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Abstract

Planning is a core aspect of human intelligence.
Recent planning benchmarks have proved to
be challenging to a wide range of Large Lan-
guage Models. Yet, planning in the context
of vision has not been extensively explored.
To feel this void and establish a sufficiently
challenging reasoning benchmark for Vision-
Language Models, we introduce PDDLPUZ-
ZLEVQA, which is a collection of ~ 10k puz-
zles encompassing six well-known types (such
as Maze-Solving, N-Queens), which explicitly
require multiple-step planning to solve. We
further accompany each puzzle problem with
a groundtruth symbolic representation in Plan
Domain Definition Language (PDDL); which
in turn can be used to generate an executable
plan using a symbolic planner. Therefore, we
benchmark both end-to-end plan generation
ability and VLM’s ability to represent a plan-
ning problem presented as image and text into
PDDL. Our experiments show huge deficits of
state-of-the-art VLMs such as GPT40, Gemini-
flash and InternVL2.5 in all variations plan
generation. Delving deeper, we analyze var-
ious syntactic and semantic errors of the VLMs
while generating PDDL representation. Our
dataset is the first vision and reasoning dataset
to focus solely on planning puzzles, accompa-
nied with groudtruth PDDL representation and
hard benchmark for the most efficient VLMs.
We plan to make both code and data publicly
available for the research community.

1 Introduction

Foundational language models are trained on tasks
such as next-word prediction and sequence com-
pletion. Their surprising reasoning abilities (and
the so-called emergent behavior) have driven the
creation of increasingly complex benchmarks in
logic (Srivastava et al., 2023), math (Cobbe et al.,
2021; Hendrycks et al., 2021), and commonsense
reasoning (Geva et al., 2021; Sakaguchi et al.,

2021; Talmor et al., 2018), though only a few re-
main challenging for newer Large Language Mod-
els (LLMs). Planning, a key Al discipline, re-
mains difficult, with benchmarks like PlanBench
(Valmeekam et al., 2023b) posing challenges for
various models. Since end-to-end plan generation
is hard and error-prone, researchers further explore
combining LL.Ms with symbolic planners. Here,
the task of LLMs is to convert natural language
planning problems into Planning Domain Defini-
tion Language (PDDL) (McDermott et al., 1998),
enabling the generation of verifiable, executable
plans using off-the-shelf planners.
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Figure 1: Overview of two task settings in PDDLPuUz-
ZLEVQA. ENHSP (Scala et al., 2016) is an external
symbolic planner.

Similar to reasoning in text, multimodal rea-
soning benchmarks have increasingly gained at-
tention as Vision-Language Models proliferated.
Earlier benchmarks focused on evaluating visual
perception and external knowledge through ques-
tion answering tasks (FVQA, KB-VQA, OK-VQA)



(Wang et al., 2017b,a; Marino et al., 2019), vi-
sual commonsense reasoning (VCR, WHOOPS)
(Zellers et al., 2019; Bitton-Guetta et al., 2023), spa-
tial reasoning about objects and regions (NLVR2,
CLEVR) (Suhr et al., 2019; Johnson et al., 2016b).
In contrast, planning requires “thinking” and “sim-
ulating” intermediate steps given an initial state
and a goal world state. Furthermore, most visual
reasoning benchmarks still relies on predicting and
evaluating a single final answer as an output. Plan-
ning using images has not been extensively tested.

Taking cues from the success of PlanBench and
recent work on image puzzles, we specifically fo-
cus on a set of well-known single or multi-image
visual puzzles that specifically requires multiple-
step planning to solve. We adopt six types of puz-
zles from AlgoPuzzleVQA (Ghosal et al., 2024): 1)
Checker-move, 2) Maze solving, 3) N-Queens, 4)
Wood-slide, 5) Tower-of-Hanoi, and 6) Water-Jugs.
Our goal is to benchmark the ability of Vision-
Language Models to generate plans with the initial
and goal states are presented as images, accompa-
nied with limited textual description. We evaluate
such ability in various stages, 1) final answer gen-
eration, 2) natural language based plan generation,
and 3) generating correct symbolic problem de-
scription in PDDL language, which can be further
used to generate a correct plan using any symbolic
planning engine. As shown in Figure 1, we are
interested in finding whether the model(s) are able
to map the underlying planning problem into the
desired problem PDDL. PDDL is a standardized
"Planning Domain Definition Language" (Ghallab
et al., 1998; Fox and Long, 2003), widely used to
describe planning domains as well as problem in-
stances. A PDDL definition consists of two parts:
domain and the problem definition'. The domain
definition presents a blueprint for representing a
world in terms of predicates and actions that can
be used to transition between different states of the
world. The problem defines the objects present in
a specific instance of the world and describes the
initial and goal states.

Deviating from AlgoPuzzleVQA, we syntheti-
cally generate 9.5 K puzzles and therefore also gen-
erate groudtruth domain and problem PDDL which
is sufficient to generate the final plan, from any
symbolic planner. In short, here we take a different
path of solving the visual puzzles by prompting

1h'ctps ://www.ida.liu.se/~TDDC17/info/labs/
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state-of-the-art VLMs to generate symbolic rep-
resentation of the problem. We utilize the visual
perception and symbolic code generation capabili-
ties of VLMs and outsource the challenging task of
algorithmic reasoning to an external planner (Scala
et al., 2016). We make the following contributions:
1. We formulate Visual Puzzles as a Planning
problem and present a benchmark process supervi-
sion dataset PDDLPuzzleVQA, comprising PDDL
domain of six visual puzzles (subset of AlgoPuz-
zleVQA,; Ghosal et al. (2024)) and 9.5K PDDL
problems (covering 6 types of puzzles) along with
templates for generating the PDDL problem files.

2. We conduct a systematic ablation with natu-
ral language, symbolic, and hybrid planning ap-
proaches and perform an in-depth analysis of differ-
ent types of errors. Our results show that the largest
state-of-the-art Vision-Language models (GPT4o,
Gemini-flash, InternVL2.5-78B) achieve very low
performance on most aspects of the task: answer
generation, natural language and symbolic plan
generation; demonstrating the difficulty that visual
planning problems pose, and the efficacy of our
benchmark.

3. Provided the limited error messages from exter-
nal symbolic planner, we introduce a set of met-
rics to analyze different sources of syntactic and
semantic errors in the generated problem PDDL
programs. The semantic analysis provides detailed
insights about which high-level aspects such as
color, position, shape/size, or predicates make the
symbolic mapping difficult.

2 Related Work

Visual Question Answering (VQA) - Over the
past decade, benchmarking in vision and language
has moved from testing perception and common-
sense reasoning through traditional visual ques-
tion answering (Antol et al., 2015; Wu et al., 2017,
Goyal et al., 2017; Schwenk et al., 2022; Lu et al.,
2022; Zong et al., 2024) to visual puzzle solving.
In this line of reasearch, researchers test vision-
language models in specific dimensions, such as
visual perception, reasoning (commonsense/spa-
tial/logical/numeric), domain or world knowledge,
multi-hop reasoning (combining information and
reasoning with a sequence of logical operations),
planning (use of planning elements).

Aditya et al. (2016) introduced a novel visual
understanding task in the form of Image Riddles
with a total 3.3k samples, where each riddle has


https://www.ida.liu.se/~TDDC17/info/labs/planning/writing.html
https://www.ida.liu.se/~TDDC17/info/labs/planning/writing.html

Dataset QA-Format

Perception World-K Domain-K Reasoning Multi-Hop Planning PDDL

RAVEN multi-choice X X X X
Image Riddles open-ended X X X
Visual Riddles open-ended X X X
CLEVR-HYP open-ended X X X X
PuzzleVQA multi-choice X X X X X
MIRB both X X X
SMART-101 multi-choice X X X
Natural-Plan open-ended X X
PlanBench open-ended X X

Planetarium open-ended X X

AlgoPuzzleVQA multi-choice X X
PDDLPuzzleVQA (ours) both X

Table 1: Comparison of PDDLPuzzleVQA with existing Visual Question Answering (VQA) and Planning Datasets;
QA-Format - Question Answer Format (MCQ with multi-choice, questions with open-ended answers, both);
Perception - Visual Perception; World-K - World Knowledge; Domain-K - Domain Knowledge; Reasoning -
Commonsense/Spatial/Logical Reasoning; Planning - Need/Use of Planning Elements; PDDL - Domain and

Problem specification in PDDL.

4 images and the task is to find a common con-
cept (or word) that connects them all. Solving
these riddles requires object and activity recogni-
tion (that are related to visual perception), world
knowledge, commonsense, and multi-hop reason-
ing. Bitton-Guetta et al. (2024) present Visual Rid-
dles (similar to Image Riddles), comprising 400
visual riddles, each featuring a unique image cre-
ated by various text-to-image models, along with
a question, ground-truth answer, textual hint, and
attribution. CLEVR-HYP (Sampat et al., 2021) —
an extension of the CLEVR dataset (Johnson et al.,
2016a) — requires models to reason about hypo-
thetical scenarios and potential outcomes based
on current visual inputs. Similarly, Cherian et al.
(2022) developed the SMART-101 dataset, com-
prising 101 unique puzzles (each puzzle has an
image paired with a question), challenging models
beyond straightforward visual recognition, push-
ing them toward more complex cognitive reasoning
tasks, such as abstraction, deduction, and general-
ization. Similarly, RAVEN (Zhang et al., 2019)
introduces the famed Raven’s progressive matri-
ces puzzle (Carpenter et al., 1990) as a dataset to
test visual perception, counting, and abstraction
abilities.

To understand the reasoning capabilities of large
multimodal models (LMMs), Chia et al. (2024)
proposed the PuzzleVQA dataset, consisting of
2k abstract visual puzzles that involve recognition
of patterns and abstract concepts, such as colors,
numbers, sizes, and shapes. Taking a step further,
Ghosal et al. (2024) proposed a novel method of
generating the AlgoPuzzleVQA dataset (to assess
the capabilities of VLMs in solving algorithmic

puzzles that require a combination of visual un-
derstanding, language comprehension, and com-
plex reasoning). Their synthetically generated
puzzles ensure correctness and scalability. Zhao
et al. (2024) introduce the Multi-Image Relational
Benchmark (MIRB), addressing the gap in existing
evaluations, which predominantly focus on single-
image inputs.

Planning - None of the VQA datasets except Algo-
PuzzleVQA focus on planning, a critical aspect of
human cognitive intelligence, applicable for goal-
based (partially or fully specified) problem-solving.
Planning involves generating a sequence of actions
to transition from an initial state to a desired goal
state. Traditionally, researchers in the planning
domain used formal logic to represent and reason
about actions, states and goals (Pelavin and Allen,
1986). For example, Planning Domain Definition
Language (PDDL) utilizes formal logic to define
planning problems (Ghallab et al., 1998; Fox and
Long, 2003).

Inspired by traditional planning framework(s),
Valmeekam et al. (2023a) introduced PlanBench,
a comprehensive benchmark designed to assess
the planning and reasoning capabilities of large
language models (LLMs) through systematic eval-
uation across a diverse set of tasks, challenging
LLMs in reasoning about actions and change.
Through an extensive assessment of GPT3 and
GPT4 (Valmeekam et al., 2023b), authors find these
LLMs may not generate optimal verifiable plans,
but can generate good heuristic seed plans that can
be refined by integrating with external model-based
planner in a LLM-modulo framework (Kambham-
pati et al., 2024). LLM-Modulo framework re-



Split CM MS NQ WS TH WJ
Test (Ghosal et al., 2024) 100 100 100 100 100 100
Train (ours) 1900 1900 1900 710 1549 1019
Test (ours) 100 100 100 100 100 100
Total (ours) 2000 2000 2000 810 1649 1119

Table 2: Dataset Statistics; Checker-Move (CM), Maze-
Solving (MS), N-Queens (NQ), Wood-Slide (WS),
Tower-of-Hanoi (TH), Water-Jugs (WJ)

quires both domain and problem specifications in
PDDL format for tasks that involve PDDL-based
planning and verification. However, LLMs may
not always produce fully functional PDDL specifi-
cations and require feedback over several iterations
to rectify. Another approach is to perform super-
vised fine-tuning of LLMs over a large parallel
corpus, having problem descriptions (in natural lan-
guage) and matching PDDL specifications. Zuo
et al. (2024) introduced around 145, 918 text-to-
problem PDDL pairs (for gripper and blocksworld
domains) that can be used for aligning LLMs to
generate better translations.

Although symbolic planning has proven effec-
tive in various applications, it faces several chal-
lenges (due to the requirement of comprehensive
domain knowledge to define all possible states and
actions within a system). This has led to a grow-
ing interest in the integration of natural language
processing (NLP) with planning systems (Zheng
et al., 2024). Natural language planning aims to
take advantage of the flexibility and expressiveness
of human language to create more adaptable and
intuitive planning models. The Natural-Plan bench-
mark (Zheng et al., 2024) comprises the following
3 tasks - Trip Planning, Meeting Planning, and Cal-
endar Scheduling, which have results from tools
such as Google Flights, Google Maps, and Google
Calendar, respectively.

We present PDDLPuzzleVQA, a dataset (having
a subset of AlgoPuzzleVQA puzzles) that has dif-
ferent aspects, as mentioned in Table 1 to measure
the problem-solving abilities of VLMs through sys-
tematic planning.

3 Constructing PDDLPuzzleVQA

We adopt the dataset generation process prescribed
in Ghosal et al. (2024) and introduce suitable mod-
ifications to build the PDDLPuzzleVQA dataset.
Table 2 shows the dataset statistics.

3.1 Chosen Puzzles

We consider a subset of puzzles (6 out of 18) from
the AlgoPuzzleVQA dataset and formulate them as
planning problems in PDDL format.
Checker-Move. This puzzle has a 1-dimensional
grid of length n, where we place n — 1 checkers of
colorl or color2 (varying the number of checkers
of each color), leaving one empty cell for the start-
ing configuration. From a collection of m (=10)
different color pairs, we sample (colorl, color2) for
each problem instance (§B, Figure 4). The end goal
is to rearrange the checkers into a specific config-
uration following the rules defined in Ghosal et al.
(2024) with slight modifications. We generalize the
choice of color pairs and map green to colorl and
red to color2.

Maze-Solving. Itis an M x N grid with walls,
empty cells, an entry (start) point, and an exit (end)
point (§B, Figure 5). An agent or a player needs
to navigate starting from the entry point (denoted
by a green arrow) and reach the exit point (denoted
by a blue arrow) along an optimal path. The fi-
nal task is to find: i) the number of left/right/total
turns or ii) the number of cells in the optimal path.
We maintain a precise record of the locations of
walls, empty cells, starting position, and goal state
to systematically evaluate the ability of VLMs to
accurately identify and localize these elements dur-
ing the plan generation process.

N-Queens. This is a popular 2-dimensional puz-
zle comprising an N x N chessboard (§B, Figure
6), where the objective is to place N queens on
non-attacking positions (i.e., no two queens should
share the same row, column or diagonal). Simi-
lar to AlgoPuzzleVQA (Ghosal et al., 2024), we
place N — 2 queens following the rules of the puz-
zle (varying N between 8 and 11), which forms
the initial configuration of the puzzle. The goal is
to correctly place the remaining two queens and
compute the Manhattan distance between their loca-
tions. We vary the chessboard’s color by sampling
different color pairs, similar to Checker-Move.
Wood-Slide. The sliding block puzzle is defined
on a5 x 4 grid containing nine wooden blocks of
varying dimensions: one 2 x 2, four 1 x 2, two
2 x 1,and two 1 x 1 (§B, Figure 7). The grid also
includes two empty 1 x 1 spaces. Blocks are con-
strained within the grid and can only be moved by
sliding them horizontally or vertically into adjacent
empty spaces. The objective is to transform the
given initial configuration into the specified goal
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Figure 2: Illustration of different Planning Methods

configuration using the minimum number of moves,
where each move consists of shifting a block by one
unit in a valid direction. While our problem setup
shares structural similarities with AlgoPuzzleVQA
(Ghosal et al., 2024), we introduce color variations
across the wooden blocks while maintaining a con-
sistent representation of empty spaces in white to
analyze the visual reasoning capabilities of VLMs.
Additionally, we track the exact locations of the
wooden blocks to evaluate the object detection and
localization capabilities of VLMs.

Tower-of-Hanoi. The Tower of Hanoi puzzle
consists of three fixed pegs and a variable num-
ber of disks ranging from three to six (§B, Figure
8). The objective is to transfer all disks from the
initial configuration on the source peg to the goal
configuration on the target peg, following the stan-
dard constraint that only one disk can be moved
at a time and a larger disk cannot be placed on a
smaller one. While structurally similar to classical
Tower of Hanoi given in AlgoPuzzleVQA (Ghosal
et al., 2024), we introduce color variations across
the disks to analyze the visual reasoning capabili-
ties of VLMs.

Water-Jugs. The Water Jugs puzzle requires redis-
tributing water among jugs of varying capacities to
achieve a target configuration (§B, Figure 9). Water
can be transferred between jugs under two condi-
tions: a non-empty jug can pour into a non-full jug
until either the source is emptied or the destina-
tion is filled, and no water is lost during transfer.
While the standard setup consists of three jugs with
fixed capacities, we extend the problem to include
three to seven jugs, with capacities reaching up to
15 liters. Additionally, different water colors are

used to evaluate how effectively VLMs perceive
and interpret the puzzle’s current state.

3.2 Additional Modifications

We perform additional modifications for efficiently
benchmarking perception adn planning abilities.

o Init and Goal Images - In the original AlgoP-
uzzleVQA dataset (Ghosal et al., 2024), the initial
and goal states of some puzzles, such as Checker-
Move, Wood-Slide, and Tower-of-Hanoi are plot-
ted in the same image, making the visual perception
task harder for VLMs. We simplify this issue by
plotting separate images of init and goal states for
these puzzles. We also remove textual captions,
such as "Starting Configuration" and "Ending Con-
figuration" from the images.

e Domain PDDL - We make use of appropri-
ate predicates, functions, and actions following
the specification of PDDL 2.1 (Fox and Long,
2003) and formally define the characteristics of
each puzzle in a domain.pddl file. So, there is one
domain.pddl file for each puzzle.

e String Representation - We generate a unique
string representation for each puzzle to represent
start/end configuration(s) and other essential pa-
rameters in a compact format.

e Problem PDDL - Each instance of a puzzle
requires a problem.pddl file that encapsulates the
initial and goal configurations. A problem.pddl
file has the following important components: ob-
jects (list of objects required for representing the
init and goal configurations of the puzzle), init (ini-
tial configuration of the puzzle, where necessary
predicates and functions are grounded), goal (spec-
ification of the goal configuration using grounded



predicates or functions), and metric (optional sec-
tion for specifying optimization criterions). It is
a laborious task to manually write problem.pddl
file for each instance of a puzzle. So, we create a
puzzle-specific template that helps in generating
the problem.pddl for each instance during dataset
generation process.
e Symbolic Plan - For each puzzle instance, we
generate a verified symbolic plan using the ENHSP
planner (Scala, 2018). The planner takes the do-
main.pddl (puzzle-specicific) and problem.pddl
(instance-specific) files as input and outputs a se-
quence of actions as the planning steps.
e Natural Language Plan - We make use of a
template for each puzzle for transforming the sym-
bolic plans into into natural language format (i.e.,
sequence of actions in natural language).

Please refer to Appendix §B for the detailed mod-
ifications specific to each puzzle.

4 Experiments

We evaluate different planning methods with three
popular state-of-the-art vision-language models
(also referred to as multimodal large-language mod-
els): GPT4o0, Gemini, and InternVL2-78B. For
GPT4o, we use the Azure API gpt4o (Model ver-
sion 2024-05-13). In case of Gemini, we use
the gemini-1.5-flash model. We also use the
InternVL2.5-78B directly from Hugginface API%.

For all the planning methods, we instruct VLMs
(with temperature set to 0) to generate output in a
specific format. The output is structured into three
components: Detailed Plan, Step Plan and Final
Answer. The Detailed Plan provides a structured
reasoning process with step-by-step logic. The
Step Plan provides minimalistic sequence of ac-
tions transitioning from the initial to the goal state,
omitting justifications. The Final Answer(open-
ended or multi-choice option) presents the derived
solution as either an integer answer or an answer
option label.

4.1 Planning Methods

As shown in Figure 2, we investigate three types of
planning (few-shot setups): a) Natural Language
Planning (NL Planning), b) VLM-based Problem
PDDL Generation (PG) and planning with a Natu-
ral Language Solution Generator (PG + SG Plan-
ning), and c¢) Symbolic Planning with manually
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written domain and problem PDDL specifications.
We adopt the eCoT prompting method from AlgoP-
uzzleVQA (Ghosal et al., 2024) (with an additional
instruction to capture the final answer option) as a
baseline.

e NL Planning (Few Shot) - Figure 3 shows the
Natural Language Planning method, where we use
image(s) of the initial state (and goal), followed by
the problem description (in natural language) gen-
erate natural language plans by prompting VLMs.
We test both 0-shot and 1-shot prompting with both
in-domain (idm) and out-of-domain (oodm) sam-
ples.

e PG + SG Planning (Few Shot) - This planning
method has two steps - i) problem PDDL Genera-
tion (PG), ii) Solution Generation (SG) (§B, Fig-
ure 13). First, we prompt a VLM-based problem
PDDL Generator (with visual inputs, natural lan-
guage problem description, and domain PDDL) to
generate problem PDDL (in a 1-shot setting, using
idm/oodm samples). The output of PG is then pro-
cessed by a VLM-based Solution Generator that
outputs a natural language plan, followed by a final
answer.

e Symbolic Planning (Few Shot) - For Symbolic
Planning, we employ all the available information,
such as images of init/goal, natural language de-
scription, domain, and manually written problem
PDDL specifications in a 1-shot setting (with id-
m/oodm samples) to prompt VLMs (§B, Figure
12). The generated output format aligns with the
output of SG module. The primary objective of
this experiment is to assess the model’s ability to
interpret the given domain and problem PDDL and
produce solutions consistent with those generated
by classical planners such as ENHSP.
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0-shot
gptdo gem-fl intern-vI2.5
Checker-Move
eCoT (multi-choice) 17.0 - -
NL-PL (multi-choice) 20.0  21.0 -
NL-PL (open-ended) 1.0 0.0 1.0

Maze-Solving

eCoT (multi-choice) 30.0 - -
NL-PL (multi-choice)  24.0 4.0 -
NL-PL (open-ended) 5.0 6.0 8.0

N-Queens

eCoT (multi-choice) 24.0 -
NL-PL (multi-choice)  23.0 32.0 -
NL-PL (open-ended) 13.0 0.0 4.0

Wood-Slide

eCoT (multi-choice) 33.0 - -
NL-PL (multi-choice)  25.0 28.0 -
NL-PL (open-ended) 4.0 0.0 1.0

Tower-of-Hanoi

eCoT (multi-choice) 9.0 - -
NL-PL (multi-choice)  19.0 15.0 -
NL-PL (open-ended) 2.0 0.0 5.0

Water-Jugs

eCoT (multi-choice) 6.0 - -
NL-PL (multi-choice)  29.0 11.0 -
NL-PL (open-ended) 11.0 2.0 10.0

Table 3: Comparison of solving visual puzzles using dif-
ferent state-of-the-art Vision Language Models (VLMs)
such as gptdo, gemini-1.5-flash (gem-fl), intern-vl
(int-vl), NL-PL: Natural Language Plan + Final Answer

4.2 Results of 0-Shot Prompting

We prompt GPT40 and Gemini-Flash to provide
detailed instructions and ask them to produce a
detailed plan summarizing the logic behind solving
the puzzle, followed by a step-by-step final plan.
In the multiple-choice question setting, we also ask
to output the option. An example prompt is shown
in Table 11. For open-ended setting, the model is
simply asked to generate the final answer (Table 8).
Intern-VL2.5-78B is benchmarked only in open-
ended setting. In some cases, InternVL2.5 does
not even produce the final response.

Results. Our results from Table 3 show ex-
tremely low (below 5%) performance in the open-
ended setting for all puzzles except N-Queens and
Water-Jugs. The multiple-choice option raises the
accuracy of GPT40 and Gemini-Flash in all cases.
GPT4o clearly outperforms other models in most
cases, except Gemini-Flash outperforming in N-
Queens and and Wood-slide. The best performance
of Intern-VL2.5 is 10% in Water Jugs (lagging be-
hind GPT4o0 by 1%). For Maze-solving and Wood-
slide, asking GPT4o to explain the logic increases

gptdo gem-fl

PG+SG Sym | PG+SG Sym
Checker-Move 1.0 14.0 1.0 21.0
Maze-Solving 5.0 9.0 3.0 10.0
N-Queens 11.0 30.0 6.0 3.0
Wood-Slide 2.0 29.0 0.0 5.0
Tower-of-Hanoi 0.0 16.0 0.0 6.0
Water-Jugs 9.0 28.0 1.0 13.0
AVG | 467 21 | 183 967

Table 4: Accuracy of PG + SG Planning vs Sym-
bolic (Sym) Planning (1-shot-idm setting); gem-fl:
gemini-1.5-flash ; AVG: Average; idm: in-domain.

performance by 6% & 8% resp.ly. This strategy
leads to a decrease for three puzzle types, while
keeping the performance somewhat similar for N-
Queens.

4.3 Results of 1-shot Prompting

Because of poor performance of InternVL2.5, we
explore one-shot setting for GPT40 and Gemini-
flash. We create two settings, where the in-context
example comes from the same type of puzzle (idm)
and another where the example comes from a differ-
ent puzzle type (oodm). The second setting provides
some indication of results on completely unseen
puzzles.

Results. Table 6 shows the effect of in-context
examples. Interestingly, the idm and the (oodm)
setting improves gpt4o performance by large mar-
gins for many puzzle types. For example, Water
Jugs performance with idm by 40% and with oodm
by 25%. idm decreases performance slightly for
Checker-Move and Maze-Solving (by 1%), while
oodm improves them by 11% and 8% respectively.
These performance improvements are limited for
the eCOT setting with multi-choice answers. For
other two settings of direct plan and solution gen-
eration, in-context examples do not show any im-
provement. Similarly, gemini-flash lags behind
gpt4o for all puzzles except N-queens in the oodm
setting. From Table 4, we observe that Symbolic
Planning significantly outperforms PG+SG Plan-
ning, underscoring the importance of improving
VLMs to generate correct problem PDDL specifi-
cations for solving planning problems.

4.4 Semantic Errors in Problem PDDL

Potential semantic errors in the generated problem
PDDL specification (init / goal) originate from an
incorrect visual understanding of a puzzle.
Incorrect Specification of Init/Goal



Error Type Error Name Checker-Move Maze-Solving Wood-Slide Tower-of-Hanoi Water-Jugs | N-Queens*
idm  oodm idm oodm idm oodm idm oodm idm oodm | idm oodm

Undefined Entities 0 3 0 1 1 9 2 56 0 0 0 1
General Syntax Errors 0 1 0 0 2 5 0 0 0 17 2 1

Syntax Duplicate Entities 1 11 0 13 0 0 0 0 0 0 0 0
Inconsistent Parameter Use 0 3 0 9 0 0 0 0 0 1 0 0
Incomplete 0 0 0 6 3 0 0 0 0 0 4 2
Other 6 19 14 18 9 18 19 25 3 4 0 0
Incorrect Spec. of Init
Color 52 - - - - - - - -
Position 50 86N 490 [BEN 52 46 2 0 0
Shape/Size/Count 3 0 24 25 18 26 [OW 19 [6ONTs8
Predicates/Functions 3 0 0 0 0 0 45 2 0 0

Semantic Incorrect Spec. of Goal
Color 54 - - - - - - - - -
Position 59 - 53 52 42 2 0 0 0 0
Shape/Size/Count 1 0 0 0 48 0 0 59 55 0 0
Predicates/Functions 0 0 0 0 0 0 20 2 0 0 o e
Metric 0 0 0 0 1 9 0 0 0 27 ‘ 0 2

Table 5: Error Analysis of the PDDL Generation (PG) module; we analyze 100 samples for each puzzle, except

N-Queens* (10 samples).

e Color - Some puzzles (such as Checker-Move)
make use of colored objects. In such cases, wrong
identification of colors leads to incorrect specifica-
tion of the init and/or goal states.

e Position - This error is common for puzzles
that require absolute or relative position of objects,
which gets reflected via incorrect specification of
predicates and/or functions in init and/or goal.

e Shape/Size/Count - In addition to color and
position, other important aspects related to visual
perception are shape, size and count of objects.
We group all of them under one category - shape/-
size/count and inspect such errors in the init/goal
sections of the generated problem PDDL files.

e Predicates/Functions - This error is related to
incorrect usage of predicates/functions.

e Metric - Some of the puzzles require the dec-
laration of an optimization metric in the problem
PDDL. We flag a metric error whenever the metric
specification is absent in the generated problem
PDDL file.

Please refer to §C in the Appendix for the defini-
tions of Syntax Errors in Problem PDDL.
Observations. Table 5 provides insights about the
different errors in the generated problem PDDL
of the PG module. Interestingly more than 80%
errors are made while identifying the correct color
or position, whenever such information is required
for accurate problem formulation. VLMs make
less but considerable errors in identifying shape,
size and count (below 50% in most cases). Such
errors are possibly attributed to the “binding prob-
lem” (Campbell et al., 2024). VLMs make the least
amount of errors in identifying common predicates

and functions, possibly owing to limited linguis-
tic variability amongst the puzzle types. From a
syntactic point of view, gpt4o suffers from using
many undefined entities for Tower-of-Hanoi (56%
errors in oodm setup). Similarly there are consider-
able errors while mapping same objects, predicates
or constants to separate symbolic entities. In sum-
mary, this analysis shows VLMs have limited per-
ception ability in the context of puzzles, limiting
their applicability.

5 Conclusion

Inspired from the usefulness of the recent plan-
ning benchmarks in evaluating large language mod-
els, we introduce PDDLPUZZLEVQA, a 9.5k vi-
sual puzzles dataset, explicitly encompassing six
planning puzzle types for benchmarking vision-
language models. Each puzzle is accompanied with
input images, and textual context, a groundtruth
planning problem description in a popular plan-
ning logical language (PDDL), and a groundtruth
symbolic and a tempated natural language plan.
Our results show the largest state-of-the-art Vision-
Language models (VLMs) lack in almost all as-
pects of the problem, such as natural language
or symbolic plan generation. Such VLMs also
do not show efficiency in a VLM-modulo frame-
work, where VLM'’s task is to generate the problem
and domain PDDL, which can be used to generate
the final plan using an external planner. Delving
deeper, we find VLMs face high volume of errors
in identifying color, shape, position while mapping
the problem symbolically (possibly reaffirming the
binding problem).



Limitations

Our work is the first to introduce an exclusively
visual planning puzzles dataset, where each puzzle
is accompanied by a groundtruth symbolic plan
domain and problem description, which enables
the benchmarking of both VLM and VLM-Modulo
frameworks. Current work has the following limi-
tations:

* Our dataset focuses on six well-known types
of planning problems, which somewhat lim-
its the diversity. Future work should extend
the types of planning problems, focusing on
increasing the problem complexity.

* The current dataset is exclusively in English,
as we want to specifically focus on visual per-
ception and reasoning abilities. In future, we
plan to introduce multilingual versions of the
dataset.

* Currently, we have not experimented with any
finetuning approaches to improve VLMs due
to resource constraints. We believe that, to
build better puzzle understanding, we may
need to involve various reasoning objectives
during supervised or instruction finetuning
stages of VLM training. This will, however,
require significant hardware resources.
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A Additional Results Table

Initial Configuration

1-shot-idm 1-shot-oodm
gpt4do gem-fl | gptdo gem-fl
Checker-Move
NL-PL (multi-choice) 16.0 28.0 28.0 18.0 Goal Configuration
NL-PL (open-ended) 3.0 4.0 1.0 0.0

PG + SG-PL (open-ended) 1.0 1.0 4.0 1.0

Maze-Solving

NL-PL (multi-choice) 29.0 36.0 38.0 34.0
NL-PL (open-ended) 8.0 11.0 11.0 11.0
PG + SG-PL (open-ended) 5.0 3.0 9.0 9.0
N-Queens

NL-PL (multi-choice) 26.0 27.0 18.0 25.0
NL-PL (open-ended) 7.0 1.0 7.0 0.0
PG + SG-PL (open-ended) 11.0 6.0 7.0 6.0
Wood-Slide

NL-PL (multi-choice) 34.0 33.0 32.0 17.0
NL-PL (open-ended) 9.0 13.0 5.0 0.0

PG + SG-PL (open-ended) 2.0 0.0 1.0 0.0

Tower-of-Hanoi

NL-PL (multi-choice) 27.0 19.0 18.0 15.0
PL PL (open-ended) 5.0 0.0 3.0 0.0
PG + SG-PL (open-ended) 0.0 0.0 0.0 0.0
Water-Jugs

NL-PL (multi-choice) 46.0 22.0 | 31.0 11.0
NL-PL (open-ended) 25.0 4.0 13.0 2.0

PG + SG-PL (open-ended) 9.0 1.0 13.0 1.0

Table 6: Comparison of solving visual puzzles using dif-
ferent state-of-the-art Vision Language Models (VLMs)
such as gptdo, gemini-1.5-flash (gem-fl), intern-vl (int-
vl) in a 1-shot setting with in-domain (idm) and out-
of-domain (oodm) samples as few-shot examples; NL-
PL: Natural Language Plan + Final Answer; PG + SG-
PL: Problem PDDL Generation followed by Solution
Generator-based Planning

B Detailed Modifications

We use a tailored set of constraints to vary different
visual elements of each puzzle during dataset gen-
eration and store a string representation that can be
used for future research.

e Checker-Move - For this puzzle, the constraint
set includes grid length (L =5 to 20), color pairs
(10 variations), configurations of checker counts
for each color, and varying empty square positions.
We represent colorl and color2 by digits 1 and 2,
and empty cells by 0. Each sample contains an
initial and goal state string, separated by a new line.
An example of init state string: "1110222".

e Maze-Solving - We generate configurations by
systematically varying start and end cell place-
ments within four defined regions of the maze,
along with start-end color pairs, object shapes, and

A checker game is being played on a grid of 7 squares
with 3 green and 3 red checkers. Initially, the
checkers are arranged as shown in the starting
configuration with the 6 checkers occupying 6 squares
and one unoccupied square. Green checkers only move
rightward and Red checkers only move leftward. Every
move is either i) a slide to the adjacent empty
square, or ii) a jump over one position to an empty
square, provided the checker being jumped over is of a
different colour. Each square can accommodate a
maximum of one checker at any time. How many moves are
required to reach the ending configuration from the
starting configuration following the specified rules?

Gold Answer: 15

Figure 4: Checker-Move Puzzle

wall colors. Here empty cells (0), walls (1), start
position (S), and end position (E) are represented
in a row-wise format separated by “\n’ characters.
We record moves in a path using the characters ’1’
(left) and ’1’ (right). An example of init state string:
"T111111111111

S000101000001

1110101011101

1010101000101

1010101110101

1000100000101

1011111111101

1000000010001

1111111010101

1000000000101

IT111111111EL"

e N-Queens - We introduce constraints by varying
chessboard size (N=8 to 11), color pairings, and
queen placements. We denote each queen using
the character ‘Q’, and use digits 1 and 2 for colorl
and color2, respectively. An example of init state
string:

"1212Q212

Q1212121

121Q1212

21212Q21

12121212

2Q212121

12121212

21Q12121"



v

This is maze having 11 * 13 cells. The empty
cells are coloured white and the obstacle cells
are coloured black. From an empty cell, you can
only move up, down, left, or right to another
adjacent empty cell. You cannot move diagonally
between two empty cells and cannot step into a
cell with an obstacle. The entry cell of the maze
is shown with the green arrow. The exit cell of
the maze is shown with the blue arrow. Suppose
you have found the most optimal path in the maze
between the entrance and exit, where you need to
go through the least number of empty cells and
you need to make the least number of left and
right turns. What is the total number of right
turns do you need to make in this optimal path?

Gold Answer: 5

Figure 5: Maze-Solving Puzzle

e Wood-Slide - We vary the grid dimensions,
block count, and the position and color of empty
blocks to increase the diversity of the samples.
Here we identify each block using block ID num-
bers, color codes are mapped to each unique block
ID, and each row is separated by ‘\n’ with 2 sepa-
rate strings for the initial and goal state. An exam-
ple of init and goal state strings:

Init

"2,2,3,3

6,1,1,0

6,1,1,4

7,8,8,5

7,0,9,9"

Goal

"2,2,3,3

6,1,1,4

6,1,1,5

7,0,8,8

7,0,9,9"

e Tower-of-Hanoi - For this puzzle, we vary the
number of disks, disk and rod colors, and rod
heights. We denote the pegs or rods using char-
acters: A’, ’B’, and ’C’ sequentially, separated by
“\n’ with disks size represented by numbers (where
smaller numbers denote smaller disks). Disk posi-
tions on each rod are listed in order from bottom to
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You are given an 8 * 8 chessboard. The
Manhattan distance between two squares in a
chessboard is equal to the minimal number of
orthogonal King moves between these squares
on the otherwise empty board. The objective
is to place 8 chess queens on this board so
that no two queens threaten each other; i.e.
no two queens share the same row, column, or
diagonal. 6 queens have already been placed
in some of the squares of the board, as
shown in the image. Suppose you pick two
squares to place the two remaining queen
pieces in a way that fulfills the objective.
What is the Manhattan distance between these
two squares? Gold Answer: 3

Figure 6: N-Queens Puzzle

top, separated by ‘>’. An example of init and goal
state strings:

Init

"A=6>5>2>1

B=3

C=4"

Goal

"A=6>5

B=0

C=4>3>2>1"

e Water-Jugs - Here we vary the number of jugs,
capacity, volume of liquid (in each jug), and color
of both jugs and liquid. Water Jugs employs strings
for both start and end states, with jugs separated by
“\n’ and defined by current volume/capacity ratios,
with color hex codes specified for the liquid. An
example of init state string:

Init

"A=12/13

B=10/12

C=5/6"

Goal

"A=13/13

B=10/12

C=4/6"



Initial Configuration

Goal Configuration

Consider a sliding block puzzle of grid
size 5 * 4 units. It has 9 wooden blocks of
varying sizes: one 2 * 2, four 1 * 2, two 2
* 1, and two 1 * 1. The gird also has two
empty 1 * 1 spaces. The blocks cannot be
removed from the grid, and may only be slid
horizontally and vertically within its
boundary. A move is defined as selecting a
block that is slideable, and moving it by 1
unit either horizontally or vertically,
whichever is possible. The images show the
starting and ending configurations of the
puzzle grid. The wooden blocks are shown in
various shades of brown and the empty
spaces are shown in white. What is the
minimum number of moves required to reach
the ending configuration from the starting
configuration?

Gold Answer: 3

Figure 7: Wood-Slide Puzzle

Color - We store the hex color codes used for ren-
dering different elements of each puzzle. This en-
sure that the dataset captures both structural and
visual diversity.

C Syntax Errors in PDDL Problems

e Duplicate Entities - Occurs when the same ob-
ject, predicate, function, or constant is mentioned
more than once in problem PDDL.

e Undefined Entities - Use of predicates, func-
tions, object types that are not defined in domain
PDDL.

e Inconsistent Parameter Use - Use of a predi-
cate/function with either a parameter of an incom-
patible type or a different number of parameters
than it was defined with.

e General Syntax Errors - These are generic
syntax errors that do not align with the specification
of the PDDL language.

e Incomplete - Occurs when problem PDDL spec-
ification is incomplete.

e Other - We label all other syntax errors as Other.
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Initial Configuration

L

Goal Configuration

You are playing a Tower of Hanoi game with 3 rods

and 6 disks of various diameters, which can slide onto
any rod. You are given the starting and ending
configuration of the game as shown in the top and the
bottom of the image, respectively. The game has the
following rules: i) Only one disk may be moved at a time;
ii) Each move consists of taking the upper disk from
one of the stacks and placing it on top of another
stack or on an empty rod; and iii) No disk can be
placed on top of a disk that is smaller than it.

What is the minimum number of moves required to

go from the starting to the ending configuration?

Gold Answer: 4

Figure 8: Tower-of-Hanoi Puzzle

D Planning Complexity

e Planning Time - According to the implementa-
tion of the ENHSP-Planner’, planning time cor-
responds to the total time spent exploring the
state space to find a solution plus pre- and post-
processing time.

o Expanded Nodes - This refers to the number
of nodes (or states) that the planner has fully ex-
panded during the search process. Expanding a
node means generating all its successor states by
applying actions. This metric provides insight into
the efficiency of the search; fewer expanded nodes
typically indicate a more efficient search.

o States Evaluated - This represents the number
of states evaluated by the planner’s heuristic func-
tion during the search. Some of these states may
have been expanded, while others may have been
pruned or discarded based on heuristic estimates.
This number is often higher than the number of
expanded nodes because heuristics may evaluate
states without necessarily expanding them; it helps
to analyze how extensively the heuristic function
was used. If the number of evaluated states is much
higher than the expanded nodes, the heuristic may
be computationally expensive.

*https://gitlab.com/enricos83/ENHSP-Public



Jug 1 Jug 2 Jug 3

Quantity (litres)

You are given 3 jugs of capacities 13, 12, 6 litres.
Initially, the amount of water that is contained in
each jar is shown in the image. A single step of water
pouring from one jug to another is constrained by the
following rules: i) take a non-empty jug and pour water
from it to another non-full jug until the first one
becomes empty or the second one becomes full; and ii)
no water can be spilt while pouring. The objective is
to reach the amounts of 13, 10, 4 litres of water in
the jugs from left to right, respectively. What is the
minimum number of water pouring steps required to
achieve the objective?

Gold Answer: 1

Figure 9: Water-Jugs Puzzle

Checker Move

Maze Solve

Tower of Hanoi

Water Jugs

N-Queens }I—{

Wood Slide

400 600

Time (msec)

800 1000

Figure 10: Variation in Planning Time

E Examples of Planning Methods

1200

Figures 12 and 13 demonstrate the working of Sym-

bolic PG + SG Planning methods, respectively.
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Checker Move

Metric Type
B States Evaluated
= Expanded Nodes

Maze Solve

Tower of Hanoi

Water Jugs -
N-Queens ‘ l
Wood Slide F
o 20 40 60 80 100 120 140
Count

Figure 11: Variation in Problem Complexity

| Symbolic Planning (Few-Shot)

Detailed Plan:

Init Image
The optimal path from the entry cell (x1, y2) to
the exit cell (x12, yll) is calculated to minimize
the number of empty cells traversed and to
minimize the number of left and right turns for
efficiency. Based upon the pro initial and
goal states, and considering the characteristics
of the maze, the following plan is derived.

>

vl

Problem Description (NL) Step Plan:

. What is the total # 1. Move agentl from (x1, y2) to (x2, y2) [Right
number of right turns do turn count: 0]
yozllneleﬂlfhv;ukelnthls 2. Move agentl from (x2, y2) to (x3, y2) (Right
optimal path? turn count: 0]

31. Move agentl from (x10, yl1) to (x11, yl1)

5

domain.pddl [Right turn count: 3]
32. Move agentl from (x11, yll) to (x12, yll)
[Right turn count: 3]

problem.pdd Final Answer:

Figure 12: Example of Symbolic Planning



PG + SG Planning (Few-Shot)

Init Image

>

Problem Description (NL)

... What is the total
number of right turns do
you need to make in this
optimal path?

domain.pdd|

Problem PDDL Generator (PG)

Solution Generator (SG)

Explanation:

The problem defines a maze where an agent needs to navigate
from an entry point to an exit point. The description
provides the layout of the maze using visual
representation.

Problem PDDL:

(define (problem maze-problem)
(:domain maze)
(:objects
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 - position
vl y2 y3 y4 y5 y6 y7 y8 y9 y10 yll yl2 y13 - position
agentl - agent

rinit
;Inc and dec for x coordinates
(inc x1 x2) (inc x2 x3)

)
(:goal

;Goal position of the agent
(at agentl x11 y12)

)

)

Detailed Plan:

The objective is to guide the agent from the entrance at
(x1, y2) to the exit at (x11, yl2) through the maze in such
a way as to minimize the number of right turns.
1. The initial and goal positions must be used.
2. We need to understand the optimal path, considering both
the total distance and minimizing right turns.

Step-by-step outline:
1. start at (x1, y2).
2. Move right to (x11, y2).
3. Move down to (x11, yl12).

Step Plan:

1. Move right from (x1, y2) to (x11, y2).
2. Turn down from (x11, y2) to (x11, yl12).
3. End.

Final Answer:

5

Figure 13: Example of PG + SG Planning
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Instruction

You are a friendly and helpful assistant adept at understanding visual puzzles and formulating detailed plans in natural language.
Your task is to analyze the provided puzzle, derive the correct answer, and select the corresponding option from the
provided multiple-choice options ["A", "B", "C", "D"].

**xInstructions**:

- Provide your response in the following format:

<ANSWER>

Detailed Plan:

[Detailed plan explaining the logic behind solving the puzzle.]

Step Plan:

[Step-by-step plan without explanations.]

Correct Option:

[The single correct option from ["A", "B", "C", "D"] that matches derived answer.]

</ANSWER>

- Ensure the plan and answer are clearly separated and labeled as shown.

- Under **Detailed Plan*x, include the logic behind each step, explanations for why each step is taken, and any changes in
state resulting from that step. You may also describe the initial and goal states to provide context and reasoning.

- Under *xStep Plan*x, list only the steps that need to be taken, without any explanations or additional information.

- Under *xCorrect Option*x, add only that **xoption*x from ("A", "B", "C", or "D") where the derived answer matches the answer
in corresponding option given. Don't add any additional text, integer answer, or any option apart from ["A",6"B","C","D"].

In-Context Examples

Question: A checker game is being played. ... How many moves are required to reach ending configuration from starting configuration following specified
rules?

Options:[’A’: 5, ’B’: 6, 'C’: 1, 'D’: 3]

images : [init and goal state images. .. ]

Answer:

Step Plan:

1. The yellow checker c10 jumps over a blue checker from position p11 to land at the empty position p9, with the blue checker in p10.
2. The blue checker c9 moves from position p10 to the adjacent empty position pl1 to the right.

3. The blue checker c8 jumps over a yellow checker from position p8 to land at the empty position p10, with the yellow checker in p9.
Correct Option: D

Input Question

Question: A checker game is being played on a grid of 12 squares with 7 blue and 4 yellow checkers. Initially, the checkers are arranged as shown in the
starting configuration with the 11 checkers occupying 11 squares and one unoccupied square. Blue checkers only move rightward and Yellow checkers only
move leftward. Every move is either i) a slide to the adjacent empty square, or ii) a jump over one position to an empty square, provided the checker being
Jjumped over is of a different colour. Each square can accommodate a maximum of one checker at any time. How many moves are required to reach the
ending configuration from the starting configuration following the specified rules?

Options:[’A’: 4, 'B’: 5, °C’: 2, 'D’: 3]

images :
Figure: Initial Configuration
Figure: Goal Configuration
Output

Detailed Plan: The key to solving this puzzle is to follow the movement rules for blue and yellow checkers while taking into account their allowed directions
and whether they can slide to an adjacent empty square or jump over another. We need to ensure each checker ends up in its respective position, shifting the
empty square around strategically.

Observations:

- The empty square starts at position 9.

- Blue checkers in positions 1-2-3-6-8-11-12 must all be moved one step to the right.
- Yellow checkers in positions 4-5-7-9-10 must all be moved one step to the left.

- The trick is mainly to facilitate the movement of blue checkers into positions originally occupied by yellow checkers and vice versa.
Step Plan:

1. Move the blue checker from position 6 to the empty square (position 9).

2. Move the yellow checker from position 7 to position 6 (newly vacated).

3. Move the blue checker from position 8 to the empty square (position 7).

4. Move the yellow checker from position 10 to position 9.

Correct Option: D

Table 7: NL Planing (multi-choice) using GPT4o0 in 1-shot incontext setting for checker move puzzle
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Instruction

You are a friendly and helpful assistant adept at understanding visual puzzles and formulating detailed plans in natural language.
Ensure your answers are comprehensive and provide clear instructions to solve the puzzle.

**xInstructions**:

- Provide your response in the following format:
<ANSWER>
Detailed Plan:
[Detailed plan]

Step Plan:
[Step-by-step plan]

Final Answer:
[Final answer]

</ANSWER>
- Ensure the plan and answer are clearly separated and labeled as shown.
- Under *xDetailed Planx*, include the logic behind each step, explanations for why each step is taken, and any changes in
state resulting from that step. You may also describe the initial and goal states to provide context and reasoning.
- Under *xStep Plan*x, list only the steps that need to be taken, without any explanations or additional information.

In-Context Examples

Question: You are playing a Tower of Hanoi game with 3 rods and 5 disks. What is the minimum number of moves required?

images : [init and goal state images. .. ]

Answer:
Step Plan:
Move disc d1 from the top of disc d4 to the top of disc d2

Final Answer: 1

Input Question

Question: You are playing a Tower of Hanoi game with 3 rods and 4 disks. What is the minimum number of moves required?

images :
Figure: Initial Configuration Figure: Goal Configuration
Output

Detailed Plan: The initial state has 4 disks on 3 different rods. The goal is to arrange these disks on the third rod following the Tower of Hanoi rules:
1. Only one disk can be moved at a time.

2. Each move involves taking the top disk from one of the stacks and placing it on top of another stack or on an empty rod.
3. No larger disk may be placed on top of a smaller disk.

4. Move disk from peg 3 to peg 2.

5. Move disk from peg 1 to peg 2.

6. Move disk from peg 1 to peg 3.

The given state:

-Rod 1: 1 large disk

- Rod 2: 2 medium disks

- Rod 3: 1 small disk

The goal state:

- Rod 1: Empty

- Rod 2: 1 medium disk

- Rod 3: 1 large disk, 1 medium disk, 1 small disk

To solve this, we need to consider repositioning the disks to achieve the goal state efficiently. We will move the smallest disk first from rod 3.
Step Plan:

1. Move D4 from Rod 3 to Rod 2

2. Move D3 from Rod 2 to Rod 3

3. Move D4 from Rod 2 to Rod 1

4. Move D2 from Rod 2 to Rod 3

5. Move D4 from Rod 1 to Rod 3

Final Answer: 5

Table 8: NL Planning (open-ended) using GPT4o0 in 1-shot incontext setting for tower of hanoi puzzle
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Instruction

You are a friendly and helpful assistant adept in understanding visual puzzles and formulating them as planning problems in
pddl format using STRIPS syntax. You must have to write complete code so that I can actually run it with classical Planner and get the
final plan in output. Ensure that all objects, predicates, initial conditions, and goal states are defined in complete detail. Do
not leave any part of the code incomplete or abbreviated. Avoid placeholders or ellipses ("...").]. When generating code,
offer explanations for code segments as necessary under specified format and maintain good coding practices.

**xInstructions**:

- Given the **domain definition*x, xximages**x, and **problem description*x, generate the corresponding x*problem.PDDL** file.
<ANSWER>
Explaination:
[Logic and explaination behind generated problem.pddl]

Problem PDDL:
[Insert the problem.PDDL content herel]

</ANSWER>
- Ensure that the PDDL code is syntactically correct and formatted properly.
- Ensure the plan and answer are clearly separated and labeled as shown.
- Under **Explaination**, include explanations, additional text, logic behind each step, and any code snippets.
- Under **Problem PDDL**, only include the problem PDDL code without any additional text and explainations. Dont add any extra
backticks for code.

In-Context Examples

Question: This is maze having 11 * 9 cells. The empty cells. .. What is the combined number of left and right turns do you need to make in this optimal path?

images : [init and goal state images. .. ]

Domain PDDL : [(define (domain maze). .. ]

Answer:
Problem PDDL: [content of problem.pddl]

Input Question

Question: This is maze having 11 * 13 cells. The empty cells are coloured white and the obstacle cells are coloured black. From an empty cell, you can
only move up, down, left, or right to another adjacent empty cell. You cannot move diagonally between two empty cells and cannot step into a cell with an
obstacle. The entry cell of the maze is shown with the green arrow. The exit cell of the maze is shown with the blue arrow. Suppose you have found the most
optimal path in the maze between the entrance and exit, where you need to go through the least number of empty cells and you need to make the least number
of left and right turns. What is the total number of right turns do you need to make in this optimal path?

images :

Figure: Maze Solve Image

Domain PDDL : [(define (domain maze). .. ]

Output

Explaination: The problem defines a maze where an agent needs to navigate from an entry point to an exit point. The description provides the layout of the
maze using visual representation. The domain PDDL file is provided, and it defines actions such as moving up, down, left, and right. We need to generate a
problem PDDL file based on the given maze configuration, ensuring the initial conditions and goals represent the maze accurately.

Problem PDDL:

(define (problem maze-problem)
(:domain maze)
(:objects

)

(:init
)
(:goal

)

Table 9: PG using GPT40 in 1-shot incontext setting for Maze Solve puzzle
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Instruction

You are an expert assistant proficient in solving planning problems and generating detailed solutions in natural language (NL).
Your task is to analyze a given problem described by a combination of:

1. A textual description of the puzzle.

2. Associated images representing the initial and goal states.

3. A domain definition and a problem PDDL file, which may be partially or fully correct, generated by an LLM in previous steps.

*x0bjectivexx:
- Generate a comprehensive NL solution plan and a clear final answer to the problem based on the inputs.

**Instructions*x*:
- Provide your response in the following format:

<ANSWER>

Detailed Plan:
[Comprehensive explanation of the plan, including the logical reasoning for each step, the goal, and the analysis of any potential
issues with the given PDDL file.]

Step Plan:
[Concise step-by-step instructions derived from the solution.]

Final Answer:
[The final conclusion or solution in natural language.]

</ANSWER>

- Ensure that **Detailed Plan*x explains the logic behind each step and includes reasoning for any corrections or assumptions made
about the PDDL file.

- The **Step Plan** provides an actionable, step-by-step sequence to achieve the goal.

- The **xFinal Answerx** offers a concise yet clear resolution to the problem. Ensure it will be a single integer denoting final
answer without any additional text.

- If there are inconsistencies or missing details in the problem PDDL, make reasonable assumptions, explain them in the Detailed
Plan, and proceed with generating the solution. Reference the domain and problem files explicitly when describing your reasoning
to ensure traceability. Use the images and description for additional context and validation of the plan where necessary.

Input Question

Question: You are given 3 jugs of capacities 13, 12, 6 litres. Initially, the amount of water that is contained in each jar is shown in the image. A single step of
water pouring from one jug to another is constrained by the following rules: i) take a non-empty jug and pour water from it to another non-full jug until the
first one becomes empty or the second one becomes full; and ii) no water can be spilt while pouring. The objective is to reach the amounts of 13, 12, 2 litres
of water in the jugs from left to right, respectively. What is the minimum number of water pouring steps required to achieve the objective?

images :

Jug 1 Jug2 Jug3

Quantity (litres)

Figure: Water Jugs Image

Domain PDDL : [(define (domain waterjug)...]

Problem PDDL: [(define (problem water-jug-pouring). .. ]
Output

Detailed Plan: The problem involves transferring water between three jugs to achieve a desired quantity of water in each jug. The jugs have capacities of 13,
12, and 6 litres respectively, and the initial state has 11 litres in Jug 1, 12 litres in Jug 2, and 3 litres in Jug 3. The goal state is to have 13 litres in Jug 1, 12
litres in Jug 2, and 2 litres in Jug 3. Let’s first analyze the initial state and the goal state and determine the steps needed to reach the goal:

1. Jug 1 contains 11 litres, 2. Jug 2 contains 12 litres, 3. Jug 3 contains 4 litres.
The objective is to have: 1. Jug 1 containing 13 litres, 2. Jug 2 containing 12 litres, 3. Jug 3 containing 2 litres.

To meet this objective, some water needs to be redistributed between the jugs. The primary goal is to transfer water from Jug 3 to Jug 1 or Jug 2 such that
Jug 3 ends up with only 2 litres of water. Here is the step-by-step plan:

1. Pour water from Jug 3 into Jug 1 until Jug 1 is full.

-Jug 1: 11 + 2 = 13 litres (full)

- Jug 2: 12 litres (unchanged)

-Jug 3: 4 -2 =1 litre (since Jug 1 only needed 2 litres to become full):

In simpler terms, the idea is to ensure that Jug 3 ends up having exactly 2 litres by working its content down through specific transfer steps.
Step Plan:

1. Pour 2 litres from Jug 3 into Jug 1.

Final Answer: 1

Table 10: Prompt for SG (GPT40): Plan generation from the output of PG in 1-shot in-domain setting for the Water
Jugs puzzle
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Instruction

**xInstructions**:

- Provide your response in the following format:

Answer: Let's describe the image first and think step by step. Strictly, provide the final answer
option between [(A), (B), (C), (D)]

<ANSWER>

Explanation:

[Logic and explaination behind solving puzzle and generating plan]

Option:

[The single correct option from [(A), (B), (C), (D)] that matches the derived answer. Don't write any additional text or
integer answer. When you could not find an answer from the given options, write NONE only without any explaination.]
</ANSWER>

Input Question

Question: Consider a sliding block puzzle of grid size 5 * 4 units. It has 9 wooden blocks of varying sizes: one 2 * 2, four 1 *2, two 2 * 1, and two 1 * 1. The
gird also has two empty 1 * 1 spaces. The blocks cannot be removed from the grid, and may only be slid horizontally and vertically within its boundary. A
move is defined as selecting a block that is slideable, and moving it by 1 unit either horizontally or vertically, whichever is possible. The images show the
starting and ending configurations of the puzzle grid. The wooden blocks are shown in various shades of brown and the empty spaces are shown in white.
What is the minimum number of moves required to reach the ending configuration from the starting configuration? Do not directly give the final answer.

Options:[’A’: 4, ’B’: 5, ’C’: 3, 'D’: 2]

images :

Figure: Initial Configuration Figure: Goal Configuration

Output

Explanation:

1. Move the top right 1x1 block left by I unit into one of the empty spaces.

2. Slide the 1x2 block that was just cleared down by 1 unit into the other empty space.
3. Slide the other 1x2 block right by 1 unit into the space created by the previous move.
4. Finally, move the 1x1 block currently in the middle left by 1 unit.

Option: (A)

Table 11: eCOT (multi-choice) using GPT4o for wood slide puzzle
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