
Extended Abstract Track 2023 Symmetry and Geometry in Neural Representations

Entropy-MCMC: Sampling from Flat Basins with Ease

Bolian Li li4468@purdue.edu

Ruqi Zhang ruqiz@purdue.edu

Department of Computer Science, Purdue University, USA

Editors: Sophia Sanborn, Christian Shewmake, Simone Azeglio, Nina Miolane

Abstract

Bayesian deep learning counts on the quality of posterior distribution estimation. However,
the posterior of deep neural networks is highly multi-modal in nature, with local modes
exhibiting varying generalization performances. Given a practical budget, sampling from
the original posterior can lead to suboptimal performances, as some samples may become
trapped in “bad” modes and suffer from overfitting. Leveraging the observation that “good”
modes with low generalization error often reside in flat basins of the energy landscape, we
propose to bias the sampling on the posterior toward these flat regions. Specifically, we
introduce an auxiliary guiding variable, the stationary distribution of which resembles a
smoothed posterior free from sharp modes, to lead the MCMC sampler to flat basins.
We prove the convergence of our method and further show that it converges faster than
several existing flatness-aware methods in the strongly convex setting. Empirical results
demonstrate that our method can successfully sample from flat basins of the posterior,
and outperforms all compared baselines on multiple benchmarks including classification,
calibration and out-of-distribution detection.

Keywords: Flatness-aware Learning, Bayesian Deep Learning, MCMC

1. Introduction

The effectiveness of Bayesian neural networks relies heavily on the quality of posterior
distribution estimation. However, achieving an accurate estimation of the full posterior is
extremely difficult due to its high-dimensional and highly multi-modal nature (Zhang et al.,
2020b; Izmailov et al., 2021). Moreover, the numerous modes in the energy landscape
typically exhibit varying generalization performances. Flat modes are often associated with
enhanced accuracy and robustness, whereas sharp modes tend to have high generalization
errors (Hochreiter and Schmidhuber, 1997; Keskar et al., 2017; Bahri et al., 2022). This
connection between the geometry of energy landscape and generalization has spurred many
works in optimization, ranging from theoretical understanding (Dziugaite and Roy, 2018;
Jiang et al., 2019a) to new optimization algorithms (Izmailov et al., 2018; Foret et al., 2020).

However, most of the existing Bayesian methods are not aware of the flatness in the en-
ergy landscape during posterior inference (Welling and Teh, 2011). Their sampling strategies
are usually low-energy-oriented and could not distinguish between flat and sharp modes that
have the same energy values. This limitation can significantly undermine their generaliza-
tion performance, particularly in the practical situations where capturing the full posterior
is challenging. In light of this, we contend that we should prioritize capturing the flat modes
when conducting posterior inference for Bayesian neural networks. This is advantageous for
improved generalization and can also be rationalized from a Bayesian marginalization per-
spective. Within the flat basin, each model configuration occupies a substantial volume and

© 2023 B. Li & R. Zhang.

Li Zhang

f()
original gradient direction

1 (a) U()
flatness-aware gradient direction

a

(a) Training dynamics at each step

Flat basin

Sharp modep(|)
p(a|)

(b) Original and smoothed posteriors

Figure 1: (a) shows how the guiding variable θa pulls θ toward the flat basin; (b) shows
two posterior distributions, where p(θa|D) is a smoothed distribution transformed
from p(θ|D), and only keeps flat modes. Entropy-MCMC prioritizes flat modes
by leveraging θa from the smoothed posterior as a form of regularization.

contributes significantly to a more precise estimation of the predictive distribution. More-
over, existing flatness-aware methods often rely on a single solution to represent the entire
flat basin (Foret et al., 2020), ignoring the fact that the flat basin contains many high-
performing models. Therefore, Bayesian marginalization can potentially yield significant
improvements by sampling from the flat basins (Wilson, 2020).

Prioritizing flat basins during posterior inference poses an additional challenge to Bayesian
inference. Even for a single point, explicitly biasing toward the flat basins will introduce
substantial computational overhead, inducing nested loops (Chaudhari et al., 2019; Dzi-
ugaite and Roy, 2018), doubled gradients calculation (Foret et al., 2020; Möllenhoff and
Khan, 2022) or min-max problems (Foret et al., 2020). The efficiency problem needs to be
addressed before any flatness-aware Bayesian method becomes practical.

In this paper, we propose an efficient MC sampling algorithm to explicitly prioritize flat
basins in the energy landscape of deep neural networks. Specifically, we introduce an auxil-
iary guiding variable θa into the Markov chain to pull the model θ toward flat basins at each
updating step (Fig. 1(a)). θa is sampled from a smoothed posterior distribution which elim-
inates sharp modes based on local entropy (Baldassi et al., 2016) (Fig. 1(b)). Our method
enjoys a simple joint distribution of θ and θa, and the computational overhead is similar
to Stochastic gradient Langevin dynamics (SGLD) (Welling and Teh, 2011). Theoretically,
we prove that our method is guaranteed to converge faster than some common flatness-
aware methods (Chaudhari et al., 2019) in the strongly convex setting. Empirically, we
demonstrate that our method successfully finds flat basins efficiently across multiple tasks.

Our main contributions are summarized as follows: i) we propose Entropy-MCMC (EM-
CMC), an MCMC method designed for sampling from flat basins in the energy landscape of
deep neural networks. EMCMC utilizes an auxiliary guiding variable to efficiently steer the
model toward flat basins; ii) we prove the convergence of EMCMC and further show that it
converges faster than several existing flatness-aware methods in the strongly convex setting;
iii) we provide extensive experimental results to demonstrate the advantages of EMCMC in
sampling from flat basins. EMCMC outperforms all compared baselines on classification,
calibration and out-of-distribution detection with comparable overhead akin to SGLD.

2

Entropy-MCMC

2. Methodology

We present the Entropy-MCMC algorithm. We introduce the guiding variable θa obtained
from the local entropy in section 2.1 and discuss the sampling strategy in section 2.2.

2.1. From Local Entropy to Flat Posterior

While flat basins in the energy landscape have been shown to be of good generaliza-
tion (Bahri et al., 2022), finding such regions is still a problem due to the high-dimensional
and multi-modal nature of DNN energy landscape. The updating direction of the model
needs extra force to mitigate the risk of converging to sharp modes (Chaudhari et al., 2019;
Foret et al., 2020). To bias sampling to flat basins, we look into the local entropy (Eq. 3),
which can eliminate the sharp modes in the energy landscape (Chaudhari et al., 2019).

We begin by the original posterior p(θ|D) ∝ exp(−f(θ)) = exp{log p(D|θ) + log p(θ)},
which contains both sharp and flat modes. By replacing the original loss with local entropy,
we obtain a smoothed posterior distribution in terms of a new variable θa: p(θa|D) ∝
expF(θa; η) =

∫
Θ exp

{
−f(θ)− 1

2η∥θ − θa∥2
}
dθ. The effect of local entropy on this new

posterior is visualized in Fig. 1(b). The new posterior measures both the depth and flatness
of the mode in p(θ|D) by considering surrounding energy values. Thereby, p(θa|D) is
expected to primarily capture flat modes in the energy landscape, which can be used as the
desired external force to revise the updating directions of the model parameter θ.

However, the complex integral in p(θa|D) requires marginalization on the model parame-
ter θ, which poses a non-trivial challenge. Previous works using local entropy usually adopt
an inner Markov chain with Monte Carlo (MC) approximation (Chaudhari et al., 2019;
Dziugaite and Roy, 2018), which sacrifices the accuracy of local entropy computation and
induces computationally expensive nested loops in training. We tackle this challenge in a
simple yet principled manner, eliminating the need for nested loops or approximation. This
is achieved by coupling θ ∼ p(θ|D) and θa ∼ p(θa|D) into a joint posterior distribution,
which enjoys a simple form, as discussed in Lemma 1.

Lemma 1 Assume θ̃ = [θT ,θT
a]

T ∈ R2d and θ̃ has the following distribution:

p(θ̃|D) = p(θ,θa|D) ∝ exp

{
−f(θ)− 1

2η
∥θ − θa∥2

}
. (1)

Then the marginal distributions of θ and θa are the original posterior p(θ|D) and p(θa|D).

This joint posterior offers three key advantages: i) by coupling θ and θa, we avoid the
intricate integral computation, and thus remove the requirement of expensive nested training
loops and mitigate the MC approximation error; ii) the joint posterior turns out to be
surprisingly simple, making it easy to obtain samples both empirically and theoretically
(details discussed in Sections 2.2 and C); iii) after coupling, θa provides additional paths
for θ to traverse, making θ reach flat modes efficiently.

2.2. Sampling from Flat Basins

We discuss how to sample from the joint posterior distribution (Eq. 1) in this section. We
adopt SGLD (Welling and Teh, 2011), a simple stochastic gradient MCMC algorithm that

3

Li Zhang

0.00 0.02 0.04 0.06 0.08

101

103

105

107

max = 9.2 × 10 2

5 = 4.9 × 10 2

(a) SGD

0.00 0.02 0.04 0.06 0.08

101

102

103

104

105

106

107

max = 3.7 × 10 2

5 = 3.6 × 10 2

(b) SGLD

0.00 0.02 0.04 0.06 0.08
101

102

103

104

105

106

107

max = 1.3 × 10 2

5 = 1.1 × 10 2

(c) EMCMC

Figure 2: Eigenspectrum of Hessian matrices of ResNet18 on CIFAR100. x-axis: eigenvalue,
y-axis: frequency. A nearly all-zero eigenspectrum indicates a flat local mode.
EMCMC successfully finds flat modes with smaller eigenvalues.

is suitable for deep neural networks, as the backbone of EMCMC sampling. More advanced
MCMC algorithms can also be combined with our method. The energy function of the joint
parameter variable θ̃ is U(θ̃) = f(θ) + 1

2η∥θ − θa∥2, and thus its gradients is given by:

∇θ̃U(θ̃) =

[
∇θU(θ̃)

∇θa
U(θ̃)

]
=

[∇θf(θ) +
1
η (θ − θa)

1
η (θa − θ)

]
. (2)

The original gradient direction ∇θf(θ) is revised by 1
η (θ−θa) to get the flatness-aware gra-

dient direction ∇θU(θ̃), shown in Fig. 1(a). Importantly, the practical implementation does
not require computing ∇θaU(θ̃) through back-propagation, as we can utilize the analytical
expression presented in Eq. 2. Therefore, despite the 2d dimensions, our cost of gradient
computation is essentially the same as d-dimensional models (e.g., standard SGLD).

With the form of the gradients of energy function, the training procedure of EMCMC is
straightforward. The details are summarized in Algorithm 1. At testing stage, the collected
samples S are used to approximate the predictive distribution p(y|x,D) ≈

∑
θs∈S p(y|x,θs).

Our choice of sampling from the joint posterior distribution using SGLD, rather than a
Gibbs-like approach (Gelfand, 2000), is motivated by SGLD’s ability to simultaneously
update both θ and θa, which is more efficient (see Appendix E for a detailed discussion).
For the sample set S, we collect both θ and θa after the burn-in period in order to obtain
more high-quality and diverse samples in a given time budget.

In summary, thanks to EMCMC’s simple joint distribution, conducting sampling in
EMCMC is straightforward, and its computational cost is comparable to that of standard
SGLD. Despite its simplicity, EMCMC is guaranteed to bias sampling to flat basins and
obtain samples with enhanced generalization performances.

3. Experiments

The Hessian matrix measures the second-order gradients of a local mode on the energy land-
scape. Smaller eigenvalues of Hessian indicate a flatter local geometry (Foret et al., 2020).
Since computing the exact Hessian of deep neural networks is extremely costly, we use the
diagonal Fisher information matrix (Wasserman, 2004) to approximate its eigenspectrum:

[λ1, ..., λd]
T ≈ diag(I(θ)) = E

[
(∇U − E∇U)2

]
, where λ1, ..., λd are eigenvalues of the Hes-

sian. Fig. 2 shows the eigenspectra of local modes discovered by different algorithms. The
eigenvalues of EMCMC are much smaller compared with SGD and SGLD, indicating that
the local geometry of EMCMC samples is flatter. The eigenspectrum comparison verifies
the effectiveness of EMCMC to find and sample from flat basins.

4

Entropy-MCMC

References

Ahmad Ajalloeian and Sebastian U. Stich. On the convergence of sgd with biased gradients.
Journal of Machine Learning Research, 2020. URL https://api.semanticscholar.

org/CorpusID:234358812.

Christophe Andrieu, Nando De Freitas, Arnaud Doucet, and Michael I Jordan. An intro-
duction to mcmc for machine learning. Machine learning, 50:5–43, 2003.

Dara Bahri, Hossein Mobahi, and Yi Tay. Sharpness-aware minimization improves language
model generalization. In Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 7360–7371, 2022.

Carlo Baldassi, Christian Borgs, Jennifer T Chayes, Alessandro Ingrosso, Carlo Lucibello,
Luca Saglietti, and Riccardo Zecchina. Unreasonable effectiveness of learning neural
networks: From accessible states and robust ensembles to basic algorithmic schemes.
Proceedings of the National Academy of Sciences, 113(48):E7655–E7662, 2016.

Devansh Bisla, Jing Wang, and Anna Choromanska. Low-pass filtering sgd for recovering
flat optima in the deep learning optimization landscape. In International Conference on
Artificial Intelligence and Statistics, pages 8299–8339. PMLR, 2022.

Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun, Carlo Baldassi, Chris-
tian Borgs, Jennifer Chayes, Levent Sagun, and Riccardo Zecchina. Entropy-sgd: Biasing
gradient descent into wide valleys. Journal of Statistical Mechanics: Theory and Experi-
ment, 2019(12):124018, 2019.

Tianqi Chen, Emily Fox, and Carlos Guestrin. Stochastic gradient hamiltonian monte carlo.
In International conference on machine learning, pages 1683–1691. PMLR, 2014.

Adam D Cobb and Brian Jalaian. Scaling hamiltonian monte carlo inference for bayesian
neural networks with symmetric splitting. In Uncertainty in Artificial Intelligence, pages
675–685. PMLR, 2021.

Arnak S Dalalyan and Avetik Karagulyan. User-friendly guarantees for the langevin monte
carlo with inaccurate gradient. Stochastic Processes and their Applications, 129(12):
5278–5311, 2019.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009.

Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can
generalize for deep nets. In International Conference on Machine Learning, pages 1019–
1028. PMLR, 2017.

Gintare Karolina Dziugaite and Daniel Roy. Entropy-sgd optimizes the prior of a pac-
bayes bound: Generalization properties of entropy-sgd and data-dependent priors. In
International Conference on Machine Learning, pages 1377–1386. PMLR, 2018.

5

https://api.semanticscholar.org/CorpusID:234358812
https://api.semanticscholar.org/CorpusID:234358812

Li Zhang

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware
minimization for efficiently improving generalization. In International Conference on
Learning Representations, 2020.

Alan E Gelfand. Gibbs sampling. Journal of the American statistical Association, 95(452):
1300–1304, 2000.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to com-
mon corruptions and perturbations. In International Conference on Learning Represen-
tations, 2018.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to com-
mon corruptions and perturbations. Proceedings of the International Conference on
Learning Representations, 2019a.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to com-
mon corruptions and perturbations. In International Conference on Learning Represen-
tations, 2019b.

Sepp Hochreiter and Jürgen Schmidhuber. Simplifying neural nets by discovering flat min-
ima. Advances in neural information processing systems, 7, 1994.

Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural computation, 9(1):1–42,
1997.

P Izmailov, AG Wilson, D Podoprikhin, D Vetrov, and T Garipov. Averaging weights
leads to wider optima and better generalization. In 34th Conference on Uncertainty in
Artificial Intelligence 2018, UAI 2018, pages 876–885, 2018.

Pavel Izmailov, Sharad Vikram, Matthew D Hoffman, and Andrew Gordon Gordon Wilson.
What are bayesian neural network posteriors really like? In International conference on
machine learning, pages 4629–4640. PMLR, 2021.

Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio.
Fantastic generalization measures and where to find them. In International Conference
on Learning Representations, 2019a.

Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio.
Fantastic generalization measures and where to find them. In International Conference
on Learning Representations, 2019b.

Nitish Shirish Keskar, Jorge Nocedal, Ping Tak Peter Tang, Dheevatsa Mudigere, and
Mikhail Smelyanskiy. On large-batch training for deep learning: Generalization gap and
sharp minima. In 5th International Conference on Learning Representations, ICLR 2017,
2017.

6

Entropy-MCMC

A Krizhevsky. Learning multiple layers of features from tiny images. Master’s thesis,
University of Tront, 2009.

Yann LeCun. The mnist database of handwritten digits. http://yann. lecun.
com/exdb/mnist/, 1998.

Mu Li, Tong Zhang, Yuqiang Chen, and Alexander J Smola. Efficient mini-batch training
for stochastic optimization. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 661–670, 2014.

Yi-An Ma, Tianqi Chen, and Emily Fox. A complete recipe for stochastic gradient mcmc.
Advances in neural information processing systems, 28, 2015.

Dougal Maclaurin and Ryan P Adams. Firefly monte carlo: exact mcmc with subsets of
data. In Proceedings of the 24th International Conference on Artificial Intelligence, pages
4289–4295, 2015.

Andrey Malinin and Mark Gales. Predictive uncertainty estimation via prior networks.
Advances in neural information processing systems, 31, 2018.

Donna Katzman McClish. Analyzing a portion of the roc curve. Medical decision making,
9(3):190–195, 1989.

Thomas Möllenhoff and Mohammad Emtiyaz Khan. Sam as an optimal relaxation of bayes.
In The Eleventh International Conference on Learning Representations, 2022.

Mahdi Pakdaman Naeini, Gregory Cooper, and Milos Hauskrecht. Obtaining well calibrated
probabilities using bayesian binning. In Proceedings of the AAAI conference on artificial
intelligence, volume 29, 2015.

Radford M Neal. Bayesian learning for neural networks, volume 118. Springer Science &
Business Media, 2012.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng.
Reading digits in natural images with unsupervised feature learning. NIPS Workshop on
Deep Learning and Unsupervised Feature Learning, 2011.

Saurabh Singh and Shankar Krishnan. Filter response normalization layer: Eliminat-
ing batch dependence in the training of deep neural networks. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 11237–11246,
2020.

Larry Wasserman. All of statistics: a concise course in statistical inference, volume 26.
Springer, 2004.

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics.
In Proceedings of the 28th international conference on machine learning (ICML-11), pages
681–688, 2011.

Andrew Gordon Wilson. The case for bayesian deep learning. arXiv preprint
arXiv:2001.10995, 2020.

7

Li Zhang

Ruqi Zhang, A Feder Cooper, and Christopher M De Sa. Asymptotically optimal exact
minibatch metropolis-hastings. Advances in Neural Information Processing Systems, 33:
19500–19510, 2020a.

Ruqi Zhang, Chunyuan Li, Jianyi Zhang, Changyou Chen, and Andrew Gordon Wilson.
Cyclical stochastic gradient mcmc for bayesian deep learning. In International Conference
on Learning Representations, 2020b.

8

Entropy-MCMC

Appendix A. Related Works

Flatness-aware Optimization. The concept of flatness in the energy landscape was
first studied by Hochreiter and Schmidhuber (1994), and its connection with generalization
was then empirically discussed by Keskar et al. (2017); Dinh et al. (2017); Jiang et al.
(2019b). In order to pursue flatness for better generalization, Entropy-SGD (Chaudhari
et al., 2019) introduced local entropy to consider the averaged loss of a region, SAM (Foret
et al., 2020) developed a new optimizer to minimize the worst-case near the current model,
bSAM (Möllenhoff and Khan, 2022) further improved SAM with a Bayes optimal convex
lower bound, LPF (Bisla et al., 2022) introduced low-pass filter to actively search flat
basins, and SWA (Izmailov et al., 2018) found that averaging weights along the trajectory
of SGD training can also find flatter modes. Our Entropy-MCMC follows the local entropy
measurement and collects more than a single point to fully exploit the flat basins.

MCMC on Deep Neural Networks. Markov chain Monte Carlo is a class of general
and practical sampling algorithms (Andrieu et al., 2003), which has been applied to infer
Bayesian neural network posteriors (Neal, 2012). SGMCMC (Welling and Teh, 2011; Ma
et al., 2015) methods use the mini-batching technique to adapt MCMC to deep neural
networks. SGHMC (Chen et al., 2014) exploited the second-order Langevin dynamics to
calibrate the stochastic estimates of HMC gradients. cSGMCMC (Zhang et al., 2020b)
further improves sampling efficiency by leveraging a cyclical stepsize schedule. Symmetric
Split HMC (Cobb and Jalaian, 2021) developed a way to apply HMC to deep neural networks
without stochastic gradients. Our Entropy-MCMC builds upon the SGMCMC framework
and is designed to favor the flat basins in the energy landscape during sampling.

Appendix B. Preliminaries

Flatness-aware Optimization. One common flatness-aware optimization technique is
to use the concept of local entropy, which measures the geometric properties of the energy
landscape (Baldassi et al., 2016; Chaudhari et al., 2019). The local entropy is computed
by:

F(θ; η) = log

∫
Θ
exp

{
−f(θ′)− 1

2η
∥θ − θ′∥2

}
dθ′, (3)

where f(·) is the loss function and η is a scalar. The local entropy of a point θ is determined
by its neighbors weighted by their distances, which considers the volume of local modes.
Previous optimization methods minimize −F(θ; η) to find the flat minimum.

SGMCMC. Given a dataset D, neural networks with parameters θ ∈ Rd and a prior
distribution p(θ), we can use Markov chain Monte Carlo (MCMC) to sample from the
posterior p(θ|D) ∝ exp(−U(θ)), where the energy function is U(θ) = −

∑
x∈D log p(x|θ)−

log p(θ). However, the computational cost for MCMC with large-scale data is too high to
be practical. SGMCMC tackles this problem by stochastic gradient ∇UΞ based on a subset
of data Ξ ⊆ D. We use Stochastic Gradient Langevin Dynamics (SGLD) (Welling and Teh,
2011) in the paper as the backbone MCMC algorithm, which has the following updating
rule:

θ ← θ − α∇θUΞ(θ) +
√
2α · ϵ, (4)

9

Li Zhang

where α is the step size and ϵ is standard Gaussian noise. Our method can also be im-
plemented by other SGMCMC methods. During testing, Bayesian marginalization is per-
formed to make predictions based on the sample set collected during MC sampling S =
{θj}Mj=1 and the predictive distribution is obtained by p(y|x,D) =

∫
p(y|x,θ)p(θ|D)dθ ≈∑

θ∈S p(y|x,θ).

Appendix C. Theoretical Analysis

In this section, we provide a theoretical analysis on the convergence rate of Entropy-MCMC
and compare it with previous local-entropy-based methods including Entropy-SGD (Chaud-
hari et al., 2019) and Entropy-SGLD (Dziugaite and Roy, 2018) (used as a theoretical tool
in the literature rather than a practical algorithm). We leverage the 2-Wasserstein dis-
tance bounds of SGLD, which assumes the target distribution to be smooth and strongly
log-concave (Dalalyan and Karagulyan, 2019). While the target distribution in this case is
unimodal, it still reveals the superior convergence rate of EMCMC compared with existing
flatness-aware methods. We leave the theoretical analysis on non-log-concave distributions
for future work. Specifically, we have the following assumptions for the loss function f(·)
and stochastic gradients:

Assumption 1 The loss function f(θ) in the original posterior distribution π = p(θ|D) ∝
exp (−f(θ)) is M -smooth and m-strongly convex (i.e., mI ⪯ ∇2f(θ′) ⪯MI).

Assumption 2 The variance of stochastic gradients is bounded by E[∥∇f(θ)−∇f̃(θ)∥2] ≤
σ2 for some constant σ > 0.

To establish the convergence analysis for EMCMC, we first observe that the smoothness
and convexity properties of the joint posterior distribution πjoint(θ,θa) = p(θ,θa|D) in Eq. 1
is the same as p(θ|D), which is formally stated in Lemma 2.

Lemma 2 If Assumption 1 holds and m ≤ 1/η ≤M , then the energy function in the joint
posterior distribution πjoint(θ,θa) = p(θ,θa|D) is also M -smooth and m-strongly convex.

With the convergence bound of SGLD established by Dalalyan and Karagulyan (2019), we
derive the convergence bound for EMCMC in Theorem 3.

Theorem 3 Under Assumptions 1 and 2, let µ0 be the initial distribution and µK be the
distribution obtained by EMCMC after K iterations. If m ≤ 1/η ≤ M and the step size
α ≤ 2/(m +M), the 2-Wasserstein distance between µK and πjoint will have the following
upper bound:

W2(µK , πjoint) ≤ (1− αm)K · W2(µ0, π) + 1.65(M/m)(2αd)1/2 +
σ2(2αd)1/2

1.65M + σ
√
m
. (5)

Comparing Theorem 3 with the convergence bound of SGLD obtained by Dalalyan and
Karagulyan (2019), the only difference is that the dimension d is doubled to 2d. Theorem 3
implies that the convergence rate of EMCMC will have at most a minor slowdown by a
constant factor compared to SGLD while ensuring sampling from flat basins.

10

Entropy-MCMC

In contrast, previous local-entropy-based methods often substantially slow down the con-
vergence in order to bias toward flat basins. For example, consider Entropy-SGD (Chaud-
hari et al., 2019) which minimizes a flattened loss function:

fflat(θ) = −F(θ; η) = − log

∫
Θ
exp

{
−f(θ′)− 1

2η
∥θ − θ′∥2

}
dθ′. (6)

We discuss the convergence bound of Entropy-SGD in Theorem 4, which shows how the
presence of the integral (and the nested Markov chain induced by it) slows down the con-
vergence.

Theorem 4 Consider running Entropy-SGD to minimize the flattened loss function fflat(θ)
under Assumptions 1 and 2. Assume the inner Markov chain runs L iterations and the 2-
Wasserstein distance between the initial and target distributions is always bounded by κ.
Let f∗

flat represent the global minimum value of fflat(θ) and Et := Efflat(θt) − f∗
flat. If the

step size α ≤ 2/(m+M), then we have the following upper bound:

EK ≤
(
1− αm

1 + ηM

)K

· E0 +
A(1 + ηM)

2m
, (7)

where A2 = (1− αm)L · κ+ 1.65
(
M+1/η
m+1/η

)
(αd)1/2 + σ2(αd)1/2

1.65(M+1/η)+σ
√

m+1/η
.

Another example is Entropy-SGLD (Dziugaite and Roy, 2018), a theoretical tool es-
tablished to analyze Entropy-SGD. Its main distinction with Entropy-SGD is the SGLD
updating instead of SGD updating in the outer loop. The convergence bound for Entropy-
SGLD is established in Theorem 5.

Theorem 5 Consider running Entropy-SGLD to sample from πflat under Assumptions 1
and 2. Assume the inner Markov chain runs L iterations and the 2-Wasserstein distance
between initial and target distributions is always bounded by κ. Let ν0 be the initial distri-
bution and νK be the distribution obtained by Entropy-SGLD after K iterations. If the step
size α ≤ 2/(m+M), then

W2(νK , πflat) ≤ (1−αm)K ·W2(ν0, πflat)+1.65

(
1 + ηM

1 + ηm

)
(M/m)(αd)1/2+

A(1 + ηM)

m
, (8)

where A2 = (1− αm)L · κ+ 1.65
(
M+1/η
m+1/η

)
(αd)1/2 + σ2(αd)1/2

1.65(M+1/η)+σ
√

m+1/η
.

Comparing Theorem 3, 4 and 5, we observe that the convergence rates of Entropy-SGD
and Entropy-SGLD algorithms are significantly hindered due to the presence of the nested
Markov chains, which induces a large and complicated error term A. Since σ and α are
typically very small, the third term in Theorem 3 will be much smaller than both the third
term in Theorem 5 and the second term in Theorem 4. To summarize, the convergence
rate of Entropy-MCMC is proved to be notably better than that of Entropy-SGD and
Entropy-SGLD in the strongly convex setting.

11

Li Zhang

4 2 0 2 4 6

2

0

2

4

SGD

(a) SGD

2.5 0.0 2.5 5.0

2

0

2

4

SGLD

(b) SGLD
4 2 0 2 4 6

2

0

2

4

EMCMC

(c) EMCMC (θ)
4 2 0 2 4 6

2

0

2

4

EMCMC

(d) EMCMC (θa)

Figure 3: Sampling trajectories on a synthetic energy landscape with sharp (lower left) and
flat (top right) modes. The initial point is located at the ridge of two modes with
no preference for either. EMCMC successfully bias toward the flat mode whereas
SG(L)D is trapped in the sharp mode.

Appendix D. Experiments

We conduct comprehensive experiments to show the superiority of EMCMC. Section D.1
and D.3 demonstrate that EMCMC can successfully sample from the flat basins. Section D.2
verifies the fast convergence of EMCMC. Section D.4 and D.5 demonstrate the outstanding
performances of EMCMC on multiple benchmarks. Following Zhang et al. (2020b), we
adopt a cyclical stepsize schedule for all sampling methods. For more implementation
details, please refer to Appendix G.

D.1. Synthetic Examples

To test EMCMC’s capability to sample from flat basins, we construct a two-mode energy
landscape 1

2N ([−2,−1]T , 0.5I)+ 1
2N ([2, 1]T , I) to represent a sharp and a flat mode respec-

tively. To make the case challenging, we set the initial point at (−0.2,−0.2), the ridge of the
two modes, which has no strong preference for either mode. Fig. 3 shows that the proposed
EMCMC finds the flat basin while SGD and SGLD still prefer the sharp mode due to the
slightly larger gradients coming from the sharp mode. From Fig. 3(c)&(d), we see that the
samples of θa are always around the flat mode, showing its ability to eliminate the sharp
mode. Although θ visits the sharp mode in the first few iterations, it subsequently inclines
toward the flat mode, illustrating the influence of gradient revision by the guiding variable.
It is noteworthy that the result of EMCMC is essentially independent of initialization with
appropriate η, since the guiding variable θa will always steer θ to the flat mode. We show
the results for different initialization in Fig. 6&7.

D.2. Logistic Regression

To verify the theoretical results on convergence rates in Section C, we conduct logistic re-
gression on MNIST (LeCun, 1998) to compare EMCMC with Entropy-SGD Chaudhari et al.
(2019), SGLD (Welling and Teh, 2011) and Entropy-SGLD (Dziugaite and Roy, 2018). We
follow Maclaurin and Adams (2015) and Zhang et al. (2020a) to use a subset containing 7s
and 9s and the resulting posterior is strongly log-concave, satisfying the assumptions in Sec-
tion C. Fig. 4 shows that EMCMC converges faster than Entropy-SG(L)D, demonstrating

12

Entropy-MCMC

0 200 400 600 800 1000
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Tr

ain
ing

 N
LL

Entropy-SGD
SGLD
Entropy-SGLD
EMCMC

(a)

0 500 1000 1500 2000 2500 3000 3500 4000
Iteration

97.25

97.50

97.75

98.00

98.25

98.50

98.75

99.00

99.25

Te
sti

ng
 A

CC
 (%

)

Entropy-SGD
SGLD
Entropy-SGLD
EMCMC

(b)

Figure 4: Logistic regression on MNIST in terms of training NLL and testing accuracy
(repeated 10 times). EMCMC converges faster than others, which is consistent
with our theoretical analysis.

the advantage of using a simple joint distribution without the need for nested loops or MC
approximation, which verifies Theorems 3& 4& 5. Besides, while EMCMC and SGLD share
similar convergence rates, EMCMC achieves better generalization as shown by its higher
test accuracy. This suggests that EMCMC is potentially beneficial in unimodal distribution
under limited budgets due to finding samples with high volumes.

D.3. Flatness Analysis on Deep Neural Networks

We perform flatness analysis with ResNet18 (He et al., 2016) on CIFAR100 (Krizhevsky,
2009). We use the last samples for SGD, SGLD and EMCMC (averaged result from θ and
θa), and each experiment is repeated 3 times to report the averaged scores. We directly
interpolating their neighborhood in the parameter space (Izmailov et al., 2018). Local
modes located in flat basins are expected to have larger width and better generalization
performances (Keskar et al., 2017; Chaudhari et al., 2019). The interpolation begins at θ
and ends at θϵ (a random point near θ or θϵ = θa). The interpolated point θδ is computed
by:

θδ = (1− δ/∥θ − θϵ∥)θ + (δ/∥θ − θϵ∥)θϵ, (9)

where δ is the Euclidean distance from θ to θδ. Fig. 5(a) and 5(b) show the training NLL
and testing error respectively. The neighborhood of EMCMC maintains consistently lower
NLLs and errors compared with SGD and SGLD, demonstrating that EMCMC samples are
from flatter modes. Furthermore, Fig. 5(c) visualizes the interpolation between θ and θa,
revealing that both variables essentially converge to the same flat mode while maintaining
diversity. This justifies the benefit of collecting both of them as samples to obtain a diverse
set of high-performing samples.

D.4. Image Classification

We conduct classification experiments on CIFAR (Krizhevsky, 2009), corrupted CIFAR (Hendrycks
and Dietterich, 2019b) and ImageNet (Deng et al., 2009), to compare EMCMC with both

13

Li Zhang

0 1 2 3 4 5
 (distance from to a random direction)

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Tr

ain
ing

 N
LL

SGD
SGLD
EMCMC

(a) θ → Random

0 1 2 3 4 5
 (distance from to a random direction)

0.25

0.30

0.35

0.40

Te
sti

ng
 E

rro
r

SGD
SGLD
EMCMC

(b) θ → Random

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
 (distance from to a)

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Tr
ain

ing
 N

LL

a
EMCMC

(c) θ → θa

Figure 5: Parameter space interpolation of ResNet18 on CIFAR100. Exploring the neigh-
borhood of local modes from θ to (a)-(b): a random direction in the parameter
space, and (c): θa. EMCMC has the lowest and the most flat NLL and error
curves. (c) shows that θ and θa converge to the same flat mode while maintain-
ing diversity.

Table 1: Classification results on CIFAR10 and CIFAR100.

Method
CIFAR10 CIFAR100

ACC (%) ↑ NLL ↓ ACC (%) ↑ NLL ↓
SGD 94.87± 0.04 0.205± 0.015 76.49± 0.27 0.935± 0.021

Entropy-SGD 95.11± 0.09 0.184± 0.020 77.45± 0.03 0.895± 0.009
SAM 95.25± 0.12 0.166± 0.005 78.41± 0.22 0.876± 0.007
bSAM 95.53± 0.09 0.165± 0.002 78.92± 0.25 0.870± 0.005

SGLD 95.47± 0.11 0.167± 0.011 78.79± 0.35 0.854± 0.031
Entropy-SGLD 94.46± 0.24 0.194± 0.020 77.98± 0.39 0.897± 0.027

EMCMC 95.69± 0.06 0.162± 0.002 79.16± 0.07 0.840± 0.004

flatness-aware optimization methods (Entropy-SGD (Chaudhari et al., 2019), SAM (Foret
et al., 2020) and bSAM (Möllenhoff and Khan, 2022)) and MCMC method (SGLD (Welling
and Teh, 2011) and Entropy-SGLD (Dziugaite and Roy, 2018)). We use ResNet18 and
ResNet50 (He et al., 2016) for CIFAR and ImageNet respectively. All sampling algorithms
collect a total of 16 samples for Bayesian marginalization, and all entries are repeated 3
times to report the mean±std. Table 1&2&3 show the results on the 3 datasets, in which
EMCMC significantly outperforms all baselines. The classification results strongly sug-
gest that by sampling from flat basins, Bayesian neural networks can achieve outstanding
performances and EMCMC is an effective and efficient method to do so.

The results for corrupted CIFAR (Hendrycks and Dietterich, 2019a) are shown in Table 2
to show the robustness of EMCMC against multiple types of noises. The results are averaged
over all noise types, and the severity level refers to the strength of noise added to the original
data. EMCMC consistently outperforms all compared baselines across all severity levels,
indicating that samples from flat basins are more robust to noise. The results for individual
noise types are shown in Fig. 10.

14

Entropy-MCMC

Table 2: Classification results on corrupted CIFAR.
Severity 1 2 3 4 5

SGD 88.43 82.43 76.20 67.93 55.81
SGLD 88.61 82.46 76.49 69.19 56.98

EMCMC 88.87 83.27 77.44 70.31 58.17

Table 3: Classification results on ImageNet.
Metric NLL ↓ Top-1 (%) ↑ Top-5 (%) ↑
SGD 0.960 76.046 92.776
SGLD 0.921 76.676 93.174

EMCMC 0.895 77.096 93.424

D.5. Uncertainty and OOD Detection

To illustrate how predictive uncertainty estimation benefits from flat local geometry, we
evaluate EMCMC on out-of-distribution (OOD) detection. We train each model on CIFAR
and quantify uncertainty using the entropy of predictive distributions (Malinin and Gales,
2018). Then we use the uncertainty to detect SVHN samples in a joint testing set combined
by CIFAR and SVHN (Netzer et al., 2011). We evaluate each algorithm with Area under
ROC Curve (AUC) (McClish, 1989) and Expected Calibration Error (ECE) (Naeini et al.,
2015). All other settings remain the same as classification experiments. Table 4 shows the
evaluation results, where EMCMC outperforms all baselines, especially on the ECE met-
ric. This indicates that predictive uncertainty estimation is more accurate if the posterior
samples are from flat basins.

D.6. Additional Synthetic Examples

To demonstrate that EMCMC can bias toward the flat mode under random initialization, we
conduct additional synthetic experiments under two different initialization settings. Specif-
ically, we set the initial point to be (−0.4,−0.4) to prefer the sharp mode (Fig. 6) and
(0.0, 0.0) to prefer the flat mode (Fig. 7). It is clear that EMCMC can find the flat mode
under all initialization settings, while SGD and SGLD are heavily affected by the choices
of initialization.

4 2 0 2 4 6

2

0

2

4

SGD

(a) SGD
4 2 0 2 4 6

2

0

2

4

SGLD

(b) SGLD
4 2 0 2 4 6

2

0

2

4

EMCMC

(c) EMCMC (θ)
4 2 0 2 4 6

2

0

2

4

EMCMC

(d) EMCMC (θa)

Figure 6: Synthetic Experiments with sharp-mode-biased initialization.

15

Li Zhang

Table 4: OOD detection on CIFAR-SVHN. The predictive uncertainty quantified by EM-
CMC is the best among the compared algorithms.

Method
CIFAR10-SVHN CIFAR100-SVHN

AUC (%) ↑ ECE (%) ↓ AUC (%) ↑ ECE (%) ↓
SGD 96.67± 0.98 18.09± 6.42 74.85± 1.69 14.74± 2.43

Entropy-SGD 98.17± 0.73 6.95± 4.22 78.89± 2.97 9.30± 3.50
SAM 98.01± 0.84 3.93± 1.19 78.58± 1.39 8.16± 2.13
bSAM 97.54± 0.01 4.31± 0.01 79.12± 0.01 6.11± 0.03

SGLD 97.84± 0.26 8.79± 1.77 78.18± 0.72 9.74± 1.55
Entropy-SGLD 95.89± 2.64 16.35± 8.76 77.50± 2.50 6.85± 3.57

EMCMC 98.65± 0.52 2.93± 0.65 79.96± 0.52 4.06± 0.18

4 2 0 2 4 6

2

0

2

4

SGD

(a) SGD
4 2 0 2 4 6

2

0

2

4

SGLD

(b) SGLD
4 2 0 2 4 6

2

0

2

4

EMCMC

(c) EMCMC (θ)
4 2 0 2 4 6

2

0

2

4

EMCMC

(d) EMCMC (θa)

Figure 7: Synthetic Experiments with flat-mode-biased initialization.

D.7. Parameter space interpolation

As the supplement for Fig. 5, we show additional interpolation results to demonstrate some
interesting findings about the model θ and the auxiliary guiding variable θa. The additional
interpolation can be separated into the following types:

D.7.1. toward Random Directions.

We show the interpolation results toward averaged random directions (10 random directions)
in Fig. 8. For the training loss, the auxiliary guiding variable θ is located at a flatter local
region with relatively larger loss values. While for the testing error, the guiding variable
θa consistently has lower generation errors, which illustrates that the flat modes are more
preferable in terms of generalization.

D.7.2. Between Model Parameter and Guiding Variable.

The line between the model parameter θ and the guiding variable θa is a special direction
in the parameter space. The NLL and testing error are both much lower than random
directions, which is shown in Fig. 9. Besides, this special direction is biased toward the
local region of θa, with averagely lower testing errors. This finding justifies the setting of
adding θa to the sample set S, since the generalization performance of θa is better.

16

Entropy-MCMC

0.0 0.2 0.4 0.6 0.8 1.0
Distance

0.71

0.72

0.73

0.74

0.75

0.76

0.77
Tr

ai
ni

ng
 N

LL

a

(a) Random interpolation by training NLL

0.0 0.2 0.4 0.6 0.8 1.0
Distance

0.230

0.235

0.240

0.245

0.250

0.255

0.260

Te
st

in
g

Er
ro

r

a

(b) Random interpolation by testing error

Figure 8: Interpolation toward averaged random directions on CIFAR100, comparing the
model θ and the guiding variable θa.

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Distance

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Tr
ai

ni
ng

 N
LL

a

(a) Interpolation between θ and θa by
training NLL

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Distance

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

Te
st

in
g

Er
ro

r

a

(b) Interpolation between θ and θa by test-
ing error

Figure 9: Interpolation between the model θ and the guiding variable θa in terms of training
NLL and testing error on CIFAR100.

D.8. Classification on Corrupted CIFAR

We list the detailed classification results on corrupted CIFAR (Hendrycks and Dietterich,
2018) in Fig. 10, where each corruption type is evaluated at a corresponding subfigure. For
the majority of corruption types, our method ourperforms other baselines under all severity
levels, and is superior especially under sever corruptions.

17

Li Zhang

1 2 3 4 5
Severity

91.0

91.5

92.0

92.5

93.0

93.5

94.0

94.5

95.0
Te

st
in

g
A

C
C

 (%
)

SGD
SGLD
EMCMC

(a) brightness

1 2 3 4 5
Severity

30

40

50

60

70

80

90

Te
st

in
g

A
C

C
 (%

)

SGD
SGLD
EMCMC

(b) contrast

1 2 3 4 5
Severity

50

60

70

80

90

Te
st

in
g

A
C

C
 (%

)

SGD
SGLD
EMCMC

(c) defocus blur

1 2 3 4 5
Severity

76

78

80

82

84

86

88

90

Te
st

in
g

A
C

C
 (%

)

SGD
SGLD
EMCMC

(d) elastic transform

1 2 3 4 5
Severity

75

80

85

90

95

Te
st

in
g

A
C

C
 (%

)

SGD
SGLD
EMCMC

(e) fog

1 2 3 4 5
Severity

65

70

75

80

85

90

Te
st

in
g

A
C

C
 (%

)
SGD
SGLD
EMCMC

(f) frost

1 2 3 4 5
Severity

30

40

50

60

70

80

90

Te
st

in
g

A
C

C
 (%

)

SGD
SGLD
EMCMC

(g) gaussian blur

1 2 3 4 5
Severity

30

40

50

60

70

80

Te
st

in
g

A
C

C
 (%

)

SGD
SGLD
EMCMC

(h) gaussian noise

1 2 3 4 5
Severity

45.0

47.5

50.0

52.5

55.0

57.5

60.0

62.5

Te
st

in
g

A
C

C
 (%

)

SGD
SGLD
EMCMC

(i) glass blur

1 2 3 4 5
Severity

20

30

40

50

60

70

80

Te
st

in
g

A
C

C
 (%

)

SGD
SGLD
EMCMC

(j) impulse noise

1 2 3 4 5
Severity

74

76

78

80

82

84

86

88

Te
st

in
g

A
C

C
 (%

)

SGD
SGLD
EMCMC

(k) jpeg compression

1 2 3 4 5
Severity

65

70

75

80

85

90

Te
st

in
g

A
C

C
 (%

)

SGD
SGLD
EMCMC

(l) motion blur

1 2 3 4 5
Severity

50

60

70

80

90

Te
st

in
g

A
C

C
 (%

)

SGD
SGLD
EMCMC

(m) pixelate

1 2 3 4 5
Severity

89

90

91

92

93

94

95

Te
st

in
g

A
C

C
 (%

)

SGD
SGLD
EMCMC

(n) saturate

1 2 3 4 5
Severity

30

40

50

60

70

80

90

Te
st

in
g

A
C

C
 (%

)

SGD
SGLD
EMCMC

(o) shot noise

1 2 3 4 5
Severity

76

78

80

82

84

86

88

90

Te
st

in
g

A
C

C
 (%

)

SGD
SGLD
EMCMC

(p) snow

1 2 3 4 5
Severity

75.0

77.5

80.0

82.5

85.0

87.5

90.0

92.5

Te
st

in
g

A
C

C
 (%

)

SGD
SGLD
EMCMC

(q) spatter

1 2 3 4 5
Severity

40

50

60

70

80

Te
st

in
g

A
C

C
 (%

)

SGD
SGLD
EMCMC

(r) speckle noise

1 2 3 4 5
Severity

60

65

70

75

80

85

90

Te
st

in
g

A
C

C
 (%

)

SGD
SGLD
EMCMC

(s) zoom blur

Figure 10: Classification accuracies under different severity levels on corrupted CIFAR. The
results are shown per corruption type. Our method outperforms the compared
baselines on most of corruption types, especially under high severity levels.

Appendix E. Algorithm Details

We list some details of the proposed Entropy-MCMC in this section, to help understanding
our code and reproduction. As discussed in section 2.2, the updating rule of Entropy-MCMC

18

Entropy-MCMC

Algorithm 1: Entropy-MCMC

Inputs: The model θ ∈ Θ, guiding variable θa ∈ Θ, and dataset D = {(xi, yi)}Ni=1

Results: Collected samples S ⊂ Θ
θa ← θ,S ← ∅ ; /* Initialize */

for each iteration do
Ξ← A mini-batch sampled from D
UΞ ← − log p(Ξ|θ)− log p(θ) + 1

2η∥θ − θa∥2

θ ← θ − α∇θUΞ +
√
2α · ϵ1 ; /* ϵ1, ϵ2 ∼ N (0, I) */

θa ← θa − α∇θaUΞ +
√
2α · ϵ2

if after burn-in then
S ← S ∪ {θ,θa} ; /* Collect samples */

end

end

can be written as:

θ̃ ← θ̃ − α∇
θ̃
U(θ̃) +

√
2α · ϵ, (10)

which is a full-batch version. We will show how to apply modern deep learning techniques
like mini-batching and temperature to the updating policy in the following section.

E.1. Mini-batching

We adopt the standard mini-batching technique in our method, which samples a subset
of data points per iteration (Li et al., 2014). We assume the entire dataset to be D =
{(xi, yi)}Ni=1. Then a batch sampled from D is Ξ = {(xi, yi)}Mi=1 ⊂ D with M ≪ N . For
the entrie dataset, the loss function is computed by:

f(θ) ∝ −
N∑
i=1

log p(yi|xi,θ)− log p(θ), (11)

and in order to balance the updating stride per iteration, the loss function for a mini-batch
is:

fΞ(θ) ∝ −
N

M

M∑
i=1

log p(yi|xi,θ)− log p(θ). (12)

Therefore, if we average the mini-batch loss over all data points, we can obtain the following
form:

f̄Ξ(θ) ∝ −
1

M

M∑
i=1

log p(yi|xi,θ)−
1

N
log p(θ). (13)

19

Li Zhang

If we regard the averaging process as a modification on the stepsize α (i.e., ᾱ = α/N), we
will have the following form for the updating policy:

∆θ̃ = −ᾱ · ∇
θ̃
Ũ(θ̃) +

√
2ᾱ · ϵ

= −ᾱ · ∇
θ̃

[
fΞ(θ) +

1

2η
∥θ − θa∥2 −

√
2

ᾱ
ϵ⊙ θ̃

]

= −α · ∇
θ̃

[
f̄Ξ(θ) +

1

2ηN
∥θ − θa∥2 −

√
2

αN
ϵ⊙ θ̃

]
.

(14)

Therefore, the updating rule in Eq.10 can be equivalently written as:

θ̃ ← θ̃ −∆θ̃ (15)

E.2. Data Augmentation and Temperature

We apply data augmentation, which is commonly used in deep neural networks, and compare
all methods with data augmentation in the main text. Here, we additionally compare the
classification results without data augmentation in Table 5 to demonstrate the effectiveness
of EMCMC in this case.

Table 5: Comparison of data augmentation of 3 baselines on CIFAR10. EMCMC outper-
forms previous methods with and without data augmentation.

Augmentation SGD SGLD EMCMC

× 89.60 89.24 89.87
✓ 95.59 95.64 95.79

Besides, in the updating policy, a noise term is introduced to add randomness to the
sampling process. However, in mini-batch training, the effect of noise will be amplified
so that the stationary distribution of might be far away from the true posterior distribu-
tion (Zhang et al., 2020b). Therefore, we also introduce a system temperature T to address
this problem.

Formally, the posterior distribution is tempered to be p(θ|D) ∝ exp(−U(θ)/T), with an
averagely sharpened energy landscape. Similarly, we can regard the temperature effect as
a new stepsize αT = α/T , and the updating policy would be:

∆θ̃ = −α · ∇
θ̃

[(
f̄Ξ(θ) +

1

2ηN
∥θ − θa∥2

)
/T −

√
2

αN
ϵ⊙ θ̃

]

= −αT · ∇θ̃

[
f̄Ξ(θ) +

1

2ηN
∥θ − θa∥2 −

√
2T

αTN
ϵ⊙ θ̃

]
.

(16)

In order to empirically determine the best temperature, we compare different temperature
level in table 6, and find that T = 10−4 is appropriate for classification task.

20

Entropy-MCMC

Table 6: Comparison of temperature effect on CIFAR10 with data augmentation. T = 10−4

is best temperature level.

T 1 1e-1 1e-2 1e-3 1e-4 1e-5

Testing ACC (%) ↑ 95.30 95.42 95.41 95.48 95.50 95.47

E.3. Gibbs-like Updating Procedure

Instead of jointly updating, we can also choose to alternatively update θ and θa. The
conditional distribution for the model θ is:

p(θ|θa,D) =
p(θ,θa|D)
p(θa|D)

∝ 1

Zθa

exp

{
−f(θ)− 1

2η
∥θ − θa∥2

}
, (17)

where Zθa = expF(θa; η) is a constant. While for the guiding variable θa, its conditional
distribution is:

p(θa|θ,D) =
p(θ,θa|D)
p(θ|D)

∝ 1

Zθ
exp

{
− 1

2η
∥θ − θa∥2

}
, (18)

where Zθ = exp (−f(θ)) is a constant. Therefore, with Guassian noise, θa is equivalently
sampled from N (θ, ηI), and the variance η controls the expected distance between θ and θa.
To obtain samples from the joint distribution, we can sample from p(θ|θa,D) and p(θa|θ,D)
alternatively. The advantage of doing Gibbs-like updating is that sampling θa can be done
exactly. Empirically, we observe that joint updating yields superior performance compared
to Gibbs-like updating due to the efficiency of updating both θ and θa at the same time.

Appendix F. Proof of Theorems

F.1. Lemma 1

Proof. Assume θ̃ = [θT ,θT
a]

T is sampled from the joint posterior distribution:

p(θ̃|D) = p(θ,θa|D) ∝ exp

{
−f(θ)− 1

2η
∥θ − θa∥2

}
. (19)

Then the marginal distribution respectively for θ and θa would be:

p(θ|D) =
∫
Θ
p(θ,θa|D)dθa

=

∫
Θ
exp

{
−f(θ)− 1

2η
∥θ − θa∥2

}
dθa

= exp(−f(θ))
∫
Θ
exp

{
− 1

2η
∥θ − θa∥2

}
dθa

= exp(−f(θ)),

(20)

21

Li Zhang

and similarly we have

p(θa|D) =
∫
Θ
p(θ,θa|D)dθ

=

∫
Θ
exp

{
−f(θ)− 1

2η
∥θ − θa∥2

}
dθ

= expF(θa; η).

(21)

F.2. Lemma 2

Proof Note that we have

−∇2 log πjoint =

[
∇2f(θ′) + 1

η I − 1
η I

− 1
η I

1
η I

]
,

and after a row reduction, we get [
∇2f(θ′) 0
− 1

η I
1
η I

]
.

The eigenvalues for this matrix are the eigenvalues of ∇2f(θ′) and 1/η. By the assumption
m ≤ 1/η ≤M , we have

mI ⪯
[
∇2f(θ′) 0
− 1

η I
1
η I

]
⪯MI,

which means −∇2 log πjoint is also a M -smooth and m-strongly convex function.

F.3. Proof of Theorem 3

Proof The proof relies on Theorem 4 from Dalalyan and Karagulyan (2019). Lemma 2
has already provided us with the smoothness and strong convexity parameters for πjoint.
We will now address the bias and variance of stochastic gradient estimation. The stochastic
gradient is given by [∇f̃(θ′) + 1

η (θ
′ − θ),− 1

η (θ
′ − θ)]T . As ∇f̃(θ′) is unbiased and has a

variance of σ2, the stochastic gradient in our method is also unbiased and has variance σ2.
Combining the above results, we are ready to apply Theorem 4 (Dalalyan and Karagulyan,
2019) and obtain

W2(µK , πjoint) ≤ (1− αm)KW2(µ0, π) + 1.65(M/m)(2αd)1/2 +
σ2(2αd)1/2

1.65M + σ
√
m
.

22

Entropy-MCMC

F.4. Theorem 5

Proof Let π′(θ′) ∝ exp(−f(θ′)− 1
2η∥θ

′−θ∥22). It is easy to see thatm+1/η ⪯ ∇2(− log π′) ⪯
M + 1/η. Based on Theorem 4 in Dalalyan and Karagulyan (2019), the 2-Wasserstein
distance for the inner Markov chain is

W2(ζL, π
′) ≤ (1− αm)LW2(ζ0, π

′) + 1.65

(
M + 1/η

m+ 1/η

)
(αd)1/2 +

σ2(αd)1/2

1.65(M + 1/η) + σ
√

m+ 1/η

≤ (1− αm)Lκ+ 1.65

(
M + 1/η

m+ 1/η

)
(αd)1/2 +

σ2(αd)1/2

1.65(M + 1/η) + σ
√

m+ 1/η

:= A2.

Now we consider the convergence of the outer Markov chain. We denote πflat(θ) ∝
expF(θ; η). From Chaudhari et al. (2019), we know that

inf
θ
∥ 1

I + η∇2f(θ)
∥mI ⪯ −∇2 log πflat ⪯ sup

θ
∥ 1

I + η∇2f(θ)
∥MI.

Since mI ⪯ ∇2f(θ) ⪯MI, it follows

inf
θ
∥ 1

I + η∇2f(θ)
∥ ≥ 1

1 + ηM
, sup

θ
∥ 1

I + η∇2f(θ)
∥ ≤ 1

1 + ηm
.

Therefore,
m

1 + ηM
I ⪯ −∇2 log πflat ⪯

M

1 + ηm
I.

The update rule of the outer SGLD is

θ = θ − α/η(θ −EζL [θ
′]) +

√
2αξ.

The gradient estimation can be written as θ−Eπ′ [θ′] + (Eπ′ [θ′]−EζL [θ
′]) which can be

regarded as the true gradient θ−Eπ′ [θ′] plus some noise (Eπ′ [θ′]−EζL [θ
′]). The bias of the

noise can be bounded as follows

∥Eπ′ [θ′]−EζL [θ
′]∥22 = ∥

∫
[θ′π′ − θ′ζL]dJ(θ

′
π′ , θ′ζL)∥

2
2

≤
∫
∥θ′π′ − θ′ζL]∥

2
2dJ(θ

′
π′ , θ′ζL).

(22)

Since the inequality holds for any J , we can take the infimum over all possible distributions
to conclude

∥Eπ′ [θ′]−EζL [θ
′]∥22 ≤W2(ζL, π

′). (23)

Furthermore, we note that the variance of the noise is zero. Therefore, by applying Theorem
4 in Dalalyan and Karagulyan (2019) we get

W2(νK , πflat) ≤ (1− αm)KW2(ν0, πflat) + 1.65

(
1 + ηM

1 + ηm

)
(M/m)(αd)1/2 +

A(1 + ηM)

m
.

23

Li Zhang

F.5. Theorem 4

Proof Compared to Entropy-SGLD, the only difference of Entropy-SGD is to do SGD
update instead of SGLD update in the outer loop. Therefore, the analysis for the inner
Markov chain remains the same as in Theorem 5. To analyze the error of SGD in the
outer loop, we follow the results in Ajalloeian and Stich (2020). Since the strongly convex
parameter for fflat is

m
1+ηM , by Section 4.2 and Assumption 4 in Ajalloeian and Stich (2020),

we know that
1

2
∥∇fflat(θt)∥2 ≤

Et − Et+1

α
+

1

2
A

⇒ m

1 + ηM
Et ≤

Et − Et+1

α
+

1

2
A

⇒ Et+1 ≤ (1− αm

1 + ηM
)Et +

1

2
αA.

(24)

By unrolling the recursion, we obtain

EK ≤
(
1− αm

1 + ηM

)K

E0 +
A(1 + ηM)

2m
.

Appendix G. Ablation Studies

We empirically discuss several important hyper-parameters and algorithm settings in this
section, which justifies our choice of their values.

G.1. Variance Term

We compare different choices of the variance term η to determine the best value for each
dataset. The experimental results are shown in Fig. 11. Generally, the best η for CIFAR100
is about 10−2 and for CIFAR10 is about 10−3, which implies that the energy landscapes of
CIFAR10 and CIFAR100 may be different.

G.2. Step size Schedules

We compare different types of stepsize schedules in Table 8. Specifically, we assume the
initial and final stepsize to be α0 and α1 respectively. T is the total number of epochs and
t is the current epoch. The detailed descriptions of stepsize schedules are listed in Table 7.
The cyclical stepsize is the best among all stepsize schedules.

G.3. Collecting Samples

Due to the introduction of the auxiliary guiding variable θa, the composition of sample set
S has multiple choices: only collect samples of θ, only collect samples of θa, collect both
samples. We conduct the comparison of all choices and the results are reported in Table 9.
It shows that using samples from both θ and θa gives the best generalization accuracy.

24

Entropy-MCMC

10 4 10 3 10 2 10 1

95.5

96.0

96.5

97.0

97.5

98.0

98.5
Te

st
in

g
A

C
C

 (%
)

(a) CIFAR10

10 4 10 3 10 2 10 1

78.4

78.6

78.8

79.0

79.2

Te
st

in
g

A
C

C
 (%

)

(b) CIFAR100

Figure 11: Comparison of different variance level for Entropy algorithm. η ≈ 10−3 is the
best on CIFAR10, and η ≈ 10−2 is the best on CIFAR100.

Table 7: Formulas or descriptions of different stepsize schedules.
Name Formula/Description

constant α(t) = α0

linear α(t) = T−t
T (α0 − α1) + α1

exponential α(t) = α0 · (α1/α0)
t/T

step Remain the same stepsize within one “step”, and decay between “steps”.
cyclical Follow Eq. 1 in Zhang et al. (2020b).

G.4. Normalization Layers

During testing, the usage of bath normalization layers (BN) in the model architecture
induces a problem regarding the mini-batch statistics. The mean and variance of a batch
need calculated through at least one forward pass, which is not applicable for the guiding
variable θa since it is updated by the distance regularization during training. We try
different solutions for this problem, including one additional forward pass and the Filter
Response Normalization (Singh and Krishnan, 2020). The comparison is listed in Table 10,
where simply adding one additional forward pass during testing can achieve promising
accuracy with negligible computational overhead.

G.5. SGD Burn-in

We also try SGD burn-in in our ablation studies, by adding the random noise term only to
the last few epochs to ensure the fast convergence. We evaluate different settings of SGD
burn-in epochs in Table 11. We find that adding 40 burn-in epochs per 50 epochs is the
best choice.

25

Li Zhang

Table 8: Comparison of stepsize schedules on CIFAR100. The cyclical stepsize is the best
for Entropy-MCMC.

Learning Rate Schedule constant linear exponential step cyclical

Testing ACC (%) ↑ 88.04 87.89 87.75 89.59 89.93

Table 9: Ablation study on the composition of sample set S on CIFAR10. With samples
from both θ and θa, the Bayesian marginalization can achieve the best accuracy.

θ θa ACC (%) ↑
✓ 95.58

✓ 95.64
✓ ✓ 95.65

Appendix H. Conclusion and Discussion

We propose a practical MCMC algorithm to sample from flat basins of DNN posterior
distributions. Specifically, we introduce a guiding variable based on the local entropy to
steer the MCMC sampler toward flat basins. We prove the fast convergence rate of our
method compared with two existing flatness-aware methods. Comprehensive experiments
demonstrate the superiority of our method, verifying that it can sample from flat basins and
achieve outstanding performances on diverse tasks. Our method is mathematically simple
and computationally efficient, allowing for adoption as a drop-in replacement for standard
sampling methods such as SGLD.

The results hold promise for both Bayesian inference and deep learning generalization.
On the one hand, we demonstrate that explicitly considering flatness in Bayesian inference
can significantly enhance the generalization, especially under practical computational con-
straints. On the other hand, we highlight the value of marginalizing over flat basins in the
energy landscape, as a means to attain further improvements in generalization compared
to single point optimization.

26

Entropy-MCMC

Table 10: Comparison of different normalization layers on CIFAR10. Simply adding one
additional forward pass during testing with standard batch normalization is the
best solution.

Normalization Layer ACC (%) ↑ Time (h)

BN 95.40 1.8
BN (one additional forward) 95.47 1.9
FRN (Singh and Krishnan, 2020) 93.92 2.5

Table 11: Comparison of different SGD burn-in epochs on CIFAR10. In a 50-epoch round,
using SGD burn-in in the first 40 epochs is the best choice.

SGD Burn-in Epoch 0 10 20 30 40 47

Test ACC (%) ↑ 95.61 95.62 95.57 95.67 95.72 95.41

27

	Introduction
	Methodology
	From Local Entropy to Flat Posterior
	Sampling from Flat Basins

	Experiments
	Related Works
	Preliminaries
	Theoretical Analysis
	Experiments
	Synthetic Examples
	Logistic Regression
	Flatness Analysis on Deep Neural Networks
	Image Classification
	Uncertainty and OOD Detection
	Additional Synthetic Examples
	Parameter space interpolation
	toward Random Directions.
	Between Model Parameter and Guiding Variable.

	Classification on Corrupted CIFAR

	Algorithm Details
	Mini-batching
	Data Augmentation and Temperature
	Gibbs-like Updating Procedure

	Proof of Theorems
	Lemma 1
	Lemma 2
	Proof of Theorem 3
	Theorem 5
	Theorem 4

	Ablation Studies
	Variance Term
	Step size Schedules
	Collecting Samples
	Normalization Layers
	SGD Burn-in

	Conclusion and Discussion

