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ABSTRACT

Recent progress in text-to-3D generation has been achieved through the utilization
of score distillation methods: they make use of the pre-trained text-to-image
(T2I) diffusion models by distilling via the diffusion model training objective.
However, such an approach inevitably results in the use of random timesteps at
each update, which increases the variance of the gradient and ultimately prolongs
the optimization process. In this paper, we propose to enhance the text-to-3D
optimization by leveraging the T2I diffusion prior in the generative sampling
process with a predetermined timestep schedule. To this end, we interpret text-to-
3D optimization as a multi-view image-to-image translation problem, and propose
a solution by approximating the probability flow. By leveraging the proposed
novel optimization algorithm, we design DreamFlow, a practical three-stage coarse-
to-fine text-to-3D optimization framework that enables fast generation of high-
quality and high-resolution (i.e., 1024x1024) 3D contents. For example, we
demonstrate that DreamFlow is 5 times faster than the existing state-of-the-art
text-to-3D method, while producing more photorealistic 3D contents.'

1 INTRODUCTION

High-quality 3D content generation is crucial for a broad range of applications, including entertain-
ment, gaming, augmented/virtual/mixed reality, and robotics simulation. However, the current 3D
generation process entails tedious work with 3D modeling software, which demands a lot of time
and expertise. Thereby, 3D generative models (Gao et al., 2022; Chan et al., 2022; Zeng et al., 2022)
have brought large attention, yet they are limited by their generalization capability to creative and
artistic 3D contents due to the scarcity of high-quality 3D dataset.

Recent works have demonstrated the great promise of text-to-3D generation, which enables creative
and diverse 3D content creation with textual descriptions (Jain et al., 2022; Mohammad Khalid et al.,
2022; Poole et al., 2022; Lin et al., 2023; Wang et al., 2023b; Tsalicoglou et al., 2023). Remarkably,
those approaches do not exploit any 3D data, while relying on the rich generative prior of text-to-image
diffusion models (Nichol et al., 2021; Saharia et al., 2022; Balaji et al., 2022; Rombach et al., 2022).
On this line, DreamFusion (Poole et al., 2022) first proposed to optimize a 3D representation such
that the image rendered from any view is likely to be that of sampled from reside in the high-density
region of the pre-trained diffusion model. To this end, they introduced Score Distillation Sampling,
which distills the pre-trained knowledge by the diffusion training objective (Hyvérinen & Dayan,
2005). Since DreamFusion demonstrates the great potential of text-to-3D generation, subsequent
studies have improved this technology by using different 3D representations and advanced score
distillation methods (Lin et al., 2023; Wang et al., 2023b).

However, score distillation methods exhibit a high-variance gradient, which requires a lengthy
optimization process to optimize a 3D representation. This limits the scalability to the usage of larger
diffusion priors to generate high-quality and high-resolution 3D content (Podell et al., 2023). This
is in part due to the formulation of the score distillation method that aims to distill the diffusion
prior of all noise level (i.e., Eq. 7), where the noise timesteps are randomly drawn at each update. In
contrast, conventional 2D diffusion generative processes implement a predetermined noise schedule
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Figure 1: Examples of 3D scene generated by DreamFlow. DreamFlow can generate photorealistic
3D models from text prompts with reasonable generation time (e.g., less than 2 hours), which have
been possible by elucidated optimization strategy using generative diffusion priors.

that gradually transports the noise to the data distribution. This leads us to the following natural
question: How to emulate the diffusion generative process for text-to-3D generation?

In this paper, we propose an efficient text-to-3D optimization scheme that aligns with the diffusion
generative process. To be specific, unlike the score distillation sampling that uses the training loss of
the diffusion model as an objective, our method makes use of the diffusion prior in the generative (or
sampling) process, by approximating the reverse generative probability flow (Song et al., 2020b;a).
In particular, we have framed the text-to-3D optimization as a multi-view image-to-image translation
problem, where we use Schrédinger Bridge problem (Schrodinger, 1932) to derive its solution with
probability flow. Then, we propose to match the trajectory of the probability flow to that from the pre-
trained text-to-image diffusion model to effectively utilize its rich knowledge. Lastly, we approximate
the probability flow to cater to text-to-3D optimization and conduct amortized sampling to optimize
multi-view images of a 3D representation. Here, our approach implements a predetermined noise
schedule during text-to-3D optimization, as the generative 2D diffusion model does. With our new
optimization algorithm, we additionally present a practical text-to-3D generation framework, dubbed
DreamFlow, which generates high-quality and high-resolution 3D content (see Figure 1). Our
approach is conducted in a coarse-to-fine manner, where we generate NeRF, extract and fine-tune the
3D mesh, and refine the mesh with high-resolution diffusion prior (see Figure 3).

Through experiments on human preference studies, we demonstrate that DreamFlow provides the
most photorealistic 3D content compared to existing methods including DreamFusion (Poole et al.,
2022), Magic3D (Lin et al., 2023), and ProlificDreamer (Wang et al., 2023b). We also show that
DreamFlow outperforms ProlificDreamer with respect to CLIP (Radford et al., 2021) R-precision
score (in both NeRF generation and 3D mesh fine-tuning), while being 5 faster in generation.
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2 PRELIMINARY

We briefly introduce the score-based generative models (SGMs) in the general context, which
encompasses the diffusion models (DMs). Given the data distribution pg,, (), diffusion process
starts off by diffusing g ~ paa (o) With forward stochastic differential equation (SDE) and the
generative process is followed by reverse SDE for time ¢ € [0, T, given as follows:

de = f(z,t)dt + g(t)dw, dz = [f(z,t) — ¢°(t) Ve logpi(x)]|dt + g(t)dw, (1,2)

where f(-,-) and g(-) are the drift and diffusion coefficient, respectively, w is a standard Wiener
process, and V, log pi () is a score function of the marginal density from Eq. 1, where po(x) =
Pdata (). Interestingly, Song et al. (2020b) show that there is a deterministic ordinary differential
equation (ODE), referred as Probability Flow ODE (PF ODE), which has same marginal density to
pt(x) throughout its trajectory. The probability flow ODE is given as follows:

de = | f(x,t) — %a%)vm log pi () | dt. (3)

Here, the forward SDE is designed that pr () is sufficiently close to a tractable Gaussian distribution,
so that one can sample from data distribution by reverse SDE or PF ODE. In particular, we follow
the setup of (Karras et al., 2022) to formulate the diffusion model, where we let f(x,t) = O,
g(t) = v/20(t)o(t) for a decreasing noise schedule o : [0, 7] — R. Also, we denote p(x; o) be
the smoothed distribution by adding i.i.d Gaussian noise of standard deviation o. Then the evolution
of a sample 21 ~ p(x1;o(t1)) from time ¢; to to yields xo ~ p(x2; o(t2)) with following PF ODE:

de = —5(t) o(t) Vi logp(x; o(t))dt, 4)

where dot denotes time-derivative. In practice, we solve ODE by taking finite steps over discrete time
schedule, where the derivative is evaluated at each timestep (Karras et al., 2022; Song et al., 2020a).

Training diffusion models. The diffusion model trains a neural network that approximates a score
function of each p(x; o) by using Denoising Score Matching (DSM) (Hyvirinen & Dayan, 2005)
objective. In specific, let us denote a denoiser D(«; o) that minimizes the weighted denoising error
for samples drawn from data distribution for all o, i.e.,

Eao~pous Ennr(0.021) [A(0) [ D@0 + 105.0) — o [3]. )

then we have V, log p(z;0) = (D(w;0) — ) /o2, where A(c) is a weighting function and n is a
noise. The key property of diffusion models is that the training and sampling are disentangled; one
can use different sampling schemes with same denoiser.

Text-to-image diffusion models. Text-to-image diffusion models (Nichol et al., 2021; Saharia et al.,
2022; Rombach et al., 2022) are conditional generative models that are trained with text embeddings.
They utilize classifier-free guidance (CFG) (Ho & Salimans, 2022), which learns both conditional and
unconditional models, and guide the sampling by interpolating the predictions with guidance scale
w: D¥(x;0,y) = (1 + w)D(x;0,y) — wD(x;0), where y is a text prompt. Empirically, w > 0
controls the tradeoff between sample fidelity and diversity. CFG scale is important in text-to-3D
generation, as for the convergence of 3D optimization (Poole et al., 2022; Wang et al., 2023b).

2.1 TEXT-TO-3D GENERATION VIA SCORE DISTILLATION SAMPLING

Text-to-3D synthesis aims to optimize a 3D representation resembling the images generated from
text-to-image diffusion models when rendered from any camera pose. This can be viewed as learning
a differentiable image generator ¢(f, c) where 6 is a parameter for generator and c is a condition for
image rendering (e.g., camera pose). For 3D application, we consider optimizing Neural Radiance
Fields (NeRFs) (Mildenhall et al., 2021) and 3D meshes with differentiable rasterizers (Laine et al.,
2020; Munkberg et al., 2022). Throughout the paper, we omit ¢ and write = ¢(#), unless specified.

Score Distillation Sampling (SDS) (Poole et al., 2022). SDS is done by differentiating the diffusion
training objective (Eq. 5) with respect to the rendered image @ = g(6). Formally, the gradient of
SDS loss is given as follows:

ox

VoLsps(0;x = g(0)) = Epn | A(t) (x — Dy + m; O‘(t)))% . (6)
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Intuitively, the SDS perturbs the image a with noise scaled by randomly chosen timestep ¢, and guide
the generator so that the rendered image moves to the higher density region. One can interpret the
SDS as the gradient of probability density distillation loss (Oord et al., 2018), which is equivalent to
a weighted ensemble of variational inference problem with noise scales given as follows:

arg;nin Etn [A(t)Dke(q(x; 0(2)) | p(; 0 (t)))], for @ = g(6), )

where we denote () as an implicit distribution of the rendered image & = g(6). It has been shown
that SDS requires higher CFG scale than conventional diffusion sampling (e.g., w = 100), which
often leads to blurry and over-saturated output.

Variatioanl Score Distillation (VSD) (Wang et al., 2023b). To tackle the limitation of SDS,
VSD solves Eq. 7 with particle-based variational inference (Chen et al., 2018) method principled
by Wasserstein gradient flow (Liu, 2017). To approximate the Wasserstein gradient flow, it involves
assessing the score function of rendered images V, log g(x; o), thus they propose to train auxiliary
diffusion model for approximation. In practice, they use low-rank adapter (Hu et al., 2021) to fine-tune
the diffusion model during the optimization by minimizing Eq. 5 with respect to the rendered images.
Let us denote the fine-tuned diffusion model D, (- ; o), then the gradient of VSD loss is given by
ox

20| ®)

Note that Eq. 8 is equivalent to Eq. 6 if we consider an ideal denoiser, i.e., Dy(x + n;0) = . In
contrast to SDS, VSD allows CFG scale as low as conventional diffusion samplers (e.g., w = 7.5),
thus resulting in highly-detailed and diverse 3D scene. Despite its promising quality, VSD requires a
considerably long time to generate a high-quality 3D content.

VoLysp (0: = 9(0)) = Ein [A(t) (Dg(x + ns0(t)) — Dyp(x + nso(t)))

2.2  SCHRODINGER BRIDGE PROBLEM

Schrodinger Bridges (SB) problem (Schrodinger, 1932; Léonard, 2013), which generalizes SGM
to nonlinear structure (Chen et al., 2021), aims at finding the most likely evolution of distribution
between &g ~ pa(xo) and 7 ~ pp(xr) with following forward and backward SDEs:

dz = [f + 9V log &, (z)]dt + g(t)dw, dz = [f — g°Vlog ;(z)]dt + g(t)dw, (9,10)
where ®,, &, are Schrodinger factors satisfying the boundary conditions ®(x, 0)®(x, 0) = pa(x)

and ®(x, T)®(x,T) = pp(x). Eq. 9 and Eq. 10 induce the same marginal density p;(x) almost
surely and the solution of evolutionary trajectory satisfies Nelson’s duality (Nelson, 2020): p;(x) =

®,(2)®;(z). Note that SGM is a special case of SB if we set ®,(x) = 1 and &, () = p;(z) for
t € [0,T]. SB is used for solving various image-to-image translation problems (Su et al., 2022; Meng
etal., 2021; Liu et al., 2023).

3 DREAMFLOW: ELUCIDATED TEXT-TO-3D OPTIMIZATION

We present DreamFlow, an efficient text-to-3D optimization method by solving probability flow
ODE for multi-view 3D scene. At high level, we aim at emulating the generative process of diffusion
models for text-to-3D optimization, instead of utilizing diffusion training objective as in SDS. This is
done by approximating the solution trajectory of probability flow ODE to transport the views of a 3D
scene into the higher density region of data distribution learned by diffusion model. This, in turn,
provides faster 3D optimization than SDS, while ensuring high-quality.

Challenges in solving probability flow ODE in 3D optimization. However, it is not straight-
forward to utilize PF ODE for text-to-3D optimization as is, because of the inherent differences
between 2D sampling and 3D optimization. First, unlike 2D diffusion sampling which starts off from
Gaussian noise, the multi-view images of a 3D scene are initialized by the 3D representation. As such,
it is natural to cast text-to-3D optimization as a multi-view Schrodinger Bridge problem. Second,
text-to-3D generation requires transporting multi-view images to the data distribution, which pre-
cludes the application of well-known image-to-image translation method (e.g., SDEdit (Meng et al.,
2021)). To overcome those challenges, we first derive a PF ODE that solves SB problem (Section 3.1),
and present a method that approximates probability flow for text-to-3D optimization (Section 3.2).
Finally, we introduce DreamFlow, which leverages proposed optimization algorithm for efficient and
high-quality text-to-3D generation (Section 3.3).
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Figure 2: Proposed 3D optimization method APFO. APFO use predetermined timestep schedule
for efficient 3D optimization. At each timestep ¢;, we sample £; multi-view images from a 3D scene,
and update 3D representation by approximation of probability flow computed by Eq. 13.

3.1 PROBABILITY FLOW ODE FOR SCHRODINGER BRIDGE PROBLEM

We consider the Schrodinger Bridge problem of transporting rendered image to the data distribution,
while using the diffusion prior. Let ¢(x) be the distribution of rendered image = = g(f). Our goal
is to solve SB problem that transports & ~ g() to pga by solving the reverse SDE in Eq. 10. To
leverage the rich generative prior of pre-trained diffusion model, our idea is to match the marginal
density of the evolution of SB by the density p;, where its score function can be estimated by pre-

trained diffusion model D,,. Then from Nelson’s duality, we have ®(x,t)®(x,t) = p.(x), where it
is equivalent to V log ®;(x) = Vg logp:(x) — V4 log (). By plugging it into Eq. 10, we have
our SDE and the corresponding PF ODE given as follows:

de = | f(z,t) — %gz(t) (Vg logpi(x) — Vg log @(x)) |di. (11)

While the score function V log p: () can be estimated by pre-trained diffusion model, V, log ®; ()
is intractable in general. One can simply let ®(x, t) = 1, which is indeed equivalent to SDEdit (Meng
et al., 2021), but this might results in convergence to a low-density region due to its high variance as
similar to SDS. Instead, we directly approximate V log ®,(x) by leveraging SGM. Liu et al. (2023)
showed that V log ®,(x) is indeed a score function of the marginal density of forward SDE (Eq. 1)
for  ~ ¢(x). Thus, we approximate the score V log ®;(x) by learning a SGM with the sample
x ~ ¢(zx). Following (Wang et al., 2023b), this is done by fine-tuning the diffusion model D,
initialized from D), using a low-rank adapter (Hu et al., 2021).

3.2 APPROXIMATE PROBABILITY FLOW ODE (APFO)

Since the forward SDE has a non-linear drift, Eq. 11 is no longer a diffusion process. Thus, we
approximate the score functions V5 log p;(x) and V, log ®;(x) by adding noise n to the sample x,
and use diffusion models D,, and Dy, respectively. Then the Eq. 11 with diffusion models is given by
7(t
de = gEt; (Dy(x +n;0(t)) — Dp(x+n;o(t))) |dt, (12)
g
where we note that the same noise n is passed to diffusion models to lower the variance. Also, we
use decreasing sequence of noise levels o () to ensure convergence to the data distribution.

Amortized sampling. The remaining challenge is to update the multi-view images within a 3D
scene. To this end, we use a simple amortized sampling (Feng et al., 2017). Given an image renderer
g(0, ¢) with camera pose parameter ¢, we randomly sample multiple camera poses to update a whole
scene at each timestep. Formally, given a decreasing noise schedule o(¢) with timesteps {¢;} ¥,
(i.e.,o(t1) > -+ > o(ty)), we randomly sample ¢; different views at each timestep ¢;, and update 0
using the target obtained by Eq. 12. Fort = ¢1,...,ty andfor ¢ =1,...,¢;, we do

0 « argmin || g(0,c) — sg(x + (tiy1 — t;)d;)|3, where & = g(f,c), and
0

o(tit1) — o(t:) (13)

di= =S (Da(x +ns0(t;)) — Dyl + m;0(t))).
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Figure 3: Coarse-to-fine text-to-3D optimization framework of DreamFlow. Our text-to-3D
generation is done in coarse-to-fine manner; we first optimize NeRF, then extract 3D mesh and
fine-tune. We use same latent diffusion model (denoiser 1) for first and second stage. Lastly, we
refine 3D mesh with high-resolution latent diffusion prior (denoiser 2). At each stage, we optimize
with different timestep schedule, which effectively utilize the diffusion priors.

Here sg is a stop-gradient operator. We refer our optimization method as approximate probability flow
ODE (APFO), which we provide visual explanation in Figure 2, and the algorithm in Algorithm 1.
Remark that we set different timestep schedules for different 3D optimization stages. For example,
when optimizing NeRF from scratch, we start from large timestep to fully exploit the generative
knowledge of diffusion model. When we fine-tune the 3D mesh, we set smaller initial timestep to
add more details without changing original contents.

Comparison with score distillation methods. The key difference of our method and score distilla-
tion methods is their objective in leveraging generative diffusion prior. Score distillation methods
directly differentiate through diffusion training loss (i.e., Eq. 5), while our approach aim at matching
the density of sampling trajectory. We remark that Eq. 12 is similar to Eq. 8 as they both contain
subtraction of score functions, but the difference occurs in its scaling of gradient flow. Empirically,
our approach gradually minimizes the loss, while score distillation methods results in fluctuating loss
(and norm of gradients) (see Figure 6). This often results in content shifting during optimization,
resulting in bad geometry as well. See Appendix C for more discussion.

3.3 COARSE-TO-FINE TEXT-TO-3D OPTIMIZATION FRAMEWORK

We present our coarse-to-fine text-to-3D optimization framework DreamFlow, which utilizes APFO
in training 3D representations. DreamFlow is consists of three stages; first we train the NeRF from
scratch. Second, we extract 3D mesh from the NeRF and fine-tune. Finally, we refine 3D mesh with
high-resolution diffusion prior to enhance aesthetic quality. Our framework is depicted in Figure 3.

Stage 1: NeRF optimization. We optimize NeRF from scratch by using multi-resolution hash
grid encoder from Instant NGP (Miiller et al., 2022) with MLPs attached to predict RGB colors and
densities. We follow the practice from the prior works (Poole et al., 2022; Lin et al., 2023; Wang et al.,
2023Db) for density bias initialization, point lighting, camera augmentation, and NeRF regularization
loss (see Appendix D for details). We use the latent diffusion model (Rombach et al., 2022) as a
diffusion prior. During training, we render 256 x 256 images and use APFO with initial timestep ¢; =
1.0 decrease to ty = 0.2 with £ = 5 views. We use the total of 800 dense timesteps unless specified.

Stage 2: 3D Mesh fine-tuning. We convert the neural field into the Signed Distance Field (SDF)
using the hash grid encoder from the first stage. Following (Chen et al., 2023), we disentangle the
geometry and texture by optimizing the geometry and texture in sequence. During geometry tuning,
we do not fine-tune Dy and let Dy(x;0) = « as done in ProlificDreamer (Wang et al., 2023b).
For geometry tuning, we use timesteps from ¢; = 0.8 to ¢t = 0.4, and for texture tuning, we use
timesteps from t; = 0.5toty = 0.1. We all use ¢ = 5.

Stage 3: Mesh refinement. We refine the 3D mesh using high-resolution diffusion prior, SDXL
refiner (Podell et al., 2023), which is trained to enhance the aesthetic quality of an image. During
refinement, we render the image with resolution of 1024x 1024, and use ¢; = 0.3 to ¢ty = 0.0 with
¢ = 10. Here we use timestep spacing of 10, which suffices to enhance the quality of 3D mesh.
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Figure 4: Qualitative comparison with baseline methods. For each baseline method, we present
visual examples with same text prompt is given. Our approach presents more detailed textures.

4 EXPERIMENT

Throughout the experiments, we use the text prompts in the DreamFusion gallery” to compare our
method with the baseline methods DreamFusion (Poole et al., 2022), Magic3D (Lin et al., 2023), and
ProlificDreamer (Wang et al., 2023b).

Qualitative comparisons. In Figure 4, we present qualitative comparisons between the baseline
methods. We take baseline results from figures or videos in respective papers or websites. Com-
pared to SDS-based approach such as DreamFusion and Magic3D, our approach presents more
photorealistic details and shapes. When compared to ProlificDreamer, our approach results in more
photorealistic details (e.g., eyes are more clearly represented for chimpanzee, and shadows are more
clearly depicted in cactus) by exploiting high-resolution diffusion prior.

User preference study. We conduct user studies to measure the human preference compared to
baseline methods. For each baseline method, we select 20 3D models from their original papers
or demo websites (see Appendix A). Then we construct three binary comparison tasks (total 60
comparison) to rank between DreamFlow and each baseline method. For each pair, 10 human
annotators were asked to rank two videos (or images if videos were unavailable) based on following
three components: text prompt fidelity, 3D consistency, and photorealism (see Appendix D). Results
are in Table 1. Compared to DreamFusion, Magic3D, and ProlificDreamer, DreamFlow consistently
wins on photorealism. While DreamFusion remains better, ours shows on par or better performance
against more recent methods, Magic3D and ProlificDreamer, on 3D consistency and prompt fidelity.

Quantitative comparison. For quantitative evaluation, we measure the CLIP (Radford et al., 2021)
R-precision following the practice of DreamFusion (Poole et al., 2022). We compare with Dream-
Fusion and ProlificDreamer on NeRF generation, and Magic3D and ProlificDreamer for 3D mesh
fine-tuning. For NeRF generation comparison, we randomly select 100 text prompts from DreamFu-
sion gallery and reproduce results for ProlificDreamer. For DreamFusion, we simply take videos from
their gallery. For 3D mesh fine-tuning comparison, we select 50 NeRF representations from previous

Zhttps://dreamfusion3d.github.io/gallery.html
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Table 1: User preference studies. We conduct user studies to measure the preference for 3D models.
We present pairwise comparison between DreamFlow (ours) and baselines DreamFusion (DF) (Poole
et al., 2022), Magic3D (M3D) (Lin et al., 2023), and ProlificDreamer (PD) (Wang et al., 2023b).

Method | ours tie DF | ours tie M3D | ours tie PD

3D consistency | 26.6% 31.0% 424% | 36.9% 51.8% 113% | 31.9% 52.5% 15.6%
Prompt fidelity | 22.8% 43.5% 33.7% | 381% 524% 9.52% | 30.6% 588% 10.6%
Photorealism 82.1% 652% 114% | 86.3% 893% 4.76% | 43.8% 369% 19.4%

Table 2: Quantitative comparisons: NeRF opti- Table 3: Quantitative comparisons: Mesh fine-
mization. We measure average CLIP R-precision tuning. We measure CLIP R-precision of ren-
scores of rendered views from DreamFusion, Pro- dered 3D mesh from Magic3D, ProlificDreamer,

lificDreamer and DreamFlow. and DreamFlow.
Method ViT-L/14 ViT-B/16 ViT-B/32 Method ViT-L/14 ViT-B/16 ViT-B/32
DreamFusion 0.846 0.796 0.706 Magic3D 0.801 0.741 0.599
ProlificDreamer 0.875 0.858 0.782 ProlificDreamer 0.884 0.875 0.828
DreamFlow (ours)  0.905 0.871 0.798 DreamFlow (ours)  0.902 0.886 0.846

experiment, and reproduce Magic3D and ProlificDreamer using open-source implementation.> We do
not conduct mesh refinement for fair comparison. For evaluation, we render 120 views with uniform
azimuth angle, and compute CLIP R-precision using various CLIP models (ViT-L/14, ViT-B/16, and
ViT-B/32). Table 2 and Table 3 presents the results, which show that our method achieves better
quantitative score compared to prior methods.

Optimization efficiency. We show the efficiency of our method through comparing the generation
speed. Note that we use a single A100 GPU for generating each 3D content. For the NeRF
optimization, we train for 4000 iterations with resolution of 256, which takes 50 minutes. For mesh
fine-tuning, we tune the geometry for 5000 iterations and texture for 2000, taking 40 minutes in total.
Lastly, we refine mesh for 300 iterations, which takes 20 minutes. In sum, our method takes about
2 hours for a single 3D content generation. In comparison, DreamFusion takes 1.5 hours using 4
TPU v4 chips in generating NeRF with resolution of 64, and Magic3D takes 40 minutes using 8
A100 GPUs in synthesizing 3D mesh with resolution of 512. ProlificDreamer requires 5 hours in
generating NeRF, 7 hours in mesh tuning. While Magic3D and DreamFusion could be faster using
larger computing power, DreamFlow generates more photorealistic and high-resolution 3D content.

Optimization analysis. We compare the optimization processes of APFO and VSD by comparing
the values of loss and gradient norm per optimization iteration. For VSD, we compute loss as in
Eq. 13, which is equivalent to Eq. 8 in effective gradient. In Figure 6, we plot the loss values and
gradient norms during NeRF optimization with each APFO and VSD. Remark that the loss and
gradient norm gradually decrease for APFO, while they fluctuates for VSD. This is because of the
randomly drawn timestep during optimization, which makes optimization unstable. Thus, we observe
that VSD often results in poor geometry during optimization, or over-saturated (see Figure 16 in
Appendix C).

Effect of each optimization stage. In Figure 5, we provide qualitative examples on the effect
of coasre-to-fine optimization. While DreamFlow generates high-quality NeRF, mesh tuning and
refinement enhances the fidelity by increasing the resolution and using larger diffusion prior.

5 RELATED WORK

Text-to-3D generation. Recent works have demonstrated the promise of generating 3D content
using large-scale pre-trained text-to-image generative models without using any 3D dataset. Earlier
works used CLIP (Radford et al., 2021) image-text models for aligning 2D renderings and text
prompts (Jain et al., 2022; Mohammad Khalid et al., 2022). DreamFusion (Poole et al., 2022) present

Shttps://github.com/threestudio-project/threestudio
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Stage 1

An imperial state crown of England Marble bust of fox head

Figure 5: Ablation on the effect of DreamFlow coarse-to-fine text-to-3D optimization. Given
stage 1 generates high quality NeRF, stage 2 improves the geometry and texture, and stage 3 refines
the 3D mesh to add more photorealistic details.

Iteration ) Iteration Iteration Iteration

(a) APFO loss (b) APFO gradient Norm (c) VSD loss (d) VSD gradient norm

Figure 6: Optimization analysis. We plot the loss and gradient norm during 3D optimization for
APFO and VSD. Remark that the loss and gradient norm gradually decreases for APFO, while VSD
shows fluctuating loss and gradient norm.

text-to-3D generation by distilling score function of text-to-image diffusion model. Concurrently,
Score Jacobian Chaining (SJC) (Wang et al., 2023a) established another approach to use 2D diffusion
prior for 3D generation. Magic3D (Lin et al., 2023) extends DreamFusion to higher resolution 3D
content creation by fine-tuning on 3D meshes. Other works (Chen et al., 2023; Tsalicoglou et al.,
2023) focused on designing better geometry prior for text-to-3D generation. ProlificDreamer (Wang
et al., 2023b) enabled high-quality 3D generation by using advanced score distillation objective. All
the prior works resort to score distillation methods, while we first demonstrate probability flow ODE
based approach to accelerate the 3D optimization.

Transferring 2D diffusion priors. Due to the success of score-based generative models (Song
et al., 2020b), especially diffusion models (Ho et al., 2020) have led to the success on text-to-image
synthesis (Nichol et al., 2021; Saharia et al., 2022; Rombach et al., 2022; Balaji et al., 2022). Many
recent studies focus on transferring the rich generative prior of text-to-image diffusion models to
generate or manipulate various visual contents such as images, 3D representations, videos, with text
prompts (Brooks et al., 2023; Haque et al., 2023; Kim et al., 2023; Hertz et al., 2023). Our approach
also shares the objective in exploiting the diffusion models, where utilizing APFO to synthesize
various visual contents is an interesting future work.

6 CONCLUSION

We propose DreamFlow, which enables high-quality and fast text-to-3D content creation. Our
approach is built upon elucidated optimization strategy which approximates the probability flow
ODE of diffusion generative models catered for 3D scene optimization. As a result, it significantly
streamlines the 3D scene optimization, making it more scalable with high-resolution diffusion priors.
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By taking this benefit, we propose three stage 3D scene optimization framework, where we train
NeRF from the scratch, fine-tune the mesh extracted from NeRF, and refine the 3D mesh using high-
resolution diffusion prior. Through user preference studies and qualitative comparisons, we show that
DreamFlow outperforms prior state-of-the-art method, while being 5x faster in its generation.

Limitation. Since we are using pre-trained diffusion priors that do not have 3D understanding, the
results may not be satisfactory in some cases. Also, the unwanted bias of pre-trained diffusion model
might be inherited.

ACKNOWLEDGEMENT

This work was supported by Institute for Information & communications Technology Promotion
(IITP) grant funded by the Korea government (MSIT) (No.2019-0-00075 Artificial Intelligence Grad-
uate School Program(KAIST); No.2021-0-02068, Artificial Intelligence Innovation Hub; No.2022-0-
00959, Few-shot Learning of Causal Inference in Vision and Language for Decision Making). This
work is in partly supported by Google Research grant and Google Cloud Research Credits program.

REFERENCES

Yogesh Balaji, Seungjun Nah, Xun Huang, Arash Vahdat, Jiaming Song, Karsten Kreis, Miika Aittala,
Timo Aila, Samuli Laine, Bryan Catanzaro, et al. ediffi: Text-to-image diffusion models with an
ensemble of expert denoisers. arXiv preprint arXiv:2211.01324, 2022.

Tim Brooks, Aleksander Holynski, and Alexei A Efros. Instructpix2pix: Learning to follow image
editing instructions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 18392-18402, 2023.

Eric R Chan, Connor Z Lin, Matthew A Chan, Koki Nagano, Boxiao Pan, Shalini De Mello, Orazio
Gallo, Leonidas J Guibas, Jonathan Tremblay, Sameh Khamis, et al. Efficient geometry-aware 3d
generative adversarial networks. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 16123-16133, 2022.

Changyou Chen, Ruiyi Zhang, Wenlin Wang, Bai Li, and Liqun Chen. A unified particle-optimization
framework for scalable bayesian sampling. arXiv preprint arXiv:1805.11659, 2018.

Rui Chen, Yongwei Chen, Ningxin Jiao, and Kui Jia. Fantasia3d: Disentangling geometry and
appearance for high-quality text-to-3d content creation. arXiv preprint arXiv:2303.13873, 2023.

Tianrong Chen, Guan-Horng Liu, and Evangelos A Theodorou. Likelihood training of schr\" odinger
bridge using forward-backward sdes theory. arXiv preprint arXiv:2110.11291, 2021.

Yihao Feng, Dilin Wang, and Qiang Liu. Learning to draw samples with amortized stein variational
gradient descent. arXiv preprint arXiv:1707.06626, 2017.

Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H Bermano, Gal Chechik, and Daniel
Cohen-Or. An image is worth one word: Personalizing text-to-image generation using textual
inversion. arXiv preprint arXiv:2208.01618, 2022.

Jun Gao, Tianchang Shen, Zian Wang, Wenzheng Chen, Kangxue Yin, Daiqing Li, Or Litany, Zan
Gojcic, and Sanja Fidler. Get3d: A generative model of high quality 3d textured shapes learned
from images. Advances In Neural Information Processing Systems, 35:31841-31854, 2022.

Ayaan Haque, Matthew Tancik, Alexei A Efros, Aleksander Holynski, and Angjoo Kanazawa.
Instruct-nerf2nerf: Editing 3d scenes with instructions. arXiv preprint arXiv:2303.12789, 2023.

Amir Hertz, Kfir Aberman, and Daniel Cohen-Or. Delta denoising score. arXiv preprint
arXiv:2304.07090, 2023.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,
2022.

10



Published as a conference paper at ICLR 2024

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840-6851, 2020.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Yukun Huang, Jianan Wang, Yukai Shi, Xianbiao Qi, Zheng-Jun Zha, and Lei Zhang. Dreamtime: An
improved optimization strategy for text-to-3d content creation. arXiv preprint arXiv:2306.12422,
2023.

Aapo Hyvirinen and Peter Dayan. Estimation of non-normalized statistical models by score matching.
Journal of Machine Learning Research, 6(4), 2005.

Ajay Jain, Ben Mildenhall, Jonathan T Barron, Pieter Abbeel, and Ben Poole. Zero-shot text-guided
object generation with dream fields. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 867-876, 2022.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in Neural Information Processing Systems, 35:26565-26577,
2022.

Subin Kim, Kyungmin Lee, June Suk Choi, Jongheon Jeong, Kihyuk Sohn, and Jinwoo Shin.
Collaborative score distillation for consistent visual synthesis. arXiv preprint arXiv:2307.04787,
2023.

Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol, Jaakko Lehtinen, and Timo Aila. Modular
primitives for high-performance differentiable rendering. ACM Transactions on Graphics (TOG),
39(6):1-14, 2020.

Christian Léonard. A survey of the schr\" odinger problem and some of its connections with optimal
transport. arXiv preprint arXiv:1308.0215, 2013.

Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki Takikawa, Xiaohui Zeng, Xun Huang, Karsten
Kreis, Sanja Fidler, Ming-Yu Liu, and Tsung-Yi Lin. Magic3d: High-resolution text-to-3d content
creation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp- 300-309, 2023.

Guan-Horng Liu, Arash Vahdat, De-An Huang, Evangelos A Theodorou, Weili Nie, and Anima
Anandkumar. I?SB: Image-to-image schrodinger bridge. arXiv preprint arXiv:2302.05872, 2023.

Qiang Liu. Stein variational gradient descent as gradient flow. Advances in neural information
processing systems, 30, 2017.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon.
Sdedit: Guided image synthesis and editing with stochastic differential equations. arXiv preprint
arXiv:2108.01073, 2021.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99-106, 2021.

Nasir Mohammad Khalid, Tianhao Xie, Eugene Belilovsky, and Tiberiu Popa. Clip-mesh: Generating
textured meshes from text using pretrained image-text models. In SIGGRAPH Asia 2022 conference
papers, pp. 1-8, 2022.

Thomas Miiller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics
primitives with a multiresolution hash encoding. ACM Transactions on Graphics (ToG), 41(4):
1-15, 2022.

11



Published as a conference paper at ICLR 2024

Jacob Munkberg, Jon Hasselgren, Tianchang Shen, Jun Gao, Wenzheng Chen, Alex Evans, Thomas
Miiller, and Sanja Fidler. Extracting triangular 3d models, materials, and lighting from images.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
8280-8290, 2022.

Edward Nelson. Dynamical theories of Brownian motion, volume 106. Princeton university press,
2020.

Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,
Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with
text-guided diffusion models. arXiv preprint arXiv:2112.10741, 2021.

Aaron Oord, Yazhe Li, Igor Babuschkin, Karen Simonyan, Oriol Vinyals, Koray Kavukcuoglu,
George Driessche, Edward Lockhart, Luis Cobo, Florian Stimberg, et al. Parallel wavenet: Fast
high-fidelity speech synthesis. In International conference on machine learning, pp. 3918-3926.
PMLR, 2018.

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Miiller, Joe
Penna, and Robin Rombach. Sdxl: improving latent diffusion models for high-resolution image
synthesis. arXiv preprint arXiv:2307.01952, 2023.

Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d
diffusion. arXiv preprint arXiv:2209.14988, 2022.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748-8763. PMLR, 2021.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684—10695, 2022.

Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22500-22510,
2023.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. Advances in Neural Information
Processing Systems, 35:36479-36494, 2022.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. arXiv
preprint arXiv:2202.00512, 2022.

Erwin Schrodinger. Sur la théorie relativiste de 1’électron et I’interprétation de la mécanique quantique.
In Annales de ’institut Henri Poincaré, volume 2, pp. 269-310, 1932.

Tianchang Shen, Jun Gao, Kangxue Yin, Ming-Yu Liu, and Sanja Fidler. Deep marching tetrahedra:
a hybrid representation for high-resolution 3d shape synthesis. Advances in Neural Information
Processing Systems, 34:6087-6101, 2021.

Kihyuk Sohn, Nataniel Ruiz, Kimin Lee, Daniel Castro Chin, Irina Blok, Huiwen Chang, Jarred
Barber, Lu Jiang, Glenn Entis, Yuanzhen Li, et al. Styledrop: Text-to-image generation in any
style. arXiv preprint arXiv:2306.00983, 2023.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020a.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020b.

12



Published as a conference paper at ICLR 2024

Xuan Su, Jiaming Song, Chenlin Meng, and Stefano Ermon. Dual diffusion implicit bridges for
image-to-image translation. arXiv preprint arXiv:2203.08382, 2022.

Christina Tsalicoglou, Fabian Manhardt, Alessio Tonioni, Michael Niemeyer, and Federico Tombari.
Textmesh: Generation of realistic 3d meshes from text prompts. arXiv preprint arXiv:2304.12439,
2023.

Dor Verbin, Peter Hedman, Ben Mildenhall, Todd Zickler, Jonathan T Barron, and Pratul P Srinivasan.
Ref-nerf: Structured view-dependent appearance for neural radiance fields. In 2022 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5481-5490. IEEE, 2022.

Haochen Wang, Xiaodan Du, Jiahao Li, Raymond A Yeh, and Greg Shakhnarovich. Score jacobian
chaining: Lifting pretrained 2d diffusion models for 3d generation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 12619-12629, 2023a.

Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, and Jun Zhu. Prolific-
dreamer: High-fidelity and diverse text-to-3d generation with variational score distillation. arXiv
preprint arXiv:2305.16213, 2023b.

Xiaohui Zeng, Arash Vahdat, Francis Williams, Zan Gojcic, Or Litany, Sanja Fidler, and Karsten Kreis.
Lion: Latent point diffusion models for 3d shape generation. arXiv preprint arXiv:2210.06978,
2022.

13



Published as a conference paper at ICLR 2024

Appendix

A ADDITIONAL QUALITATIVE COMPARISON

L |}

Wedding dress made out of tentacles

Figure 7: Qualitative Comparison with DreamFusion (Poole et al., 2022) (left) and DreamFlow
(right).
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Tiger made out of yarn

Figure 8: Qualitative Comparison with DreamFusion (Poole et al., 2022) (left) and DreamFlow
(right).
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Figure 9: Qualitative Comparison with Magic3D (Lin et al., 2023) (left) and DreamFlow (right).
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a rabbit, animated movie character, high detail 3d model
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Figure 10: Qualitative Comparison with Magic3D (Lin et al., 2023) (left) and DreamFlow (right).
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A car made out of sushi

Figure 11: Qualitative Comparison with ProlificDreamer (Wang et al., 2023b) (left) and Dream-
Flow (right).
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Michelangelo style statue of a dog reading news on a cell phone

A tarantula, highly detailed

Figure 12: Qualitative Comparison with ProlificDreamer (Wang et al., 2023b) (left) and Dream-
Flow (right).
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Stage 2

Stage 3

Sushi made out of car

Stage 2

Stage 3

Cat lying on its side batting at a ball of yarn Squirrel made out of fruit

Figure 13: Qualitative comparisons Stage 2 and Stage 3 mesh fine-tuning. We provide additional
qualitative results on the ablation of using Stage 3 Mesh refinement. We zoomed in a region of
rendered view to demonstrate the effect of stage 3 mesh refinement. Remark that Stage 3 mesh results
in more high-contrast images with better textures.
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(d) VSD+DreamTime

Figure 14: 2D experiments. We provide qualitative results of the 2D image generation with (a) APFO,
(b) VSD, (c) VSD with linearly decreasing timestep schedule, and (d) VSD with DreamTime (Huang
et al., 2023). Remark that APFO generates high-fidelity image with only 200 optimization steps,
while VSD and its variants generate image with blurry artifacts.

B FURTHER EXPLANATION

Difference between APFO and VSD. Here we provide further details in difference between APFO
and VSD. First, remark that the proposed method APFO, is different to VSD in its implementation.
In specific, the major difference is that APFO compute the time-derivative of the noise scale, i.e.

% (e.g. Eq. 11), which is designed to transport the diffusion latent to be the next noise level from

the derivation of probability flow ODE. On the other hand, score distillation methods, e.g. VSD,
leverages the empirically designed weighting function \(t) = o%(¢). Those design choices of APFO
and VSD are different due to their intrinsic motivation. APFO aims to approximate the probability
flow ODE with decreasing timestep schedule, so that at the terminal step (i.e., as o(t) — 0, the
optimized images are sampled from data distribution. On the other hand, VSD aims to minimize
the ensemble of KL divergence on various noise levels, where particle-based variational inference
algorithms were used.

Moreover, APFO is different from VSD with a simple timestep annealing method.This is because
APFO employs time-derivative of noise level, which is the exact amount to move to the next noise
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Stage 1. NeRF optimization Results

Figure 15: Qualitative visualization text-to-3D optimization process of DreamFlow. We show
that DreamFlow generates fast and high-quality 3D representations from text prompt by using pre-
scheduled timesteps.

level. However, implementing VSD with decreasing noise-level does not involve such design choice.
For better explanation, we provide an 2D image generation experiment which compares APFO with
default VSD (i.e. random timestep sampling) and VSD with timestep annealing (linearly decreasing
as in APFO). Also, we provide additional comparison with DreamTime (Huang et al., 2023), which
proposed to sample timesteps according to predetermined weighting functions. For implementation,
we use 200 optimization steps by using default DDIM (Song et al., 2020a) timestep schedule. For
other methods, we follow the experimental setup in ProlificDreamer (Wang et al., 2023b) paper, with
500 optimization steps. For VSD with linearly decreasing timestep, we linearly decrease timestep
simply from 1.0 to 0.0, and for VSD with DreamTime, we follow their implementation of weighting
function.

The results are shown in Figure 14. One can observe that the image generated by APFO results
in more sharp details, while other images remain blurry artifacts. Also, the blurry artifact does
not diminish even when using an annealing timestep schedule for VSD or VSD scheduled with
DreamTime. Also, APFO generates a more faithful image even when using 100 or 200 number of
steps, while other methods use 500 steps. This 2D experiment show that 1) APFO is not only different
from simply taking VSD with timestep annealing, but also presents a more faithful image, and 2) by
approximating the probability flow of pretrained diffusion model, APFO is able to generate image
with fewer optimization steps.

C ABLATION STUDY

Effect of predetermined timestep schedule. To further demonstrate the effect of predetermined
timestep schedule, we plot the optimization processes of DreamFlow framework. In Figure 15,
we visualize the interim results of NeRF and meshes during 3D optimization. We remark that
our framework using scheduled timesteps are similar to the ancestral sampling of text-to-image
diffusion models that we first identify the geometry with high noise scales (i.e., large timestep), then
we provide more details by using low noise scales (i.e., small timesteps). The refinement stage is
involved to enhance the quality of 3D meshes, which is a common practice in 2D image sampling,
where image-to-image diffusion models are used. While our method show how we emulate the 2D
text-to-image sampling procedure for text-to-3D generation, some other applications in 2D spaces
can be further considered, e.g., instruction-guided editing (Brooks et al., 2023), personalization (Ruiz
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ProlificDreamer DreamFlow

Figure 16: Qualitative comparison between VSD and APFO optimization process. Due to the
random timestep, VSD often changes the object to bad geometry, while APFO consistently move to
the data distribution. Thus is more efficient and results in better 3D generation.

ProlificDreamer Ours

Small lavender isometric room, soft lighting, unreal engine render, voxels.
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Figure 17: Complex NeRF generation. We compare ProlificDreamer on scene (first row) and
object-centric scene (second row) generation. Our method generates higher fidelity NeRF scene,
while being more faster in its generation.

et al., 2023; Gal et al., 2022), or reference-guided stylization (Sohn et al., 2023), which we leave for
future work.

Qualitative comparison on 3D optimization methods. As shown in Figure 6, we show that APFO
gradually decreases the loss and gradient norm during its optimization, while VSD suffers from
fluctuating loss. We remark that using random timestep in score distillation (i.e., VSD) inefficiently
prolongs the optimization, while often results in content shift during optimization, which ultimately
results in bad geometry. Here, we provide qualitative examples in such cases, where we show how
APFO mitigates such issue by using decreasing timestep schedule. In Figure 16, we depict the
optimization process of VSD and APFO. First, note that even though APFO trained shorter than
VSD, APFO converged to a valid 3D content. While length optimization of VSD leads to detailed
texture, the geometry is tilted and the undesirable features are appended throughout the optimization.
On the other hand, APFO consistently update the feature with decreasing noise scales, which lead to
coherent geometry and texture.
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Complex NeRF generation. Following the setup from ProlificDreamer (Wang et al., 2023b), we
evaluate our method in complex and object-centric scene generation. This is done by using their
NeRF scene-initialization by using different spatial density bias. In Figure 17, we show the results
compared to ProlificDreamer. Note that our approach generates scene with higher fidelity even with
shorter optimization iteration.
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Algorithm 1 Approximate probability flow ODE (APFO)

1: procedure APFO(g, Dy(x;0), Dg(x;0), o(t), s(t), ticqo,....n}» Lic{o,....N})

2 Initialize 0 > 3D scene initialization
3 for: € {0,...,N —1}do

4 for j € {0,...,4;} do > Sample ¢; views for amortized optimization
5: Sample ¢; ~ C and render = g(8, ¢;)

6: Sample nn ~ N (0, o (t:)I)

7 ¢+ ¢ — 1Vl Dg(x +n;0(t:)) — |3 > Update ¢ using DSM objective
8 Sample n’ ~ N(0, o (t:)I) > Sample another random noise
9: d«+ UE?; (Dp(x 4+ n';0(ti)) — Dg(x + n';0(t:)) > Evaluate dz /dt at ¢

o(t;

10: E < x+ (tig1 —t;)d > Take Euler step from ¢; to t;4+1
11: 0+ 0 —1m2Vellg0,c;) — 2|3 > Update 0 using updated target
12: return 0 > Return optimized 3D scene

D EXPERIMENTAL SETUP

D.1 3D SCENE OPTIMIZATION

Diffusion model configuration. We use Stable Diffusion 2.1 (Rombach et al., 2022) for our latent
diffusion prior of stage 1 and stage 2, and Stable Diffusion XL (SDXL) Refiner (Podell et al.,
2023) for stage 3. When estimating V. log ®;(x), we use Stable Diffusion 2.1-v, a v-prediction
model (Salimans & Ho, 2022) for stage 1 and stage 2, and use same SDXL Refiner for stage 3.
Following (Wang et al., 2023b), we train auxiliary camera pose embedding MLP, which is added to
timestep embedding for each U-Net block. However, we find not training camera embedding also
works well. We use EulerDiscreteScheduler for our noise schedule and timestep.

Scene representation. For density bias initialization, we follow Magic3D (Lin et al., 2023) and
ProlificDreamer (Wang et al., 2023b). We set the camera distance from 1.0 to 1.5, bounding box
size as 1.0. We use softplus activation for the density prediction and add spatial density given by
Tnit(1) = Ar - (1 — ||p]]2/¢), where 1 is a 3D coordinate, A, = 10 is a density bias scale, ¢ = 0.5 is
the offset scale. We use same light sampling strategy as of Magic3D. We use background MLP that
learns background color following (Poole et al., 2022).

NeRF optimization. We use hash grid encoder from Instant NGP (Miiller et al., 2022), with 16
levels of hash dictionaries of size 21 and feature dimension of 4. We use 512 samples per ray in
rendering. During NeRF optimization, we found that orientation loss (Verbin et al., 2022) helps
consolidating the geometry. We do not use sparsity regularization, which we find it hurts geometry.
During optimization, we use AdamW optimizer (Loshchilov & Hutter, 2017) where we train the
grid encoder with learning rate le — 2, color and density network with learning rate le — 3, and
background MLP with learning rate 1e — 3 or 1le — 4. We do not use shading, because it distracts
learning texture.

Stage 2: 3D mesh fine-tuning. We extract 3D mesh from stage 1 NeRF using DMTet (Shen et al.,
2021). We then fine-tune the geometry by rendering normal maps (Chen et al., 2023). We find that
finetuning D, with APFO for geometry tuning is not that useful, thus we simply let Dy(xz;0) = x
for given rendered image, and use same APFO algorithm. We fine-tune the geometry with AdamW
optimizer of learning rate 1le — 2. For texture fine-tuning, we use AdamW optimizer with learning
rate le — 2 for grid encoder, 1e — 3 for color network.

Stage 3: 3D mesh refinement We continue finetuning the 3D mesh from stage 2. Remark that
SDXL requires high memory and thus it takes much longer time in optimization due to its size of
U-Net. We find that using timestep spacing of 10 works well for SDXL, which enhances efficiency.
We use AdamW optimizer with learning rate 1e — 2 for grid encoder, le — 3 for color network.
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D.2 EVALUATION METRICS
D.3 HUMAN SURVEY

For each baseline DreamFusion (Poole et al., 2022), Magic3D (Lin et al., 2023), and Prolific-
Dreamer (Wang et al., 2023b), we construct 20 binary pairs to rank with our results. We collected 10
binary ratings for each pair, total 600 human ranking were collected. To properly evaluate the quality
of 3D content, we ask the following to the human raters:

1. 3D consistency Which 3D item has a more plausible and consistent geometry?
2. Prompt fidelity Which video or images best respects the provided prompt?
3. Photorealism Which video or images has a more photorealistic details?

For the 3D consistency, users were asked to select the item that has more geometric consistency, i.e.,
better shape among different views. For prompt fidelity, users were asked to select the item that is
more relevant to the meaning of text prompt. For the photorealism, users were asked to select the
item that has more detailed textures that resembles the real 3D objects. The users can select unknown
or tie, to refrain their selection.

D.4 CLIP R-PRECISION.

CLIP R-Precision measures the fidelity of the image in relation to its text input by using CLIP
image-text retrieval. For the default CLIP R-precision measure, the distractors, i.e., the captions
that distracts the prompts to be retrieved easily, were constructed. We found that the prompts in
DreamFusion gallery share similar objects and attributes (e.g., object made out of salad, made out
of wood, etc), we use 397 prompts as the full prompt set. During evaluation, we render the albedo
images of a 3D scene for 120 uniformly distributed azimuth angles with elevation angle of 15. The
camera distances were 1.2 as default. Then we compute CLIP score for the whole images and the full
text prompts, and compute the precision with R = 1.
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