means that to solve the task, agents must leverage the
fact that they share information about the problem if they are to solve the task successfully.

4.2 EVALUATION METRICS

We evaluate agents by their ability to reconstruct the original object at the end of the conversation.
We report the average accuracy over all masked attributes. Note that in the symmetric version of
the game, it is possible that some attributes are masked for both agents, meaning that the original
value cannot be reconstructed. We exclude these occurrences from the computation, which means
that the maximum accuracy is always 100%.

We also analyze the resulting conversations in terms of number of turns and overlaps, following
standard conversation analysis taxonomy (Sacks et al., 1978). Specifically, a turn starts when an
agent i is speaking and the other agent j isn’t. The turn lasts up until agent i becomes silent. If the
next agent speaking is still agent i, the turn continues and any silence is counted as an “intra-turn
pause”. However, if the next agent speaking is agent j, the turn ends before the first silence, and
agent j’s turn starts whenever it starts speaking. If there are intermediate steps between the two
turns where both agent are silent, they are counted as a “gap” in the conversation. Therefore, each
timestep between the start of the first turn and the end of the last turn can be counted either as agent
i’s turn, agent j’s turn, or a gap. Additionally, we also record all timesteps where agents speak over
each other (overlap).

4.3 AGENT IMPLEMENTATIONS

We implement the conversation encoder hi of each agent as single layer LSTM networks (Hochreiter
& Schmidhuber, 1997) with hidden dimension 512 and input dimension 256. At each step t, agent i
encodes the state of the conversation as hi

t = LSTM(hi
t−1, eai

t−1
+ eŝjt−1

) where hi
t−1 is the hidden

state corresponding to the previous timestep and eai
t−1

and eŝit−1
are embeddings of the previous

action ait−1 and the symbol ŝit−1 received from the other agent at step t− 1.

At the beginning of the conversation, the values of the partial views on the inputs, x̂i are encoded
as Na 256-dimensional embeddings, one for each attribute. For each attribute we learn Nv + 1
256-dimensional embeddings, one for each values and one to represent the masked attribute. The
concatenated Na × 256 dimensional representation of x̂i is then fed into a fully connected layer
mapping to a 512-dimensional encoding. This input encoding is used to initialize the hidden state
of the recurrent network.

2The basis of the logarithm is |V |+ 1 because agents can transmit information not only by emitting one of
the |V | symbols, but also by staying silent.
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Accuracy Overlaps #Turns

Stand. 92.63±2.55 0.00±0.00 1.00±0.00

Recip. 90.10±12.17 0.77±0.72 2.05±0.23

(a) Metrics for the asymmetric game.

Accuracy Overlaps #Turns

Stand. 50.60±6.24 1.42±0.56 7.00±1.29

Recip. 83.63±6.91 3.07±0.89 5.34±1.45

(b) Metrics for the symmetric game.

Table 1: Metrics for both asymmetric and symmetric game with both standard and reciprocal
objective. We report standard deviation across 20 runs.

4.4 AGENT TRAINING

Agents are trained to maximize their objectives using gradient descent with minibatching. At each
step of the optimization process, we sample objects x uniformly from the training set, and partial
views x̂1 and x̂2 according to the masking distribution δm(· | x). We then unroll the conversation
by repeatedly sampling from each agent’s policy until the maximum number of steps have been
reached, yielding conversation S =

(
S1
t , S

2
t

)
t=1...T

.

We can obtain gradient estimates for Jrec by automatic differentiation. For maximizing Jconv with re-
spect to the policies πa, we must resort to reinforcement learning. Specifically, we estimate ∇θiJconv
using REINFORCE (Williams, 1992), a policy gradient algorithm. We set the rewards to be the re-
construction log probability of both agents Ri

S =
∑T

i=1 log π
r
i

(
x | Si

t

)
. We use the average reward

in a minibatch as a baseline to reduce the variance of the REINFORCE updates (Sutton et al., 1999),
and add an entropy maximization term to encourage exploration (Williams & Peng, 1991). Our
implementation is written in Pytorch (Paszke et al., 2019), and is based on the EGG framework
(Kharitonov et al., 2021).

4.5 TRAINING HYPERPARAMETERS

Agents are trained using the Adam optimizer (Kingma & Ba, 2015) with a learning rate of 0.001,
a batch size of 2048 and a weight of 0.001 for the entropy term. We train for a total of 600, 000
steps, and keep the pair of agents with the highest accuracy on the validation set. Unless indicated
otherwise, all experiments are run for 20 different random seeds and we report both the mean and
the standard deviation of each metric across all runs. See Appendix 7 for additional reproducibility.

5 RESULTS
5.1 ASYMMETRIC GAME: AGENTS DEFAULT TO UNIDIRECTIONAL COMMUNICATION
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Figure 3: Correlation between turn-taking met-
rics and accuracy in conversations developed by
agents for the asymmetric game (p-value < 104).

We first train agents to perform the asymmet-
ric version of the game where Agent 2 has all
the information. In Table 1a we report recon-
struction accuracy (of Agent 1), the number of
overlaps and the number of turns when agents
are trained with both the standard and recip-
rocal objective. We find that agents trained
with the standard objective adopt unidirectional
communication strategies where only the agent
that has all the information communicates (only
one turn, no overlap). However, agents are not
able to solve the game completely, consistently
converging to about 92% accuracy.

On the other hand, agents trained with the re-
ciprocal objective are encouraged to communi-
cate both ways to exchange information. We observe that agents generally develop protocols in
more than one turn, albeit with some amount of overlap. Although agents reach lower accuracies
on average, the variant across runs is very high. In fact, we find that more than half of the runs see
agents achieve an accuracy greater than 98% (by comparison, in the standard mode the best accu-
racy across all runs is 97.7%). To understand the source of this variability, in Figure 3 we report the
accuracies reached by different agent pairs as a function of the number of turns and overlaps of their
conversations. Conversations involving turn-taking (two or more turns, minimal overlap) correlate
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Figure 4: Influence of the overlap model on the emergent protocols for the symmetric game.

strongly with high accuracy. However, there are several outliers where agents are not able to develop
efficient turn-taking and accuracy is much lower. In other words, while agents do not systematically
agree on turn-taking protocols, those that do consistently perform almost perfectly at the game.

Appendix C showcases a successful “question-answer” based strategy, where Agent 1 first declares
the masked positions and Agent 2 responds with the corresponding values.

5.2 SYMMETRIC GAME: NOT ALL TURN-BASED STRATEGIES ARE EQUAL

In the symmetric version of the game both agents observe masked inputs. Therefore it is not possible
for the agents to rely solely on unidirectional communication. In Table 1b, we observe that agents
achieve much lower accuracy than in the asymmetric game. In particular with standard training
objective agents reach below 50% accuracy. Interestingly, agents develop protocols involving many
short turns (≈ 7 on average) with few overlaps.

Training with the reciprocal objective results in much higher accuracy. Agents still engage in turn
taking, but the conversation involves fewer, longer turns (≈ 5 turns). We postulate that in this case
agents adopt a similar strategy as in the asymmetric setting, first declaring their masked position and
then announcing the missing values (see Appendix E for a qualitative example).

Overall, these results suggest that successful turn-taking does not necessarily entail success at the
task (as for agents trained with the standard objective). Winning strategies rely on question-answers
style conversations (agents trained with the Reciprocal objective).

5.3 INFLUENCE OF OVERLAP MODELING CHOICES

Up to this point, all experiments were performed with the “Noise” implementation of overlaps.
However, it stands to reason that different models of overlaps may lead to different strategies. Fig-
ure 4 reports results for the symmetric game with all three implementations (see Appendix D for
the asymmetric game). Although there is some variance, both Noise and Misunderstanding result
in approximately the same behavior. On the other hand, agents trained in the Walkie-Talkie mode
avoid overlaps at all costs: in this mode overlapping is much more punitive since agents that talk
over each other are not aware that they overlapped. Consequently we find that agents struggle to
perform conversations with multiple turns, and accuracy is much lower.

6 ANALYSIS

In this section we investigate why some agents adopting turn-taking conventions achieve higher
accuracy. For the sake of simplicity, we focus our analysis on the simpler, asymmetric setting where
one agent (namely Agent 2) has all the information.

6.1 OPTIMAL STRATEGIES

We describe two theoretical strategies which agents may adopt to solve the game while avoiding
overlaps. For each, we can compute the length of conversation L needed for the agents to fully
recover the original object (see Appendix A for derivations).

• Question-answers (QA): Agent 1 first communicates the position of here masks to Agent 2 (the
“question”). Based on this information, Agent 2 (who knows the full object x) answers with the

7



Published as a conference paper at ICLR 2023

values of the corresponding attributes. This strategy requires two turns, and so agents must agree
on a turn-taking convention. The total length of the conversation is LQA = log

(
Na

Nm

)
+Nm logNv ,

where the first term corresponds to the length of the question and the second to the length of the
answer. As shown in Section 5.1, we find that agents sometimes learn to adopt this strategy when
they are trained with the reciprocal objective.

• Error-correcting code (ECC): A more efficient approach is based on Reed-Solomon error-
correcting codes (Reed & Solomon, 1960). In this strategy, both agents can agree on Nm well-
chosen linear encodings of the objects such that it is sufficient for Agent 2 to send the evaluation
of these linear functions on x. Agent 1 can then provably reconstruct x by evaluating the same
linear functions on x̂ and comparing the result with the message from Agent 2 (see Appendix B
for a detailed explanation). The length of the conversation is then only LECC = Nm logPNa,Nv

,
where PNa,Nv

is the smallest prime number greater than max(Na, Nv).

In our setting, the corresponding lengths (rounded to the next integer) are LQA = 5 and LECC = 3.
On the surface, ECC is much more efficient than QA: it requires 2 fewer steps to accomplish, and it
only requires unidirectional communication.

6.2 TURN-TAKING FACILITATES LEARNING

0 50k 100k 150k 200k
Training steps

20
40
60
80

100
Policy

QA
ECC
RL-TT
RL-Uni

Figure 5: Validation accuracy through-
out training with fixed policies. Conver-
sations involving turn-taking (dashed
lines) are learned much faster.

We have established that in the asymmetric setting, turn-
taking is not the optimal strategy for solving the game as
early as possible given the environmental constraints of a
shared communication channel. This seems to contradict
our results in Section 5.1, where we found that agents en-
gaging in turn-taking performed better than agents relying
on unidirectional communication. To understand this dis-
crepancy, we compare the performance of the agents us-
ing any of these communication strategies. We compare
four protocols: the two hard-coded strategies QA and
ECC, and two strategies learned by agents through re-
inforcement learning. We select one policy where agents
engage in turn-taking (RL-TT) and one where only uni-
directional communication occurs (RL-Uni).

Figure 5 depicts the evolution of the reconstruction accuracy for pairs of agents trained purely to
solve the task using a fixed policy. We find that turn-taking strategies not only enable the agent to
reach the highest accuracy, but convergence is dramatically faster. In contrast, agents forced to adopt
RL-Uni learn much slower. Finally, agents are not able to learn to solve the game using ECC, even
though it is theoretically the most efficient strategy.

6.3 DISCUSSION

These findings seem to discredit purely functional explanations for turn-taking as the most efficient
communication strategy through a shared channel. Indeed, our theoretical analysis asserts that turn-
taking is not optimal under these constraints. Nevertheless, according to Figure 5, conversations
involving turn-taking are easier to interpret for agents than more sophisticated alternatives like ECC.
Moreover, agents learn to decode these conversations much earlier. This begs the question whether
turn-taking may have developed as a response to extraneous pressures beyond the efficient transfer of
information. More future work is warranted to determine whether these findings generalize beyond
our simple setting.

7 ADDITIONAL REPRODUCIBILITY DETAILS

All experiments are run on single Nvidia V100 GPUs (16 or 32GB VRAM). Training takes about 4
hours (resp. 6 hours) for 100k steps for the asymmetric (resp. symmetric) experiments. A pair of
agents totals 8,792k parameters and can run on a single GPU with a batch size of 2048.

Training parameters (learning rate and entropy coefficient) were chosen via a preliminary grid search
in the asymmetric setting.
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The code used for the analysis in this paper is publicly available on a GitHub repository.3

8 LIMITATIONS

Regarding agent modeling, we resort to simple LSTMs mostly for reasons of computational effi-
ciency. However, neural architectures (e.g. Transformers; Vaswani et al., 2017) may imbue agents
with different inductive biases and affect the resulting strategy. On a similar note, we only use a very
simple reinforcement learning algorithm (REINFORCE with a baseline and entropy penalty). There
are more sophisticated methods dedicated to multi-agent reinforcement learning in the literature (Pa-
poudakis et al., 2021) such as counterfactual policy gradient (Foerster et al., 2018) or multi-agent
variants of actor-critic algorithms (Yu et al., 2021). The use of such approaches may for instance
enable agents to discover elaborate turn-based strategies (involving multiple questions and answers)
without the use of an explicit auxiliary reciprocal guessing objective.

Modeling overlaps is the central feature of our proposed game. For the sake of simplicity, we
only considered “discrete” implementations of overlap, replacing one symbol with another. A more
elaborate alternative would be to represent symbols as actual speech signals (e.g. phonemes) and
overlaps as the superposition of two signals. There is also some skepticism of the assumption that
overlap significantly perturbs the original signal (see, e.g. Levinson, 2016). Moreover, sign lan-
guages also exhibit turn-taking, even though communication is not constrained by a shared auditory
channel (Vos et al., 2016). This suggests that we could also model the effect of overlap as a difficulty
(intrinsic to the agents) of producing and perceiving simultaneously (rather than a perturbation of the
perceived signal), although it is not clear how this should be implemented. We leave the exploration
of these alternatives to future work.

9 CONCLUSION

In this paper, we studied the emergence of turn-taking conventions in two-way communication.
We proposed a simple language game where two agents must exchange information using a shared
communication channel to solve a cooperative task. This enabled us to make several observations:
first, neural network agents trained to play this game struggled to agree on effective turn-based
strategies. Despite this fact, agents that did engage in turn-taking tended to achieve higher accuracy
across the board. Detailed analysis showed that while turn-based communication is not necessarily
optimal in theory, in practice it is much easier for agents to learn than more efficient alternatives. We
hope that this work can foster future research on 1. understanding the origins of turn-taking in human
communication and 2. developing conversational agents that can achieve turn-taking naturally.
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A STRATEGIES FOR ASYMMETRIC GUESSING

Let us focus on the asymmetric version of the game, where only one agent (hereafter the “Guesser”)
must reconstruct the object from a partial view x̂, while the other agent (hereafter the “Oracle”) has
access to the full object x.

In this simplified scenario, we can describe theoretical conversation strategies that allow for solving
the game without overlaps. We characterize each strategy by the effective amount of bits Iguesser
and Ioracle of information that agents have to exchange after which the guesser can accurately
reconstruct x.

Naive strategy: A simple protocol is for the oracle to describe the entirety of the input x. This
strategy requires little coordination: the guesser does not need to speak, she must simply parse
the message to reconstruct x. Given that there are NNa

v possible objects (distributed uniformly),
classical information theory (Shannon, 1948) tells us that the number of bits needed to encode the
objects is I = − log2 1/NNa

v = Na log2 Nv .

Iguesser = 0

Ioracle = Na log|V |+1 Nv

Question-answer: Naturally the naive strategy is sub-optimal: it does not leverage the fact that
the guesser only needs to uncover the Nm masked attribute. If the oracle knows which attributes the
guesser is missing, she could simply send their values, which can be encoded in Nm log2 Nv bits of
information.

However, the guesser must first communicate the position of her Nm missing attributes. The number
of possible combinations of masks is given by the binomial coefficient

(
Na

Nm

)
= Na!/Nm!(Na−Nm)!,

and masks are chosen uniformly at random. Consequently the guesser’s message needs to be
log2

(
Na

Nm

)
bits long. This is particularly efficient when Nm is small in comparison to Na. However,

this strategy requires bidirectional communication: both agents must learn to take turns, and the
oracle must learn to act conditioned on the guesser’s message.

Iguesser = log|V |+1

(
Na

Nm

)
Ioracle = Nm log|V |+1 Nv

Error Correcting Code (ECC): Although the turn-taking strategy outlined above appears as a
natural solution, there exists an even more efficient solution which doesn’t necessitate any turn-
taking whatsoever. Consider the simplest case where there is only Nm = 1 masked attribute, and
assume that both agents agree on a numerical encoding of each value (the integers from 1 to Nv). In
this case it is sufficient for the oracle to send the sum of the encoding of all values in x, modulo Nv .
Upon reception, the guesser can simply compare this value with the sum of all Na − 1 attributes it
observes in x̂ to retrieve the missing value. In this case the oracle only needs to send log2 Nv bits of
information for the guesser to be able to reconstruct x̂.

This strategy can be extended to an arbitrary number of masks, borrowing ideas from the literature
on error correcting codes. In particular, there is an encoding scheme based on Reed-Solomon codes
(Reed & Solomon, 1960) in which the oracle evaluates well-chosen linear functions modulo PNa,Nv

,
the smallest prime number greater than both Na and Nv . Upon reception, the guesser can provably
retrieve the values of the missing attributes by solving a system of Nm linear equations in a finite
field with PNa,Nv

elements. We refer to Appendix B for a detailed explanation of this code.

ECC is the most efficient strategy so far: it only necessitates communicating Nm numbers of value
up to PNa,Nv

, leading to a total effective amount of bits of I = Nm log2 PNa,Nv
. Moreover, it

doesn’t necessitate any turn taking at all: only the oracle needs to speak. However, the agent to
agree upon a more sophisticated convention: in particular recovering the missing attributes from the
message is not trivial.

Iguesser = 0

Ioracle = Nm log2 PNa,Nv

13



Published as a conference paper at ICLR 2023

Moreover, the proposition 5.4 in (Dusart, 2018) shows that for any x ≥ 89693, we can find a
prime number p so that x < p ≤ x(1 + 1/ln3x). This allows us to bound PNa,Nv

and shows that
Ioracle = Nm log2 PNa,Nv

is never really far from Nm log2 max(Na, Nv).

Computing the length L of a communication: Knowing that agents are using discrete tokens
in a vocabulary of size |V | + 1 (including silence), we can compute the effective length L of a
conversation with

L =

⌈
Iguesser

log (|V |+ 1)

⌉
+

⌈
Ioracle

log (|V |+ 1)

⌉
This analysis can inform our choice of game parameters: for instance we choose |V | and T such
that the naive strategy does not allow the agents to solve the game.

B ERROR CORRECTING CODE (ECC) STRATEGY

We describe in more details on the construction of the ECC protocol. Let’s assume that x̂ is the
partial view of x, including a number of Nm masks at the positions k1, · · · kNm .

The idea for the oracle agent is to compute Nm values, v1, · · · vNm
defined as

vk(x) :=
∑
i

xii
k−1 (mod PNa,Nv ) (1)

where PNa,Nv
is the smallest prime number so that P ≥ max(Na, Nv). All the values are computed

modulo PNa,Nv , which means that we only keep the remainder of the division by PNa,Nv . The
amount of bits of information to transmit the values is therefore Ioracle = Nm log2 PNa,Nv .

Let us show that the Nm values v1(x), . . . vNm
(x) are sufficient to reconstruct x knowing x̂. Let

v1(x̂), . . . vNm
(x̂) be the values computed by Agent 1 by applying Equation 1 to x̂, counting masks

as 0. By comparing vk(x) and vk(x̂), we obtain the following linear system v1(x)− v1(x̂)
...

vNm(x)− vNm(x̂)

 = W

 xk1

...
xkNm

 (2)

where

W =


1 · · · 1
k0 · · · kNm

...
. . .

...
kNm
0 · · · kNm

Nm

 (3)

is a matrix with elements in the field Z/PNa,Nv
Z of integers modulo PNa,Nv

. W is known as a
Vandermonde matrix, and its determinant is given by

det(W ) =
∏

1≤i<j≤Nm

(kj − ki) (mod PNa,Nv
)

Note that 0 < (kj − ki) < PNa,Nv
for any i, j. This means that det(W ) cannot be a multiple of

PNa,Nv , since it is a prime number. Consequently, det(W ) ̸= 0 modulo PNa,Nv , which means that
W is invertible in Z/PNa,NvZ. To find the missing values, the guesser agent can simply solve the
system by inverting W .

C EXAMPLE OF A LEARNED QUESTION-ANSWER STRATEGY

Figure 6 showcases a successful “question-answer” based strategy , where Agent 1 first declares the
masked positions and Agent 2 responds with the corresponding values.

14



Published as a conference paper at ICLR 2023

0%
25%
50%
75%

100%
Turn

Agent 1
Agent 2

0%
25%
50%
75%

100%
Mask Prediction Accuracy (Agent 2)

1 2 3 4 5 6 7 8
Communication steps

0%
25%
50%
75%

100%
Accuracy (Agent 1)

Figure 6: Example of question-answer strategy developed by a pair of agents in the asymmetric
game with the reciprocal objective. During the first 3 steps, Agent 1 sends the position of the
masked attributes: Agent 2 is able to correctly predict the masked positions. Afterward, Agent 2
responds with the missing values, and Agent 1’s accuracy increases accordingly.
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Figure 7: Influence of the overlap model on the emergent protocols for the asymmetric game.

D INFLUENCE OF OVERLAP MODEL IN THE ASYMMETRIC GAME

In Figure 7, we depict the influence of the choice of overlap model on the performance of the
agents in the asymmetric game. Similarly to the symmetric game, Noise and Misunderstanding are
relatively similar. Unsurprisingly, with the Walkie-Talkie model agents develop strategies without
overlaps. However, contrary to the symmetric game here agents are able to develop a strategy in
two turns even with this more punitive implementation of overlaps. We hypothesise that this is due
to the smaller number of turns required to solve the game (only 2 versus at least 4 in the symmetric
games). With only one turn change, it is easier to avoid overlaps.

E QUALITATIVE EXAMPLE OF QUESTION-ANSWER STRATEGY IN THE
SYMMETRIC GAME

Figure 8 shows an example strategy developed by a pair of agents trained to play the symmetric
game with the reciprocal objective. Agents follow a similar strategy as the asymmetric case (Figure
6 in the main text): in the first few steps, they exchange information about the positions of their
masks. Based on this information, the rest of the conversation is devoted to communicating the
values of these masked attributes.
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Figure 8: Example of question-answer strategy developed by a pair of agents in the symmetric game
with the reciprocal objective. During the first 4 steps, Both agents communicate the positions of
their masks. Afterwards, they each respond with the corresponding missing values.
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