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Abstract

In real-world environments, a well-designed model must be capable of handling
dynamically evolving distributions, where both in-distribution (ID) and out-of-
distribution (OOD) samples appear unpredictably and individually, making real-
time adaptation particularly challenging. While open-set test-time adaptation has
demonstrated effectiveness in adjusting to distribution shifts, existing methods
often rely on batch processing and struggle to manage single-sample data stream
in open-set environments. To address this limitation, we propose Open-IRT, a
novel open-set Intermediate-Representation-based Test-time adaptation framework
tailored for single-image test-time adaptation with vision-language models. Open-
IRT comprises two key modules designed for dynamic, single-sample adaptation in
open-set scenarios. The first is Polarity-aware Prompt-based OOD Filter module,
which fully constructs the ID-OOD distribution, considering both the absolute se-
mantic alignment and relative semantic polarity. The second module, Intermediate
Domain-based Test-time Adaptation module, constructs an intermediate domain
and indirectly decomposes the ID-OOD distributional discrepancy to refine the
separation boundary during the test-time. Extensive experiments on a range of
domain adaptation benchmarks demonstrate the superiority of Open-IRT. Com-
pared to previous state-of-the-art methods, it achieves significant improvements
on representative benchmarks, such as CIFAR-100C and SVHN — with gains of
+8.45% in accuracy, -10.80% in FPR95, and +11.04% in AUROC.

1 Introduction

In real-world environments, the model’s ability to perform real-time adaptation is particularly crucial
for handling the emergence of an unknown category or distributional shifts. This capability is
essential in safety-critical applications such as autonomous driving, where failure to adapt can have
serious consequences. Despite these demands, most approaches in computer vision [1–3] assume a
closed-set paradigm, where training and testing data come from the same distribution. In contrast,
real-world scenarios frequently encounter open-set environments [4–6], where models must handle
unknown distributions and unseen categories, as shown in Fig. 1. This fundamental deviation from
the closed-set assumption introduces fundamental challenges in maintaining model performance.

This transition from closed-world to open-set learning necessitates requiring innovative strategies
to effectively filter, classify, and adapt to both distributional and semantic shifts without explicit
supervision [7]. However, traditional approaches based on predefined categories are not equipped
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to handle the emergence of unknown categories in open-set environments, particularly in real-time
inference and single-sample adaptation constraints. As a result, accurate and efficient OOD detection
has emerged as a critical research focus [7–9] in dynamic, open-set scenarios.
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Figure 1: The objective of Open-IRT. In open-set environments,
models encounter individual sample streams, which may include
unknown categories. Existing test-time adaptation methods mainly
focus on closed-set settings or batch image processing, neglecting
single-sample data streams. (a) In such cases, the boundary between
ID and OOD data can become unclear. (b) Our goal is to improve
domain separation via a middle domain (MID) strategy , as shown in
Fig. 4, and use test-time adaptation with VLMs to reduce ambiguity.

With the advent of vision-
language models (VLMs), re-
cent studies [10, 11] have
leveraged their strong gener-
alization for OOD detection
tasks. Models such as CLIP
[10] facilitate adaptation to
unseen categories in open-
set situation by learning rich
cross-modal representations.
Furthermore, recent research
[12] have demonstrated that
VLMs can perform zero-shot
reasoning based on image-
text associations and further
adapt to single image infer-
ence, which enhances both
their zero-shot generalization
and OOD detection perfor-
mance.

Test-time adaptation [13–16] offers a promising approach for adapting models to incoming data
streams during inference, without relying on labeled data. Recent developments have extended this
paradigm to single-sample test-time adaptation [17, 18], which is particularly valuable in domains
such as security surveillance and industrial inspection, where real-time adaptation to dynamic
environments is critical. However, most existing single-image test-time adaptation methods mainly
focus on closed-set assumptions, whereas open-set batch processing strategies struggle to effectively
adapt to changes in individual samples, particularly in real-time scenarios where only a single image
is available for adaptation, as illustrated in Fig. 1.

To overcome this limitation, we focus on Open-Set Single-Image Test-time adaptation setting, where
the model dynamically adapts to each input sample during inference without relying on batch data.
Specifically, we propose a novel Open-set Intermediate-Representation-based Test-time adaptation
(Open-IRT) framework for single-sample test-time adaptation in OOD detection. The overall
motivation is illustrated in Fig. 1. As illustrated in Fig. 1b, Open-IRT establishes a structured
separation between ID and OOD samples in feature space. The framework consists of two key
modules. First, we introduce a Polarity-aware Prompt-based OOD Filter (PPF) module in Fig. 2a.
Here, the term “polarity” refers to our utilization of the disparity between positive and negative
prompts. PPF leverages the rich cross-modal information in vision language models to fully construct
the ID-OOD distribution from both positive and negative prompts. It is guided by Semantic Contrast
Hypothesis 1, which considers the absolute semantic alignment and relative semantic polarity. Next,
we introduce Intermediate Domain-based Test-time adaptation (IDT) module in Fig. 2b based on
Intermediate-Domain Hypothesis 2, which indirectly decomposes the distributional discrepancy
between ID and OOD representations by modeling an intermediate domain that bridges the gap
between these two. As shown in Fig.4, the IDT explicitly models this middle domain, and the learning
objective enforces divergence of both ID and OOD samples from the intermediate domain. Therefore,
this strategy effectively enlarging the distance between ID and OOD distributions indirectly. In
addition, IDT uses a dynamic threshold strategy to generate bidirectional pseudo-labels, encouraging
the model to reinforce positive feature representations and suppress intra-class noise.

The main contributions are summarized as follows: (i) We propose the PPF, an effective OOD
filtering mechanism based on Semantic Contrast Hypothesis 1. The PPF captures both absolute
semantic alignment and relative semantic polarity between an input and its paired prompts, enabling
effective ID-OOD separation. (ii) We introduce the Intermediate-Domain Hypothesis 2, which leads
to the development of IDT module. This module construct a intermediate domain strategy to establish
a real-time two-way repulsion constraint between ID and OOD feature distributions, enhancing
ID-OOD separation indirectly. (iii) Open-IRT consistently outperforms prior state-of-the-art methods
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on standard benchmarks, including ImageNet-C [19], Tiny-ImageNet [20], VisDA [21], CIFAR-
10C/100C [19], and digit datasets [22–24]. For instance, on CIFAR-100C and SVHN, it achieves
+8.45% accuracy, -10.80% FPR95, and +11.04% AUROC, supporting our motivation and hypothesis.

2 Related Works

2.1 Out-of-Distribution Detection

Out-of-distribution (OOD) detection aims to determine whether a given sample originates from
the training distribution or from an unseen distribution. The OOD detection approaches can be
broadly categorized into classification-based methods [7, 25, 26] and density-based methods [8, 27].
Classification-based OOD methods relied on a maximum softmax probability to distinguish between
ID and OOD samples. These include post hoc techniques such as ODIN [28], which utilizes temper-
ature scaling and input perturbation. In addition, there are classic approaches such as JointEnergy
scores [26], Mahalanobis distance [29], and activation space-based techniques [30, 31] that enhance
the separability of ID and OOD samples without altering the training process. On the other hand,
density-based methods use probabilistic models, such as class-conditional Gaussian distributions [29]
and flow-based models [32, 9], to identify OOD samples based on their likelihood. To address high
likelihoods challenges of OOD, techniques such as likelihood ratio [33], likelihood regret [34], and
SEM scores [35] have been proposed. However, traditional methods are predominantly designed for
the training phase, limiting their ability to adapt to distribution and semantic shifts in real-time.

2.2 OOD Detection with Vision Language Models

Vision-language models have gained significant attention in recent years for their ability to integrate
visual and textual information. Renowned vision-language models, such as CLIP [10] and MaPLe
[11], achieve impressive results by training on large-scale image-text pairs. To adapt vision-language
models for downstream tasks (e.g., OOD detection), additional lightweight modules have been
introduced, including prompt learners [36, 37], vision adapters [38, 39], and LoRA [40, 41].

Recent research in OOD detection has begun to utilize vision-language models as auxiliary tools,
starting with CLIP [42], which aims to distinguish samples that do not belong to any ID class text
provided by the user [43]. These approaches often employ techniques such as OOD label retrieval
[44], generation [45], or alignment [46]. Training-free methods such as MCM [47] detect OOD
using only ID labels, while auxiliary training-based methods, such as CLIPN [48] leverage additional
pre-training to enhance OOD detection. From the perspective of specific training methodologies,
some approaches implement a specialized handling of prompt words [49, 50], while NegPrompt [51]
further explores the use of negative prompt techniques. Moreover, ROSITA [52] consider this task
in test-time, yet it remains constrained by its reliance on direct feature alignment. Unlike previous
methods, Open-IRT is fundamentally guided by an intermediate domain located near the boundary of
the feature space, which indirectly decomposes the distributional discrepancy between ID and OOD
representations. It introduces a bidirectional repulsion constraint, combining semantic alignment
with relative semantic polarity, to increase the distributional separation.

2.3 Test-Time Adaptation

Test-time adaptation, originating from domain adaptation [53–55], adapts pre-trained models to test
data with distribution shifts, without requiring training data. Test-time adaptation is essential for real-
world applications, such as autonomous driving in diverse weather conditions. Several methods have
been proposed, such as adjusting partial model weights [13, 56] or normalization statistics [14, 15].
Specifically, TENT [15] adapts batch normalization layers by entropy minimization, TTT [56]
updates classification layers during testing, and T3A [13] introduces an optimization-free classifier
adjustment. As a technology for changing environments, test-time adaptation can be integrated with
OOD detection (e.g., RTL [57], UniEnt [58]). However, they typically address the task using batch
processing methods, which limits their ability to handle dynamic scenarios effectively.

To reduce reliance on multiple test samples, some approaches prioritize single-sample adaptation.
MEMO [59] enforces consistency through augmentations of the same test sample, while TPT [12]
fine-tunes prompts for vision-language models during testing. DiffTPT [60] enhances this by using
pre-trained diffusion models to augment test data. TDA [61] addresses computational efficiency
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Figure 2: The architecture of Open-IRT comprises two key modules: (a) Polarity-aware Prompt-based
OOD Filter and (b) Intermediate Domain-based Test-time Adaptation. (a) filters ID and OOD samples
using positive and negative prompts, computing scores in Eq. 3 and utilizing a GMM strategy for
OOD filtering. (b) generates an intermediate domain in Fig. 4 and Eq. 7 by leveraging mean and
variance from feature banks, enhancing the model’s adaptability with contrastive learning loss Lmid

in Eq. 10 and pesudo-label loss Lpsd in Eq. 13 during the test phrase.

with a cache-based model. While these methods assume closed-set settings, Open-IRT enables
single-image Test-time adaptation in open-set environments. Unlike continual test-time adaptation, it
further considers semantic shift in addition to distribution shift and refines the ID-OOD boundary in
terms of the intermediate representation.

3 Methodology

In open-world environments with real-time perception demands, models frequently encounter single-
image data streams that contain OOD samples. To address this challenge, we propose Open-set
Intermediate-Representation-based Test-time Adaptation (Open-IRT) in Fig. 2. Open-IRT is an
open-set, single-image test-time adaptation strategy composed of two key modules: Polarity-aware
Prompt based OOD Filter module and Intermediate Domain-based Test-time adaptation module.

3.1 PPF: Polarity-aware Prompt-based OOD Filtering Mechanism

As shown in Fig. 2a, we introduce the Polarity-aware Prompt-based OOD Filter (PPF) module, which
improves ID–OOD separability by exploiting the dual-polarity semantics of vision-language models.
Specifically, we design positive prompts pc (e.g., “a photo of a [CLS]”) to represent ID prototypes,
and negative prompts p′c (e.g., “a photo of no [CLS]”) to encode inverse semantics [48]. Given a vision
feature f = gv(x) after L2 normalization, we compute its cosine similarity with both the positive
prompt pc and the negative prompt p′c for class c. simpos = sim(f, pc) = f⊤pc

∥f∥∥pc∥ , simneg =

sim(f, p′c) =
f⊤p′

c

∥f∥∥p′
c∥

, simdiff = |simpos − simneg|.

Hypothesis 1 (Semantic Contrast Hypothesis). For ID samples ∀c ∈ [C], f ∼ PI and OOD f ∼ PO:

Ef∼PI [sim(f, pc)] ≥ τI, Ef∼PO [sim(f, pc)] ≤ τO (1)

Ef∼PI [sim(f, pc)− sim(f, p′c)] ≥ ∆I, Ef∼PO [sim(f, pc)− sim(f, p′c)] ≤ ∆O (2)

where thresholds satisfy τI > τO and ∆I > ∆O.

First, we propose the Semantic Contrast Hypothesis. For ID samples, the alignment with positive
prompts is strong, i.e., sim(f, pc) is high, and the polarity gap |sim(f, pc)− sim(f, p′c)| is also large,
leading to a confidently larger overall sum. For OOD samples, the alignment with positive prompts
is weaker, and the polarity gap is less marked due to semantic ambiguity, leading to suppressed
overall sum. The proposed scoring function S(f) jointly captures absolute semantic alignment and
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relative semantic polarity between an input and its paired prompts. This promotes effective ID–OOD
separability by maximizing the distributional contrast between them.

S(f) = ϕ

(
sup
c∈[C]

[sim(f, pc) + α |sim(f, pc)− sim(f, p′c)|]

)
, (3)

where ϕ is a min-max normalization operator to ensure the score lies within the range [0, 1], and α
controls the contrast intensity. As shown in Fig. 3, while individual sample have unique semantics,
the resulting aggregate score distribution exhibits a clear bimodal pattern, demonstrating consistent
statistical regularity across large-scale data. Furthermore, the introduction of the polarity gap term
significantly enhances ID-OOD separation, thereby validating the Hypothesis 1. This dual-polarity
design—leveraging alignment with positive prompts and contrast with negative prompts—offers an
effective mechanism for ID-OOD distinction. Detailed theoretical analyses are provided in appendix.

Then, we introduce the score bank Bs and feature bank Bf , both updated using a sliding window
strategy, where it functions equivalently to a FIFO queue. The score bank Bs stores the scores of
individual samples and is divided into two components: ID (Bs

I ) and OOD (Bs
O) score banks, based

on the Gaussian Mixture Model as described in Eq. 4.

P(x) = π(x)N (x | µs
I , σ

s
I
2) + (1− π(x))N (x | µs

O, σ
s
O
2) (4)
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Figure 3: PPF score distribution histogram with
CIFAR-10C [19] as ID and MNIST [22] as OOD.

Here, π(x) denotes the probability that S(x)
belongs to the ID class, and µs

I/O, σs
I/O

2 are
the mean and variance of the ID/OOD compo-
nents. The probability π(x) is computed using
the Expectation-Maximization algorithm.

Upon the arrival of a new sample x, its score
S(x) is appended to both Bs

I and Bs
O, and Eq. 4

is used to classify it as either ID (b̂ = 1) or
OOD (b̂ = 0). To mitigate the impact of limited
samples during the early stages of learning, we
employ bootstrapped resampling, which helps
prevent overfitting to sparse observations. The
classified features are then inserted into the cor-
responding feature banks Bf

I/O for use in the
subsequent module.

3.2 IDT: Intermediate Domain-based Test-time adaptation

We now introduce the Intermediate Domain-based Test-time adaptation (IDT) module, which lever-
ages the feature banks Bf

I and Bf
O to further refine adaptation. To address the challenge in Fig. 1, we

first propose Hypothesis 2 that models the intermediate domain (FM ).

Hypothesis 2 (Intermediate Domain Characterization). Let FI ≜ {f |f ∼ PI} and FO ≜ {f |f ∼
PO} denote the ID/OOD feature distributions respectively. There exists a measurable transformation
T : FI ∪ FO → FM such that for the induced intermediate feature space FM that satisfies the
following approximate equality:

dH(FI ,FM ) + dH(FO,FM ) ≈ dH(FI ,FO), (5)

where dH represents the Hilbert-Schmidt independence criterion-based dissimilarity.

Rather than directly maximizing the ID-OOD distance (FI ,FO), which is challenging due to limited
knowledge of OOD distribution, we instead construct an intermediate domain FM to act as a
bridge. By encouraging both ID and OOD samples to move away from this intermediate domain
(i.e., increasing dH(FI ,FM ) and dH(FO,FM )), we indirectly enhance the overall discrepancy
dH(FI ,FO). This aligns with the intuition of margin-based separation in representation space.

Contrastive Learning-based Middle Domain Loss. We first model the intermediate domain feature
fm as per Hypothesis 2. To normalize the sample features fs, we compute their mean and variance
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based on augmented features, which is derived the fs as Eq. 6. The method for calculating fs has
been validated for its rationality in [62], where it is computed across spatial dimensions independently
for each feature channel. The feasibility of this approach lies in preserving channel-specific style
information. The variance for each channel emphasizes fine-grained structural characteristics in that
feature dimension, such as color, texture intensity, etc., without mixing with other channels, thereby
achieving refined style representation and alignment.

fs =
f − µ(f)

σ(f)
(6)

Then, we extract the style features stored in the feature memory banks Bf
I/O to compute µf

I/O and

σf
I/O. The design of intermediate style feature fm is theoretically motivated by domain adaptation

principles [63], which suggest that constructing an intermediate feature space through style-transfer-
like transformations can effectively position the new domain between source and target domains,
enabling more controlled feature interpolation. fm is then re-assigned as follows.

fm =

{
fs · σf

O + µf
O if b̂ = 1; Conf(x) > µI

fs · σf
I + µf

I if b̂ = 0; Conf(x) < µO
(7)

Figure 4: T-SNE visualization of MNIST [22] (ID) and
CIFAR-10C [19] (OOD) and their Middle-Domain (MID)

The confidence Conf(x) is defined in
Eq. 11. To further enhance inter-
class discriminability and suppress
intra-class noise, we introduce two
thresholds, µI and µO. They repre-
sent the mean confidence scores of the
accumulated 512 ID/OOD Conf(x),
respectively, updated by a sliding win-
dow mechanism. If Conf(x) > µI ,
we treat the input as a confident ID
sample. If Conf(x) < µO, it is more
likely to be a noisy sample or an OOD
sample6. The effectiveness of fm
construction is visually confirmed in
Fig. 4, where the T-SNE visualization
shows a clear separation between ID
and OOD features, with a distinct intermediate cluster. This indicates that the constructed interme-
diate representations indeed satisfy the desired relational constraints in the feature space, thereby
validating the theoretical motivation of Hypothesis 2. Then, we select the K nearest neighbors NI

and NO, for the sample feature f from the feature banks Bf
I and Bf

O, respectively. When the sample
is confidently distinguished as ID (b̂ = 1 and Conf(x) > µI ), the loss LI based on InfoNCE loss
[64] is constructed as follows.

LI = − 1

K+

∑
z+∈NI

(log
exp(sim(f, z+)/τ)∑

z−∈NO
exp(sim(f, z−)/τ)

−λ log
exp(sim(fm, z+)/τ)∑

z−∈NO
exp(sim(fm, z−)/τ)

)1(y+ = ŷp)

(8)

where K+ =
∑

z+∈NI
1(y+ = ŷp) denotes the number of positively matched neighbors with the

pseudo label ŷp. For confident ID samples, the objective of LI is to align with ID while minimizing
similarity to OOD and distancing from the intermediate feature fm.

LO = − 1

K

∑
z+∈NO

(
log

exp(sim(f, z+)/τ)∑
z−∈NI

exp(sim(f, z−)/τ)
− λ log

exp(sim(fm, z+)/τ)∑
z−∈NI

exp(sim(fm, z−)/τ)

)
(9)

For confident OOD samples (b̂ = 0 and Conf(x) < µO), the objective of LO is to improve sensitivity
to OOD samples by pulling OOD features away from both ID and the intermediate domain feature.
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The differences between Eq. 8 and Eq. 9 arise from the distinction between ID and OOD categories
in the standard OOD detection task. For ID data, the model needs to learn fine-grained semantic
consistency and achieve precision for each class, which is why we set 1(y+ = ŷp) in Eq. 8.

Lmid =

 LI if b̂ = 1; Conf(x) > µI

LO if b̂ = 0; Conf(x) < µO

0 otherwise
(10)

Threshold-based Bidirectional Pseudo Loss. To facilitate positive knowledge while mitigating
intra-class noise, we design an effective pseudo-label strategy. First, we calculate the confidence
Conf(x) using the maximum cosine similarity between feature gv(x) and classifier weights C:

Conf(x) = max
i

(gv(x) ·CT ), ŷp = argmax
i

(gv(x) ·CT ) (11)

We analyze Conf(x) from two perspectives: For high-confidence scenarios, we align predictions with
ŷp. For low-confidence scenarios, ŷp may introduce noise, so we stop relying on it and use reverse
optimization to push predictions away from it, mitigating the risk of misclassification.

LCE(x, ŷ) = − 1

N

N∑
i=1

(ŷi log(pi) + (1− ŷi) log(1− pi)) (12)

If Conf(x) > µI , we treat the input as an confident sample and optimize the model to align predictions
with ŷp using LCE , enhancing the inter-class discriminability. If Conf(x) < µO, we deviate the
prediction results from the low-quality pseudo-label ŷp by −LCE , suppressing the intra-class noise.

Lpsd =

 LCE(x, ŷp) if b̂ = 1; Conf(x) > µI

−LCE(x, ŷp) if b̂ = 0; Conf(x) < µO

0 otherwise
(13)

Total Test-time Adaptation Loss. The total loss function LTTA combines the pseudo-label loss
Lpsd and the intermediate domain loss Lmid. Lpsd aims to enhance inter-class discriminability and
suppress intra-class noise, while Lmid indirectly enlarge the ID-OOD distance by increasing both
dH(FI ,FM ) and dH(FO,FM ) in Hypothesis 2. This combination enables dynamic adjustment of
the model’s adaptation strategy.

LTTA = Lpsd + Lmid (14)

During test time, each incoming sample is used to update the model parameters via backpropagation
with the test-time adaptation loss LTTA. Subsequently, the same sample is used to compute the
evaluation metrics. This online update-then-evaluate approach simulates a realistic scenario where
the model continuously adapts to distributional shifts without access to ground-truth labels.

4 Experiments

4.1 Implementation Details

Datasets. We utilize representative ID and OOD datasets to ensure a complete evaluation. For ID
datasets, we leverage CIFAR-10C/100C [19], ImageNet-C [19], and VisDA [21]. The OOD datasets
include MNIST [22], MNIST-M [23], SVHN [24], Tiny-ImageNet [20], and CIFAR-10C/100C [19].

Metrics. We utilize the Area Under the Receiver Operating Characteristic Curve (AUROC), the
False Positive Rate at 95% True Positive Rate (FPR95) and AccHM as main metrics. Here, AccHM

denotes the harmonic mean of AccI and AccO, where AccO is the precision of ID-OOD binary
classification, and AccI is the general accuracy to correctly identify ID categoriess.

Baselines. We utilize the CLIP [10] and MaPLe [11] as models, which are based on the ViT-B16/ViT-
B32 [65] architectures. We adopt ZS-Eval [52], TPT/TPT-C [12], PAlign/PAlign-C [46], TDA [61],
DPE [66], UniEnt [58], OWTTT [67] and ROSITA [52] as baselines.

Details. All experiments are reproduced based on publicly available code, with ImageNet-C experi-
ments conducted on an NVIDIA A6000 GPU and all other experiments on an NVIDIA 3090 GPU.
In main experiments, the test size for both ID and OOD datasets is 10,000, except for the VisDA in
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Table 3, which is 50,000. In Table 5, the OOD test size is ratio× 10, 000. The text encoder is kept
fixed, while the vision encoder is updated with a SGD optimizer with learning rate of 1.5e-3, and
batch size is set to 1 for all experiments. The size B of both score bank Bs and feature bank Bf are
set to 128, the number of nearest neighbors K in Eq. 8, 9 configured to 5. The α in Eq. 3 is set to 0.2,
and λ in Eq. 8, 9 are set to 0.1, respectively. Details on the baselines and analysis of hyper-parameters
are provided in appendix.

Method MNIST SVHN Tiny-ImageNet CIFAR-100C
AUC ↑ FPR ↓ HM ↑ AUC ↑ FPR ↓ HM ↑ AUC ↑ FPR ↓ HM ↑ AUC ↑ FPR ↓ HM ↑

C
IF

A
R

10
-C

C
L

IP

ZS-Eval [52] 91.91 85.22 75.60 89.94 64.25 74.11 91.33 27.13 74.24 82.57 67.96 68.92
TPT [12] 91.90 85.70 75.78 89.93 64.54 74.30 91.31 27.26 74.98 82.57 68.09 69.13

TPT-C [12] 83.21 67.03 75.05 60.83 69.47 50.63 74.12 57.34 48.88 63.76 93.05 51.98
ROSITA [52] 99.43 3.25 83.95 94.94 31.22 79.12 96.37 12.69 80.07 83.01 64.54 69.64
OWTTT [67] 98.05 12.50 83.27 80.74 50.33 70.10 87.09 52.29 73.98 62.55 91.68 56.46

TDA [61] 92.94 71.11 77.06 92.02 52.68 76.64 91.68 25.37 75.94 83.54 66.06 70.13
UniEnt [58] 91.98 85.20 75.62 89.97 64.38 74.18 91.40 26.96 74.73 82.59 68.14 68.98
DPE [66] 46.97 99.10 27.60 84.15 85.24 68.52 89.92 31.30 69.90 79.18 75.06 62.34
Open-IRT 99.73 1.28 84.55 96.52 18.34 80.62 97.07 10.09 80.95 82.65 61.69 69.20

M
A

PL
E

ZS-Eval [52] 98.16 5.50 82.43 98.35 7.82 83.58 90.86 27.53 76.01 86.15 52.00 71.68
TPT [12] 98.16 69.35 81.74 98.34 7.88 82.67 90.86 27.55 75.40 86.15 52.10 70.84

TPT-C [12] 98.22 5.15 83.34 98.35 7.85 83.55 90.91 27.44 75.84 86.20 51.96 71.60
PAlign [46] 98.16 5.62 82.57 98.34 7.88 83.44 90.86 27.55 76.03 86.15 52.10 71.50

PAlign-C [46] 98.61 3.45 83.91 98.35 8.13 83.45 91.17 26.95 76.12 86.53 50.64 71.11
ROSITA [52] 99.45 3.84 87.71 98.02 11.45 84.56 91.76 25.23 77.60 86.92 48.12 72.79
OWTTT [67] 98.34 9.63 86.52 71.01 78.78 68.70 71.20 85.81 68.29 62.35 88.44 61.89

TDA [61] 98.42 4.13 81.97 98.60 6.20 83.95 91.27 27.00 76.84 86.72 51.40 72.61
UniEnt [58] 98.17 5.49 82.64 98.35 7.85 83.65 90.90 27.41 76.08 86.16 51.91 71.72
DPE [66] 83.82 92.73 55.52 97.42 12.95 79.41 89.10 31.13 74.32 73.57 73.67 53.64
Open-IRT 99.51 2.85 88.11 97.62 15.92 85.01 91.83 24.38 77.80 87.42 46.40 73.20

Table 1: Open-set Single-Image Test-time adaptation results with CIFAR-10C as ID, MNIST, SVHN,
Tiny-ImageNet, and CIFAR-100C as OOD. The metrics include AUROC (AUC), FPR95 (FPR),
and AccHM (HM) as defined in Section 4.1. Results in bold represent the best performance, while
underlined results indicate the second-best ones.

4.2 Main Result

Cifar Benchmark. The cifar benchmark leverages CIFAR-10C/100C [19] as ID datasets, and MNIST
[22], SVHN [24], and Tiny-ImageNet [20] as OOD datasets. CIFAR-100C/10C is also treated as
an OOD case with small distribution shifts, applying label offsets to distinguish from ID data. As
shown in Table 1, Open-IRT has demonstrated significant performance advantages. For example, in
the CIFAR-10C → SVHN case with CLIP, Open-IRT achieved notable improvements by +1.58%
AUROC, -12.88% FPR95, and +1.50% AccHM . Additionally, for the CIFAR-100C → SVHN case
with CLIP, Open-IRT achieves an +8.45% in AccHM , -10.80% in FPR95, and +11.04% in AUROC,
as detailed in appendix. OpenIRT also achieves better results in MaPLe, a multi-modal fine-tuning
framework for CLIP, due to its adaptability across fine-tuning methods through direct feature space
operation. Furthermore, Open-IRT exhibits obvious improvements in the FPR95 (up to -12.88%),
highlighting its effectiveness in reducing the misclassification of OOD samples. This can be attributed
to Open-IRT’s ability to model the ID-OOD distribution effectively (see Fig. 3).

Method
CLIP MAPLE

IN-C→MNIST IN-C→SVHN IN-C→MNIST IN-C→SVHN
AUC ↑ FPR ↓ HM ↑ AUC ↑ FPR ↓ HM ↑ AUC ↑ FPR ↓ HM ↑ AUC ↑ FPR ↓ HM ↑

ZS-Eval [52] 93.34 57.34 41.41 85.72 74.34 40.84 81.24 93.97 41.29 83.05 73.63 42.44
TPT [12] 91.89 59.54 41.02 85.03 48.98 40.16 80.31 93.54 39.13 82.67 73.57 39.90

TPT-C [12] 57.84 98.92 6.37 10.31 99.59 7.29 82.88 87.95 41.13 82.17 72.10 41.37
OWTTT [67] 95.76 10.43 42.95 87.75 26.23 38.50 98.58 3.35 48.69 77.17 39.74 38.10

TDA [61] 90.54 76.23 43.66 86.76 75.45 43.07 76.76 99.02 42.98 82.46 91.75 44.63
UniEnt [58] 94.19 46.98 41.53 87.56 67.03 41.10 81.53 93.45 41.50 83.41 70.84 42.78
DPE [66] 87.92 91.94 42.87 82.96 77.90 41.93 73.97 99.59 41.39 80.06 87.10 44.05

ROSITA [52] 98.97 8.55 45.74 91.90 45.66 38.86 97.19 9.56 48.28 91.86 29.21 44.47
Open-IRT 99.44 1.06 49.49 98.45 9.37 48.19 97.54 10.97 50.07 95.54 23.11 48.77

Table 2: Open-set Single-Image Test-time adaptation. The ID data is ImageNet-C, while the OOD
data comprises MNIST and SVHN.
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Lpsd Lmid
CIFAR-10C→MNIST CIFAR-10C→SVHN VisDA→MNIST VisDA→SVHN

AUC ↑ FPR ↓ HM ↑ AUC ↑ FPR ↓ HM ↑ AUC ↑ FPR ↓ HM ↑ AUC ↑ FPR ↓ HM ↑

C
L

IP

✗ ✗ 91.91 84.91 78.07 89.94 64.03 75.14 93.55 65.83 84.34 90.45 64.98 79.02
✗ ✓ 99.60 1.90 78.91 94.58 32.42 75.46 99.62 2.51 89.73 99.10 5.35 89.29
✓ ✗ 98.15 1.74 85.52 93.52 37.04 78.57 95.66 35.40 87.74 95.04 33.70 85.67
✓ λ = 0 99.70 1.90 83.52 95.92 24.29 79.24 99.79 1.53 89.83 97.58 4.26 89.81
✓ ✓ 99.71 1.28 84.52 96.52 18.35 80.61 99.84 1.27 90.85 99.20 3.05 90.39

Table 4: Ablation Experiments. The ID data is a combination of CIFAR-10C and VisDA, while the
OOD data comprises MNIST and SVHN.
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Figure 5: Comparison of GMM and LDA in PPF and different backbone architectures.

VisDA and ImageNet Benchmarks. The VisDA [21] and ImageNet-C [19] serve as ID datasets,
while MNIST [22], MNIST-M [23], and SVHN [24] serve as OOD datasets. The complexity of VisDA
and ImageNet-C introduces additional challenges for OOD detection. In Table 2, Open-IRT achieves
notable improvements over existing baselines. For example, in ImageNet-C→MNIST experiment
with CLIP, Open-IRT achieves gains of +0.47% AUROC, -7.49% FPR95, and +3.75% AccHM . Simi-
larly, in Table 3, Open-IRT achieves gains of +1.58% AUROC, -7.46% FPR95, and +1.09% AccHM in
VisDA → MNIST-M with CLIP. Moreover, compared to Table 1, when the ID dataset becomes more
complex (e.g., ImageNet-C), the model’s performance in OOD detection tasks does not fully saturate,

Method VisDA→MNIST VisDA→MNIST-M
AUC ↑ FPR ↓ HM ↑ AUC ↑ FPR ↓ HM ↑

C
L

IP

ZS-Eval [52] 93.55 65.86 78.30 87.25 67.10 74.84
TPT [12] 93.55 66.11 78.44 87.25 67.19 75.05

TPT-C [12] 81.81 85.12 75.09 87.44 62.31 77.32
ROSITA [52] 99.63 2.99 90.59 97.10 15.14 86.88

Open-IRT 99.85 1.27 90.88 98.68 7.68 87.97

M
A

PL
E

ZS-Eval [52] 93.07 66.13 80.29 92.31 45.66 78.83
TPT [12] 93.07 66.03 80.35 92.30 45.70 78.87

TPT-C [12] 93.40 59.35 80.35 92.48 44.17 78.93
PAlign [46] 93.07 66.03 80.62 92.29 45.70 79.17

PAlign-C [46] 95.61 27.65 81.93 94.13 32.97 81.48
ROSITA [52] 99.80 1.40 90.84 98.90 5.79 89.40

Open-IRT 99.87 1.01 90.82 99.15 4.99 89.56

Table 3: VisDA (ID), MNIST/MNIST-M (OOD) Results.

resulting in a relatively lower AccHM .
In such cases, Open-IRT’s improvement
in AccHM is more obvious, such as
a +5.12% increase in the ImageNet-C
→ SVHN experiment with CLIP. Ad-
ditionally, Open-IRT achieves gains of
-16.86% FPR95 and +6.55% AUROC.
Since Open-IRT operates primarily in
the feature space and enhances the sep-
aration of the ID-OOD boundary (see
Fig. 4), its effectiveness becomes in-
creasingly apparent as the feature dis-
tribution grows more complex.

4.3 Experiment Analysis

Score Ablation in PPF. We assess the effectiveness of our PPF mechanism in Fig. 5a, comparing PPF
with GMM and LDA [68]. The results indicate that the PPF with GMM performs better results, such
as -2.55% FPR95 improvement in CIFAR-10C → Tiny-ImageNet task. This performance gain can be
attributed to GMM’s ability to model complex and non-linearly separable feature distributions, which
more accurately capture the characteristics of real-world domain shifts. In contrast, LDA relies on
the assumption of linear decision boundaries, which limits its capacity to handle such complexities.

Loss Ablation in IDT. We analyze the effectiveness of each component of IDT in Eq.14, as shown in
Table 4, with the first row representing the zero-shot evaluation scenario. The results demonstrate
that Lmid significantly improves FPR95 and AUROC, enhancing ID-OOD binary classification by
increasing the separation between ID and OOD samples in feature space. On complex datasets
like VisDA, Lmid outperforms Lpsd by +1.99% and +3.62% in AccHM , respectively. However, on
simpler datasets like CIFAR-10C, Lpsd performs better in AccHM as it helps reduce intra-class
noise, which is more beneficial for simpler features. Furthermore, setting λ = 0 to evaluate the
intermediate-domain strategy shows that introducing the intermediate-domain improves performance
by up to -5.94% in FPR95, supporting our Hypothesis 2.
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Analyze Backbones. In Fig. 5b, we utilize ViT-B/16, ViT-B/32 and ResNet50 as the backbones in
CIFAR-100C → MNIST task with CLIP. The results demonstrate that Open-IRT achieves the highest
AccHM (e.g., 59.56% in ViT-B/16, 58.62% in ViT-B/32) and the lowest FPR95 (e.g., 11.29% in
ViT-B/16, 3.74% in ViT-B/32). These results highlight the robustness of Open-IRT, as it directly
optimizes the feature space, independent of the backbone type, demonstrating its broad applicability.

ratio 0.2 0.4 0.6 0.8 1.0

C
L

IP

ZS-Eval [52] 75.55 75.60 75.59 75.59 75.60
TPT [12] 75.77 75.78 75.81 75.76 75.78

TPT-C [12] 73.05 74.29 74.75 75.05 75.05
DPE [66] 65.67 66.12 56.38 29.98 27.60

OWTTT [67] 62.31 68.85 81.70 82.90 83.27
TDA [61] 72.45 75.04 77.54 77.91 77.06

ROSITA [52] 83.21 84.68 83.90 83.89 83.95
Open-IRT 85.10 85.53 85.08 84.63 84.52

Table 5: Experiments (AccHM ) on CLIP with different
OOD ratios with CIFAR-10C (ID), and MNIST (OOD).

Varying OOD Ratios. To examine the ro-
bustness of Open-IRT, we conduct CIFAR-
10C → MNIST experiments on CLIP under
different OOD ratios with additional exper-
iments are in appendix. As shown in Table
5, Open-IRT consistently achieves better
results across all OOD ratios with AccHM

fluctuate by only 1.01%. This stability sug-
gests that Open-IRT is better suited to han-
dle the uncertainties associated with fluctu-
ating OOD proportions.

Figure 6: T-SNE Visualization with gray points as OOD.

T-SNE Visualization. We conduct T-SNE experiments of CIFAR-10C → MNIST. The T-SNE
visualization in Fig. 6 reveals that Open-IRT achieves better separation and more compact clustering
within the ID classes, while also establishing a clearer boundary between ID and OOD classes.

5 Conclusion

In this paper, we address the challenges of real-time adaptation in open-set environments with single-
sample stream and propose the Open-set Intermediate-Representation-based Test-time adaptation
(Open-IRT) framework. Its Polarity-aware Prompt-based OOD Filter module leverages the rich cross-
modal information of vision language models, corporating both absolute semantic alignment and
relative semantic polarity. The Intermediate Domain-based Test-time adaptation module constructs an
intermediate domain and indirectly decomposes and enlarge the ID-OOD distributional discrepancy in
real-time. Experiments across various benchmarks underscores the Open-IRT’s potential to enhance
the robustness and adaptability in dynamic real-world. Future work can focus on extending its
application to real-world object detection or semantic segmentation. Moreover, a tension exists
between the method’s requirement for a sizable memory bank and its premise of single-image test-
time adaptation. Future work should aim to reconcile this, achieving robust performance under a
strictly single-image setting.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In both our abstract and introduction, we explicitly define the scope of our
study as addressing open-world single-sample test-time domain adaptation. Our contribution
lies in proposing a state-of-the-art strategy that effectively addresses the aforementioned
challenges, supported by a solid theoretical foundation.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In the appendix, future work will focus on extending our approach to real-
world tasks such as object detection and semantic segmentation. These tasks present more
significant distribution estimation challenges due to the shift from image-level understanding
to fine-grained spatial localization and semantic parsing.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The theoretical framework and corresponding proofs are comprehensively
elaborated in the Methodology section (Section 3) of the main text, with supplementary
derivations and extended demonstrations provided in the Appendix section.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper elaborates on the technical details in the experimental section
(Section 4), while supplementary materials provide additional experimental investigations
along with fully reproducible code implementation.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The source code has been archived in the supplementary materials, with all
experimental datasets being publicly available benchmark datasets that are comprehensively
documented in the main manuscript and supplementary materials, and are publicly accessible
through their original repositories.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper meticulously documents experimental details in the Section 4,
including hardware specifications (e.g., GPU models, memory capacity) and hyperparameter
settings (learning rate, batch size, etc.). Additional analyses, such as robustness checks, are
provided in the Supplementary Materials to ensure reproducibility and thorough validation.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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Answer: [Yes]

Justification: Our experimental results strictly follow the standardized benchmarking pro-
tocols to ensure fair and reproducible performance assessment. Furthermore, all reported
results are averaged over multiple runs to account for randomness and enhance the statistical
reliability of our findings.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In the experimental section, we specify that our computational resources are
based on NVIDIA A6000 GPUs and NVIDIA 3090 GPUs. For detailed configurations,
please refer to Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our submitted code fully conforms to the official conference standards, includ-
ing strict adherence to the anonymity policy.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: In the introduction (Section 1) and Methodology (Section 3) and appendix, we
provide an in-depth discussion of the societal impact of our method, particularly emphasizing
that the model’s ability to perform real-time adaptation in open environments is crucial for
addressing the emergence of unknown categories or distributional shifts. Such capability is
essential for ensuring safety in high-stakes applications like autonomous driving.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: As stated in the experimental section (Section 4), all datasets used in our
study are publicly available and legally obtained, and all models are based on open-source
implementations. Therefore, there is no foreseeable risk of misuse associated with our work.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.
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• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: As indicated in the experimental section (Section 4) and supplementary
materials, our method is properly cited and fully complies with the authors’ licensing terms.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The assets associated with our paper, including the code, are submitted
collectively in a compressed archive.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Only used for improve writing.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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