
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

BEYOND SPEEDUP - UTILIZING KV CACHE FOR SAM-
PLING AND REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

KV caches, typically used only to speed up autoregressive decoding, encode con-
textual information that can be reused for downstream tasks at no extra cost. We
propose treating the KV cache as a lightweight representation, eliminating the
need to recompute or store full hidden states. Despite being weaker than dedi-
cated embeddings, KV-derived representations are shown to be sufficient for two
key applications: (i) Chain-of-Embedding, where they achieve competitive or
superior performance on Llama-3.1-8B-Instruct and Qwen2-7B-Instruct; and (ii)
Fast/Slow Thinking Switching, where they enable adaptive reasoning on Qwen3-
8B and DeepSeek-R1-Distil-Qwen-14B, reducing token generation by up to 5.7×
with minimal accuracy loss. Our findings establish KV caches as a free, effective
substrate for sampling and reasoning, opening new directions for representation
reuse in LLM inference.

1 INTRODUCTION

Large language models (LLMs) rely on key-value (KV) cache to accelerate autoregressive decoding
by reusing past attention states, avoiding costly recomputation. This makes the KV cache indispens-
able for low-latency inference in production systems like vLLM (Kwon et al., 2023). However, its
role is typically confined to this speedup. Beyond acceleration, the KV cache is seldom viewed as a
reusable representation—with the notable exception of cache steering, a technique that modifies the
cache’s initial state to guide generation (Belitsky et al., 2025).

8192 32768 65536 131072
Context Length (Tokens)

60

80

100

120

140

160

VR
AM

 U
sa

ge
 (G

iB
)

(Up to 1.86x Smaller)

Model + KV Cache
Model + KV Cache + Hidden States

Figure 1: VRAM usage vs. context length
for Qwen3-32B (QwenTeam, 2025), com-
paring Model+KV Cache vs. Model+KV
Cache+Hidden States.

While the KV cache has been mostly confined to ac-
celeration, hidden states have been widely exploited
for self-evaluation (Wang et al., 2025b; Chen et al.,
2024; Beigi et al., 2024; Zhang et al., 2025a) and
for adaptive reasoning and control (Zhang et al.,
2025b; Wang et al., 2025a; Yue et al., 2025). These
methods, however, rely on storing full hidden states,
which is costly in both memory and compute.

In this work, we investigate a simple but powerful
question: Can the KV cache do more than just ac-
celerate decoding? Since the KV cache is already
computed and stored during inference, using it for
downstream tasks incurs no additional cost. This
is a major advantage over storing full hidden states,
which is prohibitively expensive in terms of memory. As shown in Figure 1, the KV cache offers a
significantly more compact and practical alternative for typical decoder-only models.

Though the KV cache is not explicitly trained as a general-purpose embedding—its sole objective
is to support next-token prediction—we find it nonetheless encodes rich contextual information
suitable for various downstream tasks. We explore this potential through two applications:

• Chain-of-Embedding: We repurpose the KV cache as a lightweight and readily avail-
able embedding. In experiments on Chain of Embedding (CoE) (Wang et al., 2025b)—a
method for selecting optimal reasoning paths without external information—we show that

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

KV caches achieve classification performance comparable to or even surpassing that of
using the model’s hidden states.

• Fast/Slow Thinking Switch: We leverage the KV cache to implement an adaptive switch-
ing mechanism between fast, low-compute reasoning and slower, deliberate reasoning. By
reusing KV cache, this approach achieves substantial efficiency gains with minimal perfor-
mance loss.

Our contributions are fourfold:

1. We present the first systematic study of KV caches as reusable task representations, show-
ing they can be repurposed at near-zero computational cost. In particular, we propose
simple but effective aggregation techniques that make KV caches directly usable as em-
beddings.

2. Despite not being designed as general-purpose embeddings, we find that KV cache rep-
resentations when processed with the proposed aggregation strategies, are competitively
effective on certain classification tasks.

3. We propose KV-CoE, a variant of Chain-of-Embedding that reuses the KV cache already
stored during decoding. KV-CoE achieves self-evaluation without extra activation stor-
age, offering nearly zero memory overhead and seamless integration into existing inference
frameworks.

4. We introduce KVClassifier, a fast/slow auto-thinking framework that reuses KV caches
for adaptive reasoning with minimal overhead.

Our results suggest that KV caches are a versatile and low-cost foundation for sampling and rea-
soning, moving beyond their traditional role as a mere acceleration component to become a core
resource for effective and efficient LLM-based inference.

2 RELATED WORK

Hidden–state self-evaluation. A growing line of work shows that internal activations encode re-
liable signals about answer correctness and hallucination risk. Wang et al. (2025b) propose Chain-
of-Embedding (CoE), which models the trajectory of layerwise hidden states during inference and
derives output-free correctness scores from the geometry of this path. Chen et al. (2024) (INSIDE)
introduce EigenScore, computed from the eigenspectrum of hidden-state covariance, to assess se-
mantic (in)consistency and detect hallucinations. Beigi et al. (2024) train a contrastive probe on
internal states (attention, MLP activations) to produce well-calibrated confidence estimates across
NLU/NLG tasks. Zhang et al. (2025a) further probes hidden states of reasoning models to predict
whether a generated answer will be correct. All of these methods operate directly on hidden states or
logits. Our study, by contrast, investigates whether the KV cache alone—which is already present
at inference—suffices to support the same families of subtasks.

Adaptive fast/slow reasoning and dynamic control. To mitigate overthinking on easy inputs
and underthinking on hard ones, recent work explores adaptive reasoning depth (Xing et al., 2025).
Zhang et al. (2025b) quantify upper bounds of long- vs. no-thinking modes and propose Adaptive
Self-Recovery Reasoning (ASRR), adding accuracy-aware length rewards to reduce unnecessary rea-
soning while allowing implicit recovery. PATS (Wang et al., 2025a) performs process-level switch-
ing via process reward models with beam search, enabling step-wise fast/slow adaptation with bad-
step penalties. DOTS (Yue et al., 2025) views reasoning as a search over atomic actions and learn
to select dynamic trajectories. These approaches typically require explicit chain-of-thought genera-
tion, external reward models, or re-decoding. Our contribution is orthogonal: we show that pooled
KV-cache features can drive both one-shot (classification-style) and in-generation (generative-style)
switching through simple control tokens, without storing hidden states or altering model architec-
ture.

KV-cache interventions. While our work treats the KV cache as a read-only representation for
evaluation and control, a concurrent line of research shows that it can also serve as a control inter-
face. Belitsky et al. (2025) introduce KV Cache Steering, a one-shot intervention that adds layer-
wise steering vectors—derived from contrastive CoT vs. non-CoT prompts—to the key and value

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

tensors after prefill, reliably inducing longer and more structured reasoning in small Language Mod-
els. Compared with activation steering, this method offers improved stability and negligible runtime
overhead. Our approach is complementary: instead of modifying the cache, we pool it to derive
difficulty-aware signals that gate slow reasoning.

3 BACKGROUND

3.1 TRANSFORMER, HIDDEN STATES, AND KV CACHE

Decoder-only transformers are the architectural foundation of modern large language models
(LLMs) (Vaswani et al., 2017; Brown et al., 2020). During autoregressive generation, each trans-
former layer processes a new token to produce a contextual hidden state. A computational bottleneck
arises because standard attention requires recomputing over all previous tokens at each step, result-
ing in O(T 2) complexity per step, where T is the sequence length. To mitigate this, the key–value
(KV) cache (Dao et al., 2022) stores the attention keys and values for all past tokens at every layer.
This allows the model to compute keys and values only for the new token and attend to the cached
history, reducing the complexity to O(T ) per step and enabling efficient long-sequence generation.

Formally, for layer l, we store
KVCache(l) = {K(l)

1:T , V
(l)
1:T },

where K
(l)
1:T , V

(l)
1:T ∈ RT×H×dhead are the stacked key and value tensors across all attention heads H .

The hidden state at step t is compuated via

h
(l)
t = Attention

(
Q

(l)
t ,K

(l)
1:t, V

(l)
1:t

)
.

Since K
(l)
1:t−1 and V

(l)
1:t−1 are already cached, only K

(l)
t and V

(l)
t need to be computed online.

3.2 MODERN LLM FRAMEWORKS AND KV CACHE MANAGEMENT

State-of-the-art LLM serving frameworks carefully manage KV caches to achieve high throughput,
low latency, and efficient GPU memory utilization.

vLLM. vLLM (Kwon et al., 2023) introduces a PagedAttention mechanism that virtualizes the KV
cache in a paging system similar to CPU virtual memory. This allows dynamic allocation and reuse
of KV cache memory, significantly reducing fragmentation and enabling high-throughput serving
for thousands of concurrent sequences. By paging KV blocks in and out efficiently, vLLM supports
fine-grained preemption and scheduling, which is critical for production-scale inference.

Ollama. Ollama (Ollama Team, 2024) is a lightweight LLM deployment framework that empha-
sizes developer usability and local inference. It manages KV caches per session, allowing multi-turn
conversations to reuse context efficiently without re-computation. Although less focused on extreme
multi-tenant throughput compared to vLLM, Ollama provides a practical demonstration of KV cache
persistence for interactive workloads.

Modern frameworks already manage the KV cache as a first-class resource, with sophisticated strate-
gies for allocation, eviction, and sharing. This practice underscores our central claim:

“Since the KV cache is an unavoidable byproduct of efficient inference, repurposing it for down-
stream tasks adds virtually no overhead.”

4 OBSERVATION

4.1 CAN KV CACHES SERVE AS AN EMBEDDING SOURCE

The hidden states and attention projections stored in KV caches encode contextualized token repre-
sentations, making them natural candidates for use as embeddings. While recent work has explored
leveraging intermediate representations from LLMs as task-specific embeddings (Liu et al., 2024),
we specifically investigate aggregating KV cache vectors into sentence-level representations.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

To evaluate their quality as an embedding source, we construct embeddings by concatenating keys
and values at every layer, then averaging across token positions, attention heads, and layers be-
fore applying ℓ2 normalization. We benchmark these KV-derived embeddings on the Massive Text
Embedding Benchmark (MTEB) (Muennighoff et al., 2023) against a strong, dedicated embedding
model (gemini-embedding-001).

Dataset Llama-3.1-8B-Instruct KV Cache Gemini-Embedding-001
AmazonCounterfactualClassification 0.3530 0.8820
DBpediaClassification 0.5937 0.9476
FinancialPhrasebankClassification 0.6254 0.8864
TweetTopicSingleClassification 0.3714 0.7111

Table 1: Performance of KV cache-based embeddings vs. a dedicated embedding model on selected
MTEB classification tasks. Despite being significantly weaker than trained embeddings, KV-derived
embeddings still capture meaningful semantics.
As shown in Table 1, KV-derived embeddings significantly underperform their dedicated counter-
part across all datasets, confirming they are not perfect general-purpose embeddings. This gap
stems from three factors: (i) KV representations are optimized for causal language modeling, not
contrastive learning, leading to poor isotropy; (ii) they are inherently token- and position-specific,
requiring heuristic pooling for sentence-level use; and (iii) their projection into a lower-dimensional
head space (dhead ≪ dmodel) reduces their discriminative power.

Despite these limitations, the results show that KV caches encode substantial semantic informa-
tion—enough to be competitive on certain classification tasks. This finding motivates our explo-
ration of reusing the KV cache for Chain-of-Embedding and Fast/Slow Thinking Switch, where
global embedding quality is less critical than local, relative separability between candidates.

4.2 WHY KV CACHES ARE SUFFICIENT FOR CHAIN-OF-EMBEDDING AND FAST/SLOW
THINKING SWITCH?

While KV caches are suboptimal for general-purpose embedding tasks—as they are trained solely
for next-token prediction, are position-specific, and reside in a reduced-dimensional space—we con-
tend they are nevertheless sufficient for Chain-of-Embedding and Fast/Slow Thinking Switch. Their
poor performance on global semantic similarity tasks (e.g., 0.35 vs. 0.88 accuracy on Amazon-
CounterfactualClassification in our MTEB results) is less critical for these applications, which rely
on different criteria.

Relative Separation via Margin. Let X denote the embedding space and f : X → Y a classifier.
For a pair of classes (yi, yj), the empirical margin on embedding x ∈ X is defined as

γ(x) = fyi
(x)− fyj

(x).

While contrastive learning aims to learn embeddings by maximizing E[γ(x)] globally. In contrast,
our target applications (Chain-of-Embedding and Fast/Slow Thinking Switch) only require that for
a restricted candidate set C ⊂ Y (e.g., a small label space or a few candidate continuations), the
margin satisfies

min
x∈C

γ(x) > 0.

Thus, even with a noisy or anisotropic KV embedding space, preserving correct relative ordering
within C is sufficient, explaining their competitive performance on tasks with limited labels.

Contextual Conditioning. The pooled KV embedding e = Pool(K,V ) in an instruction-tuned
model can be expressed as e = g(x, ι), where x is the input and ι is the instruction. Unlike general-
purpose embeddings, this representation is contextually conditioned on the task, which inherently
shapes the relevant decision boundaries. This conditioning reduces the need for a globally isotropic
embedding space.

Efficiency Constraint. Let Chidden and CKV denote the memory cost of storing hidden states and
reusing the KV cache, respectively, with Chidden ≫ CKV ≈ 0. The expected utility of reusing the
KV cache is

U = AccKV − λCKV ≈ AccKV,

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

while storing hidden states incurs

U ′ = Acchidden − λChidden,

for a resource trade-off parameter λ > 0. In latency-sensitive regimes where λ is large, U > U ′

holds even when AccKV < Acchidden.

Local Decision Adequacy. Both target applications require only local discrimination—such as
ranking a few candidates or deciding whether to engage in deeper reasoning—rather than globally
faithful embeddings. Formally, if ϵ is the probability of local ranking error under KV embeddings,
and ϵ ≪ the baseline task error rate, the final performance degradation is bounded by∣∣RKV

task −Rideal
task

∣∣ ≤ ϵ,

where R is task risk. Our experiments confirm that ϵ remains sufficiently small for KV embeddings
to maintain competitive performance..

5 CHAIN OF EMBEDDING WITH KV CACHE

5.1 BACKGROUND

LLMs exhibit emergent reasoning capabilities, though their internal decision processes remain
largely opaque. To address this, Wang et al. (2025b) introduce Chain-of-Embedding (CoE), a
method that probes the model’s latent space by tracking the evolution of sentence-level representa-
tions across layers. Formally, for an LLM M with L layers, let h(t)

l denote the hidden representation
of token t at layer l. The sentence-level representation at layer l is obtained by by averaging over
the sequence length T :

sl =
1

T

T∑
t=1

h
(t)
l , l = 0, 1, . . . , L. (1)

The CoE trajectory is then defined as the sequence of these layer-wise representations:

CoE = {s0, s1, . . . , sL}. (2)

CoE characterizes this trajectory by measuring both magnitude and directional changes of embed-
dings between consecutive layers:

∆rl = ∥sl+1 − sl∥2, and ∆θl = arccos

(
sl+1 · sl

∥sl+1∥∥sl∥

)
. (3)

These features are aggregated into self-evaluation scores. For instance, the real-space combination
(CoE-R) is

CoE-R =
1

L− 1

L−1∑
l=0

(α∆rl + β∆θl) , (4)

where α, β are weighting coefficients. A more robust complex-space variant (CoE-C) treats each
(∆rl,∆θl) pair as a complex number zl = ∆rl+i∆θl and computes the magnitude of their average:

CoE-C =

∣∣∣∣∣ 1

L− 1

L−1∑
l=0

zl

∣∣∣∣∣ . (5)

CoE has demonstrated strong discriminative power in distinguishing correct from incorrect model
generations, achieving state-of-the-art performance on self-evaluation benchmarks.

5.2 METHODOLOGY

Our key innovation is to adapt the CoE framework to use the KV cache, eliminating its primary
computational overhead. While vanilla CoE constructs trajectories from hidden states h

(t)
l , re-

quiring expensive activation storage or re-computation, we instead leverage the key-value tensors
K(l,t), V (l,t) that are already maintained by autoregressive decoders. This modification preserves
the CoE analytical framework while rendering it virtually cost-free.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Embedding Construction. For each token t and layer l, we start with the cached key-value tensors
K(l,t), V (l,t) ∈ RH×d. We flatten the head and key/value dimensions and average across layers to
produce a compact per-token embedding:

et =
1

L

L∑
l=1

flatten
(
K(l,t), V (l,t)

)
∈ RH·d. (6)

The resulting token-wise trajectory is defined as:

KV-CoE = {e1, e2, . . . , eT }, (7)

which directly parallels the structure of vanilla CoE but operates along the token dimension.

Trajectory Characterization. We characterize this trajectory using the established CoE metrics,
simply substituting the token index t for the layer index l:

∆rt = ∥et+1 − et∥2, and ∆θt = arccos
(

et+1·et
∥et+1∥2 ∥et∥2

)
, (8)

KV-CoE-R = 1
T−1

T−1∑
t=1

(
α∆rt + β∆θt

)
, and KV-CoE-C =

∣∣∣ 1
T−1

T−1∑
t=1

(∆rt + i∆θt)
∣∣∣. (9)

These formulations maintain the analytical rigor of CoE-R and CoE-C with minimal conceptual
alteration.

Layer Dim

To
ke

n 
 D

im

Hidden States

KV Cache

s0 s1 sL-1 sLs⋯

e0

e1

eT-1

eT

e⋯

Vanilla CoE

KV-CoE

Layer Dim

To
ke

n 
 D

im

Figure 2: Comparison between vanilla
CoE (top) and KV-CoE (bottom).
Vanilla CoE aggregates hidden states
across the token dimension to construct
a representation for each layer, whereas
KV-CoE aggregates KV Cache across
the layer dimension to construct a rep-
resentation for each token.

Contributions and Advantages. As illustrated in Fig-
ure 2, which compares vanilla CoE and our KV-CoE, our
method offers two main advantages:

1. No extra activation cost. Since the KV cache
is already computed and stored during standard
autoregressive decoding, reusing it for trajectory
analysis incurs virtually no additional activation
cost. The required reductions are computation-
ally negligible compared to a full forward pass,
resulting in ∆M ≈ 0 extra memory and mini-
mal FLOPs.

2. Deployment-friendly. The approach works
directly with standard inference stacks (e.g.,
past_key_values in Transformers or
vLLM). It requires no architectural changes,
re-forwarding, or activation hooks, making it
immediately deployable in production LLM
serving systems.

5.3 EXPERIMENTAL RESULTS

We evaluate KV-CoE on two reasoning benchmarks
from the original CoE work: MATH (Hendrycks et al.,
2021) for multi-step arithmetic and TheoremQA (Chen
et al., 2023) for theorem proving. Experiments are
conducted on two popular instruction-tuned models:
Llama-3.1-8B-Instruct (LlamaTeam, 2024) and Qwen2-
7B-Instruct (QwenTeam, 2024).

We construct embeddings directly from the KV cache
by extracting value vectors at every layer, concatenating
across attention heads, and averaging over layers to obtain one embedding per token, all without
storing hidden states. This reuse of cached information introduces negligible VRAM overhead and
incurs minimal FLOPs consumption compared to vanilla CoE.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Model Method MATH TheoremQA
AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓

Llama-3.1-8B-
Instruct

MaxProb 59.16 87.96 45.41 98.60
PPL 60.82 86.42 46.45 97.82
Entropy 62.74 84.14 47.37 97.82

CoE-R†(Llama3-8B) 72.54 75.61 63.12 89.83
CoE-C†(Llama3-8B) 73.08 79.60 55.85 90.14

KV-CoE-R (ours) 64.36 63.82 74.74 62.93
KV-CoE-C (ours) 64.13 67.42 74.93 62.46

Qwen2-7B-
Instruct

MaxProb 12.40 99.34 4.92 99.87
PPL 12.43 99.50 5.11 100.00
Entropy 16.19 99.42 5.28 99.87

CoE-R 75.75 65.95 66.68 85.84
CoE-C 76.68 64.48 62.70 87.42

KV-CoE-R (ours) 76.92 49.83 88.87 54.30
KV-CoE-C (ours) 84.12 44.82 83.27 58.35

Table 2: Self-evaluation results on reasoning tasks. KV-CoE consistently improves AUROC
and reduces FPR95 relative to MaxProb, PPL, and Entropy. Bold indicates the best value per
model–dataset pair except CoE baselines. CoE-R and CoE-C results are taken from the original
CoE paper (Wang et al., 2025b). †These baseline results are reported on Llama3-8B-Instruct, while
our experiments use the updated Llama3.1-8B-Instruct, so the numbers may not perfectly align.

Analysis. As shown in Table 2, KV-CoE substantially outperforms baselines such as MaxProb,
PPL, and Entropy on both MATH and TheoremQA. This demonstrates that the Chain-of-Embedding
approach retains its strong discriminative power even when using KV cache-derived trajectories
instead of hidden states. The token-level evolution captured by the KV cache provides a rich signal
for identifying correct reasoning paths, especially in multi-step problems, all while adding negligible
overhead since the cache is inherently available.

6 FAST/SLOW THINKING SWITCHING WITH KV CACHE

6.1 BACKGROUND

Large Reasoning Models (LRMs) can operate in two modes: fast thinking, which produces short,
direct answers, and slow thinking, which generates detailed, step-by-step reasoning chains (Yao
et al., 2023; Lightman et al., 2024). Although slow thinking enhances reliability on complex tasks,
it incurs substantial computational overhead by producing significantly more tokens. For example,
on GSM8K (Cobbe et al., 2021), Qwen3-32B (QwenTeam, 2025) slow thinking yields a marginal
improvement in accuracy (0.95 vs. 0.94) while generating nearly four times the tokens, drastically
increasing latency and cost as shown in Figure 3. This inefficiency motivates adaptive reasoning,
where slow thinking is triggered selectively based on problem difficulty.

6.2 METHODOLOGY

0 100 200 300 400 500 600 700 800 900
Average #Tokens

221
829

(3.75× #Tokens for 1% Accuracy)

0 20 40 60 80 100
Accuracy (%)

94.0%
95.0%

Fast Thinking
Slow Thinking

Figure 3: Comparison of efficiency and effec-
tiveness of fast vs. slow thinking on GSM8K us-
ing Qwen3-32B. Slow thinking achieves slightly
higher accuracy but at a much higher token cost.

We propose a method for adaptive reasoning that
selects between fast and slow thinking on a per-
instance basis to minimize unnecessary compu-
tation while maintaining accuracy. Our approach
leverages the KV cache from the prompt encod-
ing phase to make this decision, eliminating the
need for additional forward passes.

Key Idea. Instead of predicting a binary “slow
or fast” mode, we estimate a continuous diffi-
culty score d ∈ [0, 100] from the pooled KV
cache representation:

d = fθ

(
Pool

(
KV

(1:L)
1:T

))
,

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

A robe in total does it take?Tokens

KV Cache

Difficulty

<think> To find is </think> ## 3

75 51 30 80 20 30 1025

Prefilling Decoding

Figure 4: KVClassifier: special tokens are dynamically inserted to perform thinking-mode switching
based on KV-derived difficulty scores.

where Pool(·) aggregates keys and values across layers, heads, and token positions via mean pooling,
and fθ(·) is a lightweight MLP classifier. This score determines whether to engage slow thinking.

Switching Mechanism. We control the reasoning mode by injecting special control tokens
(<think> and </think>) during decoding:

• Initial Decision: Before generation starts, d is compared to a predefined threshold τ :
– If d > τ , prepend <think> to trigger slow thinking.
– Otherwise, proceed with fast thinking.

• Dynamic Adjustment During Decoding: During generation, the difficulty score is re-
computed from the updated KV cache at predefined checkpoints:

– If d < τfast during slow thinking, append </think> to switch back to fast mode.
– If d > τslow during fast mode, inject <think> to re-engage slow thinking and con-

tinue decoding with step-by-step reasoning.

This approach enables a fine-grained, difficulty-aware control over reasoning depth. Since the KV
cache is already available from prompt encoding, both initial and ongoing difficulty assessments add
negligible overhead. This significantly reduces token generation and latency for easy queries while
allocating more resources to challenging problems. The overall workflow is illustrated in Figure 4.

Training Data Construction. To train the difficulty estimator fθ(·), we construct supervision
signals from public reasoning datasets (training splits of GSM8K (Cobbe et al., 2021) and MATH
(Hendrycks et al., 2021)). For each training question, we generate two candidate solutions using
the base model: a fast thinking response (no chain-of-thought) and a slow thinking response (with
chain-of-thought). We then extract the final answers and compare them against the ground truth.

Based on the outcomes, we assign a difficulty label d ∈ {0, 25, 75, 100} reflecting the required
reasoning depth:

• d = 0 (Very easy): Fast-thinking answer is correct and short (< 128 tokens).
• d = 25 (Moderate): Fast-thinking answer is correct but long (≥ 128 tokens).
• d = 75 (Hard): Fast-thinking answer is wrong, Slow-thinking answer is correct.
• d = 100 (Very hard): Both answers are incorrect.

This labeling scheme creates a natural difficulty progression, enabling fθ(·) to learn a smooth score
that correlates with both correctness and reasoning effort. The token-length criterion distinguishes
trivial questions from those needing lengthy outputs without explicit reasoning. The trained estima-
tor provides the continuous difficulty score needed for our adaptive switching mechanism.

6.3 EXPERIMENTAL RESULTS

Setup. We evaluate our KV-cache-based fast/slow thinking mechanism on two reasoning bench-
marks: GSM8K evaluation split (Cobbe et al., 2021) and MATH500 (OpenAI / HuggingFaceH4 /
Vals AI, 2025). Our experiments compare two switching strategies:

• One-step switch (KV-Classification): This strategy makes a single decision at generation
start based on the predicted difficulty score, committing to either slow or fast thinking for
the entire decoding process. It functions as a classification-style controller.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Dataset Method DeepSeek-R1-14B Qwen3-8B

GSM8K

Fast Thinking 0.845 / 218 0.904 / 211
Reasoning 0.847 / 432 0.933 / 1632

KV-Classification 0.845 / 218 -49.5% 0.914 / 554 -66.1%

KV-Generative 0.835 / 242 -44.0% 0.892 / 273 -83.3%

MATH500

Fast Thinking 0.536 / 540 0.568 / 616
Reasoning 0.590 / 1839 0.610 / 4150

KV-Classification 0.578 / 1506 -18.1% 0.604 / 3963 -4.5%

KV-Generative 0.566 / 657 -64.3% 0.578 / 727 -82.5%

Table 3: Comparison of accuracy and average token usage for fast thinking, full reasoning, and our
KV-cache-based switching methods on GSM8K and MATH500. For each KV-based method, we
report the result from best hyper-parameter configuration identified in Appendix B.

• Two-step switch (KV-Generative): This method performs an initial mode selection and
continuously monitors difficulty during decoding. If difficulty drops below τfast during
slow thinking, it appends </think> to terminate reasoning early; if difficulty exceeds
τslow during fast thinking, it injects <think> to engage slow thinking mid-generation.
This implements a generative-style controller that dynamically adjusts reasoning depth.

We deploy both strategies on two open-weight models: DeepSeek-R1-14B (DeepSeek-AI, 2025)
and Qwen3-8B (QwenTeam, 2025), evaluating their ability to selectively trigger slow thinking and
reduce unnecessary token generation.

We construct representations by concatenating key and value tensors across all heads, summing
over selected token positions, and averaging across selected layers without normalization, then feed
the result into a two-layer MLP (hidden dimension 512, ReLU activation) for difficulty prediction.
This design directly reuses the KV cache available during decoding, introduces negligible VRAM
or FLOPs overhead, and functions as a modular component that can be seamlessly integrated into
existing inference pipelines without modifications to the base model.

Analysis. As shown in Table 3, our KV-cache-based switching approach achieves an effective bal-
ance between accuracy and efficiency. For instance, on MATH500 using Qwen3-8B, two-step gen-
erative switching reduces average token count from 4,150 (full reasoning) to 727 (5.7× reduction)
with only a minimal 3.2% accuracy drop. The one-step classification strategy is more conserva-
tive, using more tokens but achieving near-full-reasoning accuracy (0.604 vs. 0.610). Similar trends
are observed on GSM8K, where KV-cache-based switching maintains high accuracy (up to 0.914)
while significantly reducing token consumption compared to full reasoning. These results demon-
strate that difficulty scores derived from the KV cache generalize well across tasks and models,
enabling efficient and effective adaptive reasoning with negligible overhead.

7 CONCLUSION

This work repurposes the KV cache, moving beyond its conventional role in decoding acceleration
to unlock its potential as a versatile, cost-free representation. We demonstrate that although not de-
signed as general-purpose embeddings, KV caches encode rich contextual information that can be
effectively utilized for downstream tasks without incurring additional computational overhead. Our
experiments establish two practical applications: (i) Chain-of-Embedding, where KV-derived em-
beddings match or surpass the performance of hidden-state embeddings, and (ii) Fast/Slow Think-
ing Switching, which uses KV-cache-based difficulty scores to enable adaptive reasoning-reducing
token usage by up to 5.7× with minimal accuracy loss. These findings position the KV cache as a
deployment-friendly substrate for advanced inference techniques, opening new avenues for reusing
inference-time artifacts to improve efficiency and controllability in LLMs.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

REFERENCES

Mohammad Beigi, Ying Shen, Runing Yang, Zihao Lin, Qifan Wang, Ankith Mohan, Jianfeng
He, Ming Jin, Chang-Tien Lu, and Lifu Huang. InternalInspector i2: Robust confidence esti-
mation in LLMs through internal states. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung
Chen (eds.), Findings of the Association for Computational Linguistics: EMNLP 2024, pp.
12847–12865, Miami, Florida, USA, November 2024. Association for Computational Linguis-
tics. doi: 10.18653/v1/2024.findings-emnlp.751. URL https://aclanthology.org/
2024.findings-emnlp.751/.

Max Belitsky, Dawid J. Kopiczko, Michael Dorkenwald, M. Jehanzeb Mirza, Cees G. M. Snoek,
and Yuki M. Asano. Kv cache steering for inducing reasoning in small language models, 2025.
URL https://arxiv.org/abs/2507.08799.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
learners. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

Chao Chen, Kai Liu, Ze Chen, Yi Gu, Yue Wu, Mingyuan Tao, Zhihang Fu, and Jieping Ye. IN-
SIDE: llms’ internal states retain the power of hallucination detection. In The Twelfth Interna-
tional Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024.
OpenReview.net, 2024. URL https://openreview.net/forum?id=Zj12nzlQbz.

Wenhu Chen, Ming Yin, Max Ku, Pan Lu, Yixin Wan, Xueguang Ma, Jianyu Xu, Xinyi Wang,
and Tony Xia. TheoremQA: A theorem-driven question answering dataset. In Houda Bouamor,
Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in
Natural Language Processing, pp. 7889–7901, Singapore, 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.emnlp-main.489. URL https://aclanthology.org/
2023.emnlp-main.489.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.org/
abs/2110.14168.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention:
Fast and memory-efficient exact attention with io-awareness. In Sanmi Koyejo, S. Mo-
hamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neu-
ral Information Processing Systems 35: Annual Conference on Neural Information Pro-
cessing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December
9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html.

DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning,
2025. URL https://arxiv.org/abs/2501.12948.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math
dataset. In J. Vanschoren and S. Yeung (eds.), Proceedings of the Neural Information
Processing Systems Track on Datasets and Benchmarks, volume 1, 2021. URL https:
//datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/
2021/file/be83ab3ecd0db773eb2dc1b0a17836a1-Paper-round2.pdf.

10

https://aclanthology.org/2024.findings-emnlp.751/
https://aclanthology.org/2024.findings-emnlp.751/
https://arxiv.org/abs/2507.08799
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://openreview.net/forum?id=Zj12nzlQbz
https://aclanthology.org/2023.emnlp-main.489
https://aclanthology.org/2023.emnlp-main.489
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
http://papers.nips.cc/paper_files/paper/2022/hash/67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html
https://arxiv.org/abs/2501.12948
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/be83ab3ecd0db773eb2dc1b0a17836a1-Paper-round2.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/be83ab3ecd0db773eb2dc1b0a17836a1-Paper-round2.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/be83ab3ecd0db773eb2dc1b0a17836a1-Paper-round2.pdf


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language
model serving with pagedattention. In Proceedings of the 29th Symposium on Operating Sys-
tems Principles, SOSP ’23, pp. 611–626, New York, NY, USA, 2023. Association for Com-
puting Machinery. ISBN 9798400702297. doi: 10.1145/3600006.3613165. URL https:
//doi.org/10.1145/3600006.3613165.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The
Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria,
May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=
v8L0pN6EOi.

Chun Liu, Hongguang Zhang, Kainan Zhao, Xinghai Ju, and Lin Yang. LLMEmbed: Rethink-
ing lightweight LLM’s genuine function in text classification. In Lun-Wei Ku, Andre Martins,
and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp. 7994–8004, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.433. URL
https://aclanthology.org/2024.acl-long.433/.

AI@Meta LlamaTeam. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/
2407.21783.

Niklas Muennighoff, Nouamane Tazi, Loic Magne, and Nils Reimers. MTEB: Massive text em-
bedding benchmark. In Andreas Vlachos and Isabelle Augenstein (eds.), Proceedings of the 17th
Conference of the European Chapter of the Association for Computational Linguistics, pp. 2014–
2037, Dubrovnik, Croatia, 2023. Association for Computational Linguistics. doi: 10.18653/v1/
2023.eacl-main.148. URL https://aclanthology.org/2023.eacl-main.148.

Ollama Team. Ollama: Open llm deployment made simple. https://ollama.ai, 2024.

OpenAI / HuggingFaceH4 / Vals AI. Math-500: A 500-problem subset of the math benchmark.
HuggingFace / Vals AI Benchmark / Datasets, 2025. URL https://huggingface.co/
datasets/HuggingFaceH4/MATH-500. Derived from “Measuring Mathematical Problem
Solving With the MATH Dataset”; subset of 500 test problems.

Alibaba Group QwenTeam. Qwen2 technical report, 2024. URL https://arxiv.org/abs/
2407.10671.

Alibaba Group QwenTeam. Qwen3 technical report, 2025. URL https://arxiv.org/abs/
2505.09388.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike
von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Ro-
man Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual Conference
on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA,
pp. 5998–6008, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

Yi Wang, Junxiao Liu, Shimao Zhang, Jiajun Chen, and Shujian Huang. Pats: Process-level adaptive
thinking mode switching, 2025a. URL https://arxiv.org/abs/2505.19250.

Yiming Wang, Pei Zhang, Baosong Yang, Derek Wong, and Rui Wang. Latent space chain-of-
embedding enables output-free llm self-evaluation. In Y. Yue, A. Garg, N. Peng, F. Sha, and
R. Yu (eds.), International Conference on Representation Learning, volume 2025, pp. 70938–
70970, 2025b. URL https://proceedings.iclr.cc/paper_files/paper/2025/
file/b0b1cfc8ede53f452cabf8b9cf4eef76-Paper-Conference.pdf.

Zeyu Xing, Xing Li, Huiling Zhen, Xianzhi Yu, Mingxuan Yuan, and Sinno Jialin Pan. Large reason-
ing models know how to think efficiently. In ES-FoMo III: 3rd Workshop on Efficient Systems for
Foundation Models, 2025. URL https://openreview.net/forum?id=pLKDeGm2t1.

11

https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=v8L0pN6EOi
https://aclanthology.org/2024.acl-long.433/
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://aclanthology.org/2023.eacl-main.148
https://ollama.ai
https://huggingface.co/datasets/HuggingFaceH4/MATH-500
https://huggingface.co/datasets/HuggingFaceH4/MATH-500
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2505.09388
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://arxiv.org/abs/2505.19250
https://proceedings.iclr.cc/paper_files/paper/2025/file/b0b1cfc8ede53f452cabf8b9cf4eef76-Paper-Conference.pdf
https://proceedings.iclr.cc/paper_files/paper/2025/file/b0b1cfc8ede53f452cabf8b9cf4eef76-Paper-Conference.pdf
https://openreview.net/forum?id=pLKDeGm2t1


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. In
Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine
(eds.), Advances in Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
271db9922b8d1f4dd7aaef84ed5ac703-Abstract-Conference.html.

Murong Yue, Wenlin Yao, Haitao Mi, Dian Yu, Ziyu Yao, and Dong Yu. Dots: Learning to rea-
son dynamically in llms via optimal reasoning trajectories search. In Y. Yue, A. Garg, N. Peng,
F. Sha, and R. Yu (eds.), International Conference on Representation Learning, volume 2025, pp.
37976–37997, 2025. URL https://proceedings.iclr.cc/paper_files/paper/
2025/file/5e5d6f9ac33ba9349ba7b2be9f21bad9-Paper-Conference.pdf.

Anqi Zhang, Yulin Chen, Jane Pan, Chen Zhao, Aurojit Panda, Jinyang Li, and He He. Reason-
ing models know when they’re right: Probing hidden states for self-verification. In Second
Conference on Language Modeling, 2025a. URL https://openreview.net/forum?id=
O6I0Av7683.

Xiaoyun Zhang, Jingqing Ruan, Xing Ma, Yawen Zhu, Haodong Zhao, Hao Li, Jiansong Chen,
Ke Zeng, and Xunliang Cai. When to continue thinking: Adaptive thinking mode switching for
efficient reasoning, 2025b. URL https://arxiv.org/abs/2505.15400.

12

http://papers.nips.cc/paper_files/paper/2023/hash/271db9922b8d1f4dd7aaef84ed5ac703-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/271db9922b8d1f4dd7aaef84ed5ac703-Abstract-Conference.html
https://proceedings.iclr.cc/paper_files/paper/2025/file/5e5d6f9ac33ba9349ba7b2be9f21bad9-Paper-Conference.pdf
https://proceedings.iclr.cc/paper_files/paper/2025/file/5e5d6f9ac33ba9349ba7b2be9f21bad9-Paper-Conference.pdf
https://openreview.net/forum?id=O6I0Av7683
https://openreview.net/forum?id=O6I0Av7683
https://arxiv.org/abs/2505.15400


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We acknowledge the use of a Large Language Model (LLM) to support the preparation of this
manuscript. The LLM was employed exclusively for editorial purposes, such as refining the clarity
of exposition, improving grammar and readability, and polishing the overall presentation. At times,
it was also used to suggest alternative phrasings for technical descriptions in order to make the
arguments more accessible.

Importantly, the LLM did not contribute to the conceptual development, methodology, or experi-
mental design of this work. All ideas, including the proposal to treat the KV cache as a reusable
representation, the development of KV-CoE for output-free self-evaluation, and the design of KV-
based adaptive Fast/Slow Thinking Switching for token-efficient reasoning, were conceived and
implemented solely by the authors. The LLM was not used to generate research results, proofs, or
derivations.

All scientific claims, analyses, and conclusions presented in this paper remain the full responsibility
of the authors. Any text initially produced with LLM assistance was carefully reviewed, revised,
and verified prior to inclusion.

B HYPER-PARAMETER SELECTION FOR KVCLASSIFIER

To better understand the effect of hyper-parameters on KV-based classification, we conduct a sys-
tematic study by varying the number of layers pooled and the number of tokens selected from the
end of the sequence. Importantly, we fix the total amount of KV data to be approximately constant
across configurations (256 token × layer units). This ensures a fair comparison: for example, select-
ing 8 layers with 32 tokens, 4 layers with 64 tokens, or 2 layers with 128 tokens all yield the same
KV budget.

Model Dataset Method 8L, Len=32 4L, Len=64 2L, Len=128

DeepSeek-14B
GSM8K KV-Classification 0.845 / 218 0.845 / 218 0.845 / 218

KV-Generative 0.835 / 242 0.825 / 232 0.805 / 217

MATH500 KV-Classification 0.536 / 540 0.550 / 905 0.578 / 1506
KV-Generative 0.538 / 524 0.550 / 544 0.566 / 657

Qwen3-8B
GSM8K KV-Classification 0.904 / 211 0.904 / 217 0.914 / 554

KV-Generative 0.892 / 273 0.886 / 276 0.881 / 257

MATH500 KV-Classification 0.570 / 736 0.598 / 3673 0.604 / 3963
KV-Generative 0.578 / 727 0.524 / 933 0.550 / 837

Table 4: Hyper-parameter selection results for KV-Classification and KV-Generative. Values are
reported as Accuracy / #Tokens. Best accuracy for each dataset–method pair is in bold.
Table 4 summarizes the results on GSM8K and MATH500 for both DeepSeek-R1-14B and Qwen3-
8B, under KV-Classification and KV-Generative settings. We observe that while performance varies
slightly with the allocation of layer vs. token depth, the overall trends are consistent: (i) accuracy
remains competitive across different allocations, and (ii) increasing token coverage (e.g., 2L × 128)
tends to favor more complex datasets such as MATH500, whereas shallow but wider layer coverage
(e.g., 8L × 32) can suffice for GSM8K.

13


	Introduction
	Related Work
	Background
	Transformer, Hidden States, and KV Cache
	Modern LLM Frameworks and KV Cache Management

	Observation
	Can KV Caches Serve as an Embedding Source
	Why KV Caches Are Sufficient for Chain-of-Embedding and Fast/Slow Thinking Switch?

	Chain of Embedding with KV Cache
	Background
	Methodology
	Experimental Results

	Fast/Slow Thinking Switching with KV Cache
	Background
	Methodology
	Experimental Results

	Conclusion
	The Use of Large Language Models (LLMs)
	Hyper-parameter Selection for KVClassifier

