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The decisions behind the mechanics of a biometric verification system based on Machine Learning (ML) are
difficult to comprehend. Although there is now well-established research in various fields of application, such
as health or justice, the use of ML-based methods is accompanied by a lack of confidence that results in their
limited use. The explainability of a ML system and the comprehension of what lies behind its prediction is one
of the numerous characteristics that define “trust” in these systems. Over the years, face-based biometric authen-
tication has been the subject of extensive research in both academia and industry. However, existing biometric
authentication systems still have problems regarding accuracy, robustness and, explainability. Still lacking in
the literature is a comprehensive examination of the use of post-hoc explainability techniques for such systems.
Cognitive neuroscience has always been interested in themethod bywhich people perceive faces; local elements
such as the nose, eyes, and mouth are critical to the perception and recognition of a face. In this work, starting
from this assumption, we propose a framework of visual and textual explainability based on the parts of a face
by analyzing them with respect to the facial attributes reported in the CelebA dataset. The primary objective is
to be able to explain why two pictures of different subjects are distinct. This is done by sinthesizing pairs of
images that illustrate how dissimilar the various parts of the face under investigation are and incisive and direct
textual explanations of the distinguishing features are generated. A further study analyzes an interpretable
mapping between the semantic space of the text and the space of the image.
© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

In recent years,Machine Learning (ML) algorithms have beenwidely
utilized in several researchfields, including healthcare, and even as sup-
port in the administration of public order. Even though the benefits of
using these kinds of systems have been well documented in the litera-
ture and from a theoretical point of view, their use in the real world is
still behind. This is also due to the lack of transparency that frequently
accompanies the development and implementation of such innovative
technologies, which the populace views with skepticism and disillu-
sionment. In fact, these models are often more accurate, but they work
like impenetrable black boxes. This makes it hard to understand the
basic ideas behind their predictions. Instead of trying to make models
that are naturally easy to understand, there has been a lot of recent
work on “Explainable ML,” which uses different methods to explain
why a model made a certain decision [1]. Facial feature analysis can be
utilized as supplemental (or soft) information to enhance the
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performance of conventional biometric systems and assist those that
generate a textual description for facial recognition, hence reducing
the identification search space. By verbalizing the description based on
facial characteristics, it is possible to give the user a tool that simulates
human conversation when attempting to identify or differentiate a per-
son. Thus, the purpose of such a model is to facilitate communication
that more closely resembles human communication by emphasizing
distinctions through textual descriptions. As a rule, humans prefer con-
cise explanations that compare the current situation to one inwhich the
event did not occur. Especially uncommon causes provide adequate
explanations [2]. In this research, we intend to propose a post-hoc
framework for the explainability of a biometric identity verification
system. To compare the two identities, both a verbal description based
on the dissimilarities between the facial traits and an image illustrating
the differences between the 21 characteristics of each identity are
provided. Additional study reveals the relationship between the textual
space and the image space, aswell as the potential of the two systems in
relation to the limitations of the dataset.

The rest of the paper is organized as follows: research on facial attri-
butes and ML explainability is reviewed in Section 2. Section 3 presents
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the dataset in detail, while Section 4 provides a description of the
method's most significant components. Finally, Section 5 analyzes the
results obtained, and Section 6 draws the conclusion of this work and
addresses open issues.

1.1. Motivations

ManyMLmodels are “black boxes” that do not explain their predic-
tions in a way that humans can comprehend, resulting in a lack of
confidence in their potential use in the healthcare and justice fields.
Therefore, an explainability architecture for a biometric identity verifi-
cation system could be a tool for increasing human confidence in the
system, as it would provide insight into why certain decisions were
made. There are still few works in the literature that aim to provide an
explanation in the field of biometrics. To deliver a relevant and valuable
explanation, the model must provide an explanation that is both com-
prehensible and simulates what a human subject would emphasize. In
this work, we focus on the analysis of facial characteristics and the in-
trinsic and extrinsic information that allows us to distinguish between
two individuals. It is common knowledge that the information acquired
from the face helps individuals to recognize the identity of the other,
understandwhat he or she is feeling and thinking, forecast their actions,
identify their emotions, develop relationships, and communicate
through facial movements. Consequently, the purpose of this research
is to propose, for the first time, an explainability framework for a
biometric verification system based on facial characteristics.

1.2. Main contributions

This paper proposes a post-hoc explainability approach to assist
users in understanding decisions made by a biometric verification
system that uses information from individual parts of the face to deter-
mine the mismatch between two different identities. In fact, the goal of
the framework is to give meaning to the decisions made by a system
based on the main attributes and features of the face, thus providing
an explanation as to why the images of two different subjects do not
match. The userwill be able to have both an image and a textual caption
thatmakes explicit the twomain attributes or characteristics that differ-
entiate two different subjects, the so-called impostors, and will be able
to have an interpretable mapping between the semantic space of the
text and the space of the image. The imagemakes it possible to visualize
the distance between the 21 facial attributes being studied and objects
in a two-dimensional space.

2. Related works

2.1. Facial attribute analysis

The human-understandable visual characteristics of face images are
described by facial attributes, which represent intuitive semantic
features [3]. Facial attribute analysis is widely used in real-world appli-
cations such as face verification, face identification, face retrieval, and
face image synthesis. It is well known that some features of the face,
such as soft biometric traits, can enhance the functionality of traditional
biometric systems and facilitate human-explained recognition. With
the effective application of Deep Learning solutions, researchers turned
to popular architectures to pursue ever increasing performance.

Kumar et al. [4] introduce one of the first facial attribute analysis
methods for face verification, developing two approaches using traits
computed on face images based on describable attributes and simile
classifiers. Next, the authors in [5] extracted a diverse set of highly
discriminative intermediate features, namely Part-based One-vs.-One
Features (POOFs), followed by linear SVMs for each attribute. Prelimi-
nary results in using Deep Learning for face verification and predicting
facial attributes were obtained, respectively, by Chung et al. [6] and
Liu et al. [7]. In [8], the authors proposed a new Deep Learning
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framework for learning facial attributes by exploiting videos and con-
textual data captured by a wearable sensor. Zhong et al. [9] adopted
the mid-level CNN features for face attribute prediction, based on the
observation that facial attribute characteristics are different: some of
them are locally oriented while others are globally defined. The task of
facial attribute prediction has also been investigated as a regression
problem with a 16 layer VGG topology in order to minimize the mean
squared error loss [10]. Abate et al. [11] described an unsupervised clus-
tering approach for face attribute recognition. The proposedmethod is a
neural networkmodel based on transfer learning. The goal of thismodel
is to group faces based on the facial features they have in common. A
novel Deep Learning formulation for facial attribute analysis, called R-
Codean autoencoder, was presented in [12]. Recently, several deep
CNNs architectures have been developed for performing multi-
attribute classification [13–15].

2.2. Explainability in machine learning

The goal ofML interpretability is to close the gap between a system's
predictions (i.e., the what) and the rationale behind those predictions
(i.e., the why) [16,17]. According to [18], the following criteria are
used to categorize explainable approaches: depth, scope, andmodel ap-
plicability. The degree of complexity of a model is represented by its
depth. Contrary to post-hoc approaches, which allow complexity and
simply seek to explain the model outputs, intrinsic techniques fre-
quently place limits on a model's complexity. Scope represents the
range of an interpretability approach. A technique is working on a
local scale when it can explain specific predictions. On the other hand,
a strategy performs a global explanation if it enables us to comprehend
a model at once. Finally, a technique's capacity to explain families of
models or architectures is referred to as model applicability. Because
they depend on specific traits of a given type of model, model-specific
techniques are only applicable to that type of model. On the other
hand, model-agnostic methods are so general that they can be used
with almost any model. Furthermore, these methods can be differenti-
ated using various but equally valid criteria. It's crucial to assess an
interpretability approach according to its expressiveness and complex-
ity. While the latter focuses on the computing cost of generating expla-
nations and may make some techniques inapplicable, the former is
bound to the area in which the explanations exist (for example, natural
language or images). Strategies can also be set apart by the kinds of ex-
planations they can give. The three criteria that stand out in this context
are stability (i.e., differences between explanations of slightly different
samples), accuracy (i.e., whether the explanations are correct for unob-
served data), and comprehensibility (i.e., the level of difficulty in trying
to interpret an explanation). In literature, there are various forms of in-
terpretability that are all equally valid [19]. Plotting the correlations be-
tween an independent variable and a dependent variable is a common
practice for techniques like PDP [20] and ALE [21], whereas LIME [22]
and SHAP [23] provide images with highlights in certain super-pixels
(i.e., groups of neighboring pixels).

3. Large-scale CelebFaces attributes (CelebA) dataset

The experiments are conducted on CelebFaces Attributes (CelebA)
Dataset [24], which has roughly 200 k celebrity images with a total of
10.177 identities, each with about 20 frames. CelebA is a large-scale,
fully annotated database of facial attributes that has been frequently
used in literature for predicting facial attributes, detecting faces, and lo-
cating landmarks. Every face image is annotated with 40 binary attri-
butes and 5 key points to align the image to 55 × 47 pixels. The wide
range of environmental and behavioral factors such as pose, expression,
ethnicity, age and gender, and occlusion variations, make CelebA a very
demanding dataset. Furthermore, it is possible to observe how the attri-
butes are highly imbalancedwith respect to each other. In detail, a third
of the characteristics are very unusual facial traits (10% frequency or



Table 1
Facial parts and corresponding attributes considered in our work.

Facial Part Facial Attributes

Eye Bags under eyes, Narrow eyes, Eyeglasses, Heavy makeup
Eyebrow Arched eyebrows, Bushy eyebrows
Nose Big nose, Pointy nose
Mouth Big lips
Upper Lip area Mustache
Cheek 5 o'clock shadow, Pale skin, Rosy cheeks
Chin Double chin, Goatee
Forehead Receding hairline
Hair Black hair, Blond hair, Brown hair, Gray hair, Bald, Bangs, Wavy

hair, Straight hair, Sideburns
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less), with only a pair of them being exceptionally prevalent (present in
over 70% of cases) [25]. As a result, the largest imbalance ratio between
minority and majority facial attributes is 1:43. Another issue is charac-
terized by the incorrect/noisy annotations; one can observe that there
is a strong bias in favor of one of the two classes for many of the facial
attributes. For example, this is particularly true for some characteristics,
such as how the bulk of face images are categorized as “Young” and just
a small number as “Bald” or “Wearing Hat” [26]. Sample images from
CelebA dataset are shown in Fig. 1.

Our research focused on facial parts related to the periocular area
(including eyes and eyebrows) the nose, mouth, cheeks, hair, chin, fore-
head, and the area upper lips. For each area, in the dataset annotation
list, we identified several associated facial attributes that are shown in
Table 1.
4. Proposed method

4.1. Semantic exploration of facial attributes

4.1.1. Image segmentation
Image segmentation is the process of recognizing each pixel in an

image as belonging to a specific category. Semantic segmentation is
the difficult process of grouping pixels with the same label, i.e., those
that share specified qualities, in computer vision. Face segmentation is
the classification of a person's face into different categories, such as
eyes, hair, nose, and lips, each of which can be treated separately. Face
segmentation is a critical issue in face image analysis since it is required
not only for understanding facial features but also for post-processing
tasks such as virtual face make-up and virtual face swapping.

In this study,we use two different algorithms to separate the parts of
the face we're interested in based on the labels for facial features given
in the dataset. The first strategy is based on Deep Learning and also ex-
ploits the CelebAMask-HQ dataset [27], while the second one imple-
ments a geometric approach. CelebAMask-HQ is a collection of 30.000
high-resolution facial images chosen from the CelebA dataset. Based
on the information in CelebA, a face attribute segmentation mask was
associated with each image. The masks obtained (size of 512 × 512)
were manually annotated on the basis of 19 classes, which included fa-
cial components such as skin, nose, eyes, eyebrows, and ears, but also
accessories such as glasses, earrings, necklaces, hats, etc. In this paper,
we use Mask R-CNN, a model pre-trained on that dataset, to extract
for all CelebA images, masks related specifically to hair, nose, glasses,
upper and lower lip, left and right eyebrow, and eyes. In CelebA, how-
ever, there is also information about the characteristics of some facial
features (like whether or not a person has a mustache) for which
there is no segmentation mask in the dataset. In order to generate
them, a landmark based approach is also implemented. Using the
Fig. 1. Sample images fr
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Dlib-ml package [28], we produced 68 annotation points as the image's
real landmarks.

For the area around the upper lip, the cheeks, and the forehead, new
masks were generated by using previously createdmasks as well as the
most pertinent facial landmarks to outline the missing parts.

After obtaining the following masks, those pertaining to the mouth
(upper and lower lip) and the periocular area (right and left eye)
were combined to gather a higher amount of information. Then, as a
morphological level reconstruction, dilation was used to gradually
broaden the borders of the mask regions in order to include any extra
information lost during their definition. The masks were then overlaid
on the original images to extract only the related regions, as shown in
Fig. 2. After this operation, 9 images containing the individual facial
components listed in the 1 table were generated for each image.
4.1.2. Latent space visualization
To get data from the facial parts of interest, an image was changed

from its original space to its latent space. The idea of “latent space” is
significant since Deep Learning relies on its application. Latent space
corresponds to an abstract multidimensional space that encodes a
meaningful underlying structure of the input data, representing it
with peculiar values that we cannot evaluate directly. Autoencoders
have become a viable option for doing this encoding.

Autoencoders seem to have minimal research on choosing the right
number of latent space dimensions (k), a parameter that defines the in-
put's quantitative spatial representation. In this paper, we fix such k =
4092 after several empirical assessments. More in detail, starting from
the minimum latent space dimension adopted in literature, we try dif-
ferent k sizes that lead to maximum input reconstruction capacity and
maximum utility for classification tasks. Even small changes to the la-
tent space could lead to big changes in the original space of the observed
data. Because the original space is much bigger to study, the model
om CelebA dataset.



Fig. 2. Segmentation of a facial image into its semantically coherent regions where analysis is carried out.

L. Cascone, C. Pero and H. Proença Image and Vision Computing 132 (2023) 104645
would be better able to make sense of the observed data if it looked at
latent space instead of the observed data itself. Autoencoders are in
themselves a powerful dimensionality reduction algorithm. As a result,
integrating them with the UMAP technique may improve the acquisi-
tion of latent structures even more. Uniform Manifold Approximation
and Projection (UMAP) [29] is a popular nonlinear dimensionality re-
duction approach. It compresses data into a lower-dimensional space
while retaining asmuch of the data's local and global structure as possi-
ble, while also reducing computation time. Our goal is to leverage this
combination to have an interpretable visualizationmethod for an initial
exploratory analysis of the facial attributes under study. As a result, we
use the UMAP technique to model the latent space data in a 2D repre-
sentation. In contrast to the pixel space, the images in the latent space
are shown in a simpler way. Using UMAP, it is possible to search for
an interesting two-dimensional projection of latent space. This makes
it easy to see and understand the structure of the data and any closeness
in space between the data of subjects with the same attribute. Indeed,
UMAPmaintains the data density, neighborhoods, and distances. There-
fore, for each subject, once the parts of the face of interest were ex-
tracted thanks to the constructed masks, the relative two-dimensional
UMAP coordinates were generated for each of the 21 attributes using
the vector of 4092 latent space components as input. For example, con-
sider wishing to graphically depict the difference between different at-
tributes specified for hair color (brown, black, blond, gray, none). We
first apply the mask that allows us to isolate only this feature, then use
the resulting image, which then shows only the hair, as input for the
autoencoder model. The hair is then represented in latent space as a
vector of dimension 4092. The UMAP algorithm then receives this
vector as input and projects it into 2D space.

4.1.3. Genuine-impostor score
To acquire evidence that even after this reduction operation, the

data continue to maintain and preserve what is the salient and distinc-
tive information of each characteristic, we conducted a further study.
The purpose was to investigate if the information taken from the attri-
butes and then drastically downsized were still able to discriminate be-
tween two identities. For each of the 21 attributes, coordinate pairs are
generated usingUMAP. Thesewere then concatenated to obtain a single
vector of dimension 42. Each subject is then described by this vector.
Next, several random image pairs were defined. The pair with different
images of the same subject was labeled as “genuine”, while the pair
consisting of images of different subjects was labeled as “impostor”.
4

The number of genuine and impostor image pairs was balanced. From
the 9341 identities, only those for which at least 4 images were present
in the dataset were selected. The two feature vectors associated with
one image of the pair, respectively, were concatenated and used as
input for a binary classification system.

Random Forest classifier was used as the model. There are various
advantages of employing a tree learning algorithm: training on large
datasets with resistance to redundant variables or high correlation var-
iables,which can cause overfitting in other learning algorithms. It iswell
known that, in general, if fully developed decision trees are used, one
may run into the problem of overfitting because this type of algorithm
does not generalize well to invisible data. With Random Forest we ad-
dress this problem because the idea behind it is to use a pool of decision
trees where the values in the tree are an independent, random sample.
With a random split of the data where 70% is used for the training phase
and 30% for testing, an 89% accuracy rate was obtained. Further studies
were conducted by increasing the projection size using UMAP. It is
worth noting that with several components equal to four, the accuracy
is 90%, whereas with eight components, the accuracy is 91%. Doubling
the number of components again did not result in a performance im-
provement, an indication that UMAP still allows the preservation of sa-
lient information even when operating with such a drastic reduction in
the number of components. Fig. 3 provides the overall methodology
adopted to obtain the genuine/impostor score. The corresponding ROC
curves are shown in Fig. 4.

4.2. Automatic generation of image captions

CNN's ability to pull out features and an LSTM's ability to make text
were combined tomake the automatic image captioning. [30]. The basic
idea is to have a system that takes a pair of images as input and gives
textual descriptions that, in principle, emphasize the different facial
components. To ensure optimal size and storage of the image pairs,
this method needs some preliminary steps. The image pairs are
downsized to the ResNet model's predetermined size (i.e., 224 × 224
pixels). The pictures and descriptions are then properly matched in
the training step.

4.2.1. Learning phase
The two main parts of this architecture can be thought of as an en-

coder (the CNN) and a decoder (i.e., the LSTM). Thefirst attempts to cre-
ate a compact representation of the received images, while the second



Fig. 3.Workflow of Genuine-Impostor. From left to right: creation of subject vector with 2D UMAP components extracted from facial masks, for a total of 21 attributes; creation of “Gen-
uine” and “Impostors” image pairs; Random Forest classifier.
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tries to provide an acceptable caption for that depiction. ResNet's fea-
ture extraction capabilities are used for the encoding. To make a single
vector with 4096 values, the 2048-dimensional feature maps from
both images were first added together. Then, a couple of linear layers
were used to turn this into a 512-dimensional representation. The
LSTM is responsible for predicting the tokens thatwould constitute a re-
alistic caption, so the generated tensor is passed to it. The vector is then
concatenated with an embedding of the ground-truth caption and fed
via a padding operation, which reorders the input to get the desired
shape.
Fig. 4. ROC curve. n represents
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4.2.2. Inference phase
The encoding stage is almost identical to the training stage: the same

CNN is used for both input images. The featuremaps are combined, and
the feature vector is predicted by a couple of linear layers. Differences
begin to surface during the decoding step. To begin, the LSTM takes
only the feature vector and, using two linear layers, predicts the first
token (ideally, “<START>“). The LSTM is given an embedding that
keeps the token generation process going until one of the following
stop criteria is met: 1) the expected sequence is longer than the
predetermined maximum length, or 2) the token “<END>“is reached.
the UMAP projection size.
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4.3. Implementation details

With a learning rate of 0.0001 and a batch size of 64 samples, the
proposed method was trained for a total of 100 epochs. There were
around 1855 unique pairs of training examples available, each with 4
captions. The Adam optimiser was used to update the weights; and
we fine-tuned the CNN architecture weights from the ImageNet dataset
[31]. Finally, the embedding length and hidden size of the LSTM were
both set to 512.

5. Explainability discussion

5.1. Explainability evaluation

Most of the existing authentication methods based on Machine or
Deep Learning can be seen as a black box, that is, they do not provide
an explanation or justification for the obtained results. This significantly
decreases the transparency of the whole system, and the user is limited
to accepting its decision without clearly understanding why. In the
method proposed in this paper, we refer to a post-hoc explainability ap-
proach to help the user obtain an explanation for decisions made by a
system that exploits information from individual parts of a face to deter-
mine the inconsistency between two different identities. Indeed, the
goal is to provide an interpretation to a system that is designed to
highlight the main facial attributes/features that explain the decision
of mismatch between two different subjects' images. Not only will the
user have the opportunity to have a caption that makes explicit the
two main attributes/features that differentiate two different subjects,
but it will also be possible for him to establish an interpretablemapping
between the semantic space of the text and the space of the image. Bio-
metric recognition occurs based on individual parts of the face. In fact,
once these parts have been extracted (as described in Section 3), they
are each processed by an autoencoder, which gives a raw representation
Fig. 5.Workflow: left to right, top to bottom. 1) Pair of images of two different subjects given as
for eachpreviously extracted face part to obtain a projection of it in latent space 4) Projection th
space, with respect to the facial attributes under analysis 5) Calculation of the Euclidean distan
6) Ordered graph showing the attributes for which the two subjects differ the most.
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in latent space. In this way, it is possible to capture only themost repre-
sentative information from the input, effectively ignoring nonessential
or noisy information such as outliers. UMAP provides meaning to re-
trieved vectors so humansmay interpret them. This is a dimensional re-
duction technique that provides a low-dimensional representation of
the feature vector obtained from the autoencoder while still allowing
the global structures of the original feature space to be maintained.
Through a two-dimensional representation, it is then possible to project
the facial attributes/features into space and visualize them through a
point facilitating human comprehension with a direct and intuitive ex-
planation. The projection in the two-dimensional space of the latent
vectors related to the same attributes tends to minimize the distance
between them. Thus, having taken the input pair of images, the face
parts related to the features shown in Fig. 2 are first extracted for
each. These are then used as input to an autoencoder algorithm to ob-
tain their representation in latent space. Using the UMAP method, for
each of the 21 attributes listed above, it is possible to get a projection
of their representation in latent space into two-dimensional space.
The goal is to reflect the global structure of the data as accurately as pos-
sible, tending to group similar categories together. So, for each image, 21
pairs of coordinates are found. Each pair shows how one of the attri-
butes is projected into a two-dimensional space. By considering the
lowest Euclidean distance between the related pairs, it is possible to
evaluatewhat characteristics the two subjects share andwhere they dif-
fer most. In Fig. 5 we show an example in which, concerning the pair of
images taken as input, we report a graph ordered concerning the value
of the Euclidean metric. It can be observed that the distance between
the two-dimensional projections of the relative vectors in the latent
space is the greatest for hair color and whether or not a person has a
mustache. The implemented text generator system automatically
adds a caption to the image that shows which of these two characteris-
tics the model thinks is best at showing how the two subjects are
different.
input 2) Extraction of face parts through theMask R-CNNmodel 3) Use of an autoencoder
rough theUMAPalgorithm in two-dimensional space of the representative vectors in latent
ce between the coordinate pairs of the two subjects representative of the same attributes



Fig. 6. Test set evaluation: correlation between the face components mentioned in the ex-
planations and the euclidean distances between the UMAP 2D coordinates.
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Thus, in Fig. 6 we can see how there is a strong correspondence
between this visual relationship and the attributes/characteristics that
are produced to provide a verbal explanation for the mismatch decision
between the so-called “impostors.” As a validation of this approach, we
can indeed observe that for more than 10% the two features that are
predicted by the text generator system are the ones that are the most
distant in the graphical visualization using UMAP, and almost 40% are
among the top 5 most distant, more than 70% when considering the
10 most distant up to more than 90% when considering 15. It should
also be noted that these percentages include the pairs of images for
which it is not enough for only one of the predicted attributes to be in
the top k positions according to the Euclidean metric. This must be
true for both attributes in the caption.

For example, for top rank 1, if one of the two features predicted in
the text generator had the third highest distance, this sample was not
taken into account in the percentage.

A further analysis is depicted in Fig. 7. Indeed, it shows that the dis-
tribution of features in the training dataset that, as mentioned earlier,
were extracted and validated by a human subject, and then actually
predicted, is quite robust. From a cross-comparison, it was observed
that the feature mainly used to detect imposters with both methods
is the lips.

5.2. Success and failure case analysis

To conduct an in-depth performance analysis and critical inter-
pretation of the results, the objective of this section is to gain an un-
derstanding of both successful and unsuccessful scenarios. The
Fig. 7. Distribution of features between the predicted sentences and t
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success and failure cases are studied both from the point of view of
textual explanation and from the point of view of the ordered
graph showing the differences between the two subjects. Fig. 8
shows four different pairs of images, each of which allows us to illus-
trate a different potential scenario that we faced. The first pair, pair
14, falls outside of the top ten ranks. We observe in the histogram
that the characteristic deemed most peculiar is “big lips,” which,
when examining the annotated images in the dataset, gives ample
opportunity for interpretation. The second, on the other hand, is
“double chin,” which is not detectable in the second image due to
the obvious occlusion of the area. The encoded information of the
mustache is strikingly similar for both images, which is in line with
the image we are looking at. The prediction of the characteristics by
the text generator, on the other hand, appears to be both consistent
with respect to the distribution of attributes in the training dataset
(Fig. 7) and discriminative for the two images, based on a visual
check. In contrast, the second pair, 59, compares two images of two
distinct women. When comparing the textual prediction with the in-
formation derived from the histogram, it is evident that makeup,
which was supposed to be the most discriminating characteristic
among those under examination, is also predicted by the textual
model. On the contrary, the second prediction, relating to hair color,
is not among the most discriminatory ones in the histogram. Examin-
ing the pictures in question makes it even more apparent that some
of the problems revealed by the model are attributable to the im-
proper labelling of some images; in fact, the woman in the second
picture has red hair, which isn't in the list of facial attributes (see
Table 1). The presence of bags under the eyes, the second most dis-
criminating feature of the histogram, effectively distinguishes the
two participants based on visual inspection. The third image pair
(pair 156), which further highlights some possible issues related to
the dataset, such as may be the presence of black and white images.
So, when this happens, the two models are fooled, and the different
color considerations should not be taken as always true. However,
under particular lighting conditions, even some information related
to shape geometry may be corrupted and not clearly visible as in
this case for lip size. In the last image (pair 1) we instead record a
success case, where both the characteristics predicted by the textual
generator and the first two most discriminating attributes in the his-
togram coincide. The noticeable difference in hair color between the
two persons, with the male having brown hair and the female having
blond hair, and the presence or absence of a mustache are, also based
on a visual examination, two quite prominent characteristics. From
the study performed, it is clear that the results obtained in Fig. 6
may be more consistent with our proposed model and the text
generator if a dataset with more accurate labelling and fewer wild
images existed.
hose in the training dataset:from the most frequent to the least.



Fig. 8.Thefigure shows (a) a pair of images present in the test dataset, (b) the caption generated by the text predictionmodel, (c) an ordered graph that shows the characteristics forwhich
the two subjects differ the most.
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6. Conclusion

This paper describes a post-hoc explainability framework to help
users comprehend decisions made by a system that assesses the
mismatch between two identities using facial attributes. The key objec-
tive is to be able to explain why two images seem to be different by
generating textual explanations that are as easy to understand as possi-
ble while also providing an interpretable mapping between the seman-
tic space of the text and the space of the image. Combining CNN's
feature extraction abilities with an LSTM's text generation allows for au-
tomatic image captioning. This approach takes a pair of images as input
and produces text descriptions that highlight the various facial charac-
teristics. The proposed framework enables the visualization of the
distance between the 21 examined facial attributes and objects in a
two-dimensional space. Then, using the UMAP strategy, it is feasible to
project the facial characteristics into space and visualize them as a
point, which facilitates human comprehension by providing a simple
and natural explanation. The experiments show the relationship
between the text space and the image space, as well as the potential
of the two systems, despite the limitations of the dataset.
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