
PDDLPUZZLEVQA: Benchmarking Visual Planning Puzzle solving
abilities using Large VLMs and Symbolic Planners

Anonymous ACL submission

Abstract

Planning is a core aspect of human intelligence.001
Recent planning benchmarks have proved to002
be challenging to a wide range of Large Lan-003
guage Models. Yet, planning in the context004
of vision has not been extensively explored.005
To feel this void and establish a sufficiently006
challenging reasoning benchmark for Vision-007
Language Models, we introduce PDDLPUZ-008
ZLEVQA, which is a collection of ∼ 10k puz-009
zles encompassing six well-known types (such010
as Maze-Solving, N-Queens), which explicitly011
require multiple-step planning to solve. We012
further accompany each puzzle problem with013
a groundtruth symbolic representation in Plan014
Domain Definition Language (PDDL); which015
in turn can be used to generate an executable016
plan using a symbolic planner. Therefore, we017
benchmark both end-to-end plan generation018
ability and VLM’s ability to represent a plan-019
ning problem presented as image and text into020
PDDL. Our experiments show huge deficits of021
state-of-the-art VLMs such as GPT4o, Gemini-022
flash and InternVL2.5 in all variations plan023
generation. Delving deeper, we analyze var-024
ious syntactic and semantic errors of the VLMs025
while generating PDDL representation. Our026
dataset is the first vision and reasoning dataset027
to focus solely on planning puzzles, accompa-028
nied with groudtruth PDDL representation and029
hard benchmark for the most efficient VLMs.030
We plan to make both code and data publicly031
available for the research community.032

1 Introduction033

Foundational language models are trained on tasks034

such as next-word prediction and sequence com-035

pletion. Their surprising reasoning abilities (and036

the so-called emergent behavior) have driven the037

creation of increasingly complex benchmarks in038

logic (Srivastava et al., 2023), math (Cobbe et al.,039

2021; Hendrycks et al., 2021), and commonsense040

reasoning (Geva et al., 2021; Sakaguchi et al.,041

2021; Talmor et al., 2018), though only a few re- 042

main challenging for newer Large Language Mod- 043

els (LLMs). Planning, a key AI discipline, re- 044

mains difficult, with benchmarks like PlanBench 045

(Valmeekam et al., 2023b) posing challenges for 046

various models. Since end-to-end plan generation 047

is hard and error-prone, researchers further explore 048

combining LLMs with symbolic planners. Here, 049

the task of LLMs is to convert natural language 050

planning problems into Planning Domain Defini- 051

tion Language (PDDL) (McDermott et al., 1998), 052

enabling the generation of verifiable, executable 053

plans using off-the-shelf planners. 054

This is maze having 11 * 13 cells. The empty cells are coloured white
and the obstacle cells are coloured black. From an empty cell, you
can only move up, down, left, or right to another adjacent empty cell.
You cannot move diagonally between two empty cells and cannot
step into a cell with an obstacle. The entry cell of the maze is shown
with the green arrow. The exit cell of the maze is shown with the blue
arrow. Suppose you have found the most optimal path in the maze
between the entrance and exit, where you need to go through the
least number of empty cells and you need to make the least number
of left and right turns. What is the total number of right turns do you
need to make in this optimal path?

(define (domain maze)
 (:requirements :strips :typing :negative-
preconditions)
 (:types agent position)
 (:predicates
 (inc ?a ?b - position)
 (dec ?a ?b - position)
 (at ?a - agent ?x ?y - position)
 (wall ?x ?y)
)

(:action
 move-up...)
 (:action
 move-down ...)
 (:action
 move-right ...)
 (:action
 move-left :...)

(define (problem maze-problem)
 (:domain maze)
 (:objects
 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 - position
 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 - position
 agent1 - agent
)
 (:init
 (inc x1 x2) (inc x2 x3) (inc x3 x4) ... (inc x12 x13)
 (inc y1 y2) (inc y2 y3) (inc y3 y4) ... (inc y10 y11)
 (dec x13 x12) (dec x12 x11) (dec x11 x10) ... (dec x2 x1)
 (dec y11 y10) (dec y10 y9) (dec y9 y8) ... (dec y2 y1)

 (wall x1 y1) (wall x1 y3) ... (wall x1 y11)
 (wall x2 y1) (wall x2 y3) ... (wall x2 y11)
 (wall x3 y1) (wall x3 y3) ... (wall x3 y11)
 ...
 (at agent1 x1 y2)
)
 (:goal
 (at agent1 x12 y11)
)
)

domain.pddl of Maze Solve

problem.pddl of Maze Solve

ENHSP Planner

(move-right agent1)
(move-right agent1)
(move-right agent1)
 (move-down agent1)
...
(move-down agent1)
(move-down agent1)

Final Plan Maze Solve

Final Plan (In NL or PDDL)
Input

Problem PDDL

Domain PDDL
Output

Figure 1: Overview of two task settings in PDDLPUZ-
ZLEVQA. ENHSP (Scala et al., 2016) is an external
symbolic planner.

Similar to reasoning in text, multimodal rea- 055

soning benchmarks have increasingly gained at- 056

tention as Vision-Language Models proliferated. 057

Earlier benchmarks focused on evaluating visual 058

perception and external knowledge through ques- 059

tion answering tasks (FVQA, KB-VQA, OK-VQA) 060

1

(Wang et al., 2017b,a; Marino et al., 2019), vi-061

sual commonsense reasoning (VCR, WHOOPS)062

(Zellers et al., 2019; Bitton-Guetta et al., 2023), spa-063

tial reasoning about objects and regions (NLVR2,064

CLEVR) (Suhr et al., 2019; Johnson et al., 2016b).065

In contrast, planning requires “thinking” and “sim-066

ulating” intermediate steps given an initial state067

and a goal world state. Furthermore, most visual068

reasoning benchmarks still relies on predicting and069

evaluating a single final answer as an output. Plan-070

ning using images has not been extensively tested.071

Taking cues from the success of PlanBench and072

recent work on image puzzles, we specifically fo-073

cus on a set of well-known single or multi-image074

visual puzzles that specifically requires multiple-075

step planning to solve. We adopt six types of puz-076

zles from AlgoPuzzleVQA (Ghosal et al., 2024): 1)077

Checker-move, 2) Maze solving, 3) N-Queens, 4)078

Wood-slide, 5) Tower-of-Hanoi, and 6) Water-Jugs.079

Our goal is to benchmark the ability of Vision-080

Language Models to generate plans with the initial081

and goal states are presented as images, accompa-082

nied with limited textual description. We evaluate083

such ability in various stages, 1) final answer gen-084

eration, 2) natural language based plan generation,085

and 3) generating correct symbolic problem de-086

scription in PDDL language, which can be further087

used to generate a correct plan using any symbolic088

planning engine. As shown in Figure 1, we are089

interested in finding whether the model(s) are able090

to map the underlying planning problem into the091

desired problem PDDL. PDDL is a standardized092

"Planning Domain Definition Language" (Ghallab093

et al., 1998; Fox and Long, 2003), widely used to094

describe planning domains as well as problem in-095

stances. A PDDL definition consists of two parts:096

domain and the problem definition1. The domain097

definition presents a blueprint for representing a098

world in terms of predicates and actions that can099

be used to transition between different states of the100

world. The problem defines the objects present in101

a specific instance of the world and describes the102

initial and goal states.103

Deviating from AlgoPuzzleVQA, we syntheti-104

cally generate 9.5K puzzles and therefore also gen-105

erate groudtruth domain and problem PDDL which106

is sufficient to generate the final plan, from any107

symbolic planner. In short, here we take a different108

path of solving the visual puzzles by prompting109

1https://www.ida.liu.se/~TDDC17/info/labs/
planning/writing.html

state-of-the-art VLMs to generate symbolic rep- 110

resentation of the problem. We utilize the visual 111

perception and symbolic code generation capabili- 112

ties of VLMs and outsource the challenging task of 113

algorithmic reasoning to an external planner (Scala 114

et al., 2016). We make the following contributions: 115

1. We formulate Visual Puzzles as a Planning 116

problem and present a benchmark process supervi- 117

sion dataset PDDLPuzzleVQA, comprising PDDL 118

domain of six visual puzzles (subset of AlgoPuz- 119

zleVQA; Ghosal et al. (2024)) and 9.5K PDDL 120

problems (covering 6 types of puzzles) along with 121

templates for generating the PDDL problem files. 122

2. We conduct a systematic ablation with natu- 123

ral language, symbolic, and hybrid planning ap- 124

proaches and perform an in-depth analysis of differ- 125

ent types of errors. Our results show that the largest 126

state-of-the-art Vision-Language models (GPT4o, 127

Gemini-flash, InternVL2.5-78B) achieve very low 128

performance on most aspects of the task: answer 129

generation, natural language and symbolic plan 130

generation; demonstrating the difficulty that visual 131

planning problems pose, and the efficacy of our 132

benchmark. 133

3. Provided the limited error messages from exter- 134

nal symbolic planner, we introduce a set of met- 135

rics to analyze different sources of syntactic and 136

semantic errors in the generated problem PDDL 137

programs. The semantic analysis provides detailed 138

insights about which high-level aspects such as 139

color, position, shape/size, or predicates make the 140

symbolic mapping difficult. 141

2 Related Work 142

Visual Question Answering (VQA) - Over the 143

past decade, benchmarking in vision and language 144

has moved from testing perception and common- 145

sense reasoning through traditional visual ques- 146

tion answering (Antol et al., 2015; Wu et al., 2017; 147

Goyal et al., 2017; Schwenk et al., 2022; Lu et al., 148

2022; Zong et al., 2024) to visual puzzle solving. 149

In this line of reasearch, researchers test vision- 150

language models in specific dimensions, such as 151

visual perception, reasoning (commonsense/spa- 152

tial/logical/numeric), domain or world knowledge, 153

multi-hop reasoning (combining information and 154

reasoning with a sequence of logical operations), 155

planning (use of planning elements). 156

Aditya et al. (2016) introduced a novel visual 157

understanding task in the form of Image Riddles 158

with a total 3.3k samples, where each riddle has 159

2

https://www.ida.liu.se/~TDDC17/info/labs/planning/writing.html
https://www.ida.liu.se/~TDDC17/info/labs/planning/writing.html

Dataset QA-Format Perception World-K Domain-K Reasoning Multi-Hop Planning PDDL

RAVEN multi-choice ✓ ✗ ✗ ✓ ✓ ✗ ✗

Image Riddles open-ended ✓ ✓ ✗ ✓ ✓ ✗ ✗

Visual Riddles open-ended ✓ ✓ ✗ ✓ ✓ ✗ ✗

CLEVR-HYP open-ended ✓ ✗ ✗ ✓ ✓ ✗ ✗

PuzzleVQA multi-choice ✓ ✗ ✗ ✓ ✗ ✗ ✗

MIRB both ✓ ✓ ✗ ✓ ✓ ✗ ✗

SMART-101 multi-choice ✓ ✓ ✗ ✓ ✓ ✗ ✗

Natural-Plan open-ended ✗ ✓ ✓ ✓ ✓ ✓ ✗

PlanBench open-ended ✗ ✗ ✓ ✓ ✓ ✓ ✓

Planetarium open-ended ✗ ✗ ✓ ✓ ✓ ✓ ✓

AlgoPuzzleVQA multi-choice ✓ ✗ ✓ ✓ ✓ ✓ ✗

PDDLPuzzleVQA (ours) both ✓ ✗ ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of PDDLPuzzleVQA with existing Visual Question Answering (VQA) and Planning Datasets;
QA-Format - Question Answer Format (MCQ with multi-choice, questions with open-ended answers, both);
Perception - Visual Perception; World-K - World Knowledge; Domain-K - Domain Knowledge; Reasoning -
Commonsense/Spatial/Logical Reasoning; Planning - Need/Use of Planning Elements; PDDL - Domain and
Problem specification in PDDL.

4 images and the task is to find a common con-160

cept (or word) that connects them all. Solving161

these riddles requires object and activity recogni-162

tion (that are related to visual perception), world163

knowledge, commonsense, and multi-hop reason-164

ing. Bitton-Guetta et al. (2024) present Visual Rid-165

dles (similar to Image Riddles), comprising 400166

visual riddles, each featuring a unique image cre-167

ated by various text-to-image models, along with168

a question, ground-truth answer, textual hint, and169

attribution. CLEVR-HYP (Sampat et al., 2021) —170

an extension of the CLEVR dataset (Johnson et al.,171

2016a) — requires models to reason about hypo-172

thetical scenarios and potential outcomes based173

on current visual inputs. Similarly, Cherian et al.174

(2022) developed the SMART-101 dataset, com-175

prising 101 unique puzzles (each puzzle has an176

image paired with a question), challenging models177

beyond straightforward visual recognition, push-178

ing them toward more complex cognitive reasoning179

tasks, such as abstraction, deduction, and general-180

ization. Similarly, RAVEN (Zhang et al., 2019)181

introduces the famed Raven’s progressive matri-182

ces puzzle (Carpenter et al., 1990) as a dataset to183

test visual perception, counting, and abstraction184

abilities.185

To understand the reasoning capabilities of large186

multimodal models (LMMs), Chia et al. (2024)187

proposed the PuzzleVQA dataset, consisting of188

2k abstract visual puzzles that involve recognition189

of patterns and abstract concepts, such as colors,190

numbers, sizes, and shapes. Taking a step further,191

Ghosal et al. (2024) proposed a novel method of192

generating the AlgoPuzzleVQA dataset (to assess193

the capabilities of VLMs in solving algorithmic194

puzzles that require a combination of visual un- 195

derstanding, language comprehension, and com- 196

plex reasoning). Their synthetically generated 197

puzzles ensure correctness and scalability. Zhao 198

et al. (2024) introduce the Multi-Image Relational 199

Benchmark (MIRB), addressing the gap in existing 200

evaluations, which predominantly focus on single- 201

image inputs. 202

Planning - None of the VQA datasets except Algo- 203

PuzzleVQA focus on planning, a critical aspect of 204

human cognitive intelligence, applicable for goal- 205

based (partially or fully specified) problem-solving. 206

Planning involves generating a sequence of actions 207

to transition from an initial state to a desired goal 208

state. Traditionally, researchers in the planning 209

domain used formal logic to represent and reason 210

about actions, states and goals (Pelavin and Allen, 211

1986). For example, Planning Domain Definition 212

Language (PDDL) utilizes formal logic to define 213

planning problems (Ghallab et al., 1998; Fox and 214

Long, 2003). 215

Inspired by traditional planning framework(s), 216

Valmeekam et al. (2023a) introduced PlanBench, 217

a comprehensive benchmark designed to assess 218

the planning and reasoning capabilities of large 219

language models (LLMs) through systematic eval- 220

uation across a diverse set of tasks, challenging 221

LLMs in reasoning about actions and change. 222

Through an extensive assessment of GPT3 and 223

GPT4 (Valmeekam et al., 2023b), authors find these 224

LLMs may not generate optimal verifiable plans, 225

but can generate good heuristic seed plans that can 226

be refined by integrating with external model-based 227

planner in a LLM-modulo framework (Kambham- 228

pati et al., 2024). LLM-Modulo framework re- 229

3

Split CM MS NQ WS TH WJ

Test (Ghosal et al., 2024) 100 100 100 100 100 100

Train (ours) 1900 1900 1900 710 1549 1019
Test (ours) 100 100 100 100 100 100
Total (ours) 2000 2000 2000 810 1649 1119

Table 2: Dataset Statistics; Checker-Move (CM), Maze-
Solving (MS), N-Queens (NQ), Wood-Slide (WS),
Tower-of-Hanoi (TH), Water-Jugs (WJ)

quires both domain and problem specifications in230

PDDL format for tasks that involve PDDL-based231

planning and verification. However, LLMs may232

not always produce fully functional PDDL specifi-233

cations and require feedback over several iterations234

to rectify. Another approach is to perform super-235

vised fine-tuning of LLMs over a large parallel236

corpus, having problem descriptions (in natural lan-237

guage) and matching PDDL specifications. Zuo238

et al. (2024) introduced around 145, 918 text-to-239

problem PDDL pairs (for gripper and blocksworld240

domains) that can be used for aligning LLMs to241

generate better translations.242

Although symbolic planning has proven effec-243

tive in various applications, it faces several chal-244

lenges (due to the requirement of comprehensive245

domain knowledge to define all possible states and246

actions within a system). This has led to a grow-247

ing interest in the integration of natural language248

processing (NLP) with planning systems (Zheng249

et al., 2024). Natural language planning aims to250

take advantage of the flexibility and expressiveness251

of human language to create more adaptable and252

intuitive planning models. The Natural-Plan bench-253

mark (Zheng et al., 2024) comprises the following254

3 tasks - Trip Planning, Meeting Planning, and Cal-255

endar Scheduling, which have results from tools256

such as Google Flights, Google Maps, and Google257

Calendar, respectively.258

We present PDDLPuzzleVQA, a dataset (having259

a subset of AlgoPuzzleVQA puzzles) that has dif-260

ferent aspects, as mentioned in Table 1 to measure261

the problem-solving abilities of VLMs through sys-262

tematic planning.263

3 Constructing PDDLPuzzleVQA264

We adopt the dataset generation process prescribed265

in Ghosal et al. (2024) and introduce suitable mod-266

ifications to build the PDDLPuzzleVQA dataset.267

Table 2 shows the dataset statistics.268

3.1 Chosen Puzzles 269

We consider a subset of puzzles (6 out of 18) from 270

the AlgoPuzzleVQA dataset and formulate them as 271

planning problems in PDDL format. 272

Checker-Move. This puzzle has a 1-dimensional 273

grid of length n, where we place n− 1 checkers of 274

color1 or color2 (varying the number of checkers 275

of each color), leaving one empty cell for the start- 276

ing configuration. From a collection of m (=10) 277

different color pairs, we sample (color1, color2) for 278

each problem instance (§B, Figure 4). The end goal 279

is to rearrange the checkers into a specific config- 280

uration following the rules defined in Ghosal et al. 281

(2024) with slight modifications. We generalize the 282

choice of color pairs and map green to color1 and 283

red to color2. 284

Maze-Solving. It is an M ×N grid with walls, 285

empty cells, an entry (start) point, and an exit (end) 286

point (§B, Figure 5). An agent or a player needs 287

to navigate starting from the entry point (denoted 288

by a green arrow) and reach the exit point (denoted 289

by a blue arrow) along an optimal path. The fi- 290

nal task is to find: i) the number of left/right/total 291

turns or ii) the number of cells in the optimal path. 292

We maintain a precise record of the locations of 293

walls, empty cells, starting position, and goal state 294

to systematically evaluate the ability of VLMs to 295

accurately identify and localize these elements dur- 296

ing the plan generation process. 297

N-Queens. This is a popular 2-dimensional puz- 298

zle comprising an N ×N chessboard (§B, Figure 299

6), where the objective is to place N queens on 300

non-attacking positions (i.e., no two queens should 301

share the same row, column or diagonal). Simi- 302

lar to AlgoPuzzleVQA (Ghosal et al., 2024), we 303

place N − 2 queens following the rules of the puz- 304

zle (varying N between 8 and 11), which forms 305

the initial configuration of the puzzle. The goal is 306

to correctly place the remaining two queens and 307

compute the Manhattan distance between their loca- 308

tions. We vary the chessboard’s color by sampling 309

different color pairs, similar to Checker-Move. 310

Wood-Slide. The sliding block puzzle is defined 311

on a 5× 4 grid containing nine wooden blocks of 312

varying dimensions: one 2 × 2, four 1 × 2, two 313

2× 1, and two 1× 1 (§B, Figure 7). The grid also 314

includes two empty 1× 1 spaces. Blocks are con- 315

strained within the grid and can only be moved by 316

sliding them horizontally or vertically into adjacent 317

empty spaces. The objective is to transform the 318

given initial configuration into the specified goal 319

4

domain.pddl

problem.pddl
Detailed Plan Final AnswerStep Plan

Symbolic Planning (Few-Shot)

 Problem
 PDDL Generator

PG + SG Planning (Few-Shot)

Detailed Plan Step Plan Final Answer

Solution Generator

Detailed Plan Final AnswerStep Plan

NL Planning (Few-Shot)

Problem
Description (NL)

Init Image

Figure 2: Illustration of different Planning Methods

configuration using the minimum number of moves,320

where each move consists of shifting a block by one321

unit in a valid direction. While our problem setup322

shares structural similarities with AlgoPuzzleVQA323

(Ghosal et al., 2024), we introduce color variations324

across the wooden blocks while maintaining a con-325

sistent representation of empty spaces in white to326

analyze the visual reasoning capabilities of VLMs.327

Additionally, we track the exact locations of the328

wooden blocks to evaluate the object detection and329

localization capabilities of VLMs.330

Tower-of-Hanoi. The Tower of Hanoi puzzle331

consists of three fixed pegs and a variable num-332

ber of disks ranging from three to six (§B, Figure333

8). The objective is to transfer all disks from the334

initial configuration on the source peg to the goal335

configuration on the target peg, following the stan-336

dard constraint that only one disk can be moved337

at a time and a larger disk cannot be placed on a338

smaller one. While structurally similar to classical339

Tower of Hanoi given in AlgoPuzzleVQA (Ghosal340

et al., 2024), we introduce color variations across341

the disks to analyze the visual reasoning capabili-342

ties of VLMs.343

Water-Jugs. The Water Jugs puzzle requires redis-344

tributing water among jugs of varying capacities to345

achieve a target configuration (§B, Figure 9). Water346

can be transferred between jugs under two condi-347

tions: a non-empty jug can pour into a non-full jug348

until either the source is emptied or the destina-349

tion is filled, and no water is lost during transfer.350

While the standard setup consists of three jugs with351

fixed capacities, we extend the problem to include352

three to seven jugs, with capacities reaching up to353

15 liters. Additionally, different water colors are354

used to evaluate how effectively VLMs perceive 355

and interpret the puzzle’s current state. 356

3.2 Additional Modifications 357

We perform additional modifications for efficiently 358

benchmarking perception adn planning abilities. 359

• Init and Goal Images - In the original AlgoP- 360

uzzleVQA dataset (Ghosal et al., 2024), the initial 361

and goal states of some puzzles, such as Checker- 362

Move, Wood-Slide, and Tower-of-Hanoi are plot- 363

ted in the same image, making the visual perception 364

task harder for VLMs. We simplify this issue by 365

plotting separate images of init and goal states for 366

these puzzles. We also remove textual captions, 367

such as "Starting Configuration" and "Ending Con- 368

figuration" from the images. 369

• Domain PDDL - We make use of appropri- 370

ate predicates, functions, and actions following 371

the specification of PDDL 2.1 (Fox and Long, 372

2003) and formally define the characteristics of 373

each puzzle in a domain.pddl file. So, there is one 374

domain.pddl file for each puzzle. 375

• String Representation - We generate a unique 376

string representation for each puzzle to represent 377

start/end configuration(s) and other essential pa- 378

rameters in a compact format. 379

• Problem PDDL - Each instance of a puzzle 380

requires a problem.pddl file that encapsulates the 381

initial and goal configurations. A problem.pddl 382

file has the following important components: ob- 383

jects (list of objects required for representing the 384

init and goal configurations of the puzzle), init (ini- 385

tial configuration of the puzzle, where necessary 386

predicates and functions are grounded), goal (spec- 387

ification of the goal configuration using grounded 388

5

predicates or functions), and metric (optional sec-389

tion for specifying optimization criterions). It is390

a laborious task to manually write problem.pddl391

file for each instance of a puzzle. So, we create a392

puzzle-specific template that helps in generating393

the problem.pddl for each instance during dataset394

generation process.395

• Symbolic Plan - For each puzzle instance, we396

generate a verified symbolic plan using the ENHSP397

planner (Scala, 2018). The planner takes the do-398

main.pddl (puzzle-specicific) and problem.pddl399

(instance-specific) files as input and outputs a se-400

quence of actions as the planning steps.401

• Natural Language Plan - We make use of a402

template for each puzzle for transforming the sym-403

bolic plans into into natural language format (i.e.,404

sequence of actions in natural language).405

Please refer to Appendix §B for the detailed mod-406

ifications specific to each puzzle.407

4 Experiments408

We evaluate different planning methods with three409

popular state-of-the-art vision-language models410

(also referred to as multimodal large-language mod-411

els): GPT4o, Gemini, and InternVL2-78B. For412

GPT4o, we use the Azure API gpt4o (Model ver-413

sion 2024-05-13). In case of Gemini, we use414

the gemini-1.5-flash model. We also use the415

InternVL2.5-78B directly from Hugginface API2.416

For all the planning methods, we instruct VLMs417

(with temperature set to 0) to generate output in a418

specific format. The output is structured into three419

components: Detailed Plan, Step Plan and Final420

Answer. The Detailed Plan provides a structured421

reasoning process with step-by-step logic. The422

Step Plan provides minimalistic sequence of ac-423

tions transitioning from the initial to the goal state,424

omitting justifications. The Final Answer(open-425

ended or multi-choice option) presents the derived426

solution as either an integer answer or an answer427

option label.428

4.1 Planning Methods429

As shown in Figure 2, we investigate three types of430

planning (few-shot setups): a) Natural Language431

Planning (NL Planning), b) VLM-based Problem432

PDDL Generation (PG) and planning with a Natu-433

ral Language Solution Generator (PG + SG Plan-434

ning), and c) Symbolic Planning with manually435

2https://huggingface.co/OpenGVLab/InternVL2_
5-78B

Problem Description (NL)

Init Image

domain.pddl

problem.pddl

... What is the total
number of right turns do
you need to make in this
optimal path?

Step Plan:

1. Move right 3 cells.
2. Move down 2 cells.
3. Move right 1 cell.
...
12. Move down 4 cells.
13. Move right 2 cells.
...

Detailed Plan:

1. Observe the maze and identify the start
(entry) and end (exit) points.
2. Outline a path from the start to the end
while minimizing the number of cells
traversed and reducing left and right turns.
...

Final Answer:
5

NL Planning (Few-Shot)

Figure 3: Example of NL Planning

written domain and problem PDDL specifications. 436

We adopt the eCoT prompting method from AlgoP- 437

uzzleVQA (Ghosal et al., 2024) (with an additional 438

instruction to capture the final answer option) as a 439

baseline. 440

• NL Planning (Few Shot) - Figure 3 shows the 441

Natural Language Planning method, where we use 442

image(s) of the initial state (and goal), followed by 443

the problem description (in natural language) gen- 444

erate natural language plans by prompting VLMs. 445

We test both 0-shot and 1-shot prompting with both 446

in-domain (idm) and out-of-domain (oodm) sam- 447

ples. 448

• PG + SG Planning (Few Shot) - This planning 449

method has two steps - i) problem PDDL Genera- 450

tion (PG), ii) Solution Generation (SG) (§B, Fig- 451

ure 13). First, we prompt a VLM-based problem 452

PDDL Generator (with visual inputs, natural lan- 453

guage problem description, and domain PDDL) to 454

generate problem PDDL (in a 1-shot setting, using 455

idm/oodm samples). The output of PG is then pro- 456

cessed by a VLM-based Solution Generator that 457

outputs a natural language plan, followed by a final 458

answer. 459

• Symbolic Planning (Few Shot) - For Symbolic 460

Planning, we employ all the available information, 461

such as images of init/goal, natural language de- 462

scription, domain, and manually written problem 463

PDDL specifications in a 1-shot setting (with id- 464

m/oodm samples) to prompt VLMs (§B, Figure 465

12). The generated output format aligns with the 466

output of SG module. The primary objective of 467

this experiment is to assess the model’s ability to 468

interpret the given domain and problem PDDL and 469

produce solutions consistent with those generated 470

by classical planners such as ENHSP. 471

6

https://huggingface.co/OpenGVLab/InternVL2_5-78B
https://huggingface.co/OpenGVLab/InternVL2_5-78B

0-shot
gpt4o gem-fl intern-vl2.5

Checker-Move
eCoT (multi-choice) 17.0 - -
NL-PL (multi-choice) 20.0 21.0 -
NL-PL (open-ended) 1.0 0.0 1.0

Maze-Solving
eCoT (multi-choice) 30.0 - -
NL-PL (multi-choice) 24.0 4.0 -
NL-PL (open-ended) 5.0 6.0 8.0

N-Queens
eCoT (multi-choice) 24.0 - -
NL-PL (multi-choice) 23.0 32.0 -
NL-PL (open-ended) 13.0 0.0 4.0

Wood-Slide
eCoT (multi-choice) 33.0 - -
NL-PL (multi-choice) 25.0 28.0 -
NL-PL (open-ended) 4.0 0.0 1.0

Tower-of-Hanoi
eCoT (multi-choice) 9.0 - -
NL-PL (multi-choice) 19.0 15.0 -
NL-PL (open-ended) 2.0 0.0 5.0

Water-Jugs
eCoT (multi-choice) 6.0 - -
NL-PL (multi-choice) 29.0 11.0 -
NL-PL (open-ended) 11.0 2.0 10.0

Table 3: Comparison of solving visual puzzles using dif-
ferent state-of-the-art Vision Language Models (VLMs)
such as gpt4o, gemini-1.5-flash (gem-fl), intern-vl
(int-vl), NL-PL: Natural Language Plan + Final Answer

4.2 Results of 0-Shot Prompting472

We prompt GPT4o and Gemini-Flash to provide473

detailed instructions and ask them to produce a474

detailed plan summarizing the logic behind solving475

the puzzle, followed by a step-by-step final plan.476

In the multiple-choice question setting, we also ask477

to output the option. An example prompt is shown478

in Table 11. For open-ended setting, the model is479

simply asked to generate the final answer (Table 8).480

Intern-VL2.5-78B is benchmarked only in open-481

ended setting. In some cases, InternVL2.5 does482

not even produce the final response.483

Results. Our results from Table 3 show ex-484

tremely low (below 5%) performance in the open-485

ended setting for all puzzles except N-Queens and486

Water-Jugs. The multiple-choice option raises the487

accuracy of GPT4o and Gemini-Flash in all cases.488

GPT4o clearly outperforms other models in most489

cases, except Gemini-Flash outperforming in N-490

Queens and and Wood-slide. The best performance491

of Intern-VL2.5 is 10% in Water Jugs (lagging be-492

hind GPT4o by 1%). For Maze-solving and Wood-493

slide, asking GPT4o to explain the logic increases494

gpt4o gem-fl
PG+SG Sym PG+SG Sym

Checker-Move 1.0 14.0 1.0 21.0
Maze-Solving 5.0 9.0 3.0 10.0
N-Queens 11.0 30.0 6.0 3.0
Wood-Slide 2.0 29.0 0.0 5.0

Tower-of-Hanoi 0.0 16.0 0.0 6.0
Water-Jugs 9.0 28.0 1.0 13.0

AVG 4.67 21 1.83 9.67

Table 4: Accuracy of PG + SG Planning vs Sym-
bolic (Sym) Planning (1-shot-idm setting); gem-fl:
gemini-1.5-flash ; AVG: Average; idm: in-domain.

performance by 6% & 8% resp.ly. This strategy 495

leads to a decrease for three puzzle types, while 496

keeping the performance somewhat similar for N- 497

Queens. 498

4.3 Results of 1-shot Prompting 499

Because of poor performance of InternVL2.5, we 500

explore one-shot setting for GPT4o and Gemini- 501

flash. We create two settings, where the in-context 502

example comes from the same type of puzzle (idm) 503

and another where the example comes from a differ- 504

ent puzzle type (oodm). The second setting provides 505

some indication of results on completely unseen 506

puzzles. 507

Results. Table 6 shows the effect of in-context 508

examples. Interestingly, the idm and the (oodm) 509

setting improves gpt4o performance by large mar- 510

gins for many puzzle types. For example, Water 511

Jugs performance with idm by 40% and with oodm 512

by 25%. idm decreases performance slightly for 513

Checker-Move and Maze-Solving (by 1%), while 514

oodm improves them by 11% and 8% respectively. 515

These performance improvements are limited for 516

the eCOT setting with multi-choice answers. For 517

other two settings of direct plan and solution gen- 518

eration, in-context examples do not show any im- 519

provement. Similarly, gemini-flash lags behind 520

gpt4o for all puzzles except N-queens in the oodm 521

setting. From Table 4, we observe that Symbolic 522

Planning significantly outperforms PG+SG Plan- 523

ning, underscoring the importance of improving 524

VLMs to generate correct problem PDDL specifi- 525

cations for solving planning problems. 526

4.4 Semantic Errors in Problem PDDL 527

Potential semantic errors in the generated problem 528

PDDL specification (init / goal) originate from an 529

incorrect visual understanding of a puzzle. 530

Incorrect Specification of Init/Goal 531

7

Error Type Error Name Checker-Move Maze-Solving Wood-Slide Tower-of-Hanoi Water-Jugs N-Queens*
idm oodm idm oodm idm oodm idm oodm idm oodm idm oodm

Syntax

Undefined Entities 0 3 0 1 1 9 2 56 0 0 0 1
General Syntax Errors 0 1 0 0 2 5 0 0 0 17 2 1
Duplicate Entities 1 11 0 13 0 0 0 0 0 0 0 0
Inconsistent Parameter Use 0 3 0 9 0 0 0 0 0 1 0 0
Incomplete 0 0 0 6 3 0 0 0 0 0 4 2
Other 6 19 14 18 9 18 19 25 3 4 0 0

Semantic

Incorrect Spec. of Init
Color 76 52 - - - - - - - - - -
Position 71 50 86 49 84 52 46 2 0 0 10 10
Shape/Size/Count 3 0 24 25 18 26 79 19 69 58 0 0
Predicates/Functions 3 0 0 0 0 0 45 2 0 0 10 10

Incorrect Spec. of Goal
Color 83 54 - - - - - - - - - -
Position 87 59 85 53 84 52 42 2 0 0 0 0
Shape/Size/Count 1 0 0 0 71 48 0 0 59 55 0 0
Predicates/Functions 0 0 0 0 0 0 20 2 0 0 0 6

Metric 0 0 0 0 1 9 0 0 0 27 0 2

Table 5: Error Analysis of the PDDL Generation (PG) module; we analyze 100 samples for each puzzle, except
N-Queens* (10 samples).

• Color - Some puzzles (such as Checker-Move)532

make use of colored objects. In such cases, wrong533

identification of colors leads to incorrect specifica-534

tion of the init and/or goal states.535

• Position - This error is common for puzzles536

that require absolute or relative position of objects,537

which gets reflected via incorrect specification of538

predicates and/or functions in init and/or goal.539

• Shape/Size/Count - In addition to color and540

position, other important aspects related to visual541

perception are shape, size and count of objects.542

We group all of them under one category - shape/-543

size/count and inspect such errors in the init/goal544

sections of the generated problem PDDL files.545

• Predicates/Functions - This error is related to546

incorrect usage of predicates/functions.547

• Metric - Some of the puzzles require the dec-548

laration of an optimization metric in the problem549

PDDL. We flag a metric error whenever the metric550

specification is absent in the generated problem551

PDDL file.552

Please refer to §C in the Appendix for the defini-553

tions of Syntax Errors in Problem PDDL.554

Observations. Table 5 provides insights about the555

different errors in the generated problem PDDL556

of the PG module. Interestingly more than 80%557

errors are made while identifying the correct color558

or position, whenever such information is required559

for accurate problem formulation. VLMs make560

less but considerable errors in identifying shape,561

size and count (below 50% in most cases). Such562

errors are possibly attributed to the “binding prob-563

lem” (Campbell et al., 2024). VLMs make the least564

amount of errors in identifying common predicates565

and functions, possibly owing to limited linguis- 566

tic variability amongst the puzzle types. From a 567

syntactic point of view, gpt4o suffers from using 568

many undefined entities for Tower-of-Hanoi (56% 569

errors in oodm setup). Similarly there are consider- 570

able errors while mapping same objects, predicates 571

or constants to separate symbolic entities. In sum- 572

mary, this analysis shows VLMs have limited per- 573

ception ability in the context of puzzles, limiting 574

their applicability. 575

5 Conclusion 576

Inspired from the usefulness of the recent plan- 577

ning benchmarks in evaluating large language mod- 578

els, we introduce PDDLPUZZLEVQA, a 9.5k vi- 579

sual puzzles dataset, explicitly encompassing six 580

planning puzzle types for benchmarking vision- 581

language models. Each puzzle is accompanied with 582

input images, and textual context, a groundtruth 583

planning problem description in a popular plan- 584

ning logical language (PDDL), and a groundtruth 585

symbolic and a tempated natural language plan. 586

Our results show the largest state-of-the-art Vision- 587

Language models (VLMs) lack in almost all as- 588

pects of the problem, such as natural language 589

or symbolic plan generation. Such VLMs also 590

do not show efficiency in a VLM-modulo frame- 591

work, where VLM’s task is to generate the problem 592

and domain PDDL, which can be used to generate 593

the final plan using an external planner. Delving 594

deeper, we find VLMs face high volume of errors 595

in identifying color, shape, position while mapping 596

the problem symbolically (possibly reaffirming the 597

binding problem). 598

8

Limitations599

Our work is the first to introduce an exclusively600

visual planning puzzles dataset, where each puzzle601

is accompanied by a groundtruth symbolic plan602

domain and problem description, which enables603

the benchmarking of both VLM and VLM-Modulo604

frameworks. Current work has the following limi-605

tations:606

• Our dataset focuses on six well-known types607

of planning problems, which somewhat lim-608

its the diversity. Future work should extend609

the types of planning problems, focusing on610

increasing the problem complexity.611

• The current dataset is exclusively in English,612

as we want to specifically focus on visual per-613

ception and reasoning abilities. In future, we614

plan to introduce multilingual versions of the615

dataset.616

• Currently, we have not experimented with any617

finetuning approaches to improve VLMs due618

to resource constraints. We believe that, to619

build better puzzle understanding, we may620

need to involve various reasoning objectives621

during supervised or instruction finetuning622

stages of VLM training. This will, however,623

require significant hardware resources.624

References625

Somak Aditya, Yezhou Yang, Chitta Baral, and Yiannis626
Aloimonos. 2016. Answering image riddles using627
vision and reasoning through probabilistic soft logic.628
Preprint, arXiv:1611.05896.629

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Mar-630
garet Mitchell, Dhruv Batra, C. Lawrence Zitnick,631
and Devi Parikh. 2015. VQA: Visual Question An-632
swering. In Proceedings of the 2015 International633
Conference on Computer Vision, ICCV ’15.634

Nitzan Bitton-Guetta, Yonatan Bitton, Jack Hessel,635
Ludwig Schmidt, Yuval Elovici, Gabriel Stanovsky,636
and Roy Schwartz. 2023. Breaking common sense:637
Whoops! a vision-and-language benchmark of syn-638
thetic and compositional images. 2023 IEEE/CVF In-639
ternational Conference on Computer Vision (ICCV),640
pages 2616–2627.641

Nitzan Bitton-Guetta, Aviv Slobodkin, Aviya Maimon,642
Eliya Habba, Royi Rassin, Yonatan Bitton, Idan643
Szpektor, Amir Globerson, and Yuval Elovici. 2024.644
Visual riddles: a commonsense and world knowl-645
edge challenge for large vision and language models.646
Preprint, arXiv:2407.19474.647

Declan Campbell, Sunayana Rane, Tyler Giallanza,648
Nicolò De Sabbata, Kia Ghods, Amogh Joshi,649

Alexander Ku, Steven M Frankland, Thomas L Grif- 650
fiths, Jonathan D Cohen, et al. 2024. Understand- 651
ing the limits of vision language models through 652
the lens of the binding problem. arXiv preprint 653
arXiv:2411.00238. 654

Patricia A. Carpenter, Marcel A. Just, and Peter Shell. 655
1990. What one intelligence test measures: a theoret- 656
ical account of the processing in the Raven progres- 657
sive matrices test. Psychological Review, 97(3):404– 658
431. 659

Anoop Cherian, Kuan-Chuan Peng, Suhas Lohit, 660
Kevin A Smith, and Joshua B Tenenbaum. 2022. Are 661
deep neural networks smarter than second graders? 662
Preprint, arXiv:2212.09993. 663

Yew Ken Chia, Vernon Yan Han Toh, Deepanway 664
Ghosal, and Soujanya Poria. 2024. Puzzlevqa: Di- 665
agnosing multimodal reasoning challenges of lan- 666
guage models with abstract visual patterns. Preprint, 667
arXiv:2403.13315. 668

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 669
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 670
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 671
Nakano, Christopher Hesse, and John Schulman. 672
2021. Training Verifiers to Solve Math Word Prob- 673
lems. 674

M. Fox and D. Long. 2003. Pddl2.1: An extension 675
to pddl for expressing temporal planning domains. 676
Journal of Artificial Intelligence Research, 20:61– 677
124. 678

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, 679
Dan Roth, and Jonathan Berant. 2021. Did aristotle 680
use a laptop? a question answering benchmark with 681
implicit reasoning strategies. Transactions of the 682
Association for Computational Linguistics, 9:346– 683
361. 684

Malik Ghallab, Adele Howe, Craig Knoblock, Drew 685
McDermott, Ashwin Ram, Manuela Veloso, Daniel 686
Weld, and David Wilkins. 1998. PDDL: The plan- 687
ning domain definition language. Technical Report 688
CVC TR-98-003/DCS TR-1165, Yale Center for 689
Computational Vision and Control. 690

Deepanway Ghosal, Vernon Toh Yan Han, Chia Yew 691
Ken, and Soujanya Poria. 2024. Are language models 692
puzzle prodigies? algorithmic puzzles unveil serious 693
challenges in multimodal reasoning. 694

Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv 695
Batra, and Devi Parikh. 2017. Making the v in vqa 696
matter: Elevating the role of image understanding 697
in visual question answering. In Proceedings of the 698
2017 Conference on Computer Vision and Pattern 699
Recognition, CVPR ’17, pages 6904–6913. 700

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul 701
Arora, Steven Basart, Eric Tang, Dawn Song, and 702
Jacob Steinhardt. 2021. Measuring mathematical 703
problem solving with the math dataset. NeurIPS. 704

9

https://arxiv.org/abs/1611.05896
https://arxiv.org/abs/1611.05896
https://arxiv.org/abs/1611.05896
https://api.semanticscholar.org/CorpusID:257496749
https://api.semanticscholar.org/CorpusID:257496749
https://api.semanticscholar.org/CorpusID:257496749
https://api.semanticscholar.org/CorpusID:257496749
https://api.semanticscholar.org/CorpusID:257496749
https://arxiv.org/abs/2407.19474
https://arxiv.org/abs/2407.19474
https://arxiv.org/abs/2407.19474
https://arxiv.org/abs/2212.09993
https://arxiv.org/abs/2212.09993
https://arxiv.org/abs/2212.09993
https://arxiv.org/abs/2403.13315
https://arxiv.org/abs/2403.13315
https://arxiv.org/abs/2403.13315
https://arxiv.org/abs/2403.13315
https://arxiv.org/abs/2403.13315
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
http://dx.doi.org/10.1613/jair.1129
http://dx.doi.org/10.1613/jair.1129
http://dx.doi.org/10.1613/jair.1129
https://courses.cs.washington.edu/courses/cse473/06sp/pddl.pdf
https://courses.cs.washington.edu/courses/cse473/06sp/pddl.pdf
https://courses.cs.washington.edu/courses/cse473/06sp/pddl.pdf
https://arxiv.org/abs/2403.03864
https://arxiv.org/abs/2403.03864
https://arxiv.org/abs/2403.03864
https://arxiv.org/abs/2403.03864
https://arxiv.org/abs/2403.03864

Justin Johnson, Bharath Hariharan, Laurens van der705
Maaten, Li Fei-Fei, C. Lawrence Zitnick, and Ross706
Girshick. 2016a. Clevr: A diagnostic dataset for com-707
positional language and elementary visual reasoning.708
Preprint, arXiv:1612.06890.709

Justin Johnson, Bharath Hariharan, Laurens van der710
Maaten, Li Fei-Fei, C. Lawrence Zitnick, and Ross B.711
Girshick. 2016b. Clevr: A diagnostic dataset for712
compositional language and elementary visual rea-713
soning. 2017 IEEE Conference on Computer Vision714
and Pattern Recognition (CVPR), pages 1988–1997.715

Subbarao Kambhampati, Karthik Valmeekam, Lin716
Guan, Mudit Verma, Kaya Stechly, Siddhant Bham-717
bri, Lucas Saldyt, and Anil Murthy. 2024. Llms can’t718
plan, but can help planning in llm-modulo frame-719
works. Preprint, arXiv:2402.01817.720

Pan Lu, Swaroop Mishra, Tony Xia, Liang Qiu, Kai-721
Wei Chang, Song-Chun Zhu, Oyvind Tafjord, Peter722
Clark, and Ashwin Kalyan. 2022. Learn to explain:723
multimodal reasoning via thought chains for science724
question answering. In Proceedings of the 36th Inter-725
national Conference on Neural Information Process-726
ing Systems, NIPS ’22, pages 1–15.727

Kenneth Marino, Mohammad Rastegari, Ali Farhadi,728
and Roozbeh Mottaghi. 2019. Ok-vqa: A visual ques-729
tion answering benchmark requiring external knowl-730
edge. In Proceedings of the IEEE/cvf conference731
on computer vision and pattern recognition, pages732
3195–3204.733

Drew McDermott, Malik Ghallab, Adele E. Howe,734
Craig A. Knoblock, Ashwin Ram, Manuela M.735
Veloso, Daniel S. Weld, and David E. Wilkins. 1998.736
Pddl-the planning domain definition language.737

R. Pelavin and J.F. Allen. 1986. A formal logic of plans738
in temporally rich domains. Proceedings of the IEEE,739
74(10):1364–1382.740

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-741
ula, and Yejin Choi. 2021. Winogrande: An adver-742
sarial winograd schema challenge at scale. Commu-743
nications of the ACM, 64(9):99–106.744

Shailaja Keyur Sampat, Akshay Kumar, Yezhou Yang,745
and Chitta Baral. 2021. Clevr_hyp: A challenge746
dataset and baselines for visual question answering747
with hypothetical actions over images. Preprint,748
arXiv:2104.05981.749

Enrico Scala. 2018. The ENHSP Planning System. Ac-750
cessed: 2025-02-09.751

Enrico Scala, Patrik Haslum, Sylvie Thiébaux, and752
Miquel Ramirez. 2016. Interval-based relaxation753
for general numeric planning. In ECAI 2016, pages754
655–663. IOS Press.755

Dustin Schwenk, Apoorv Khandelwal, Christopher756
Clark, Kenneth Marino, and Roozbeh Mottaghi. 2022.757
A-okvqa: A benchmark for visual question answering758
using world knowledge. In Proceedings of the 17th759

European Conference on Computer Vision, pages 760
146–162. 761

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, 762
Abu Awal Md Shoeb, and et al. 2023. Beyond the 763
Imitation Game: Quantifying and extrapolating the 764
capabilities of language models. Transactions on 765
Machine Learning Research, pages 1–95. 766

Alane Suhr, Stephanie Zhou, Ally Zhang, Iris Zhang, 767
Huajun Bai, and Yoav Artzi. 2019. A corpus for 768
reasoning about natural language grounded in pho- 769
tographs. In Proceedings of the 57th Annual Meet- 770
ing of the Association for Computational Linguistics, 771
pages 6418–6428, Florence, Italy. Association for 772
Computational Linguistics. 773

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and 774
Jonathan Berant. 2018. Commonsenseqa: A question 775
answering challenge targeting commonsense knowl- 776
edge. arXiv preprint arXiv:1811.00937. 777

Karthik Valmeekam, Matthew Marquez, Alberto Olmo, 778
Sarath Sreedharan, and Subbarao Kambhampati. 779
2023a. Planbench: an extensible benchmark for 780
evaluating large language models on planning and 781
reasoning about change. In Proceedings of the 37th 782
International Conference on Neural Information Pro- 783
cessing Systems, NIPS ’23, pages 1–13. 784

Karthik Valmeekam, Matthew Marquez, Sarath Sreed- 785
haran, and Subbarao Kambhampati. 2023b. On the 786
planning abilities of large language models : A criti- 787
cal investigation. Preprint, arXiv:2305.15771. 788

Peng Wang, Qi Wu, Chunhua Shen, Anthony Dick, and 789
Anton Van Den Henge. 2017a. Explicit knowledge- 790
based reasoning for visual question answering. In 791
Proceedings of the 26th International Joint Con- 792
ference on Artificial Intelligence, IJCAI’17, page 793
1290–1296. AAAI Press. 794

Peng Wang, Qi Wu, Chunhua Shen, Anthony Dick, and 795
Anton Van Den Hengel. 2017b. Fvqa: Fact-based 796
visual question answering. IEEE transactions on pat- 797
tern analysis and machine intelligence, 40(10):2413– 798
2427. 799

Qi Wu, Damien Teney, Peng Wang, Chunhua Shen, 800
Anthony Dick, and Anton van den Hengel. 2017. 801
Visual question answering: A survey of methods and 802
datasets. Computer Vision and Image Understanding, 803
163:21–40. 804

Rowan Zellers, Yonatan Bisk, Ali Farhadi, and Yejin 805
Choi. 2019. From recognition to cognition: Visual 806
commonsense reasoning. In The IEEE Conference on 807
Computer Vision and Pattern Recognition (CVPR). 808

Chi Zhang, Feng Gao, Baoxiong Jia, Yixin Zhu, and 809
Song-Chun Zhu. 2019. Raven: A dataset for rela- 810
tional and analogical visual reasoning. In Proceed- 811
ings of 2019 IEEE/CVF Conference on Computer 812
Vision and Pattern Recognition, CVPR ’19, pages 813
5312–5322. 814

10

https://arxiv.org/abs/1612.06890
https://arxiv.org/abs/1612.06890
https://arxiv.org/abs/1612.06890
https://api.semanticscholar.org/CorpusID:15458100
https://api.semanticscholar.org/CorpusID:15458100
https://api.semanticscholar.org/CorpusID:15458100
https://api.semanticscholar.org/CorpusID:15458100
https://api.semanticscholar.org/CorpusID:15458100
https://arxiv.org/abs/2402.01817
https://arxiv.org/abs/2402.01817
https://arxiv.org/abs/2402.01817
https://arxiv.org/abs/2402.01817
https://arxiv.org/abs/2402.01817
https://api.semanticscholar.org/CorpusID:59656859
https://doi.org/10.1109/PROC.1986.13638
https://doi.org/10.1109/PROC.1986.13638
https://doi.org/10.1109/PROC.1986.13638
https://arxiv.org/abs/2104.05981
https://arxiv.org/abs/2104.05981
https://arxiv.org/abs/2104.05981
https://arxiv.org/abs/2104.05981
https://arxiv.org/abs/2104.05981
https://sites.google.com/view/enhsp/
https://doi.org/10.1007/978-3-031-20074-8_9
https://doi.org/10.1007/978-3-031-20074-8_9
https://doi.org/10.1007/978-3-031-20074-8_9
https://openreview.net/forum?id=uyTL5Bvosj
https://openreview.net/forum?id=uyTL5Bvosj
https://openreview.net/forum?id=uyTL5Bvosj
https://openreview.net/forum?id=uyTL5Bvosj
https://openreview.net/forum?id=uyTL5Bvosj
https://doi.org/10.18653/v1/P19-1644
https://doi.org/10.18653/v1/P19-1644
https://doi.org/10.18653/v1/P19-1644
https://doi.org/10.18653/v1/P19-1644
https://doi.org/10.18653/v1/P19-1644
https://arxiv.org/abs/2305.15771
https://arxiv.org/abs/2305.15771
https://arxiv.org/abs/2305.15771
https://arxiv.org/abs/2305.15771
https://arxiv.org/abs/2305.15771
https://www.sciencedirect.com/science/article/pii/S1077314217300772
https://www.sciencedirect.com/science/article/pii/S1077314217300772
https://www.sciencedirect.com/science/article/pii/S1077314217300772

Bingchen Zhao, Yongshuo Zong, Letian Zhang, and815
Timothy Hospedales. 2024. Benchmarking multi-816
image understanding in vision and language models:817
Perception, knowledge, reasoning, and multi-hop rea-818
soning. Preprint, arXiv:2406.12742.819

Huaixiu Steven Zheng, Swaroop Mishra, Hugh Zhang,820
Xinyun Chen, Minmin Chen, Azade Nova, Le Hou,821
Heng-Tze Cheng, Quoc V. Le, Ed H. Chi, and822
Denny Zhou. 2024. Natural plan: Benchmark-823
ing llms on natural language planning. Preprint,824
arXiv:2406.04520.825

Yongshuo Zong, Tingyang Yu, Ruchika Chavhan,826
Bingchen Zhao, and Timothy Hospedales. 2024.827
Fool your (vision and) language model with828
embarrassingly simple permutations. Preprint,829
arXiv:2310.01651.830

Max Zuo, Francisco Piedrahita Velez, Xiaochen Li,831
Michael L. Littman, and Stephen H. Bach. 2024.832
Planetarium: A rigorous benchmark for translat-833
ing text to structured planning languages. Preprint,834
arXiv:2407.03321.835

11

https://arxiv.org/abs/2406.12742
https://arxiv.org/abs/2406.12742
https://arxiv.org/abs/2406.12742
https://arxiv.org/abs/2406.12742
https://arxiv.org/abs/2406.12742
https://arxiv.org/abs/2406.12742
https://arxiv.org/abs/2406.12742
https://arxiv.org/abs/2406.04520
https://arxiv.org/abs/2406.04520
https://arxiv.org/abs/2406.04520
https://arxiv.org/abs/2310.01651
https://arxiv.org/abs/2310.01651
https://arxiv.org/abs/2310.01651
https://arxiv.org/abs/2407.03321
https://arxiv.org/abs/2407.03321
https://arxiv.org/abs/2407.03321

A Additional Results Table836

1-shot-idm 1-shot-oodm
gpt4o gem-fl gpt4o gem-fl

Checker-Move
NL-PL (multi-choice) 16.0 28.0 28.0 18.0
NL-PL (open-ended) 3.0 4.0 1.0 0.0
PG + SG-PL (open-ended) 1.0 1.0 4.0 1.0

Maze-Solving
NL-PL (multi-choice) 29.0 36.0 38.0 34.0
NL-PL (open-ended) 8.0 11.0 11.0 11.0
PG + SG-PL (open-ended) 5.0 3.0 9.0 9.0

N-Queens
NL-PL (multi-choice) 26.0 27.0 18.0 25.0
NL-PL (open-ended) 7.0 1.0 7.0 0.0
PG + SG-PL (open-ended) 11.0 6.0 7.0 6.0

Wood-Slide
NL-PL (multi-choice) 34.0 33.0 32.0 17.0
NL-PL (open-ended) 9.0 13.0 5.0 0.0
PG + SG-PL (open-ended) 2.0 0.0 1.0 0.0

Tower-of-Hanoi
NL-PL (multi-choice) 27.0 19.0 18.0 15.0
PL PL (open-ended) 5.0 0.0 3.0 0.0
PG + SG-PL (open-ended) 0.0 0.0 0.0 0.0

Water-Jugs
NL-PL (multi-choice) 46.0 22.0 31.0 11.0
NL-PL (open-ended) 25.0 4.0 13.0 2.0
PG + SG-PL (open-ended) 9.0 1.0 13.0 1.0

Table 6: Comparison of solving visual puzzles using dif-
ferent state-of-the-art Vision Language Models (VLMs)
such as gpt4o, gemini-1.5-flash (gem-fl), intern-vl (int-
vl) in a 1-shot setting with in-domain (idm) and out-
of-domain (oodm) samples as few-shot examples; NL-
PL: Natural Language Plan + Final Answer; PG + SG-
PL: Problem PDDL Generation followed by Solution
Generator-based Planning

B Detailed Modifications837

We use a tailored set of constraints to vary different838

visual elements of each puzzle during dataset gen-839

eration and store a string representation that can be840

used for future research.841

• Checker-Move - For this puzzle, the constraint842

set includes grid length (L = 5 to 20), color pairs843

(10 variations), configurations of checker counts844

for each color, and varying empty square positions.845

We represent color1 and color2 by digits 1 and 2,846

and empty cells by 0. Each sample contains an847

initial and goal state string, separated by a new line.848

An example of init state string: "1110222".849

• Maze-Solving - We generate configurations by850

systematically varying start and end cell place-851

ments within four defined regions of the maze,852

along with start-end color pairs, object shapes, and853

Initial Configuration

Goal Configuration

A checker game is being played on a grid of 7 squares
with 3 green and 3 red checkers. Initially, the
checkers are arranged as shown in the starting
configuration with the 6 checkers occupying 6 squares
and one unoccupied square. Green checkers only move
rightward and Red checkers only move leftward. Every
move is either i) a slide to the adjacent empty
square, or ii) a jump over one position to an empty
square, provided the checker being jumped over is of a
different colour. Each square can accommodate a
maximum of one checker at any time. How many moves are
required to reach the ending configuration from the
starting configuration following the specified rules?
 Gold Answer: 15

Figure 4: Checker-Move Puzzle

wall colors. Here empty cells (0), walls (1), start 854

position (S), and end position (E) are represented 855

in a row-wise format separated by ‘\n’ characters. 856

We record moves in a path using the characters ’l’ 857

(left) and ’r’ (right). An example of init state string: 858

"1111111111111 859

S000101000001 860

1110101011101 861

1010101000101 862

1010101110101 863

1000100000101 864

1011111111101 865

1000000010001 866

1111111010101 867

1000000000101 868

11111111111E1" 869

• N-Queens - We introduce constraints by varying 870

chessboard size (N=8 to 11), color pairings, and 871

queen placements. We denote each queen using 872

the character ‘Q’, and use digits 1 and 2 for color1 873

and color2, respectively. An example of init state 874

string: 875

"1212Q212 876

Q1212121 877

121Q1212 878

21212Q21 879

12121212 880

2Q212121 881

12121212 882

21Q12121" 883

12

This is maze having 11 * 13 cells. The empty
cells are coloured white and the obstacle cells
are coloured black. From an empty cell, you can
only move up, down, left, or right to another
adjacent empty cell. You cannot move diagonally
between two empty cells and cannot step into a
cell with an obstacle. The entry cell of the maze
is shown with the green arrow. The exit cell of
the maze is shown with the blue arrow. Suppose
you have found the most optimal path in the maze
between the entrance and exit, where you need to
go through the least number of empty cells and
you need to make the least number of left and
right turns. What is the total number of right
turns do you need to make in this optimal path?

Gold Answer: 5

Figure 5: Maze-Solving Puzzle

• Wood-Slide - We vary the grid dimensions,884

block count, and the position and color of empty885

blocks to increase the diversity of the samples.886

Here we identify each block using block ID num-887

bers, color codes are mapped to each unique block888

ID, and each row is separated by ‘\n’ with 2 sepa-889

rate strings for the initial and goal state. An exam-890

ple of init and goal state strings:891

Init892

"2,2,3,3893

6,1,1,0894

6,1,1,4895

7,8,8,5896

7,0,9,9"897

Goal898

"2,2,3,3899

6,1,1,4900

6,1,1,5901

7,0,8,8902

7,0,9,9"903

• Tower-of-Hanoi - For this puzzle, we vary the904

number of disks, disk and rod colors, and rod905

heights. We denote the pegs or rods using char-906

acters: ’A’, ’B’, and ’C’ sequentially, separated by907

‘\n’ with disks size represented by numbers (where908

smaller numbers denote smaller disks). Disk posi-909

tions on each rod are listed in order from bottom to910

You are given an 8 * 8 chessboard. The
Manhattan distance between two squares in a
chessboard is equal to the minimal number of
orthogonal King moves between these squares
on the otherwise empty board. The objective
is to place 8 chess queens on this board so
that no two queens threaten each other; i.e.
no two queens share the same row, column, or
diagonal. 6 queens have already been placed
in some of the squares of the board, as
shown in the image. Suppose you pick two
squares to place the two remaining queen
pieces in a way that fulfills the objective.
What is the Manhattan distance between these
two squares? Gold Answer: 3

Figure 6: N-Queens Puzzle

top, separated by ‘>’. An example of init and goal 911

state strings: 912

Init 913

"A=6>5>2>1 914

B=3 915

C=4" 916

Goal 917

"A=6>5 918

B=0 919

C=4>3>2>1" 920

• Water-Jugs - Here we vary the number of jugs, 921

capacity, volume of liquid (in each jug), and color 922

of both jugs and liquid. Water Jugs employs strings 923

for both start and end states, with jugs separated by 924

‘\n’ and defined by current volume/capacity ratios, 925

with color hex codes specified for the liquid. An 926

example of init state string: 927

Init 928

"A=12/13 929

B=10/12 930

C=5/6" 931

Goal 932

"A=13/13 933

B=10/12 934

C=4/6" 935

13

Consider a sliding block puzzle of grid
size 5 * 4 units. It has 9 wooden blocks of
varying sizes: one 2 * 2, four 1 * 2, two 2
* 1, and two 1 * 1. The gird also has two
empty 1 * 1 spaces. The blocks cannot be
removed from the grid, and may only be slid
horizontally and vertically within its
boundary. A move is defined as selecting a
block that is slideable, and moving it by 1
unit either horizontally or vertically,
whichever is possible. The images show the
starting and ending configurations of the
puzzle grid. The wooden blocks are shown in
various shades of brown and the empty
spaces are shown in white. What is the
minimum number of moves required to reach
the ending configuration from the starting
configuration?

Initial Configuration Goal Configuration

Gold Answer: 3

Figure 7: Wood-Slide Puzzle

Color - We store the hex color codes used for ren-936

dering different elements of each puzzle. This en-937

sure that the dataset captures both structural and938

visual diversity.939

C Syntax Errors in PDDL Problems940

• Duplicate Entities - Occurs when the same ob-941

ject, predicate, function, or constant is mentioned942

more than once in problem PDDL.943

• Undefined Entities - Use of predicates, func-944

tions, object types that are not defined in domain945

PDDL.946

• Inconsistent Parameter Use - Use of a predi-947

cate/function with either a parameter of an incom-948

patible type or a different number of parameters949

than it was defined with.950

• General Syntax Errors - These are generic951

syntax errors that do not align with the specification952

of the PDDL language.953

• Incomplete - Occurs when problem PDDL spec-954

ification is incomplete.955

• Other - We label all other syntax errors as Other.956

Gold Answer: 4

You are playing a Tower of Hanoi game with 3 rods
and 6 disks of various diameters, which can slide onto
any rod. You are given the starting and ending
configuration of the game as shown in the top and the
bottom of the image, respectively. The game has the
following rules: i) Only one disk may be moved at a time;
ii) Each move consists of taking the upper disk from
one of the stacks and placing it on top of another
stack or on an empty rod; and iii) No disk can be
placed on top of a disk that is smaller than it.
What is the minimum number of moves required to
go from the starting to the ending configuration?

Initial Configuration

Goal Configuration

Figure 8: Tower-of-Hanoi Puzzle

D Planning Complexity 957

• Planning Time - According to the implementa- 958

tion of the ENHSP-Planner3, planning time cor- 959

responds to the total time spent exploring the 960

state space to find a solution plus pre- and post- 961

processing time. 962

• Expanded Nodes - This refers to the number 963

of nodes (or states) that the planner has fully ex- 964

panded during the search process. Expanding a 965

node means generating all its successor states by 966

applying actions. This metric provides insight into 967

the efficiency of the search; fewer expanded nodes 968

typically indicate a more efficient search. 969

• States Evaluated - This represents the number 970

of states evaluated by the planner’s heuristic func- 971

tion during the search. Some of these states may 972

have been expanded, while others may have been 973

pruned or discarded based on heuristic estimates. 974

This number is often higher than the number of 975

expanded nodes because heuristics may evaluate 976

states without necessarily expanding them; it helps 977

to analyze how extensively the heuristic function 978

was used. If the number of evaluated states is much 979

higher than the expanded nodes, the heuristic may 980

be computationally expensive. 981

3https://gitlab.com/enricos83/ENHSP-Public

14

You are given 3 jugs of capacities 13, 12, 6 litres.
Initially, the amount of water that is contained in
each jar is shown in the image. A single step of water
pouring from one jug to another is constrained by the
following rules: i) take a non-empty jug and pour water
from it to another non-full jug until the first one
becomes empty or the second one becomes full; and ii)
no water can be spilt while pouring. The objective is
to reach the amounts of 13, 10, 4 litres of water in
the jugs from left to right, respectively. What is the
minimum number of water pouring steps required to
achieve the objective?

Gold Answer: 1

Figure 9: Water-Jugs Puzzle

0 200 400 600 800 1000 1200
Time (msec)

Checker Move

Maze Solve

Tower of Hanoi

Water Jugs

N-Queens

Wood Slide

Figure 10: Variation in Planning Time

E Examples of Planning Methods982

Figures 12 and 13 demonstrate the working of Sym-983

bolic PG + SG Planning methods, respectively.984

0 20 40 60 80 100 120 140
Count

Checker Move

Maze Solve

Tower of Hanoi

Water Jugs

N-Queens

Wood Slide

Metric Type
States Evaluated
Expanded Nodes

Figure 11: Variation in Problem Complexity

Step Plan:

1. Move agent1 from (x1, y2) to (x2, y2) [Right
turn count: 0]
2. Move agent1 from (x2, y2) to (x3, y2) [Right
turn count: 0]
...
31. Move agent1 from (x10, y11) to (x11, y11)
[Right turn count: 3]
32. Move agent1 from (x11, y11) to (x12, y11)
[Right turn count: 3]

Detailed Plan:

The optimal path from the entry cell (x1, y2) to
the exit cell (x12, y11) is calculated to minimize
the number of empty cells traversed and to
minimize the number of left and right turns for
efficiency. Based upon the provided initial and
goal states, and considering the characteristics
of the maze, the following plan is derived.

Final Answer:

5

Symbolic Planning (Few-Shot)

Problem Description (NL)

Init Image

domain.pddl

problem.pddl

... What is the total
number of right turns do
you need to make in this
optimal path?

Figure 12: Example of Symbolic Planning

15

Detailed Plan:

The objective is to guide the agent from the entrance at
(x1, y2) to the exit at (x11, y12) through the maze in such
a way as to minimize the number of right turns.

1. The initial and goal positions must be used.
2. We need to understand the optimal path, considering both
the total distance and minimizing right turns.
...
Step-by-step outline:
1. Start at (x1, y2).
2. Move right to (x11, y2).
3. Move down to (x11, y12).
...

Solution Generator (SG)

Step Plan:

1. Move right from (x1, y2) to (x11, y2).
2. Turn down from (x11, y2) to (x11, y12).

3. End.

Final Answer:

5

domain.pddl

Problem Description (NL)

Init Image

... What is the total
number of right turns do
you need to make in this
optimal path?

Explanation:

The problem defines a maze where an agent needs to navigate
from an entry point to an exit point. The description
provides the layout of the maze using visual
representation.
...
Problem PDDL:

(define (problem maze-problem)
 (:domain maze)
 (:objects
 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 - position
 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 - position
 agent1 - agent
)
 (:init
 ;Inc and dec for x coordinates
 (inc x1 x2) (inc x2 x3)
 ...
)
 (:goal

 ;Goal position of the agent
 (at agent1 x11 y12)
)
)

Problem PDDL Generator (PG)

PG + SG Planning (Few-Shot)

Figure 13: Example of PG + SG Planning

16

Instruction

You are a friendly and helpful assistant adept at understanding visual puzzles and formulating detailed plans in natural language.
Your task is to analyze the provided puzzle, derive the correct answer, and select the corresponding option from the
provided multiple-choice options ["A", "B", "C", "D"].
Instructions:
- Provide your response in the following format:
```
<ANSWER>
Detailed Plan:
[Detailed plan explaining the logic behind solving the puzzle.]
Step Plan:
[Step-by-step plan without explanations.]
Correct Option:
[The single correct option from ["A", "B", "C", "D"] that matches derived answer.]
</ANSWER>
```
- Ensure the plan and answer are clearly separated and labeled as shown.
- Under **Detailed Plan**, include the logic behind each step, explanations for why each step is taken, and any changes in
state resulting from that step. You may also describe the initial and goal states to provide context and reasoning.
- Under **Step Plan**, list only the steps that need to be taken, without any explanations or additional information.
- Under **Correct Option**, add only that **option** from ("A", "B", "C", or "D") where the derived answer matches the answer
in corresponding option given. Don't add any additional text, integer answer, or any option apart from ["A","B","C","D"].

In-Context Examples
Question: A checker game is being played. . . How many moves are required to reach ending configuration from starting configuration following specified
rules?
Options:[’A’: 5, ’B’: 6, ’C’: 1, ’D’: 3]

images : [init and goal state images. . .]

Answer:
Step Plan:
1. The yellow checker c10 jumps over a blue checker from position p11 to land at the empty position p9, with the blue checker in p10.

2. The blue checker c9 moves from position p10 to the adjacent empty position p11 to the right.
3. The blue checker c8 jumps over a yellow checker from position p8 to land at the empty position p10, with the yellow checker in p9.
Correct Option: D

Input Question
Question: A checker game is being played on a grid of 12 squares with 7 blue and 4 yellow checkers. Initially, the checkers are arranged as shown in the
starting configuration with the 11 checkers occupying 11 squares and one unoccupied square. Blue checkers only move rightward and Yellow checkers only
move leftward. Every move is either i) a slide to the adjacent empty square, or ii) a jump over one position to an empty square, provided the checker being
jumped over is of a different colour. Each square can accommodate a maximum of one checker at any time. How many moves are required to reach the
ending configuration from the starting configuration following the specified rules?
Options:[’A’: 4, ’B’: 5, ’C’: 2, ’D’: 3]

images :

Figure: Initial Configuration

Figure: Goal Configuration
Output
Detailed Plan: The key to solving this puzzle is to follow the movement rules for blue and yellow checkers while taking into account their allowed directions
and whether they can slide to an adjacent empty square or jump over another. We need to ensure each checker ends up in its respective position, shifting the
empty square around strategically.
Observations:
- The empty square starts at position 9.
- Blue checkers in positions 1-2-3-6-8-11-12 must all be moved one step to the right.
- Yellow checkers in positions 4-5-7-9-10 must all be moved one step to the left.
- The trick is mainly to facilitate the movement of blue checkers into positions originally occupied by yellow checkers and vice versa.
Step Plan:
1. Move the blue checker from position 6 to the empty square (position 9).
2. Move the yellow checker from position 7 to position 6 (newly vacated).
3. Move the blue checker from position 8 to the empty square (position 7).
4. Move the yellow checker from position 10 to position 9.
Correct Option: D

Table 7: NL Planing (multi-choice) using GPT4o in 1-shot incontext setting for checker move puzzle

17

Instruction

You are a friendly and helpful assistant adept at understanding visual puzzles and formulating detailed plans in natural language.
Ensure your answers are comprehensive and provide clear instructions to solve the puzzle.

Instructions:
- Provide your response in the following format:
```
<ANSWER>
Detailed Plan:
[Detailed plan]

Step Plan:
[Step-by-step plan]

Final Answer:
[Final answer]

</ANSWER>
```

- Ensure the plan and answer are clearly separated and labeled as shown.
- Under **Detailed Plan**, include the logic behind each step, explanations for why each step is taken, and any changes in
state resulting from that step. You may also describe the initial and goal states to provide context and reasoning.
- Under **Step Plan**, list only the steps that need to be taken, without any explanations or additional information.

In-Context Examples
Question: You are playing a Tower of Hanoi game with 3 rods and 5 disks. What is the minimum number of moves required?

images : [init and goal state images. . .]

Answer:
Step Plan:
Move disc d1 from the top of disc d4 to the top of disc d2
Final Answer: 1

Input Question
Question: You are playing a Tower of Hanoi game with 3 rods and 4 disks. What is the minimum number of moves required?

images :

Figure: Initial Configuration Figure: Goal Configuration

Output
Detailed Plan: The initial state has 4 disks on 3 different rods. The goal is to arrange these disks on the third rod following the Tower of Hanoi rules:
1. Only one disk can be moved at a time.
2. Each move involves taking the top disk from one of the stacks and placing it on top of another stack or on an empty rod.
3. No larger disk may be placed on top of a smaller disk.
4. Move disk from peg 3 to peg 2.
5. Move disk from peg 1 to peg 2.
6. Move disk from peg 1 to peg 3.
The given state:
- Rod 1: 1 large disk
- Rod 2: 2 medium disks
- Rod 3: 1 small disk
The goal state:
- Rod 1: Empty
- Rod 2: 1 medium disk
- Rod 3: 1 large disk, 1 medium disk, 1 small disk
To solve this, we need to consider repositioning the disks to achieve the goal state efficiently. We will move the smallest disk first from rod 3.
Step Plan:
1. Move D4 from Rod 3 to Rod 2
2. Move D3 from Rod 2 to Rod 3
3. Move D4 from Rod 2 to Rod 1
4. Move D2 from Rod 2 to Rod 3
5. Move D4 from Rod 1 to Rod 3
Final Answer: 5

Table 8: NL Planning (open-ended) using GPT4o in 1-shot incontext setting for tower of hanoi puzzle

18

Instruction

You are a friendly and helpful assistant adept in understanding visual puzzles and formulating them as planning problems in
pddl format using STRIPS syntax. You must have to write complete code so that I can actually run it with classical Planner and get the
final plan in output. Ensure that all objects, predicates, initial conditions, and goal states are defined in complete detail. Do
not leave any part of the code incomplete or abbreviated. Avoid placeholders or ellipses ("...").]. When generating code,
offer explanations for code segments as necessary under specified format and maintain good coding practices.

Instructions:
- Given the **domain definition**, **images**, and **problem description**, generate the corresponding **problem.PDDL** file.

```
<ANSWER>
Explaination:
[Logic and explaination behind generated problem.pddl]

Problem PDDL:
[Insert the problem.PDDL content here]

</ANSWER>
```

- Ensure that the PDDL code is syntactically correct and formatted properly.
- Ensure the plan and answer are clearly separated and labeled as shown.
- Under **Explaination**, include explanations, additional text, logic behind each step, and any code snippets.
- Under **Problem PDDL**, only include the problem PDDL code without any additional text and explainations. Dont add any extra
backticks for code.

In-Context Examples
Question: This is maze having 11 * 9 cells. The empty cells. . . What is the combined number of left and right turns do you need to make in this optimal path?

images : [init and goal state images. . .]

Domain PDDL : [(define (domain maze). . .]

Answer:
Problem PDDL: [content of problem.pddl]

Input Question
Question: This is maze having 11 * 13 cells. The empty cells are coloured white and the obstacle cells are coloured black. From an empty cell, you can
only move up, down, left, or right to another adjacent empty cell. You cannot move diagonally between two empty cells and cannot step into a cell with an
obstacle. The entry cell of the maze is shown with the green arrow. The exit cell of the maze is shown with the blue arrow. Suppose you have found the most
optimal path in the maze between the entrance and exit, where you need to go through the least number of empty cells and you need to make the least number
of left and right turns. What is the total number of right turns do you need to make in this optimal path?

images :

Figure: Maze Solve Image
Domain PDDL : [(define (domain maze). . .]

Output
Explaination: The problem defines a maze where an agent needs to navigate from an entry point to an exit point. The description provides the layout of the
maze using visual representation. The domain PDDL file is provided, and it defines actions such as moving up, down, left, and right. We need to generate a
problem PDDL file based on the given maze configuration, ensuring the initial conditions and goals represent the maze accurately.
Problem PDDL:

(define (problem maze-problem)
(:domain maze)
(:objects
...

)
(:init
...

)
(:goal
...

)
)

Table 9: PG using GPT4o in 1-shot incontext setting for Maze Solve puzzle

19

Instruction

You are an expert assistant proficient in solving planning problems and generating detailed solutions in natural language (NL).
Your task is to analyze a given problem described by a combination of:
1. A textual description of the puzzle.
2. Associated images representing the initial and goal states.
3. A domain definition and a problem PDDL file, which may be partially or fully correct, generated by an LLM in previous steps.

Objective:
- Generate a comprehensive NL solution plan and a clear final answer to the problem based on the inputs.

Instructions:
- Provide your response in the following format:
```
<ANSWER>

Detailed Plan:
[Comprehensive explanation of the plan, including the logical reasoning for each step, the goal, and the analysis of any potential
issues with the given PDDL file.]

Step Plan:
[Concise step-by-step instructions derived from the solution.]

Final Answer:
[The final conclusion or solution in natural language.]

</ANSWER>
```
- Ensure that **Detailed Plan** explains the logic behind each step and includes reasoning for any corrections or assumptions made
about the PDDL file.
- The **Step Plan** provides an actionable, step-by-step sequence to achieve the goal.
- The **Final Answer** offers a concise yet clear resolution to the problem. Ensure it will be a single integer denoting final
answer without any additional text.
- If there are inconsistencies or missing details in the problem PDDL, make reasonable assumptions, explain them in the Detailed
Plan, and proceed with generating the solution. Reference the domain and problem files explicitly when describing your reasoning
to ensure traceability. Use the images and description for additional context and validation of the plan where necessary.

Input Question
Question: You are given 3 jugs of capacities 13, 12, 6 litres. Initially, the amount of water that is contained in each jar is shown in the image. A single step of
water pouring from one jug to another is constrained by the following rules: i) take a non-empty jug and pour water from it to another non-full jug until the
first one becomes empty or the second one becomes full; and ii) no water can be spilt while pouring. The objective is to reach the amounts of 13, 12, 2 litres
of water in the jugs from left to right, respectively. What is the minimum number of water pouring steps required to achieve the objective?

images :

Figure: Water Jugs Image
Domain PDDL : [(define (domain waterjug). . .]

Problem PDDL: [(define (problem water-jug-pouring). . .]

Output
Detailed Plan: The problem involves transferring water between three jugs to achieve a desired quantity of water in each jug. The jugs have capacities of 13,
12, and 6 litres respectively, and the initial state has 11 litres in Jug 1, 12 litres in Jug 2, and 3 litres in Jug 3. The goal state is to have 13 litres in Jug 1, 12
litres in Jug 2, and 2 litres in Jug 3. Let’s first analyze the initial state and the goal state and determine the steps needed to reach the goal:
1. Jug 1 contains 11 litres, 2. Jug 2 contains 12 litres, 3. Jug 3 contains 4 litres.
The objective is to have: 1. Jug 1 containing 13 litres, 2. Jug 2 containing 12 litres, 3. Jug 3 containing 2 litres.
To meet this objective, some water needs to be redistributed between the jugs. The primary goal is to transfer water from Jug 3 to Jug 1 or Jug 2 such that
Jug 3 ends up with only 2 litres of water. Here is the step-by-step plan:
1. Pour water from Jug 3 into Jug 1 until Jug 1 is full.
- Jug 1: 11 + 2 = 13 litres (full)
- Jug 2: 12 litres (unchanged)
- Jug 3: 4 - 2 = 1 litre (since Jug 1 only needed 2 litres to become full):
In simpler terms, the idea is to ensure that Jug 3 ends up having exactly 2 litres by working its content down through specific transfer steps.
Step Plan:
1. Pour 2 litres from Jug 3 into Jug 1.
Final Answer: 1

Table 10: Prompt for SG (GPT4o): Plan generation from the output of PG in 1-shot in-domain setting for the Water
Jugs puzzle

20

Instruction

Instructions:
- Provide your response in the following format:
Answer: Let's describe the image first and think step by step. Strictly, provide the final answer
option between [(A), (B), (C), (D)]
```
<ANSWER>
Explanation:
[Logic and explaination behind solving puzzle and generating plan]

Option:
[The single correct option from [(A), (B), (C), (D)] that matches the derived answer. Don't write any additional text or
integer answer. When you could not find an answer from the given options, write NONE only without any explaination.]
</ANSWER>
```

Input Question
Question: Consider a sliding block puzzle of grid size 5 * 4 units. It has 9 wooden blocks of varying sizes: one 2 * 2, four 1 * 2, two 2 * 1, and two 1 * 1. The
gird also has two empty 1 * 1 spaces. The blocks cannot be removed from the grid, and may only be slid horizontally and vertically within its boundary. A
move is defined as selecting a block that is slideable, and moving it by 1 unit either horizontally or vertically, whichever is possible. The images show the
starting and ending configurations of the puzzle grid. The wooden blocks are shown in various shades of brown and the empty spaces are shown in white.
What is the minimum number of moves required to reach the ending configuration from the starting configuration? Do not directly give the final answer.
Options:[’A’: 4, ’B’: 5, ’C’: 3, ’D’: 2]

images :

Figure: Initial Configuration Figure: Goal Configuration
Output
Explanation:
1. Move the top right 1x1 block left by 1 unit into one of the empty spaces.
2. Slide the 1x2 block that was just cleared down by 1 unit into the other empty space.
3. Slide the other 1x2 block right by 1 unit into the space created by the previous move.
4. Finally, move the 1x1 block currently in the middle left by 1 unit.
Option: (A)

Table 11: eCOT (multi-choice) using GPT4o for wood slide puzzle

21

	Introduction
	Related Work
	Constructing PDDLPuzzleVQA
	Chosen Puzzles
	Additional Modifications

	Experiments
	Planning Methods
	Results of 0-Shot Prompting
	Results of 1-shot Prompting
	Semantic Errors in Problem PDDL

	Conclusion
	Additional Results Table
	Detailed Modifications
	Syntax Errors in PDDL Problems
	Planning Complexity
	Examples of Planning Methods

