
Under review as a conference paper at ICLR 2023

Φ-DVAE: LEARNING PHYSICALLY INTERPRETABLE
REPRESENTATIONS WITH NONLINEAR FILTERING

Anonymous authors
Paper under double-blind review

ABSTRACT

Incorporating unstructured data into physical models is a challenging problem that
is emerging in data assimilation. Traditional approaches focus on well-defined
observation operators whose functional forms are typically assumed to be known.
This prevents these methods from achieving a consistent model-data synthesis in
configurations where the mapping from data-space to model-space is unknown. To
address these shortcomings, in this paper we develop a physics-informed dynamical
variational autoencoder (Φ-DVAE) for embedding diverse data streams into time-
evolving physical systems described by differential equations. Our approach
combines a standard (possibly nonlinear) filter for the latent state-space model and
a VAE, to embed the unstructured data stream into the latent dynamical system. A
variational Bayesian framework is used for the joint estimation of the embedding,
latent states, and unknown system parameters. To demonstrate the method, we
look at three examples: video datasets generated by the advection and Korteweg-de
Vries partial differential equations, and a velocity field generated by the Lorenz-63
system. Comparisons with relevant baselines show that the Φ-DVAE provides a
data efficient dynamics encoding methodology that is competitive with standard
approaches, with the added benefit of incorporating a physically interpretable latent
space.

1 INTRODUCTION

Physical models — as represented by ordinary, stochastic, or partial differential equations — are
ubiquitous throughout engineering and the physical sciences. These differential equations are the
synthesis of scientific knowledge into mathematical form. However, as a description of reality they are
imperfect (Judd & Smith, 2004), leading to the well-known problem of model misspecification (Box,
1979). At least since Kalman (1960) physical modellersls with observations (Anderson & Moore,
1979). Such approaches are usually either solving the inverse problem of attempting to recover model
parameters from data, and/or, the data assimilation (DA) problem of conducting state inference based
on a time-evolving process.

For the inverse problem, Bayesian methods are common (Tarantola, 2005; Stuart, 2010). In this, prior
belief in model parameters Λ is updated with data y to give a posterior distribution, p(Λ|y). This
describes uncertainty with parameters given the data and modelling assumptions. DA can also proceed
from a Bayesian viewpoint, where inference is cast as a nonlinear state-space model (SSM) (Law
et al., 2015; Reich & Cotter, 2015). The SSM is typically the combination of a time-discretised
differential equation and an observation process: uncertainty enters the model through extrusive,
additive errors. For a latent state variable un representing some discretised system at time n, with
observations yn, the object of interest is the filtering distribution p(un|y1:n), where y1:n := {yk}nk=1.
Additionally, the joint filtering and estimation problem, which estimates p(un,Λ|y1:n) has received
significant attention in the literature (see, e.g., Kantas et al. (2015) and references therein). This
has been well studied in, e.g., electrical engineering (Storvik, 2002), geophysics (Bocquet & Sakov,
2013), neuroscience (Ditlevsen & Samson, 2014), chemical engineering (Kravaris et al., 2013),
biochemistry (Dochain, 2003), and hydrology (Moradkhani et al., 2005), to name a few.

Typically in data assimilation tasks, while parameters of an observation model may be unknown, the
observation model itself is assumed known (Kantas et al., 2015). This assumption breaks down in
settings where data arrives in various modalities, such as videos, images, or audio, hindering the

1



Under review as a conference paper at ICLR 2023

ability to perform inference. However, in such cases often the underlying variation in the data stream
is due to a latent physical process, which is typically at least partially known.

In this work, these data streams are video data and velocity fields. We develop a variational Bayes
(VB) (Blei et al., 2017) methodology which jointly solves the inverse and filtering problems for
the case in which the observation operator is unknown. We model this unknown mapping with
a variational autoencoder (VAE) (Kingma & Welling, 2014), which encodes the assumed time-
dependent observations y1:N into pseudo-data x1:N in a latent space. On this latent space, we
stipulate that the pseudo-observations are taken from a known dynamical system, given by a stochastic
ordinary differential equation (ODE) or partial differential equation (PDE) with possibly unknown
coefficients. The differential equation is also assumed to have stochastic forcing, which accounts for
possible model misspecification. The stipulated system gives a structured prior p(x1:N |Λ), which
acts as a physics-informed regulariser whilst also enabling inference over the unknown Λ. This prior
is approximated using classical nonlinear filtering algorithms. Our framework is fully probabilistic:
inference proceeds from a derived evidence lower bound (ELBO), enabling joint estimation of
unknown network parameters and unknown dynamical coefficients via VB. To set the scene for this
work, we now review the relevant literature.

2 RELATED WORK

As introduced above, VAEs (Kingma & Welling, 2014) are a popular high-dimensional encoder. A
VAE defines a generative model that learns low-dimensional representations, x, of high-dimensional
data, y, using VB. To perform efficient inference, a variational approximation qϕ(x|y) is made to the
intractable posterior p(x|y). Variational parameters ϕ are estimated via optimisation of the ELBO.
This unsupervised learning approach infers latent representations of high-dimensional data. Recent
works have extended the VAE to high-dimensional time-series data y1:N , indexed by time n, with
the aim of jointly learning latent representations x1:N , and a dynamical system that evolves them.
These dynamical variational autoencoder (DVAE) methods (Girin et al., 2021) enforce the dynamics
with a structured prior p(x1:N ) on the latent space.

Various DVAE methods have been proposed. The Kalman variational autoencoder (KVAE) of Frac-
caro et al. (2017) is a popular approach, which encodes y1:N into latent variables x1:N that are
assumed to be observations of a linear Gaussian state-space model (LGSSM), driven by latent
dynamic states u1:N . Assumed linear dynamics are jointly learnt with the encoder and decoder,
via Kalman filtering/smoothing. Another approach is the Gaussian process variational autoencoder
(GPVAE) (Pearce, 2020; Jazbec et al., 2021; Fortuin et al., 2020), which models x1:N as a tempo-
rally correlated Gaussian process (GP). The Markovian variant of Zhu et al. (2022) allows for a
similar Kalman procedure as in the KVAE, except, in this instance, the dynamics are known and are
given by an stochastic differential equation (SDE) approximation to the GP (Hartikainen & Sarkka,
2010). A related approach is provided for control applications in Watter et al. (2015); Hafner et al.
(2019), where locally linear embeddings are estimated. Yildiz et al. (2019) also propose the so-called
ODE2VAE, which encodes the data to an initial condition which is integrated through time using a
Bayesian neural ODE (Chen et al., 2018). This trajectory, only, is used to generate the reconstructions
via the decoder network.

A related class of methods are deep SSMs (Bayer & Osendorfer, 2014; Krishnan et al., 2015; Karl
et al., 2017). These works assume that the parametric form of the SSM is unknown, and replace
the transition and emission distributions with neural network (NN) models, which are trained based
on an ELBO. They harness the representational power of deep NNs to directly model transitions
between high-dimensional states. More emphasis is placed on generative modelling and prediction
than representation learning, or system identification. We also note the related VAE works of Wu
et al. (2021); Franceschi et al. (2020); Babaeizadeh et al. (2022), which use VAE-type architectures
for similar video prediction tasks. In Chung et al. (2015) the variational recurrent neural networks
(VRNN) attempt to capture variation in highly structured time-series data, by pairing a recurrent NN
for learning nonlinear state-transitions with a sequential latent random variable model.

Methods to include physical information inside of autoencoders have been studied in the physics
community. A popular approach uses SINDy (Brunton et al., 2016) for discovery of low-dimensional
latent dynamical systems using autoencoders (Champion et al., 2019). A predictive framework is
given in Lopez & Atzberger (2021), which aims to learn nonlinear dynamics by jointly optimizing
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an ELBO. Following our notation, this learns some function which maps un 7→ un+k, for some k,
via a VAE. Lusch et al. (2018) use a physics-informed autoencoder to linearise nonlinear dynamical
systems via a Koopman approach; inference is regularised through incorporating the Koopman
structure in the loss function. Otto & Rowley (2019) present a similar method, and an extension of
these approaches to PDE systems is given in Gin et al. (2021). Morton et al. (2018) use the linear
regression methods of Takeishi et al. (2017) within a standard autoencoder to similarly compute
the Koopman observables. Erichson et al. (2019) derive an autoencoder which incorporates a
linear Markovian prediction operator, similar to a Koopman operator, which uses physics-informed
regulariser to promote Lyapunov stability. Hernández et al. (2018) studies VAE methods to encode
high-dimensional dynamical systems. Finally, we note the related work which studies the estimation
of dynamical parameters within so-called “gray-box” systems, blending NN methods with known
physical laws (Lu et al., 2020; Yin et al., 2021; Long et al., 2018; de Bézenac et al., 2019).

Our contribution. In this paper we propose a physics-informed dynamical variational autoencoder
(Φ-DVAE): a DVAE approach which imposes the additional structure of known physics on the latent
space. We assume that there is a low-dimensional dynamical system generating the high-dimensional
observed time-series: a NN is used to learn the unknown embedding to this lower dimensional space.
On the lower-dimensional space, the embedded data are pseudo-observations of a latent dynamical
system, which is, in general, derived from a numerical discretisation of a nonlinear PDE. However, the
methodology is suitably generic, allowing for ODE latent systems. Inference on this latent system is
done with efficient nonlinear stochastic filtering methods, enabling the use of mature DA algorithms
within our framework. Our approach follows a probabilistically coherent VB construction and allows
for joint learning of both the embedding and unknown dynamical parameters.

Instead of learnt, linear dynamics with the KVAE (Fraccaro et al., 2017), Φ-DVAE assumes a possibly
misspecified nonlinear differential equation is driving the variation in the latent space, with possibly
unknown parameters. This is in contrast to incorporating generic physical structure in the latent space
(such as Koopman structure (Lusch et al., 2018), or Lyapunov stability (Erichson et al., 2019)), or
generic temporal structure (such as in the GPVAE (Pearce, 2020; Jazbec et al., 2021; Fortuin et al.,
2020)). Our latent dynamical systems give a known functional form of the latent transition density,
instead of the learnt, NN-parameterised, transition and emission densities in deep SSMs (Bayer &
Osendorfer, 2014; Krishnan et al., 2015; Karl et al., 2017). Similarly, whilst we share commonality
with a latent differential equation, the Φ-DVAE differs with the ODE2VAE (Yildiz et al., 2019) as
we perform inference with this ODE/PDE, instead of learning it and leveraging it to deterministically
evolve the latents. Our approach trades off the generality of latent system discovery against the
ability to infer physical quantities of interest relating to a particular latent system. Φ-DVAE can
infer physical parameters and states, solving the joint filtering and parameter estimation problem in
scenarios where the observation model is unknown.

3 THE PROBABILISTIC MODEL

In this section we define our probabilistic model; our presentation roughly follows the structure of
the generative model. We first give an overview of the dependencies between variables, as described
by conditional probabilities. We then cover the latent differential equation model used to describe the
underlying physics. Then, the pseudo-observation model is covered, followed by the decoder and the
encoder. To be precise, we assume a general SSM:

Λ ∼ p(Λ), un|un−1,Λ ∼ p(un|un−1,Λ), xn|un ∼ pν(xn|un), yn|xn ∼ pθ(yn|xn),

where Λ describes the parameters of the Markov process {un}Nn=0 evolving w.r.t. the dynamic model
p(un|un−1,Λ), ν describes the parameters of the likelihood denoted by pν(xn|un), and θ describes
NN parameters for the decoder pθ(yn|xn). The conditional independence structure imposed by the
model gives

p(y1:N ,x1:N ,u1:N ,Λ) = pθ(y1:N |x1:N )pν(x1:N |u1:N )p(u1:N |Λ)p(Λ). (1)

Intuitively, {yn}Nn=1 is the sequence of high-dimensional video frames, {xn}Nn=1 is its embedding
(or the pseudo-data), and {un}Nn=0 is the latent physics process. For each n, we assume that yn ∈ Y
(with dim(Y) = ny), xn ∈ Rnx , un ∈ Rnu , and Λ ∈ Rnλ . In what follows, we describe the
components of our probabilistic model in detail.
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Figure 1: An illustration of the Φ-DVAE model. On the left, the frames of a video can be seen which
are denoted y1:N . These are converted into physically interpretable low-dimensional encodings x1:N

using an encoder. This learning process is informed by the physics driven state-space model which
treats x1:N as pseudo-observations, which can be seen on the bottom right.

3.1 DYNAMIC MODEL

The first component of the generative model is the latent dynamical system p(un|un−1,Λ). In
general, we model this latent physics process {un}Nn=0 as a discretised stochastic PDE, however
ODE latent physics is admissible within our framework (see Section 5.1). We discretise this process
with the statistical finite element method (STATFEM) (Girolami et al., 2021; Duffin et al., 2021;
2022; Akyildiz et al., 2022), forming the basis of the physics-informed prior on the latent space.
Stochastic additive forcing inside the PDE represents additive model error, which results from
possibly misspecified physics. Full details, including the ODE case, are given in Appendix C.

In general, we assume that the model has possibly unknown coefficients Λ; on these we place the
Bayesian prior Λ ∼ p(Λ) (Stuart, 2010), describing our a priori knowledge on the model parameters
before observing any data. We also assume that u0, the initial condition, is known up to measurement
noise, with prior p(u0) set accordingly. For pedagogical purposes, we derive the discrete-time
dynamic model using the Korteweg-de Vries (KDV) equation as a running example, which is used in
later sections as an example PDE:

∂tu+ αu∂su+ β∂3su = ξ̇, ξ̇ ∼ GP(0, δ(t− t′) · k(s, s′)), (2)

where u := u(s, t) ∈ R, ξ := ξ(s, t), s ∈ [0, L], t ∈ [0, T ], and Λ = {α, β}. Informally ξ̇ is a GP,
with delta correlations in time, and spatial correlations given by the covariance kernel k(·, ·) : R×R →
R (Williams & Rasmussen, 2006). This is an uncertain term in the PDE, representing possible model
misspecification. Note that we assume all GP hyperparameters are known in this work. The KDV
equation is used to model nonlinear internal waves (see, e.g., Drazin & Johnson, 1989), and describes
the balance between nonlinear advection and dispersion. Note that although the KDV equation
defines a scalar field, u(s, t), the approach similarly holds for vector fields.

Following STATFEM, the equations are first spatially discretised with the finite element method
(FEM), then discretised in time. Thus, equation 2 is multiplied with a smooth test function v(s) ∈ V ,
where V is an appropriate function space, and integrated over the domain Ω to give the weak
form (Brenner & Scott, 2008; Thomée, 2006)

⟨∂tu, v⟩+ α⟨u∂su, v⟩+ β⟨∂3su, v⟩ = ⟨ξ̇, v⟩,
where ⟨·, ·⟩ is the L2(Ω) inner product.

The domain is discretised to give the mesh Ωh with vertices {sj}nh
j=0. In this case, we take the sj to

be a uniformly spaced set of points, so that sj = jh (h gives the spacing between grid-points). On
the mesh a set of polynomial basis functions {ϕj(s)}nu

i=1 is defined, such that approximation to the
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PDE. Letting uh(s, t) =
∑nu

i=1 ui(t)ϕi(s), the weak form is now rewritten with these basis functions

⟨∂tuh, ϕj⟩+ α⟨u∂suh, ϕj⟩+ β⟨∂3suh, ϕj⟩ = ⟨ξ̇, ϕj⟩, j = 1, . . . , nu.

This gives a finite-dimensional SDE over the FEM coefficients u(t) = (u1(t), . . . , unu(t))
⊤:

M
du

dt
+ βAu+ αF(u) = ξ̇, ξ̇(t) ∼ N (0, δ(t− t′) ·G),

where Mij = ⟨ϕi, ϕj⟩, Aji = ⟨∂3sϕi, ϕj⟩, F(u)j = ⟨uh∂suh, ϕj⟩, and Gij = ⟨ϕi, ⟨k(·, ·), ϕj⟩⟩.
Time discretisation eventually gives the transition density p(un|un−1,Λ), for un = u(n∆t), whose
form is dependent on the discretisation used (see Appendix C for all details).

3.2 LIKELIHOOD

The second component of the generative model is the likelihood pν(xn|un). This density acts as a
data likelihood for pseudo-data {xn}Nn=1. This middle layer in the model is usually necessary, as
high-dimensional observations {yn}Nn=1 may only be generated by some observed dimensions of
{un}Nn=0. For example, perhaps it is known a priori that only a single component of a latent coupled
differential equation generates the observations (see also Section 5.1). This explicit likelihood is
introduced to separate the encoding process from the state-space inference; in practice we compute
the pseudo-data via the encoding qϕ(x1:N |y1:N ), then condition on it with standard nonlinear filtering
algorithms (Fraccaro et al., 2017).

The latent states un are mapped at discrete times to pseudo-observations via xn = Hun + rn, with
rn ∼ N (0,R). We parameterise this observation density as pν(xn|un) where ν = {H,R}. Both
the pseudo-observation operator H ∈ Rnx×nu and the noise covariance R ∈ Rnx×nx are assumed to
be known in this work. An additional noise process is assumed, rn, to represent extraneous uncertainty
associated with the pseudo-observations. Observations yn are related to pseudo-observations xn via
the decoder, represented with the conditional density pθ(yn|xn). The combination of the transition
and observation densities provides the nonlinear Gaussian SSM:

Transition: un = M(un−1) + en−1, en−1 ∼ N (0,Q),

Pseudo-observation: xn = Hun + rn, rn ∼ N (0,R).

Inference is performed with the extended Kalman filter (EXKF) (Jazwinski, 1970; Law et al., 2015),
which computes p(un|x1:n,Λ). Further details are contained in Section 4.

3.3 DECODER

The last component of our generative model is the decoder pθ(yn|xn), which describes the unknown
mapping between the pseudo-observations xn, and the observed data yn. The decoding of latents to
data should model as closely as possible the true data generation process. Prior knowledge about
this process can be used to select an appropriate pθ(yn|xn). No temporal structure is assumed on θ,
so the decoder is shared across all times pθ(y1:N |x1:N ) =

∏N
n=1 pθ(yn|xn). For more details on

specific architectures see Appendix A.

4 VARIATIONAL INFERENCE

In this section, we introduce the variational family and the ELBO. Denote by q(u1:N ,x1:N ,Λ|y1:N )
the variational posterior, which, similar to Fraccaro et al. (2017), factorises as

q(u1:N ,x1:N ,Λ|y1:N ) = q(u1:N |x1:N ,Λ)qϕ(x1:N |y1:N )qλ(Λ).

Note here that we do not make a variational approximation q(u1:N ,x1:N ,Λ|y1:N ); this is taken to
be the exact posterior p(u1:N |x1:N ,Λ). We derive the ELBO to be (see also Appendix B)

log p(y1:N ) ≥
∫

log

[
p(u1:N ,x1:N ,Λ,y1:N )

q(u1:N ,x1:N ,Λ|y1:N )

]
q(u1:N ,x1:N ,Λ|y1:N )dx1:Ndu1:NdΛ

= Eqϕ

[
log

pθ(y1:N |x1:N )

qϕ(x1:N |y1:N )
+ Eqλ

[
log p(x1:N |Λ) + log

p(Λ)

qλ(Λ)

]]
. (3)

Typically this expectation is not analytically tractable and Monte Carlo is used to compute an
approximation.
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Nonlinear Filtering. In the ELBO of equation 3, estimating log p(x1:N |Λ)
requires marginalising over u1:N , the latent physics process. We per-
form this via the EXKF (Jazwinski, 1970; Law et al., 2015), which
recursively computes a Gaussian approximation to the filtering poste-
rior p(un|x1:n,Λ) ≈ N (mn,Cn). We note however that this can
also be realised with other nonlinear filters, e.g., ensemble Kalman fil-
ters (Chen et al., 2022) or particle filters (Corenflos et al., 2021). The
factorisation of the pseudo-observation marginal likelihood, p(x1:N |Λ) =

p(x1|Λ)
∏N

n=2 p(xn|x1:n−1,Λ), enables computation, as the filter can com-
pute log p(xn|x1:n−1,Λ), at each prediction step, via p(xn|x1:n−1,Λ) =∫
p(xn|un,Λ)p(un|x1:n−1,Λ) dun.

Variational approximations. As with the decoder, encoder parameters
ϕ are shared between variational distributions {qϕ(xn|yn)}Nn=1 to give an
amortized approach (Kingma et al., 2019). Unless otherwise specified,
for each n the encoding has the form qϕ(xn|yn) = N (µϕ(yn), σϕ(yn)).
Functions µϕ(yn) : Rny → Rnx and σϕ(yn) : Rny → Rnx are NNs, with
parameters ϕ to be learnt. Specific encoding architectures are given in
Appendix A. As for qλ, we set it to a Gaussian with mean µλ and variance
diag(σλ).

5 EXPERIMENTS

We present three examples with different dynamical systems. To demon-
strate the generality of the method, the first uses the stochastic Lorenz-63
system (Lorenz, 1963), a highly nonlinear stochastic ODE. In this case,
high-dimensional observations are of a velocity field being modulated by the
chaotic system. For the final two examples, we use video data. We consider
the advection and KDV PDEs, and, in these examples, we indirectly observe
high-dimensional representations in the form of video data. This mimics the
experimental setup of the various DVAE papers (e.g., Fraccaro et al., 2017;
Pearce et al., 2018; Jazbec et al., 2021; Fortuin et al., 2020; Zhu et al., 2022; Girin et al., 2021). For
these two examples, video datasets are generated in a similar fashion. In both cases, simulated data
emulate the scenario where a noisy video of an internal wave profile is captured. Internal waves arise
as waves of depression or elevation flowing within a density-stratified fluid at regions of maximum
density gradient (Gerkema & Zimmerman, 2008). Our experiment setup thus emulates an idealised
setup where a black-and-white, side-on, video of a laboratory experiment has been obtained, and is
inspired by scenarios where the high-resolution use of classical measurement devices is not feasible,
yet the use of commonplace video-capturing devices is (see, e.g., Horn et al., 2001; 2002).

The advection equation example is motivated by an internal wave propagating undisturbed through
some medium. For this linear case, comparisons with the KVAE reveal that after training, the
Φ-DVAE outperforms both in terms of the estimated ELBO and in terms of the mean-squared-error
(MSE). The KDV example is a more complex case, and extends into the nonlinear PDE setting,
while also being a classical model for internal waves (Drazin & Johnson, 1989). For this example,
comparisons are made with VRNNs, the GPVAE, and the standard VAE. We demonstrate that the
MSE of the Φ-DVAE is comparable or better than these approaches. Furthermore, for joint state and
parameter inference, we verify the methodology and demonstrate contraction of the posterior about
the truth.

5.1 LORENZ-63 EXAMPLE

In our first example, the latent dynamical model p(un|un−1,Λ) is given by an Euler-Maruyama
discretisation (Kloeden & Platen, 1992) of the stochastic Lorenz-63 system,

du1 = (−σu1 + σu2)dt+ dw1,

du2 = (−u1u3 + ru1 − u2)dt+ dw2, (4)
du3 = (u1u2 − bu3)dt+ dw3,
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Figure 3: Lorenz-63 system: (a) the results of parameter estimation for (top) σ estimation, (center) b
estimation, and (bottom) joint estimation of Λ = {σ, r, b}. In (b) we show an example result of state
estimation. Left column is the true Lorenz states vs. EXKF means, center and right columns show
the distribution of the estimate of the final states.

where u(t) := [u1(t), u2(t), u3(t)]
⊤, t ∈ [0, 6], un = [u1(n∆t), u2(n∆t), u3(n∆t)], Λ = {σ, r, b},

and w1, w2, and w3 are independent Brownian motion processes (Øksendal, 2003; Särkkä & Solin,
2019). For full details we refer to Appendices A and C. The Lorenz-63 system is classical system
widely used to benchmark filtering and data assimilation methods (see, e.g., Akyildiz & Mı́guez,
2020). It was popularised in Lorenz (1963) through its characterisation of “deterministic nonperiodic
flow”, and is a common example of chaotic dynamics.

We observe synthetic 2D velocity fields, y1:N , of convective fluid flow, and we use our method to
embed these synthetic data into the stochastic Lorenz-63 system. The Lorenz-63 system is related
to the velocity fields through a truncated spectral expansion (see, e.g., Wouters, 2013). In brief,
it is assumed that the velocity fields have no vertical velocity, so the 3D velocity field is realised
in 2D. The velocity field can be described by the stream function ψ := ψ(s1, s2, t), where s1
and s2 are the spatial coordinates of variation, respectively, and thus y(t) = (−∂s2ψ, 0, ∂s1ψ). A
truncated spectral approximation and a transform to non-dimensional equations yields ψ(s1, s2, t) ∝
u1(t) sin(πs1/l) sin(πs2/d), where u1(t) is governed by the Lorenz-63 ODE (i.e., equation 4 with
wi ≡ 0).

To generate the synthetic data y1:N , we generate a trajectory utrue
1:N from the deterministic version

of 4, at discrete timepoints n∆t, and use the generated utrue1,n to compute the two-dimensional velocity
field, yn, via ψ(s1, s2, t). This corresponds to having a middle layer xn = u1,n + wn where
wn ∼ N (0, R2), with likelihood p(xn|un) = N (h⊤un, R

2) where h = [1, 0, 0]⊤. The synthetic
data of utrue(t), x1:N , and y1:N are visualised in Figure 2; the full trajectory utrue(t) is shown in
3D, and the velocity field yn is shown in 2D, for a single n. The decoding is assumed to be of the
form pw(yn|xn) = N (wxn, η

2I), with unknown coefficients w ∈ Rny . The variational encoding
qw(xn|yn) is determined via a pseudo-inverse, as detailed in Appendix A, along with the relevant
hyperparameters and numerical details.

Figure 3a displays parameter estimation results. For individual σ and b estimation (Figure 3a, top and
center), we initialise the variational posterior randomly, and visualise each across training epochs.
Both results show the posteriors contracting about the true value, with b demonstrating more rapid
convergence, visually. For joint estimation (Figure 3a, bottom), similar behaviour is observed, with
the parameter r not identified by the final epoch. We conjecture this is due to identifiability with
other parameters when estimating jointly. Note, however, that the true values are all contained within
the confidence bands of the final variational posteriors.

We also investigate the posterior inference achieved by Φ-DVAE. We visualise the filtering posterior
through time, conditioned on a sample from the trained encoder x(i)

1:N ∼ qϕ(·|y1:N ), with fixed,
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known Λ. Figure 3b (left) shows clear agreement between the filter mean and the latent states
utrue
1:N . Marginalising over the encoding (Figure 3b (centre)) targets the filtering posterior directly

conditioned on observed data y1:N , and demonstrates unbiased mean estimates of the true state. This
is particularly clear for the first latent dimension, where the posterior conditioned on an individual
sample x

(i)
1:N often has poor posterior coverage of the true value (cf. Figure 3b (right)).

5.2 ADVECTION PDE
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As a second example, we consider the advection equation with periodic bound-
ary conditions. In this example, we derive the transition density p(un|un−1,Λ)
from a STATFEM discretisation of a stochastic advection equation:

∂tu+ c ∂su = ξ̇, ξ̇ ∼ GP(0, δ(t− t′) · k(s, s′)), (5)

where u := u(s, t), ξ := ξ(s, t), s ∈ [0, 1], t ∈ [0, 40], and u(s, t) =
u(s + 1, t). Recall that, as in Section 5.2, the FEM coefficients un =
(u1(n∆t), . . . , unu

(n∆t)) are the latent variables. These are related to the
discretised solution via uh(s, n∆t) =

∑nu

i=1 ui(n∆t)ϕi(s) (see Appendix A
and C).

Video data y1:N is generated from the deterministic version of equation 5
(i.e. equation 5 with ξ ≡ 0). A trajectory utrue

1:N is simulated and the correspond-
ing FEM solutions utrueh (s, n∆t) are imposed onto a 2D grid. On the grid,
pixels below utrueh (s, n∆t) are lit-up in a binary fashion, with salt-and-peper
noise (Gonzalez & Woods, 2007). In this experiment we use fixed parameters,
setting Λ ≡ c = 0.5. We set the decoder to pθ(yn|xn) = Bern(µθ(xn))
and the encoder as qϕ(xn|yn) = N (µϕ(yn), σϕ(yn)). As previous, see Ap-
pendix A for full details.

Due to linearity of the underlying dynamical system, we compare the Φ-DVAE
to the KVAE for a set of video data generated from the advection equation, for
various dimensions of the KVAE latent space. Specifying a particular form
of latent dynamics on the latent states increases the inductive bias imposed
on the latent space, and should provide faster learning — and more likely
representations — than with learnt dynamics.
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To explore this, we compare our method to KVAE for the linear advection
example in terms of the ELBO and normalised MSE, over training epochs
(all methods use Adam (Kingma & Ba, 2017)). These are plotted in Figure 4.
For the MSE, KVAE quickly learns to reconstruct the images, with Φ-
DVAE taking longer to reconstruct with similar accuracy but eventually
producing better reconstructions (final MSEs 0.0221 vs. 0.0533 for the
Φ-DVAE, KVAE-64, respectively). The ELBO for Φ-DVAE is rapidly
optimised in comparison to the KVAE models, and is greater by the end of
training. The trained Φ-DVAE gives better evidence for the data (greater
ELBO), whilst providing more accurate reconstructions (lower MSE).

5.3 KORTEWEG–DE VRIES PDE

Our final example uses the KDV equation as the underlying dynamical
system. As previously, the latent transition density p(un|un−1,Λ) defines
the evolution of the FEM coefficients, as given by a STATFEM discretisation
of a stochastic KDV equation:

∂tu+ αu∂su+ β∂3su = ξ̇, ξ̇ ∼ GP(0, δ(t− t′) · k(s, s′)),
where u := u(s, t), ξ := ξ(s, t), s ∈ [0, 2], t ∈ [0, 1], and u(s, t) =
u(s+ 2, t). Parameters are Λ = {α, β}.

Data is simulated in the same fashion as in the advection equation: we simulate a trajectory utrue
1:N using

a FEM discretisation of the deterministic KDV equation and we impose FEM solutions utrueh (s, n∆t)
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Figure 6: KDV joint inference results; frames shown for n = {10, 50, 75}.

on a 2D grid. We light up pixels below the solution, and add salt-and-pepper noise. For the data-
generating process, we use the parameters Λ = {α = 1, β = 0.0222}, and the initial condition
of utrueh (s, 0) = cos(πs) as in the classical work of Zabusky & Kruskal (1965). This regime is
characterised by the steepening of the initial condition and the generation of solitons; nonlinear waves
which have particle-like interactions (Drazin & Johnson, 1989). As for the advection example, we set
the decoder as pθ(yn|xn) = Bern(µθ(xn)) and the encoder as qϕ(xn|yn) = N (µϕ(yn), σϕ(yn));
again, see Appendix A for details.

We test the VRNN, GPVAE and the standard VAE approaches alongside Φ-DVAE with equal
encoding dimension nx = 40. In Figure 5 we report the normalised MSE after a fixed number of
epochs, using Adam (Kingma & Ba, 2017) with the same learning rate for each method. Φ-DVAE
outperforms both GPVAE and the standard VAE in terms of median MSE. Note the variation, in
MSE, of the standard VAE is also greater than the other models, suggesting that the dynamical
structure provides more consistent learning. Both Φ-DVAE and VRNN perform well, producing
visually similar reconstructions, with the VRNN having lower median MSE (0.0239 vs 0.0105,
respectively). A predictive MSE is also computed by giving the model a single image frame to
encode, sampling from the generative model forward in time, and comparing the decoded samples
against the ground truth images. Here, Φ-DVAE outperforms VRNN with median predictive MSEs
0.0415 vs 0.0806 respectively.

We report joint estimation results for the partially known KDV PDE, where we fix β = 0.0222,
and estimate α. The prior over α, p(α) = N (1.5, 0.32), is semi-informative. Joint inference of α
and latent states un is shown in Figure 6. The Gaussian variational posterior, qλ(α) = N (µλ, σ

2
λ)

(initialised at the prior), contracts about the true value α = 1.0 (see Figure 6a). The filtering posterior,
p(un|y1:n), is shown in Figure 6c. This is obtained via Monte Carlo approximation, marginalising
over the variational posteriors qϕ, qλ, to account for uncertainty in the encoding and parameter
estimates. Including a structured prior on the latent space has forced the encoding to be representative
of observations taken from the KDV system, clearly capturing the latent dynamics causing the
variation in the image data. Figures 6b and 6d display the image data and reconstructions respectively,
showing the ability of Φ-DVAE to both accurately reconstruct and de-noise the data.

6 CONCLUSION

In this paper we developed Φ-DVAE, a methodology that allows for the incorporation of unstructured
data into physical models, in settings where the model-data mapping may be unknown. The proposed
approach utilizes variational autoencoders and nonlinear filtering algorithms for PDEs, to learn
physically interpretable latent spaces where analysis and prediction can be performed straightfor-
wardly. Our framework connects traditional nonlinear filtering techniques and VAEs, opening up the
possibility of further combinations of these methods. Future work will focus on more challenging
PDE systems, as well as more complex, and higher-dimensional, observational data.
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REPRODUCIBILITY STATEMENT

We have included full numerical details to reproduce all results in our paper in Appendix A. The
code we have developed for this paper will be made publicly available after the decision, enabling the
generation of all datasets and figures.
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A NUMERICAL DETAILS AND NETWORK ARCHITECTURES

Lorenz-63 experiment.

• Time-series length: N = 150.

• Input: ny = 200.

• Pseudo-observations: nx = 1.

• Latent nu = 3.

• Decoder: pw(yn|xn) = N (wxn, η
2I), η = 0.005.

• Encoder: qw(xn|yn) = N ((w⊤w)−1w⊤yn, η
2(w⊤w)−1)

• Latent initial condition: u0 = [−3.7277,−3.8239, 21.1507]
⊤

• Latent noise processes: L = diag(0.22), R = diag(0.42).

• Latent discretisation: Euler-Maruyama, dt = 0.001.

• Joint parameter prior: p([σ, r, b]) = N ([30, 20, 5]⊤,diag([122, 102, 32]⊤)).

• Optimiser: Adam, learning rate = 10−4.

To generate the data, we simulate the Lorenz SDE with dt = 0.001 and take pseudo-observations
xn every 40 time-steps of the latent system, for a total of N = 150 with ∆t = 0.04. Velocity
measurements are taken in the s1 and s2 directions over a regular 10 × 10 grid on the domain
s1, s2 ∈ [−4, 4], via the streamfunction ψ(s1, s2, t). These measurements are flattened to the data
vector yn ∈ Rny , ny = 200. Parameters for data generation are Λ = {σ = 10, r = 28, b = 8/3}.

Advection equation experiment.

• Time-series length: N = 200.

• Input: ny = 784.

• Pseudo-observations: nx = 64.

• Latent nu = 64.

• Decoder: pθ(yn|xn) = Bern(µθ(xn))

• µθ(·): MLP, two fully connected hidden layers with dimension 128

• Encoder: qϕ(xn|yn) = N (µϕ(yn), σϕ(yn))

• µϕ(·), σϕ(·): MLP, two fully connected hidden layers with dimension 128

• Neural Network activations: LeakyReLU, negative slope = 0.01

• Latent initial condition: u(s, 0) = exp(−(x− 2.5)2/0.1).

• Latent noise processes: ρ = 0.02, ℓ = 0.1, R = diag(0.12).

• Latent discretisation: FEM, C0([0, 1]) polynomial trial/test functions, Crank-Nicolson time
discretisation, dt = 0.02.

• Optimiser: Adam, learning rate = 0.001.

To generate the data, we simulate the advection equation with dt = 0.02, observing every 10 time-
steps for ∆t = 0.2 and N = 200. Latent dimensions are nu = 64 and nx = 64, with each image
28× 28 pixels. These images are then flattened to vectors yn ∈ [0, 1]

ny , with ny = 784.

KDV equation experiment.

• Time-series length: N = 100.

• Input: ny = 1792.

• Pseudo-observations: nx = 40.

• Latent nu = 600.

• Decoder: pθ(yn|xn) = Bern(µθ(xn))
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• µθ(·): MLP, two fully connected hidden layers with dimension 128
• Encoder: qϕ(xn|yn) = N (µϕ(yn), σϕ(yn))

• µϕ(·), σϕ(·): MLP, two fully connected hidden layers with dimension 128
• Neural Network activations: LeakyReLU, negative slope = 0.01

• Latent initial condition: u(s, 0) = cos(πs).
• Latent noise processes: ρ = 0.01, ℓ = 0.2, R = diag(0.052).
• Latent discretisation: Petrov-Galerkin approach of Debussche & Printems (1999): C0([0, 2])

polynomial trial functions, Crank-Nicolson time discretisation, dt = 0.01.
• Parameter prior: p(α) = N (1.5, 0.32).
• Optimiser: Adam, learning rate = 0.005.

To generate the data we simulate the KDV equation with dt = 0.01, observing every timestep for
∆t = 0.01, and we take N = 100 observations yn, with yn ∈ [0, 1]

ny . Each yn is a flattened
image of dimension ny = 64× 28 = 1792, and we encode to pseudo-observations xn of dimension
nx = 40. The latent state dimension is nu = 600. Predictive MSE is calculated by encoding
yt, t = 0.1 to xt, t = 0.1, sampling xt from the generative model forward in time for 10 time-steps
(up to t = 0.2), and computing the normalised MSE of the decoded samples ŷt compared to the
ground truth.

Linear decoding/encoding. If a linear data generation is assumed from x1:N to y1:N , then this
structure can inform decoding. With a linear decoder of the form:

pA(y|x) = N (Ax, η2I).

In this case, we use the “inverted” linear decoder given by:

qA(x|y) = N ((A⊤A)−1A⊤y, η2(A⊤A)−1).

By selecting the encoder appropriately, the space of parameterised variational distributions can be
restricted to align with our beliefs about the data generation process.

B FULL VARIATIONAL FRAMEWORK

We derive the approximate ELBO for joint estimation of dynamic parameters Λ, and autoencoder
parameters ϕ, θ. We start by writing the evidence

p(y1:N ) =

∫
p(u1:N ,x1:N ,Λ,y1:N )dx1:Ndu1:NdΛ.

We maximize log p(y1:N ) as

log p(y1:N ) = log

∫
p(u1:N ,x1:N ,Λ,y1:N )dx1:Ndu1:NdΛ

= log

∫
p(u1:N ,x1:N ,Λ,y1:N )

q(u1:N ,x1:N ,Λ|y1:N )
q(u1:N ,x1:N ,Λ|y1:N )dx1:Ndu1:NdΛ

≥
∫

log

[
p(u1:N ,x1:N ,Λ,y1:N )

q(u1:N ,x1:N ,Λ|y1:N )

]
q(u1:N ,x1:N ,Λ|y1:N )dx1:Ndu1:NdΛ

= ELBO,

where the third line follows from the application of Jensen’s inequality. Our generative model
determines the factorisation of the joint distribution, given in equation 1:

p(u1:N ,x1:N ,Λ,y1:N ) = p(y1:N |x1:N ,u1:N ,Λ)p(x1:N |u1:N ,Λ)p(u1:N |Λ)p(Λ)

= pθ(y1:N |x1:N )p(x1:N |u1:N ,Λ)p(u1:N |Λ)p(Λ).

Next, we plug this factorised distribution into the ELBO and obtain

ELBO =

∫
log

[
pθ(y1:N |x1:N )p(x1:N |u1:N ,Λ)p(u1:N |Λ)p(Λ)

q(u1:N ,x1:N ,Λ|y1:N )

]
× q(u1:N ,x1:N ,Λ|y1:N ) dx1:Ndu1:NdΛ.
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The family of distributions which we use to approximate the posterior is described below. We assume
a factorisation based on the model into variational encoding qϕ(·), a full latent state posterior qν(·),
and the variational approximation to the parameter posterior qλ(·):

q(u1:N ,x1:N ,Λ|y1:N ) = qν(u1:N |x1:N ,Λ)qλ(Λ)qϕ(x1:N |y1:N ) (6)

= qν(u1:N |x1:N ,Λ)qλ(Λ)

N∏
n=1

qϕ(xn|yn). (7)

The second line demonstrates the amortized structure of the autoencoder, where the same encoding
parameters are shared across datapoints. We can then substitute this expression into our ELBO and
obtain

ELBO =

∫
log

[
pθ(y1:N |x1:N )p(x1:N |u1:N ,Λ)p(u1:N |Λ)p(Λ)

qν(u1:N |x1:N ,Λ)qλ(Λ)qϕ(x1:N |y1:N )

]
× q(u1:N ,x1:N ,Λ|y1:N )dx1:Ndu1:NdΛ.

Assuming the variational posterior is the exact filtering posterior, i.e., qν(u1:N |x1:N ,Λ) =
p(u1:N |x1:N ,Λ) then applying Bayes rule

p(x1:N |u1:N ,Λ)p(u1:N |Λ)

qν(u1:N |x1:N ,Λ)
= p(x1:N |Λ)

leads to a simplification of ELBO in terms of the marginal likelihood p(x1:N |Λ) of the state-space
model. Substituting this expression leads to

ELBO =

∫
log

[
pθ(y1:N |x1:N )p(x1:N |Λ)p(Λ)

qϕ(x1:N |y1:N )qλ(Λ)

]
× qν(u1:N |x1:N ,Λ)qλ(Λ)qϕ(x1:N |y1:N )dx1:Ndu1:NdΛ

=

∫
log

[
pθ(y1:N |x1:N )

qϕ(x1:N |y1:N )

]
qϕ(x1:N |y1:N )dx1:N

+

∫ [
log p(x1:N |Λ) + log

p(Λ)

qλ(Λ)

]
qλ(Λ)qϕ(x1:N |y1:N )dx1:NdΛ

= Eqϕ

[
log

pθ(y1:N |x1:N )

qϕ(x1:N |y1:N )

]
+ Eqϕ

[
Eqλ

[
log p(x1:N |Λ) + log

p(Λ)

qλ(Λ)

]]
,

Using a single MC sample from qϕ(x1:N |y1:N ) to approximate the expectation, we can write:

T (θ, ϕ, λ) = log
pθ(y1:N |x1:N )

qϕ(x1:N |y1:N )
+ Eqλ [log p(x1:N |Λ)]−KL(qλ(Λ), p(Λ)).

We can sample qλ(Λ) to approximate the expectation of log p(x1:N |Λ). Note that this requires the
reparameterisation trick that is used for also used when sampling x1:N . This allows for backpropaga-
tion of errors through the sampling step. The KL-divergence can be calculated analytically for the
case of Gaussian prior and posterior:

T (θ, ϕ, λ) = log
pθ(y1:N |x1:N )

qϕ(x1:N |y1:N )
+

1

M

M∑
i=1

[
log p(x1:N |Λ(i))

]
−KL(qλ(Λ), p(Λ)),

and approximated via Monte-Carlo otherwise

T (θ, ϕ, λ) = log
pθ(y1:N |x1:N )

qϕ(x1:N |y1:N )
+

1

M

M∑
i=1

[
log p(x1:N |Λ(i)) + log p(Λ(i))− log qλ(Λ

(i))
]
.

C FURTHER DETAILS ON THE DYNAMIC MODEL

In this work we take the latent dynamical model to be a stochastic ODE or PDE. For an ODE this
follows from a standard SDE (Särkkä & Solin, 2019; Øksendal, 2003), given by

du = fΛ(u, t; Λ)dt+ L(t)dW(t),
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where u := u(t) ∈ Rnu , t ∈ [0, T ], fΛ : Rnu × [0, T ] → Rnu , L : [0, T ] → Rnu×nu . The noise
process W(t) is a standard vector Brownian motion. The diffusion term L(t) can be used to describe
any a priori correlation in the error process dimensions. As stated in the main text, this error process
is taken to represent possibly misspecified/unknown physics, which may have been omitted when
specifying the model. Discretisation with an explicit Euler-Maruyama scheme (Kloeden & Platen,
1992) gives,

un = un−1 +∆tfn−1(un−1; Λ) + Ln−1∆Wn−1, ∆Wn−1 ∼ N (0,∆tI),

where un := u(n∆t), fn(·; Λ) = fΛ(·, n∆t), and so on. This gives a transition density

p(un|un−1,Λ) = N (un−1 +∆tfn−1(un−1; Λ),∆tLn−1L
⊤
n−1),

defining a Markov model on the now discretised state vector un. To align with the notation introduced
in the main text, this gives:

p(un|un−1,Λ) = N (M(un−1),Q),

M(un−1) := un−1 +∆tfn−1(un−1; Λ), Q := ∆tLn−1L
⊤
n−1.

Due to the structure of the STATFEM discretisation, the fully-discretised underlying model is of the
same mathematical form as this ODE case. The difference lies in the dynamics being defined from
either a PDE or ODE system. In common cases, a lower dimensional state vector, un, typically
results for the ODE case in comparison to the PDE case. For the PDE case, entries of the state vector
un are coefficients of the finite element basis functions.

For the PDE case, the derivation is similar, with an additional step pre-time-discretisation to spatially
discretise the system. This yields a method-of-lines approach (Schiesser, 1991). As in the main text,
we consider a generic nonlinear PDE system of the form

∂tu+ LΛu+ FΛ(u) = f + ξ̇, ξ̇ ∼ GP(0, δ(t− t′) · k(s, s′)), (8)

where u := u(s, t), ξ := ξ(s, t), f := f(s), s ∈ Ω ⊂ Rd, and t ∈ [0, T ]. The operators
LΛ and FΛ(·) are linear and nonlinear differential operators, respectively. The process ξ̇ is the
derivative of a function-valued Wiener process, whose increments are given by a Gaussian process
with the covariance kernel k(·, ·). In our examples, we use the squared-exponential covariance
function (Williams & Rasmussen, 2006)

k(s, s′) = ρ2 exp

(
−∥s− s′∥22

2ℓ2

)
.

Hyperparameters {ρ, ℓ} are always assumed to be known, being set a priori. Further work investigat-
ing inference of these hyperparameters is of interest.

As stated in the main text we discretise the linear time-evolving PDE following the STATFEM as
in Duffin et al. (2021), for which we refer to for the full details of this approach. In brief, we
discretise spatially with finite elements (see, e.g., Brenner & Scott (2008); Thomée (2006), for
standard references) then temporally via finite differences. We first multiply equation 8 with a
sufficiently smooth test function v ∈ V , where V is an appropriate function space (e.g. the H1

0 (Ω)
Sobolev space (Evans, 2010)) and integrate over the domain Ω to give the weak form (Brenner &
Scott, 2008)

⟨∂tu, v⟩+AΛ(u, v) + ⟨FΛ(u), v⟩ = ⟨f, v⟩+ ⟨ξ̇, v⟩, ∀v ∈ V.

Recall that AΛ(·, ·) is the bilinear form generated from the linear operator LΛ, and

⟨f, g⟩ =
∫
Ω

f(s)g(s) ds,

the L2(Ω) inner product.

Next we introduce a discrete approximation to the domain, Ωh ⊆ Ω, having vertices {sj}nh
j=1.

This is parameterised by h which indicates the degree of mesh-refinement. We now introduce
a finite-dimensional set of polynomial basis functions {ϕj(s)}nu

j=1, such that ϕi(sj) = δij . In
this work these are exclusively the C0(Ω) linear polynomial “hat” basis functions. This gives the
finite-dimensional function space Vh = span{ϕj(s)}nu

j=1, which is the space we look for solutions
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in. Next, we rewrite u and v in terms of these basis functions: uh(s, t) =
∑nu

j=1 uj(t)ϕj(s) and
vh(s, t) =

∑nu

j=1 vj(t)ϕj(s). As the weak form must hold for all vh ∈ Vh, this is equivalent to
holding for all ϕj . Thus, the weak form can now be rewritten in terms of this set of basis functions

⟨∂tuh, ϕj⟩+AΛ(uh, ϕj) + ⟨FΛ(uh), ϕj⟩ = ⟨f, ϕj⟩+ ⟨ξ̇, ϕj⟩, j = 1, . . . , nu.

Note that, in general, uh and vh do not necessarily have to be defined on the same function space, but
as we use the linear basis functions in this work we stick with this here.

As stated in the main text, this is an SDE over the FEM coefficients u(t) = (u1(t), . . . , unu
(t))⊤,

given by

M
du

dt
+Au+ F(u) = b+ ξ̇, ξ̇(t) ∼ N (0, δ(t− t′) ·G)

where Mij = ⟨ϕi, ϕj⟩, Aij = AΛ(ϕi, ϕj), F(u)j = ⟨FΛ(uh), ϕj⟩, bj = ⟨f, ϕj⟩, and Gij =
⟨ϕi, ⟨k(·, ·), ϕj⟩⟩. Letting G = LL⊤ we can then write this in the familiar notation as above

Mdu+Audt+ F(u)dt = bdt+ LdW(t),

from which an Euler-Maruyama time discretisation gives

un = (I−∆tM
−1A)un−1 −∆tM

−1F(un−1) + ∆tM
−1b+M−1L∆Wn−1,

where ∆Wn−1 ∼ N (0,∆tI), eventually defining a transition model of the form

pΛ(un|un−1) = N
(
(I−∆tM

−1A)un−1 −∆tM
−1F(un−1) + ∆tM

−1b,∆tM
−1GM−⊤) .

(9)

Note that also that the STATFEM methodology also allows for implicit discretisations which may be
desirable for time-integrator stability. The transition equations for these approaches can be written out
in closed form, yet although they give Markovian transition models, the resultant transition densities
p(un|un−1,Λ) are not necessarily Gaussian due to the nonlinear dynamics being applied to the
current state un. Letting en−1 = L∆Wn−1 ∼ N (0,∆tG), then the implicit Euler is

M (un − un−1) + ∆tAun +∆tF(un) + ∆tb = en−1, (10)

and the Crank-Nicolson is

M (un − un−1) + ∆tAun−1/2 +∆tF(un−1/2) + ∆tb = en−1, (11)

where un−1/2 = (un + un−1) /2. Furthermore, to compute the marginal measure p(un|Λ) this also
requires integrating over the previous solution un−1; again due to nonlinear dynamics this will not
necessarily be Gaussian.

In each of these cases, therefore, the transition equation is

M(un,un−1) = en−1,

where we take, for the implicit Euler,

M(un,un−1) = M (un − un−1) + ∆tAun +∆tF(un) + ∆tb

and, for the Crank-Nicolson,

M(un,un−1) = M (un − un−1) + ∆tAun−1/2 +∆tF(un−1/2) + ∆tb.

In practice due to conservative properties of the Crank-Nicolson discretisation we use this for all our
models in this work.

Discretised solutions un are mapped at time n to “pseudo-observations” via the observation process

xn = Hun + rn, rn ∼ N (0,R).

This observation process has the density pν(xn|un) where ν = {H,R}. As stated in the main text,
the pseudo-observation operator H and observational covariance R are assumed known in this work.
We typically use a diagonal covariance, setting R = σ2I. In the PDE case, for a given STATFEM
discretisation as above, these pseudo-observations are assumed to be taken on a user-specified grid,
given by xobs ∈ Rnx . The pseudo-observation operator thus acts as an interpolant, such that

Hun =
[
uh(x

1
obs, n∆t), uh(x

2
obs, n∆t), . . . , uh(x

nx

obs, n∆t)
]⊤
.
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For the ODE case, we have worked with observation operators that extract relevant entries from
the state vector. The pseudo-observations are mapped to high-dimensional observed data through
a possibly nonlinear observation model which has the probability density pθ(yn|xn). Recall that
in this, θ are neural network parameters. This defines the decoding component of our model (see
Figure 1).

Nonlinear Filtering for Latent State Estimation. To perform state inference given a set of pseudo-
observations we use the EXKF. The EXKF constructs an approximate Gaussian posterior distribution
via linearising about the nonlinear model M(·). The action of the nonlinear M(·) is approximated
via tangent linear approximation. We will derive our filter in the general context of a nonlinear
Gaussian SSM given by

Transition: M(un,un−1) = en−1, en ∼ N (0,Q),

Observation: xn = Hun + rn, rn ∼ N (0,R).

This allows for the use of implicit time-integrators and subsumes the derivation for the explicit
case. We assume that at the previous timestep an approximate Gaussian posterior has been obtained,
p(un−1|x1:n−1,Λ) = N (mn−1,Cn−1). For each n the EXKF thus proceeds as:

1. Prediction step. Solve M(m̂n,mn−1) = 0 for m̂n. Calculate the tangent linear covariance
update:

Ĉn = J−1
n

(
Jn−1Cn−1J

⊤
n−1 +Q

)
J−⊤
n ,

where Jn = ∂M/∂un|m̂n,mn−1
and Jn−1 = ∂M/∂un−1|m̂n,mn−1

.

This gives p(un|x1:n−1,Λ) = N (m̂n, Ĉn).
2. Update step. Compute the posterior mean mn and covariance Cn:

mn = m̂n + ĈnH
T (HĈnH

T +R)−1(yn −Hm̂n),

Cn = Ĉn − ĈnH
T (HĈnH

T +R)−1HĈn.

This gives p(un|x1:n,Λ) = N (mn,Cn).

The log-marginal likelihood can be calculated recursively, with each term of the log-likelihood
computed after each prediction step:

log p(x1:N |Λ) =

N∑
n=2

log p(xn|x1:n−1,Λ),

p(xn|x1:n−1,Λ) = N (Hm̂n,HĈnH
T +R).

Note that although we focus on the EXKF other nonlinear filters could be used; two popular
alternatives are the ensemble Kalman filter (Evensen, 2003), or, the particle filter (Doucet et al., 2000).
For a linear dynamical model, such as the advection equation considered in Section 5.2, the EXKF
reduces to the standard Kalman filter (Kalman, 1960).

As mentioned in the main text we can marginalise over the uncertainty in the encoder, via a Monte
Carlo approximation:

p(un|y1:n,Λ) ≈
∫
p(un|x1:n,Λ)qϕ(x1:n|y1:n) dx1:n (12)

≈ 1

M

M∑
i=1

p(un|x(i)
1:n,Λ), x

(i)
1:n ∼ qϕ(·|y1:n). (13)

The intractable integral is approximated using samples from the encoder, which provides an approx-
imate posterior in the form of a mixture of Gaussians distribution, where each p(un|x(i)

1:n,Λ) =

N (m
(i)
n ,C

(i)
n ). A similar marginalisation procedure can proceed over the parameters

p(un|y1:n) ≈
∫
p(un|x1:n,Λ)qλ(Λ)qϕ(x1:n|y1:n) dΛdx1:n (14)

≈ 1

MxMΛ

Mx∑
i=1

MΛ∑
j=1

p(un|x(i)
1:n,Λ

(j)), x
(i)
1:n ∼ qϕ(·|y1:n), Λ

(j) ∼ qλ(·). (15)
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