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ABSTRACT

Machine learning (ML) models often require large amounts of data to perform
well. When the data available to the model trainer is insufficient to obtain good
performance on their desired task, they may need to acquire more data from external
sources. Often, useful data is held by private entities who are unwilling to share
their data due to monetary and privacy concerns. This makes it challenging and
expensive for model trainers to acquire the data they need to improve their model’s
performance. To tackle this problem, we propose Mycroft, a data-efficient
method that enables model trainers to evaluate the relative utility of different data
sources while working with a constrained data-sharing budget. Leveraging both
functional and feature similarity, Mycroft identifies small but informative data
subsets from each data owner. This allows model trainers to identify useful data
owners and improve model performance with minimal data exposure. Experiments
across multiple tasks in two domains show that Mycroft converges rapidly to
the performance of the full-information baseline, where all data is shared.
Moreover, Mycroft is robust to label and data noise, and can effectively recover
a utility-based ranking of data owners. We believe Mycroft paves the way for
democratized training of high performance ML models.

1 INTRODUCTION

Machine learning models’ performance relies heavily on their training datasets, but the data available
for training is often insufficient, outdated, or unrepresentative of the task (Stacke et al., 2021; Elsahar
& Gallé, 2019; Liu et al., 2023). As models expand into new domains and existing ones exhaust public
data, data scarcity becomes a key challenge. According to economic and manufacturing experts, one
of the primary reasons that AI technology is not being widely adopted in manufacturing is the lack of
relevant public data available for production tasks (Alam et al., 2024). While large corporations and
governments can afford large-scale data collection or use methods like crowdsourcing (Sigurdsson
et al., 2016) and federated learning (Kairouz et al., 2021) to increase their access to diverse datasets,
entities without such resources, such as individuals and small businesses, find it extremely challenging
to collect their own data.

Such entities may need to acquire data from private entities (referred to as data owners), who are
often unwilling to share it publicly, especially when it involves proprietary or sensitive data, such
as educational or health records (Spector-Bagdady et al., 2019). Acquiring data from these private
data owners can involve high overhead, such as the creation of complex data sharing agreements,
monetary compensation, and compliance with regulations such as (GDPR, 2021). Therefore, data
sharing protocols which help model trainers assess which data owners are most likely to provide
useful data before acquiring data at scale are needed.

Challenges of external data augmentation: The model trainer needs to efficiently select one or
more data owners whose datasets match their requirements. In the case with a profusion of data
owners, while a large number can be filtered out just on the basis of metadata (i.e. domain, collection
methodology, licensing requirements etc.), it is unclear which of the remaining data owners the model
trainer should acquire data from. Even in the case of a single data owner with a large pool of data,
both the model trainer and data owners will benefit from a method to assess the dataset’s potential
effectiveness. In summary, the key question we aim to answer in this paper is:

How can a model trainer assess the usefulness of data owners without acquiring their entire dataset?
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Mycroft for external data augmentation: We present Mycroft, a framework that helps the
model trainer and data owners identify relevant data (from the data owners) for improving the
model trainer’s performance. The framework follows three main steps: (1) the model trainer sends
information about the task on which their model is under-performing, typically through data samples,
to data owners; (2) the data owners use an efficient algorithm to identify a small, relevant subset of
their data to demonstrate their dataset’s usefulness and send it to the model trainer; and (3) the model
trainer evaluates this subset to decide whether to acquire additional data from the data owners.

The key technical challenge we solve in this paper lies in Step (2), where each data owner must find
the most “relevant” training data with respect to the model trainer’s transmitted data samples, which
may not follow the same distribution as their training data. Our proposed algorithms select data based
on either functional similarity, which compares sample-wise gradients from task-specific models,
or feature similarity, which measures the distance between samples in a relevant feature space, or a
combination of both. In summary, our contributions are as follows:

1. Modelling the problem of external data augmentation (§2:) We formally model the practical
problem of acquiring data from private data owners by stating key assumptions and adding constraints
inspired by the likely real-world operating conditions for any external data augmentation algorithm.

2. Mycroft: a protocol for identifying and sharing useful data (§3:) We outline a data sharing
protocol, which crucially depends on methods for the data owner to identify relevant data. We propose
two data selection approaches, based on functional (loss gradient) similarity and feature similarity,
and highlight their applicability. We adapt existing tools to make them suitable for our goal and in
cases where these techniques were ineffective (such as for tabular data), we develop a new metric
for data selection. Finally, we unify both methods via a joint optimization objective to leverage the
notions of similarity arising from each approach.

3. Extensive methodological assessment (§4:) We compare Mycroft against two baselines: (i)
full-information, where each data owner shares all their data with the model trainer, serving
as the optimal baseline, and (ii) random uniform sampling. Across multiple classification tasks from
2 domains (computer vision and tabular data) and a range of data budgets, our experiments show that
Mycroft significantly outperforms random sampling and quickly approaches the performance of
full-information under a much smaller budget. In the vision domain, Mycroft outperforms
random-sampling by an average of 21% for five data budgets on four datasets. In the tabular
domain, Mycroft with just 5 samples outperforms random-sampling with 100 samples and
matches full-information performance for 65% of sharing scenarios.

4. Case studies of using Mycroft in practical settings (§5): We conduct four additional case
studies to evaluate Mycroft’s effectiveness across different scenarios that may be encountered in
practice. We show that Mycroft is robust to instance and label noise in the data provided by the
data owners. When this data lacks labels entirely, feature similarity is still effective at finding relevant
data samples. When multiple data providers are involved, Mycroft successfully reconstructs a
utility-based preference order that closely aligns with the full-information setting. These
findings confirm that Mycroft offers a highly data-efficient solution for data owners to reliably
demonstrate the value of their data to a model trainer, even in noisy or complex environments.

We hope Mycroft and its associated open-source code 1 paves the way for more efficient and private
data-sharing frameworks, in turn helping democratize the training of performant ML models.

2 PROBLEM SETUP AND FORMULATION

In this section, we first present the challenges associated with external data augmentation in practical
settings and the desired properties for any proposed method. We then formally define the specific
problem we solve and present the required notation.

2.1 CHALLENGES OF EXTERNAL DATA AUGMENTATION

The most direct approach to external data augmentation is to acquire all data from all available data
providers. However, this approach presents the following challenges:

1Anonymize code is available at : https://anonymous.4open.science/r/Mycroft-73FE/
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1. Data owners are unwilling to share all their data: Due to privacy and proprietary concerns,
data owners are often unwilling to share all their data. They also typically expect compensation
which necessitates the use of data budgets to establish the utility of the dataset before sharing.

2. Sharing poorly curated data can negatively impact performance: A large portion of the data
owned by data owners may be poorly curated or irrelevant for model training. Including such data
in the training process can degrade model performance, so it is crucial for model trainers to select
only high-quality and relevant subsets from the data owners’ contributions.

3. Data budgets can ease computational concerns: Sharing large volumes of data from multiple
owners makes it difficult and costly for model trainers to update their models frequently.

2.2 PROBLEM FORMULATION AND NOTATION

We consider a setting where there is a model trainer (MT) and m data owners (DOs). MT has trained
a model MMT on its own dataset DMT and is aiming to improve their performance (or lower their
loss) on test data Dtest via external data augmentation. The performance of MT’s model on Dtest is
measured with respect to some task. In this paper, we assume that the task is supervised learning, so
the overall performance is measured as L(Dtest,M) =

∑
zi∈Dtest ℓ(yi,M(xi)), where zi = (xi, yi)

is a labeled sample and ℓ(·, ·) is some appropriate loss function such as cross-entropy loss.

We then posit that there exists a subset Dhard of Dtest on which MT is aiming to improve their
performance, leading them to use external data augmentation. We explain how Dhard is constructed in
specific settings in 4.1. Each DO has a dataset Di which could aid MT in improving their performance
on Dhard. However, due to the challenges highlighted in §2.1, the DOs do not share all of their data
with MT. Rather, they share a small subset Duseful of up to size k, which we call the budget. If Duseful

is able to improve the performance of MT’s model, then MT and DO could potentially enter into a
data-sharing agreement for additional data acquisition. This paper focuses on how each DO can
identify Duseful and subsequently, how MT can utilize this data to improve performance and if m > 1,
rank the DOs. The task for each DO is then:

Definition 2.1 (Task for each DO). Find Duseful
i ⊆ Di such that |Duseful

i | ≤ k and L(Dhard,M ′
MT) ≤

L(Dhard,MMT), where MMT = D(DMT) and M ′
MT = D(DMT ∪Duseful

i ).

We summarize our key assumptions below about the data held by various entities:

A.1 There exists a subset Dhard ⊆ Dtest with accurate ground-truth labels on which MMT performs
poorly, which MT shares with the DOs.

A.2 Each participating DO has samples from at least one of the classes contained within Dhard.

We assume A.1 because if MT does not share any knowledge of the difficult subset, DOs cannot share
meaningful data. Further, if Dhard is incorrectly labeled, basic challenges regarding performance
evaluation arise. A.2 just rules out DOs with no relevant data to the task under consideration.

Additionally, our algorithm accounts for the following constraints likely to be encountered in practice:

C.1 MT does not share MMT with the DOs.

C.2 No DO shares their full training data with MT, i.e. ∀ i, k < |Di|.
C.1 addresses the reality that the model trainer is unlikely to share their local model for intellectual
property and privacy reasons. In spite of the added challenge, we show in §4 that the DOs can
effectively share useful data. Additionally, C.2 arises from the fact that DO will provide just enough
data to convince MT of their data utility due to privacy and economic concerns. After utility is
established, MT may enter into an agreement with the best DO (s).

3 MYCROFT : IDENTIFYING AND SHARING USEFUL DATA

In this section, we present Mycroft, our data sharing protocol between the MT and DOs.

Overview of approach: The overall approach is outlined in Algorithm 1. In brief, after each
DO receives the dataset Dhard from MT, they will use it to identify a subset Duseful

i of size k from
their local training data Di that is relevant for MT to predict Dhard correctly. To do so, DO can use

3
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Algorithm 1 Mycroft

Require: MMT, Dtest, DO’s loss function LDO, DOi’s dataset Di, Budget k,
1: Dhard ← Dtest(D

test,MMT)
2: Send Dhard to the DOs
3: Duseful

i ← DOi runs DataSelect ▷ DataSelect calls OMP 2 or FeatureSimilarity 3
4: M ′

MT = D(DMT ∪Duseful
i ). depending on whether LDO is differentiable

either functional similarity (loss gradient similarity) or feature similarity, or a combination of both
to identify Duseful

i , depending on whether the loss function LDO is differentiable. The DO then sends
Duseful

i to MT, who will use this data to update their model MMT. The key technical challenge we
address in this section is that of designing the subroutine DataSelect.

3.1 FUNCTIONAL SIMILARITY VIA LOSS GRADIENT MATCHING

For models trained using a differentiable loss function, the gradient of the loss with respect to each
model parameter shows how each sample affected the model during training. Samples that produce
similar gradients are considered functionally similar. This concept has been used in several studies
to sub-select training data to improve the efficiency of model training (Mirzasoleiman et al., 2020;
Killamsetty et al., 2021a). Ideally, to find the most relevant samples to Dhard, the model used would
be MMT. However, due to constraint C.1 that no DO has access to MT’s model, we assume that each
DO has a model Mi with parameters θi trained using a differentiable loss function L that can function
as a reasonable proxy (our empirical findings show that this method works well in practice).

We formulate the problem of finding Duseful
i as that of obtaining a k-sparse weight vector w over Di,

with the weight assigned to each sample corresponding to its utility. To find this k-sparse w, we: (1)
find the averaged gradient of the loss L computed on Dhard with respect to the parameters θi of Mi

(denoted ∇θiL(D
hard)); (2) compute the gradient of the loss L computed on each sample zj ∈ Di

with respect to the parameters θi of Mi; (3) solve the following regularized optimization problem:

min
∥w∥0≤k

eλ(w) = min
∥w∥0≤k

∥∥∥∥∥∥
∑

zj∈Di

wj∇θiL(zj)−∇θiL(D
hard)

∥∥∥∥∥∥+ λ ∥w∥22 . (1)

The first term in Eq. 1 ensures that a weighted sum of the selected samples is close to the gradient of
the loss on Dhard, while the regularization term prevents the assignment of very large weights to a
single instance. The ℓ0-“norm” constraint on w enforces sparsity but leads to an NP-hard problem.
To tackle this issue, we can use a greedy algorithm, Orthogonal Matching Pursuit (OMP) (Pati et al.,
1993), to find a close approximation due to the sub-modularity of eλ(w) (Elenberg et al., 2016) 2.
We detail OMP in Algorithm 2. The choice of which state of the model to use (typically stored as
checkpoints) is explored in §4.3.

Other potential gradient based techniques: Before we settled on utilizing OMP on the model
gradients for the DataSelect process, we also explored various other coreset techniques (Zhou
et al., 2022; Coleman et al., 2019; Toneva et al., 2018; Ducoffe & Precioso, 2018; Ren et al., 2018).
Since these techniques are designed to create subsets of data that can approximate the loss of an entire
dataset, most of them are not directly applicable to our setting which requires finding a small subset
which will be useful for a specific task to the MT. Additionally, these techniques are designed to be
used jointly when models are trained from scratch whereas we are only interested in efficient solutions
that can find useful samples by leveraging an already trained model. Among coreset techniques
that can be adapted to our problem setting, we decide to use OMP because other techniques either
underperform our chosen approach (Mirzasoleiman et al., 2020) or are too computationally intensive
to be feasible (Ren et al., 2018).

2This use of OMP is inspired by (Killamsetty et al., 2021a), who use it for dataset compression during
training.
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3.2 FEATURE SIMILARITY

We also find that data samples which are similar to samples from Dhard in an appropriate feature space
are useful for MT to augment their training set. This is especially useful for models which have been
trained without differentiable loss functions. Given any good feature extractor ϕ(·) that maps a sample
xj to its feature representation ϕ(xj), we compute the distances of each sample in Dhard to each
sample in Di and store them in a matrix Ψ ∈ R|Dhard|×|Di|. We construct Duseful

i by using a greedy
heuristic which first sorts this matrix in the row dimension followed by the column dimension. We se-
lect the top-k samples by iterating over the columns which selects |Duseful

i | samples with the minimum
distance to Dhard samples while ensuring coverage of Dhard (see Algorithm 3 for more details). The
choice of feature representations ϕ(·) and distance function d(·, ·) is contingent on the domain of the
data and the classification task. For the image datasets, we use the feature space of a image retrieval
model called Unicom (An et al., 2023) and L2 distance as our distance function. For the tabular
dataset where existing techniques were ineffective, we propose a ExtractBinningFeatures
algorithm using Hamming distances over adaptive grids (Appendix 4).

3.3 FUNCFEAT : COMBINING GRADIENT AND FEATURE SIMILARITY

Whenever the DO has access to a model trained on Di as well as a good feature extractor, they can
combine both notions of similarity to find useful samples. Combining both notions of similarity may
improve the quality of Duseful

i as samples which can align both in the feature and gradient space are
more likely to be relevant to Dhard. Our technique (FuncFeat) introduces a regularization term in
terms of a composite norm that incorporates the feature similarity between samples from Dhard and
Di to the approximation error from Eq. 1:

e′λ1,λ2
(w) = eλ1

(w) + λ2 ∥Ψw∥22 , (2)

where Ψ is a matrix of distances. The second term functions as a regularizer that penalizes samples
that are far from feature representations of Dhard. In the following theorem, we show sub-modularity:

Theorem 3.1. If the loss function L(·) is bounded above by Lmax and ∀j, ∥∇θiL(zj)∥ ≤ ∇max, then

fλ1,λ2
(w) = Lmax − e′λ(w) is weakly submodular with parameter γ′ ≥ λ1+λ2∥Ψ∥2

2

λ1+λ2∥Ψ∥2
2+k∇2

max
,

where ∥ · ∥2 is the spectral norm for matrices. From Elenberg et al. (2016), we get that OMP returns
a 1− eγ

′
-close approximation of the maximum value of fλ1,λ2

(w).

4 EXPERIMENTS

In this section, we empirically demonstrate that Mycroft outperforms random-sampling and
rapidly approaches full-information while operating within the communication constraints
laid out in §2. We also present several ablation studies to investigate key design choices for Mycroft.

4.1 EXPERIMENTAL SETUP

In this section, we describe details about the datasets, models, and metrics we use to evaluate
Mycroft, followed by how we construct Dhard and evaluate Mycroft.

1. Datasets: We evaluate Mycroft on classification tasks over two domains: computer vision and
network traffic classification. For the computer vision tasks, we use six different datasets, while for
the network traffic classification, we use a tabular dataset that represents flow features of network
traffic. Further details are in Appendix D.

Image datasets:

• Food datasets: We use three datasets from the food computing domain: Food-101 (Bossard et al.,
2014), UPMC Food-101 (Wang et al., 2015) and ISIA Food-500 (Wang et al., 2015). We assign
Food-101 to be the MT’s dataset and UPMC Food-101 and ISIA Food-500 as datasets of two DOs.

• Dog datasets: We use two datasets for dog breed classification: Imagenet-Dogs (Deng et al., 2009)
and Tsinghua-Dogs (Zou et al., 2020). Imagenet-Dogs contains 120 dog classes from Imagenet

5
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Food-101 - UPMC Food-101 - ISIA500 Imagenet - Tsinghua Dogs & Wolves - Spurious -
Dogs & Wolves - Natural

Budget k Mycroft
random-
sampling Mycroft

random-
sampling Mycroft

random-
sampling Mycroft

random-
sampling

8 0.42 0.36 0.33 0.18 0.43 0.31 0.44 0.13
16 0.50 0.38 0.48 0.33 0.62 0.48 0.50 0.13
32 0.61 0.47 0.54 0.40 0.70 0.56 0.75 0.25
64 0.75 0.64 0.72 0.61 NA NA 0.75 0.25
128 0.86 0.72 0.83 0.70 NA NA 0.88 0.38

Table 1: Accuracy of M ′
MT with varying budgets of Duseful

i . full-information results in 100%
accuracy on Dhard. Column headers indicate the MT and DO datasets separated by hyphens.

whereas Tsinghua-Dogs contains 130 dog classes which include all the classes in Imagenet-Dogs.
We consider Imagenet-Dogs and Tsinghua-Dogs to be the MT’s and DO’s dataset respectively.

• Dogs & Wolves: We curate a dataset of Dogs and Wolves with spurious correlations to simulate a
controlled MT-DO interaction, which helps illustrate effectiveness of Mycroft. The MT model is
trained on a dataset containing these spurious correlations, referred to as Dogs & Wolves - Spurious,
therefore, the model performs poorly on a dataset without these correlations. We label such a
dataset as Dogs & Wolves - Natural and simulate a DO which has this dataset. An illustration of
this dataset is provided in Figure 5 in the Appendix.

Tabular dataset: We use the IoT-23 dataset (Garcia et al., 2020) which contains tabular features
derived from the network traffic flows. The MT’s task is to select DOs that would improve its model’s
ability to detect malicious traffic. In order to make the evaluation comprehensive, we experiment
with different combinations of MTs, DOs, and types of malicious attacks totalling 665 combinations.

2. Models: For the image datasets, all our experiments use ResNet50 (He et al., 2016) models pre-
trained on Imagenet since after evaluating the vision datasets on several CNN architectures, including
MobileNets, EfficientNets, and ResNets (18 & 50), we found that our results were consistent across
these architectures. For the tabular dataset, we use Decision Trees, XGBoost and Random Forest
as previous works (Grinsztajn et al., 2022; Hasan et al., 2019; Yang et al., 2022) have shown that
simple models are not only computationally effective but also can outperform deep learning models
for typical tabular datasets. Appendix D.2 contains details for the training procedure.

3. Metrics & Baselines: We define full-information to be the setting where MT uses a DO’s
entire dataset to train their model. This represents the upper bound on the performance improvement
with external data augmentation from a DO. We use random-sampling as our baseline technique
for external data augmentation with knowledge of the class label from which data is to be retrieved.
Several works have shown that random sampling is an effective strategy for dataset compression
(Mahmud et al., 2020; Guo et al., 2022; Mirzasoleiman et al., 2020; Killamsetty et al., 2021b), which
is highly relevant to our task and thus a valid baseline. For the image datasets, we report classification
accuracy (normalized between 0 and 1) and F1 score for the tabular dataset (due to class imbalance)
for Dhard.

4. Construction of Dhard: Our approach for creating the Dhard subset involves two steps. First,
we identify the misclassified samples in the validation set, Dval, forming Dhard. Then, if Dhard is
large enough, we randomly select a small subset to share with the DOs and keep the remaining for
evaluation. If it is too small to meaningfully split, we share the entire Dhard.

5. Evaluation setup: For the tabular dataset, where we have enough samples for a meaningful split,
we evaluate the performance of the MT’s model on a separate test dataset not seen by MT. In vision
tasks, where Dhard often lacks sufficient samples for such a split, we evaluate the model directly on
the Dhard dataset. When a meaningful split is possible on Dhard, we evaluate on the held-out Dhard

data. For evaluation, whenever model gradients are available, we use our FunctFeat technique to
construct Duseful

i . Otherwise, we use our feature similarity methods.

4.2 RESULTS

Here, we present the results of evaluating Mycroft on different datasets and compare it with our
random-sampling baseline. We also vary data budgets to understand how well Mycroft can
approximate the performance of the full-information setting.

6
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(a) CDF of MT’s F1 score after data sharing.
As the number of samples in Duseful

i increases,
both the performance for random-sampling
and Mycroft increase and move closer towards
full-information performance. Mycroft
outperforms random-sampling, as can be seen
from the fact that Mycroft with Duseful

i of 5 sam-
ples outperforms random-sampling with Duseful

i

of 100 samples.

(b) CDF of Duseful
i budget required for

random-sampling and Mycroft to match
full-information for cases where sharing
data is helpful using DecisionTree classifier. For
most cases, Mycroft uses a much smaller Duseful

i

budget compared to random-sampling to match
the performance of full-information. N =
474 cases where sharing data is helpful (F1 score for
full-information >= 0.5).

Figure 1: Performance of Mycroft compared to random-sampling and
full-information on the tabular dataset.

Image Datasets: We present results for the image datasets Table 1 and make three key observations.
First, we can see that Mycroft outperforms random-sampling across all datasets and at all bud-
gets of Duseful

i . Secondly, we note that Mycroft can rapidly converge to the full-information
setting using only a fraction of the dataset. To be specific, the highest budget on Duseful

i amounts to
training on at most 32% of the DO’s dataset, on average, in our experiments, yet Mycroft is able to
reach at least 83% of the full-information performance.

Tabular Dataset: Fig 1a displays the result for the tabular dataset. We see that Duseful
i bud-

get of 5 samples retrieved using Mycroft outperforms Duseful
i of 100 samples retrieved using

random-sampling. In addition, as we increase Duseful
i budget to 100, we move closer to the

full-information performance. To fully explore the performance of Mycroft on vari-
ous budgets, we start with a Duseful

i budget of 5 samples and double it until the MT’s perfor-
mance reaches that of the full-information setting (Fig 1b). We observe that Mycroft
reaches the full-information performance using a smaller Duseful

i budget compared to
random-sampling, especially on small Duseful

i budgets. For example, with a budget of merely
5 samples, Mycroft can reach the same performance as full-information on 65% of the
combinations used, as opposed to 30% for random-sampling. Thus, Mycroft significantly
reduces the amount of data that needs to be shared to obtain the same improvement in performance
as full-information. For this dataset, we note that Mycroft only uses feature similarity to
retrieve useful data. Further discussion in is Appendix E.

4.3 ABLATION STUDIES

We conduct ablation studies on the image datasets to analyze key design choices of Mycroft. For
tabular dataset ablations, see Appendix E.2.

Fine-tuning vs training from scratch: We compare two approaches for the MT to incorporate Duseful
i

into their model: finetuning and retraining. We find that retraining from scratch and fine-tuning both
achieve similar performance but fine-tuning is much more computationally efficient. In particular,
training MT’s models with externally augmented data from scratch takes 8 hours on average on a
single Nvidia A40 GPU whereas finetuning only requires approximately 50 minutes. Hence, we
choose to use finetuning for all our experiments.

Checkpoint selection for loss gradient matching: We find that earlier checkpoints provide more
useful gradients for gradient matching (Figure 6). Please refer to Appendix E for more details.

7
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Figure 2: Accuracy of M ′
MT when trained on Duseful

i retrieved using Mycroft and
random-sampling under the scenario where approximately 70% of the data or labels are cor-
rupted.

Gradient matching with different MT-DO model architectures: We also explore over the impact on
the performance of gradient matching when the DO and MT have different architectures. Concretely,
we keep the MT’s architecture as ResNet50 but change the DO’s architecture to EfficientNetB0 (Tan
& Le, 2019). Overall, we observe small differences in the performance of the augmented model
(< 0.01) but note that gradient matching over different architectures (Jain et al., 2024) is an avenue
for future exploration.

Other feature spaces for similarity matching: Besides Unicom, we also explore other feature
spaces, such as that of a pretrained ResNet50 . We evaluate feature spaces on the Dogs & Wolves
dataset and measure how many useful samples the DO’s model can retrieve from the Dogs & Wolves -
Natural dataset when performing similarity matching in each feature space. We observe that 76%
of retrieved samples are useful when using Unicom, whereas only 6% are useful when using the
ResNet50 feature space. We show a sample of the Top-k retrieved samples in Figure 4.

5 CASE STUDIES

In this section, we examine the applicability of Mycroft across different real-world data-sharing
scenarios. The first three scenarios are evaluated using datasets. all our vision datasets, while the last
scenario includes results for both the vision and tabular datasets.

Scenario 1 - Corrupted data features: In real-world scenarios, data features can be corrupted due
to factors like hardware failures as well as collection and transmission errors. To assess Mycroft’s
reliability in this context, we corrupt the DO dataset using random image transformations, applying
random masking, color jitters, etc. The results, shown in Figure 2, indicate that Mycroft’s perfor-
mance declines by only 2.7% on average, compared to a 13.7% drop for random-sampling. This
demonstrates Mycroft’s resilience to corrupted data while still retrieving useful subsets.

Scenario 2 - Corrupted labels: Large-scale supervised learning datasets often contain incorrect
labels. To evaluate Mycroft’s performance in such conditions, we randomly permuted 70% of the
labels in DO’s dataset. The results, shown in Figure 2, demonstrate that Mycroft is highly robust to
label corruption, with an average performance drop of only 4.4%, compared to a 16.9% decrease for
random-sampling. This highlights Mycroft’s effectiveness in handling noisy labels.

Scenario 3 - Mycroft in missing label settings: In cases where the DO dataset lacks labels entirely,
Mycroft can rely on feature-space distances. For vision datasets, Mycroft can use feature
distances (Unicom) to retrieve samples and assign them pseudo-labels by matching each sample
to the closest Dhard sample in the feature space. The results in Table 2 show minimal performance
degradation between the scenario where labels are available (gradient similarity can be used) and not
available (only feature similarity can be used).

Scenario 4 - Preference ordering for several DOs: In data markets, multiple sellers often provide
datasets with varying utility. In such cases, Mycroft should be able to rank these datasets to support
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MT - DO Mycroft
No labels

random
- sampling

No labels

Mycroft
With labels

Food-101 - UPMC 0.58 0.19 0.61
Food-101 - ISIA500 0.47 0.14 0.54
Imagenet - Tsinghua 0.44 0.25 0.7

DvW - Spurious - DvW - Natural 0.68 0.21 0.75

Table 2: Accuracy of Mycroft compared to random-sampling for Scenario 3 where the DO
has an unlabelled dataset. In this case, Mycroft utilizes feature similarity to construct Duseful

i . We
compare the accuracy in this scenario with the performance of Mycroft when the DO has labels
and utilizes gradient similarity.

DO Mycroft
random-
sampling

full-
information

DO-1 0.81 0.18 0.88
DO-2 0.63 0.31 0.69
DO-3 0.44 0.25 0.63
DO-4 0.56 0.25 0.50
DO-5 0.19 0.25 0.13

Table 3: Preference ordering (based on
accuracy) generated from Mycroft and
random-sampling for selecting from
among several DO candidates with differ-
ent levels of utility (where each DO’s num-
ber corresponds to their utillity) from Sce-
nario 4. Mycroft is mostly able to retrieve
the ground-truth preference ordering whereas
random-sampling fails to do so.

MT Mycroft
random-
sampling

full-
information

MT-1 49 34 80
MT-2 16 5 40
MT-3 76 58 92
MT-4 87 23 90
MT-5 60 37 60
MT-6 0 0 24
MT-7 92 25 88

Table 4: Number of useful DOs (F1 score
of M ′

MT>=0.5) retrieved by Mycroft and
random-sampling for budget of 5 sam-
ples and by full-information for dif-
ferent MTs for tabular data. Number of DO
candidates = 95.

more informed data-sharing agreements. We tested this by constructing several DO datasets with
different utility levels (details in Appendix F) to see if Mycroft could correctly rank them. The
results, shown in Table 3, indicate that Mycroft successfully identifies the most promising datasets,
while random-sampling struggles to do so.

For tabular data, where clear rankings are harder to establish (useful datasets often perform sim-
ilarly), we measured the number of useful DOs (defined as those achieving an F1 score of 0.5
or higher after data sharing) retrieved by Mycroft and random-sampling. As shown in Ta-
ble 4, Mycroft consistently retrieves more useful datasets across different MTs, demonstrating its
ability to capture the true utility of various datasets. Notably, Mycroft sometimes even outper-
forms full-information in selecting useful data, as discussed in Appendix F. This highlights
Mycroft’s suitability for ranking datasets in data-sharing scenarios.

6 RELATED WORK

Data augmentation and synthetic data generation: Numerous studies have investigated ways
to enhance training data quality by leveraging existing datasets through methods such as image
overlay (Inoue, 2018), random erasure (Zhong et al., 2020), and common data augmentation tech-
niques like rotation and cropping (Inoue, 2018; Zhong et al., 2020; Chlap et al., 2021; Shorten &
Khoshgoftaar, 2019; Hussain et al., 2017; Feng et al., 2021). These strategies are designed to generate
new samples, reduce overfitting, and improve model generalization. However, they are less effective
if the test data deviates significantly from or is underrepresented in the training set. Similarly, using
generative models to create additional training samples (Tripathi et al., 2019; Such et al., 2020; Jiang
et al., 2024) can enhance performance, but this approach often requires substantial data to train the
generative model itself. Moreover, synthetic data may fail to capture the full complexity of real-world
data distributions, limiting its impact on hard sample performance.

9
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Data augmentation using publicly available data: Researchers have also explored sourcing data
from publicly available data lakes (Nargesian et al., 2023; Castelo et al., 2021; Yakout et al., 2012;
Esmailoghli et al., 2021; Santos et al., 2021; Zhu et al., 2016; Castro Fernandez et al., 2019; Fernandez,
2018; Galhotra et al., 2023). For example, METAM (Galhotra et al., 2023) profiles various datasets
to identify and select the most relevant ones, thereby improving the quality of training data and
enhancing performance on downstream tasks. Another approach, Internet Explorer (Li et al., 2023),
retrieves task-specific images from the internet to support self-supervised learning. However, these
solutions rely on open access to data and are ineffective in scenarios where data access is restricted.
Consequently, they do not address the challenge of sourcing data from private entities.

Selecting data without full information: Recent work called Projektor (Kang et al., 2024) addresses
the problem of selecting and weighting useful data owners without full information about the
underlying data. Projektor assumes that some of the DO ’s data is publicly available as pilot data and
can predict the usefulness of the entire dataset based on this subset. This assumption may not be true
in our context as the publicly available pilot data is not selected based on any knowledge about the
MT ’s task, and may be irrelevant for MT. Techniques like Projektor can complement Mycroft by
finding the best combination of relevant samples from different DOs.

Deriving coresets for large datasets: There is also extensive research on identifying useful subsets
of datasets, such as work on “coresets" (Killamsetty et al., 2021c; Kim & Shin, 2022; Guo et al.,
2022), which focus on selecting a representative subset that approximates the cost function of the
entire dataset. However, most of these methods are better suited for dataset compression rather than
creating task-specific subsets. In our context, approximating the entire cost function is irrelevant to
the model trainer’s needs. Instead, we prioritize selecting a subset most relevant to the specific task
and have adapted some of these techniques accordingly.

7 DISCUSSION

Why does Mycroft help? The fact that Mycroft outperforms random-sampling in almost
all scenarios and quickly approaches full-information, even when operating under a limited
data budget has scenario-dependent explanations. First, for many DOs, the majority of their data is
irrelevant to the MT’s task, as such, random-sampling is inefficient and sharing all their data is
unnecessary. Secondly, in many cases, MT may only need a small subset of the data to drastically
improve their model’s performance. For example, in the Dogs & Wolves dataset, only a small subset
of the data is needed break the spurious correlations and improve generalization. Similarly, for the IoT
attack data, the significant distinction between attack distributions implies a small subset is sufficient
to differentiate between benign and malicious traffic, and different kinds of malicious traffic.

Limitations and Future Work: One limitation of our work is that it assumes that the model trainer
already has access to a set Dhard that they want to improve on. This may often be a reasonable
assumption because model trainers are looking to improve on the predictions of Dhard that they
perform poorly on or have low confidence about. However, the case where Dhard is too limited and
therefore, does not give the data owners enough of a signal to determine useful data, is an important
for future work. In addition, our method also assumes that the most useful data to share are likely
those that are similar to Dhard. In reality, data that are not close to Dhard might also be useful to share.
In this paper, we do leverage functional similarity via gradient matching to include some diverse data
points. However, explicitly promoting diverse data selection is a key direction for future work.

Finally, there remains the issue that model trainers may not be willing to share even small subsets
of their data with the data owners, in which case more privacy-preserving methods can be explored
on top of Mycroft. Future directions to address the privacy limitations include developing a
version that avoids directly sharing data samples but still provides useful information to the model
trainer, such as using techniques like noise addition, feature (instead of data) sharing, synthetic data
generation, and other privacy-preserving methods on top of Mycroft. For a detailed discussion of
extensions towards privacy-preserving data sharing, see Appendix G. Additionally, exploring versions
of Mycroft that are resistant to strategic, and even malicious, data owners is a promising area for
future work.

We hope our approach in this paper lays the foundation for more efficient and privacy-focused
data-sharing frameworks, ultimately democratizing the training of highly performant ML models.
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Reproducibility Statement
We have taken several steps in order to ensure reproducibility of our work. Firstly, we open source
the code for all our experiments anonymously at https://anonymous.4open.science/r/Mycroft-73FE/ .
This code includes the methodologies used for processing the datasets and running all our experiments.
We use a mix of public and newly curated datasets which we have detailed in Section 4. We will
also be releasing the Dogs & Wolves dataset we have curated to the community. Moreover, we have
included details about the compute requirements of our method in Appendix D and and Section 4.3.
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In this Appendix, we aim to (i) provide proofs for the optimality of Mycroft (ii) provide more
details about the datasets, algorithms and models used to obtain the results in the main body of the
paper (iii) present additional experiments to further validate the discoveries in the main body of the
paper. The Appendix is organized as follows:

1. Summary of symbols and notations used (Appendix A)
2. Proof of the optimality of Mycroft (Appendix B)
3. Runtime analysis and algorithms for Mycroft subroutines (Appendix C)
4. Further details about the experiment setup including the datasets and models used (Appendix D)
5. Additional results and ablation studies (Appendix E)
6. Further details and results for case studies (Appendix F)
7. Discussion about the privacy concerns of data sharing (Appendix G)

A SYMBOLS AND NOTATIONS

Symbol Description

DO Data Owner

MT Model Trainer

DMT MT’s dataset

MMT MT’s model

Dtest MT’s test dataset

Di ith DO’s dataset

Duseful
i Subset of Di retrieved by Mycroft or random-sampling

Dhard Subset of Dtest which is incorrectly classified and is shared with the DOs

Table 5: Table of notations used in the paper.

B PROOFS

In this section, we prove the weak submodularity of the function obtained by subtracting the error
function in Eq. 3 from the maximum value of the loss. That is, we need to prove that the following
function is weakly submodular with paramter γ′:

fλ1,λ2
(w) = Lmax − min

∥w∥0≤k

∥∥∥∥∥∥
∑

zj∈Di

wj∇θiL(zj)−∇θiL(D
hard)

∥∥∥∥∥∥+ λ1 ∥w∥22 + λ2 ∥Ψw∥22 , (3)

under the conditions specified in Theorem 3.1. Given that this function is submodular, then the use of
the Orthogonal Matching Pursuit (OMP) algorithm from Elenberg et al. (2016) will return a k-sparse
subset with performance that is a 1− eλ

′
approximation of the maximum value.

Proof of Theorem 3.1. From Elenberg et al. (2016), a function is γ′ weakly submodular with γ′ ≥ m
M

where m is the restricted strong concavity parameter and M is the restricted smoothness parameter.

To prove that fλ1,λ2(w) is strongly concave with parameter m, we need to show that

−m

2
∥v −w∥22 ≥ fλ1,λ2

(v)− fλ1,λ2
(w)− ⟨∇fλ1,λ2

(w),v −w⟩ (4)

Plugging in fλ1,λ2(·) from Eq. 1, we get

−m

2
∥v −w∥22 ≥ −λ1∥v −w∥22 − λ2∥Ψv −Ψw∥22

≥ −λ1∥v −w∥22 − λ2∥Ψ∥22∥v −w∥22,
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where the final inequality arises from the property of the induced norm with respect to a matrix and
∥Ψ∥ is the spectral norm of the distance matrix Ψ. This implies m ≤ 2(λ1 + λ2∥Ψ∥22).

To prove that fλ1,λ2(w) is restricted smooth with parameter M , we need to show that

fλ1,λ2(v)− fλ1,λ2(w)− ⟨∇fλ1,λ2(w),v −w⟩ ≥ −M

2
∥v −w∥22 (5)

Expanding the term on the L.H.S. again, we get,

− λ1∥v −w∥22 − λ2∥Ψ∥22∥v −w∥22 −
∑
j

vj(
∑
k

(wk − vj)∇θi(zj)
⊺∇θi(zk))

≥ −λ1∥v −w∥22 − λ2∥Ψ∥22∥v −w∥22 − k∇2
max∥v −w∥22,

where the final inequality arises from the k− sparse condition on the weight vectors and the bound
on the gradients of the loss function. This gives M ≥ 2(λ1 + λ2∥Ψ∥22 + k∇2

max).

Together, this gives γ′ ≥ λ1+λ2∥Ψ∥2
2

λ1+λ2∥Ψ∥2
2+k∇2

max
.

C PSEUDO CODE AND RUNTIME ANALYSIS FOR MYCROFT

C.1 PSEUDO CODE FOR MYCROFT

Algorithm 2 OMP

Require: Dhard, DO’s loss function : L, Di, Mi’s parameteres θ, regularization coefficients: λ1,λ2 ,
subset size: k, tolerance: ϵ

1: X ← ∅
2: r ← ∇θiL(D

hard)
3: while X ≤ k and r ≥ ϵ do
4: m← argmaxj |Proj(∇θiL(Di), r)|
5: X ← X ∪ {m}
6: w∗ ← argminw e′λ1,λ2

(w,X )
7: r ← r − Proj(X , w∗)
8: end while
9: return X , w

Algorithm 3 FeatureSimilarity

Require: Dhard, Di, Budget k,
1: ϕ(Dhard), ϕ(Duseful

i )← DO runs FeatureExtractor(Dhard, Di) ▷ Unicom or Binnning
2: Ψ← ComputeDistances(ϕ(Dhard), ϕ(Duseful

i ))
3: Duseful

i ← RetrieveTopK(Ψ, k)
4: return Duseful

i

C.2 COMPLEXITY & RUNTIME OF MYCROFT

Image datasets: Mycroft for the image domain consists of two techniques: Unicom and Grad-
Match. Here, we discuss the computation and memory complexity of both these techniques in order
to give a sense of their efficiency and practicality. Unicom operates by projecting all data points in
the representation space of the Unicom model, which is based on CLIP Radford et al. (2021), and
computing distances between those data points. Thus, its compute and memory requirement scale
in proportion to the number of data points to be projected as each sample requires a forward pass
through the model to acquire its feature representation which needs to be held in stored for computing
distances with other data points. Empricially, we find that this procedure takes less than 5 minutes and
requires less than 4 GB of GPU memory for each experiment we present in this paper. GradMatch
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Algorithm 4 BinningDistance

Require: Dhard, DO, percentage to sample from DO: r, minimum number of non-empty bins for each
feature: b, binning candidates list (in increasing order): candidates, features used for binning:
features

1: X DO, XDhard ← ExtractBinningFeatures(Dhard,DO, r, b, candidates, features)
2: D ← ∅
3: for pDO in X DO do
4: d_l← ∅
5: for pD

hard
in XDhard

do
6: d← GetDistance(pDO, pD

hard
)

7: d_l← d_l ∪ {d}
8: end for
9: D ← D ∪ {d_l}

10: end for
11: return D

Algorithm 5 ExtractBinningFeatures

Require: Dhard, DO, percentage to sample from DO: r, minimum number of non-empty bins for each
feature: b, binning candidates list (in increasing order): candidates, features used for binning:
features

1: DOsamples ← sample(DO, r)
2: UnionSamples← Dhard ∪ DOsamples

3: X DO ← ∅
4: XDhard ← ∅
5: for f in features do
6: NumBin← max(candidates)
7: for n in candidates do
8: NumFilled← CountNonEmptyBins(UnionSamples[f ], n)
9: if NumFilled ≥ b then

10: NumBin← b
11: break
12: end if
13: end for
14: edgef ← GetEdge(UnionSamples[f ],NumBin)
15: X DO ← X DO ∪ GetBinningCoordinates(DO[f ], edgef )
16: XDhard ← XDhard ∪ GetBinningCoordinates(Dhard[f ], edgef )
17: end for
18: return X DO, XDhard
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requires computing gradients for each data point in Dhard and DO’s using the DO’s model once. In
practice, we only use the gradients of the last two layers, which significantly reduces the compute and
memory requirements. The gradients are then used to run the OMP algorithm which has a complexity
of O(NM +Mk + k3) for each of the k iterations where k is |Duseful

i |, M is the dimension of the
gradients and N is |Di|. For experiments in this paper, each experiment ran in under 10 minutes and
required approximately 6 GigaBytes of memory.

Tabular dataset: The runtime for tabular dataset as described in 4 is O(MNF ) where M is the
number of samples in DO, N is the number of samples in Dhard, F is the number of features used for
ExtractBinningFeatures. Empirically, each experiment takes less than 5 minutes and requires less
than 3 GB of memory.

D FURTHER SETUP DETAILS

MT will evaluate the utility of DO’s data based on the framework found in Figure 3. Further details
about the datasets and training process used to obtain the results in the main body of the paper are
provided in this section.

MT
(1) Send 

(3) Send
DO

DO
(2)

Identify
useful DOs

(4)Evaluate

(2) Run

DO
(2)

(1)

(3)

(1)
(3)

to find

Figure 3: Framework for MT to evaluate the utility of DO’s data.

D.1 DATASETS

D.1.1 DOGS & WOLVES DATASET

Neural networks are known to learn spurious correlations in supervised settings. While test data
containing the correlations learnt during training often gets classified correctly, data which does
not contain such correlations is prone to misclassification. We exploit this phenomenon to create a
dataset which helps us simulate a controlled MT-DO interaction. In our case, the MT has a training
and validation dataset which contains spurious correlations but a test dataset which does not contain
them and thus their model suffers on the test dataset.
Concretely, we curate a dataset which consists of two classes: Dogs and Wolves. Spurious correlations
are introduced in it by controlling the background of each image which can either be snow or grass.
The MT has data from both animals being on one type of background. In particular, the dogs are on
grass and the wolves are on snow. In the absense of negative examples, the model takes a shortcut
by associating the true label with the background and not the animal. We refer to MT’s training and
validation subset as Dogs & Wolves - Spurious. However, the model performs poorly when the test
samples do not contain the spurious correlations i.e., dogs on snow and wolves on grass. We refer to
this subset as Dogs & Wolves - Natural. We simulate a DO which has a dataset containing both Dogs
& Wolves - Spurious and Dogs & Wolves - Natural and thus their model does not learn background
related spurious correlations. An illustration of this dataset is provided in Figure 5.
Now, if the MT wants to perform well on data from Dogs & Wolves - Natural, they must acquire
data from that distribution and retrain their model in order to break the spurious correlations. This
motivates the MT to acquire new data form the DO. It should be noted that the MT is oblivious as to
why their model performs poorly on Dogs & Wolves - Natural.
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Figure 4: Top-k retrieved Duseful
i samples using Unicom for Dhard from the Dogs & Wolves dataset.

Figure 5: Subsets in the Dogs & Wolves dataset. The first column shows Dogs & Wolves - Spurious
where the dogs are on a grass background and the wolves are on snow. The second column shows

Dogs & Wolves - Natural where the dogs are on snow and the wolves are on grass.

D.1.2 FOOD DATASET

Food-101 contains 101,000 images of 101 food classes with 750 and 250 images for each category
for training and testing. UPMC Food-101 is a twin dataset to Food-101 and thus has the same
number of categories and size as Food-101. ISIA Food-500 is another food recognition dataset with
approximately 400,000 images for 500 food classes and has many classes which intersect with the set
of classes in UPMC Food-101. In our experiments, we use Food-101 as the MT’s dataset and UPMC
Food-101 and ISIA Food-500 as datasets of two different DO’s.

D.1.3 TABULAR DATASET

Data source:
The dataset we use consists of five captures (scenarios) of different IoT network traffic Garcia et al.
(2020). Each network consists of traffic of two types : benign traffic (when the IoT devices are not
not under attack) and malicious traffic (when the devices are under attack). The attacks are executed
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in a Raspberry Pi and each capture can suffer from different attacks. Details about the types of
benign/attack present in each capture can be found in Table 6.

Table 6: Attacks present in each capture, Benign stands for Benign traffic. PHP stands for Part Of A
Horizontal PortScan attack, CC stands for C&C attack, CCT stands for C&C Torii.

Capture Benign/Attacks present

1 Benign, PHP,
3 Benign, CC, PHP
20 Benign, CCT
21 Benign, CCT
34 Benign, CC, PHP

Data Labeling:
From the raw pcap files (which contain the raw network traffic data), we use the Python library
NFStream Listed (2024) to extract feature flows (in tabular format) from pcap files. We then match
the timing of the flow with the timing that the attack was executed as mentioned in the data source
Garcia et al. (2020) to label the data. After labelling the flows, we split these flows based on whether
they are benign or malicious based on their attack type.

Model Trainers: We define an MT to be the IoT device in the captures that want to improve its
model’s ability to predict some particular attack. In this study, we have 7 different MTs. In addition,
because the attack data in this dataset has quite uniform distribution (most likely because they are
conducted in a lab-setting) such that if the model has been trained on the attack, they are very likely
to predict a future attack of the same type with high accuracy, we assume that these MTs are only
trained on benign data. In reality, this scenario is possible because if the network is new, the chances
of them being trained on attack data for this new network is low. The MTs see a very small number of
attack data which its model fail to predict and would like to get more data from DOs to improve their
models.

Data Owners: We artificially inflate the number and complexity of DOs by mixing data from different
captures to generate 95 new DOs. This will increase the difficulty of finding relevant samples in
DOs and simulate the real scenarios where DO are often quite complex.

Details for Dhard:The quantity of Dhard which each MT possesses is very small (2% of the malicious
data) and is chosen randomly from the malicious data of the MT’s dataset.

D.2 TRAINING DETAILS

Here, we provide more details about the training procedure we used for obtaining the neural networks
we use for our computer vision tasks.

For the public image datasets we use, we observe that the model performs well on most classes
perform and thus, there is little to gain from external data augmentation. Therefore, to simulate a
more realistic setting, we reduce performance on certain classes of the MT’s model by training them
with limited training data. On average, we use 10% of the original training data for the classes we
choose to augment using external datasets and attain an average accuracy of 65% for them.

The MT’s and DO’s models are ResNet50 models pretrained on Imagenet and finetuned on their
respective datasets. The MT’s and DO’s base model is trained for 120 epochs using a learning rate
of 0.03 with a cosine annealing weight decay. The MT’s augmented models, M ′

MT, are obtained by
finetuning their base models for 25 epochs on Duseful

i and their original training dataset.

E ADDITIONAL RESULTS & ABLATION STUDIES

Here, we evaluate which training phase of the DO’s model provides the most useful gradient informa-
tion for data selection. For evaluation, we chose the Dogs & Wolves dataset as the DO and perform
gradient matching for several checkpoints. We compare the percentage of samples in the retrieved
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Figure 6: Effect of the checkpoint used for GradMatch on Duseful
i . Earlier checkpoints tend to provide

more useful gradient information for the OMP algorithm.

subset which belong to the Dogs & Wolves - Natural data subset since those are the only useful
samples in the DO’s dataset. We plot the results in in Figure 6 and observe that earlier checkpoints
indeed provide more useful gradients.

E.1 IMAGE DATASETS

We conduct ablation study on image datasets to see how the selection of checkpoints affect Grad-
Match’s ability to select Duseful

i . We find that earlier checkpoints tend to provide more useful gradient
information for the OMP algorithm. Refer to Figure 6 for the results.

E.2 TABULAR DATA

For this dataset, as noted in §4.2, the results presented only use feature similarity. We discuss the
reasons here. First, the models that perform the best on this dataset are tree-based classifiers for
which gradient matching does not apply. In addition, to resemble the effect of gradient matching
for tabular data, we have also attempted to retrieve Duseful

i based on DO’s model confidence score
and DecisionTree’s decision path when trained on DO’s data. We find that the performance of these
approaches are not as good as Mycroft. Potential reasons for why these approaches do not work
are (i) features that differentiate benign and malicious traffic for DO might not be features that are
important for MT’s model (as can be seen in the fact that for some DOs, MT’s model does not improve
after data sharing) and (ii) the DecisionTree’s decision path when trained on DO’s data might be
over-reliant on only one or very few features, hence, do not provide useful signals to select Duseful

i .

Performance with different classifiers: In this section, we present MT’s F1 score after data sharing
using random-sampling and Mycroft for different classifiers. We find that DecisionTree seems
to be the best classifier for this dataset. Refer to Figure 7, 8 and 9 for the results.

Performance when Duseful
i is selected based on different data selection algorithm: To explore

whether DecisionTree’s decision path can be used to select Duseful
i , we use Duseful

i budget of 5 samples
and compare MT’s F1 score after data sharing when Duseful

i is retrieved from samples of the same
decision path as Dhard, of different decision paths as Dhard, retrieved from random-sampling
and Mycroft. Note that to make this study comparable, we only consider cases where samples of
the same decision path as Dhard and samples of different decision path as Dhard can be found. This
total up to 466 cases. We find that although sharing samples of same decision paths as Dhard can be
slightly better than random-sampling, Mycroft still outperforms this approach significantly.
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(a) CDF of MT’s F1 score after data sharing using
random-sampling with Duseful

i budget of 5 sam-
ples for different classifiers. DecisionTree seems to
be the best classifier for this dataset.

(b) CDF of MT’s F1 score after data sharing us-
ing random-sampling with Duseful

i budget of
100 samples for different classifiers. DecisionTree
seems to be the best classifier for this dataset.

Figure 7: Performance of random-sampling for different classifiers for the tabular dataset.

(a) CDF of MT’s F1 score after data sharing using
Mycroft with Duseful

i budget of 5 samples for dif-
ferent classifiers. DecisionTree seems to be the best
classifier for this dataset.

(b) CDF of MT’s F1 score after data sharing using
Mycroft with Duseful

i budget of 100 samples for
different classifiers. DecisionTree seems to be the
best classifier for this dataset.

Figure 8: Performance of Mycroft for different classifiers for the tabular dataset.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Figure 9: CDF of MT’s F1 score after data sharing for full-information for different classifiers.
DecisionTree seems to be the best classifier for this dataset.

Refer to Figure 10 for the results.

Figure 10: CDF of MT’s F1 score after data sharing using different data selection methods with Duseful
i

budget of 5 samples and using full-information. Classifier is DecisionTree. N = 466 cases
where samples of the same decision path as Dhard and samples of different decision path as Dhard can
be found.

Performance of combining Mycroft and other data selection methods: To explore the effects of
combining Mycroft and other data selection methods such as DecisionTree’s decision path and
random-sampling, we let Duseful

i to be made up of samples selected by Mycroft and samples
selected by these other data selection methods. We find that MT’s F1 score after data sharing is not
significantly improved when combining Mycroft with other data selection methods compared to
using Mycroft alone. Refer to Figure 11 for an example of the results.

Performance using different distance metrics: Depending on the type of data (image versus
tabular) and the dataset, different distance metrics might be chosen to give better performance. For
example, for the tabular dataset, after experimenting with different distance metrics such as total
variance distance Verdú (2014), autoencoder distance Akrami et al. (2020), etc, we found that existing
distance metrics do not give good performance. As such, we come up with a simple, intuitive distance
metrics called “binning distance” to measure the distance between Dhard and DO’s samples. The
intuition behind this distance metrics is that because different features of tabular data has different
units and scales, we first bin the data (using histogram of uniform distances) based on each feature’s
own distribution and then calculate the distance between Dhard and DO’s samples based on the bins.
Because the distribution of the same feature might be different for DO’s data and Dhard, we need
to based our binning method on the feature distribution of both sources of data to ensure that the
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Figure 11: CDF of MT’s F1 score after data sharing when Duseful
i is made up of 100 samples

retrieved from Mycroft and 5 samples retrieved by different data selection methods. Classifier is
DecisionTree. N = 574 cases where samples of the same decision path as Dhardcan be found. Note
that the 5 samples later selected by each data selection method must be different from 100 samples
already selected by Mycroft.

binning is not over-fitted to one source of data. As such, we first create Dbase which is the union
of Dhard and some of DO’s samples and then bin the data based on the feature distribution of Dbase.
We then calculate the distance between Dhard and DO’s samples based on the bins. We find that this
distance metrics gives better performance compared to other distance metrics. Refer to Table 4 for
the algorithm to calculate the binning distance.

F CASE STUDIES

Here, we present the details for the DOs and MT’s used for the Scenario 3 in Section 5.
Image datasets:
DO-1: This DO contains the highest quantity of data from the same distribution as Dhard and is the
same as the DO we use in other experiments involving the Dogs & Wolves dataset. This DO should
provide the highest utility to the MT.
DO-2: DO-2 is a noisy version of DO-1 where we introduce noise by randomly transforming the
images using PyTorch transforms tor. The transforms we apply include Random crops, resizing,
flipping, changing contrast and perspective. We expect the utility of training on such images to be
lower as compared to the clean images.
DO-3: DO-3 has randomly sampled data from dog and wolf classes in the ImageNet dataset. We
empirically verify that it contains a subset of data from the distribution required by the MT and will
thus be useful to the MT to some degree.
DO-4: This DO contains a small subset of the useful samples contained in DO-1. While useful in
nature, this DO’s ability to signal its utility should be limited.
DO-5: DO-5 contains no data from the required training distribution and only consists of the data
from MT’s training distribution. This type of data should have the least utility.

Tabular datasets:
In this case study, we focus on the MT-7, which belongs to capture 20 and trying to predict the C&C
Torii attack. The goal of the MT is to select, amongst 95 potential DOs, the ones that will contain
useful data that helps predicting this attack. If performing full-information with DOs, 88 out
of 95 DOs will give MT an F1 score of > 0.99% while the remaining 7 DOs will give MT an F1 score
of <= 0.0%. Given that the utility of useful DOs is almost the same, the goal of MT-7 is is mostly to
retrieve useful DOs rather than rank them because any useful DOs can improve MT’s performance.

We find that with a Duseful
i budget of only 5 samples, Mycroft can retrieve 92 useful DOs that can

give MT an F1 score of > 0.99% (the rest gives MT an F1 score of <= 0.0%). This is much better
compared to random-sampling which only retrieves 25 useful DO that give MT an F1 score of >
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0.99% (the rest give MT an F1 score of < 0.0%). Examining the cases where Mycroft outperforms
full-information in selecting useful DO, we find that Mycroft can retrieve useful DOs while
full-information is unable to because irrelevant data affects full-information’s ability
to retrieve useful samples. For example, there is a DO created by mixing samples of PartOfAHor-
izontalPortScan attack from capture 3 with samples of C&C attack from capture 3. For this DO,
full-information will gives MT an F1 score of 0.0% while Mycroft gives MT an F1 score of
0.99%. This is because although C&C attack samples from capture 3 are useful for MT (give MT an F1
score of > 0.99%) and PartOfAHorizontalPortScan attack samples from capture 3 are not (give MT an
F1 score of < 0.0%). full-information will give MT an F1 score of 0.0% because the irrelevant
PartOfAHorizontalPortScan attack samples from capture 3 will dominate useful C&C attack samples
data from capture 3. Mycroft is able to identify this DO as useful because it can select only the
useful C&C attack samples from capture 3 and ignore irrelevant PartOfAHorizontalPortScan attack
samples from capture 3.

G ADDRESSING PRIVACY CONCERNS OF DATA SHARING

This section demonstrates the feasibility of external data augmentation for ML problems of practical
interest. Since data sharing raises several concerns with regards to the privacy of the data, we discuss
some strategies to mitigate privacy concerns as well as some alternative techniques to Mycroft and
why they are not feasible for solving our problem.

Why not use federation?: The main issue with methods such as federated learning, whether privacy-
preserving or not, is the need to federate. There needs to be a centralized server which collects
the model updates from different agents, aggegates them, and then sends them back for the next
round. In many scenarios where MT needs to improve its model performance, it may not have the
resources or technical ability to set-up this centralized server. It would also need to convince the DOs
to participate in this federated learning protocol for a number of rounds. In contrast, external data
augmentation does not need a centralized coordinating server, just a method to send and receive data
asynchronously. Completely decentralized peer-to-peer learning is also an option, however this needs
the model that MT wants to train to be passed around in some fashion to its peers, which violates
constraint C1.

What about secure multi-party computation?: The main issue with using MPC to solve the
problem tackled in this paper is that if DO computes the function (model) jointly with MT, it will likely
use all of its data when training. Such a protocol will be expensive and can leak information Salem
et al. (2018) about all of DO’s’ training data. This motivates this paper’s focus on DO only sharing a
part of its data.

Given these barriers to the adoption of direct decentralized model training, we believe that a good
solution to the problem posed in this paper is using external data augmentation. Mycroft provides an
initial protocol that has been demonstrated to be useful while sharing data within a specified budget.
However, even this may be too much information to share in certain settings. There are several ways
in which the privacy of Mycroft can be improved in follow-up work, which we discuss here:

1. Sharing features instead of data: MT can, instead of directly sharing data with DO, just share
an appropriate compressive feature representation of the data which reduces the amount of
information being shared. This will make it harder to determine the exact data held by MT.
However, this can leak information about MT’s model, as well as cause issues with data selection
if there is mismatch between the architecture of the models used by MT and DO, since comparisons
will have to be done in feature space directly to determine utility.

2. Adding noise to the data: Differentially private noise addition can be used to prevent the inference
of sensitive attributes from Dhard, which is particularly important for domains such as electronic
health records. As is normal, this will lead to a privacy-utility trade-off for the identification of
Duseful, which is an interesting direction for future work. Noise-resilient protocol design for data
selection may be challenging depending on the magnitude of noise added.

3. Operating on encrypted data: The most computationally expensive method for ensuring privacy
would be for one or both of MT and DO to only share encrypted data. Past work Bost et al. (2014)
has shown that classification can be performed over encrypted data using primitives such as
partially homomorphic encryption. The proposed data selection and subsequent fine-tuning could
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be extended to operations only over encrypted data, although both efficiency and effectiveness are
likely to suffer.

4. Using ZKPs: In case the DO does not wish to share data at all, the following thought experiment
implies that ZKPs may be a fruitful approach for a DO to prove to MT that it does have relevant
data, once it has received Dhard and used an appropriate data selection mechanism. A possible
protocol would work as follows: 1) MT would share some information I about Dhard (such as an
encrypted sample of the data or a sample with noise added); ii) DO would use I to find Duseful

from within its own dataset, using Step 3 in Algorithm 1 (DataSelect); iii) DO would then
commence a ZKP protocol with MT to prove the statement that ’DO has data that is useful for
MT, without ever sharing its data directly. While this prevents MT from training a model on an
augmented dataset, it does allow for the determination of which DOs are useful and which not.
Note that MT does have to share some information about Dhard in order to have a useful protocol.
Designing such a zero-knowledge proof protocol is beyond the scope of this paper, although the
fundamental abstraction that motivates Mycroft would remain the same for the overall algorithm,
as would the use of some DataSelect. Hardware solutions such as trusted enclaves at the DOs’
end could be used to secure Dhard as well.
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