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Abstract

Training data for LLMs increasingly embed so-
cietal values aligned with the data’s language
and cultural origin. Our analysis reveals that
449% of GPT-40’s ability to reflect a country’s
societal values (per the World Values Survey)
correlates with the availability of digital re-
sources in that society’s primary language. Er-
ror rates in the lowest-resource languages were
more than five times higher than in the highest-
resource ones. With a dataset of 21 country-
language pairs, each containing 94 survey ques-
tions verified by native speakers, we demon-
strate the link between LLM performance and
online data availability. A weaker link and dif-
ferentiated results for GPT-4-turbo highlight
efforts to improve familiarity with non-English
languages beyond web-scraped data. This per-
formance disparity in value representation, par-
ticularly affecting lower-resource languages in
the Global South, risks deepening digital di-
vides.

1 Introduction

Low representation in digital text limits the utility
of many languages for training Large Language
Models (LLMs) and chatbots, resulting in lower
quality Artificial Intelligence (Al) models, even if
a system can be trained on this language at all (Ma-
gueresse, Carles, Heetderks, 2020). The scarcity
of digital text means that these languages cannot
be easily ported to Al models, therefore, dominant
languages compound in strength through increased
use in the digital realm while more minor languages
face greater corrosive pressures (Lee and Ta, 2023).
Our results in Section 3.1 demonstrate that a sub-
stantial proportion of an LLM’s ability to mimic so-
cietal values can be correlated to the availability of
digital text in that language. This has wide-ranging
implications.

Other researchers have explored the relation-
ship between language models and societal val-
ues. Arora, Kaffee, and Augenstein (2023) found

that pre-trained models capture cultural value dif-
ferences, though not sufficiently to reflect the nu-
anced results of established surveys. Similarly,
Kharchenko et al. (2024) quantified national values
using Hofstede’s Cultural Dimensions, while Vi-
malendiran (2024) employed the Inglehart-Welzel
Cultural Map, concluding that most models align
closely with the value sets of English-speaking
and Protestant European countries. Santurkar et
al. (2023) focused on U.S. public opinion, reveal-
ing that some human-feedback-tuned models dis-
play left-leaning tendencies. In low-resource con-
texts, the challenge is further compounded by code-
switching—where languages intermix—making
it difficult for LLMs to grasp cultural nuances.
Ochieng et al. (2024) found that LLMs often strug-
gle to understand these mixed-language contexts.

Durmus et al. (2024) present a study closely
aligned with our approach, analyzing LLM re-
sponses to global opinion questions from the Pew
Global Attitudes Survey and the World Values Sur-
vey. They found that LLMs generally align more
closely with opinions from the U.S., Europe, and
parts of South America. While prompting LLMs
to adopt specific cultural perspectives shifts re-
sponses closer to the opinions of the intended pop-
ulation, the models can still perpetuate harmful
stereotypes. Moreover, Durmus et al. noted that
relying on LLMs for translation introduces discrep-
ancies between the original survey questions and
their translated versions, potentially inflating in-
accuracy scores by misrepresenting the original
intent.

2 Methodology

Overview of methodology:

1. Country-language pairs are selected from the
World Values Survey (Wave 7, 2017-22), for
which a range of questions are transcribed.
To verify the transcribed questions, volunteer
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Figure 1: Societal representation error-rate vs. log number of websites, all country-language Pairs (GPT-40)

native speakers were recruited from the au-
thors’ university. They were instructed to
note any discrepancies and faithfully repro-
duce the transcription according to the orig-
inal non-English version. An average of a
country-language pair’s answers for each lan-
guage was collected. These serve as original
results.

2. The same questions from the World Values
Survey are put to GPT-4, specifying the coun-
try and displaying the question in the language
of interest. The scale of the numerical ques-
tion is also posed to the LLM, such as ’An-
swer this question as if you are a citizen of
the United States answering the World Values
Survey. On a scale of 1-10, with 10 being
most agree and 1 being least agree, to what
extent do you agree with the statement: "It is
a duty towards society to have children." The
same prompt is repeated in 5 non-consecutive
calls and then averaged to serve as generated
results.

3. The difference between the original and gener-
ated results are measured. If the absolute dif-
ference is greater than, or equal to, 50% of the
original value, then that question is counted as
an error. The percentage of questions within
a country-language pair that cross the 50%
threshold sets that pair’s overall error-rate. Al-

ternative thresholds are in Appendix A

4. The resource availability of a language is de-
fined through the proportion of online web-
sites. Taking the percentage of online con-
tent available in a given language, those ac-
counting for less than 0.1% of online content
(measured through Web Technology Surveys,
2024) are classified as low-resource. This acts
as a proxy for our main explanatory variable.

3 Findings

3.1 Language resource and error-rate in
representing societal values

Our main finding is that approximately 44 % of
GPT-40’s ability to mimic an understanding of
a society’s values is correlated to the language’s
online presence. While the source of training
datasets for this model are unknown, these findings
align with the knowledge that Common Crawl and
publicly available data were a large source for the
model’s training (OpenAl, 2024). The outlier per-
formance of higher-resource languages in English,
German, and Japanese could be a sign of additional
fine-tuning on language-specific datasets for these
societies.

Swahili and Hindi demonstrate interesting out-
liers for lower-resource languages, and it can be
hypothesized that this is due to the prevalence of
English as a language in Kenya and India, respec-
tively.
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Figure 2: Error-rate by topic area and language resource category (GPT-40)

3.2 Topic areas

Most topic areas exhibited similar error-rates across
lower- and higher-resource languages. However,
three categories demonstrated differentiated error-
rates with higher inaccuracies for lower-resource
languages:

* Security
* Ethical values and norms
* Political culture and political regimes

3.3 Differences across models

The relationship between online resources and ac-
curacy in value representation was even stronger in
GPT-4-turbo, implying a greater reliance on web-
scraping methods. 72% of the variance at language-
level was captured by the log of number of web-
sites, compared to 44% for GPT-40. This supports
the claim made in OpenAl’s documentation (2024)
that new datasets and methods were used to train
GPT-40 and derive stronger performance in non-
English languages.

This suggests a differentiated change in model
performance at value representation for low- and
high-resource languages when OpenAl introduced

GPT-40. Through a linear regression utilizing an
interaction term for low-resource-languages (LRL)
and model of choice associated with the change
in error-rate. The results show that low-resource-
languages saw, on average, a 10 percentage point
decrease in their error-rate when switching from
GPT-4-turbo to GPT-40, when compared with high-
resource languages (HRL).

Error-rate = By + 51 - HRL
+ B2 - 4-turbo
+ B3 - (HRL X 4-turbo)
+e€

4 Implications

With government services increasingly reliant on
chatbots and other human-computer interfaces,
even basic functions necessary to maintaining citi-
zen engagement will be Al-dependent, and thus
LRL communities would have to shift towards
dominant languages to maintain these interactions
or else be limited in their digital engagement
(Jungherr, 2023).

Mirroring colonization, these foreign-language
Al models are forcing assimilation toward domi-
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Figure 3: Societal representation error-rate vs. log number of websites, all country-language pairs (GPT-4-turbo),
and results from regression function. High-resource languages saw a 10 percentage point increase in error-rate, as
compared to low-resource languages, when moving from 4-turbo to 4o.

nant languages that are often the language of the
colonizer such as English, French, or Spanish (Lee
and Ta, 2023). In societies that strongly identify
with their local languages as part of their national
identity, such as Paraguay with Guarani, this cre-
ates cultural unease over the loss of heritage (Al
Qutaini, et. al., 2024).

The observed "spillover" effect in high-resource
languages spoken across multiple countries (India
and Kenya) contributing adds another layer of com-
plexity to the issue of language representation in
LLMs. While these languages benefit from a larger
pool of online resources, the models may struggle
to distinguish between regional variations in so-
cietal values. This phenomenon underscores the
need for more nuanced, region-specific training
data even for widely spoken languages. This domi-
nance of global languages risks oversimplifying or
erasing crucial cultural and linguistic nuances.

The spillover effect raises important questions
about cultural homogenization in Al systems and
calls for innovative approaches to data collection
and model training that can capture and preserve
linguistic and cultural nuances across different re-
gions sharing a common language. Litre et al.
(2022) suggest that participatory Natural Language
Processing (NLP) could be part of the solution,
noting that "grassroots African NLP research com-
munities such as Masakhane, can contribute to clos-
ing the digital divide." Such initiatives could help
in detecting and addressing language biases while
promoting inclusivity and cultural sensitivity in Al
systems.

Figure 4: Societal representation error-rate by country:
0-15% = low error-rate (red), 15-30% = medium error-
rate (yellow), 30-45% = high error-rate (red).

5 Conclusion

Our paper highlights a new dimension to the rela-
tionship between training dataset size and language
model performance (Kaplan et al. 2020). Utilizing
a high-quality survey verified by 21 native speakers,
449% GPT-40’s ability to mimic an understanding
of a local culture was correlated with the log of on-
line websites in that society’s language. However,
improved performance from 4-turbo to 40 for low-
resource languages and decreased correlation with
online resources demonstrates that LLM reliance
on existing datasets is not a static phenomenon.

With the majority of attention and funding in
LLM development focused on high-resource lan-
guage and more economically developed settings,
the potential implications compound negatively for
the Global South which is host to the vast major-
ity of low-resource language speakers. We hope
these findings further-drive the global effort to-
wards more inclusive LLM design and develop-
ment.



6 Limitations

Open vs. closed questions for LLMs: A recent
study by Rottger et. al. (2024) has shown the
limitations of eliciting LLM bias through multiple-
choice survey questions for two reasons: the rarity
of a use-case where a human would request an
LLM’s opinions in such a format, and that forc-
ing the LLM to comply with a range of options
provides substantially different answers than when
prompted to respond in a more realistic open-ended
answer setting. While acknowledging these issues,
we argue that applying quantitative mechanics to
measuring bias across contexts is necessary for un-
derstanding the differentiated scale of the issue —
particularly when correlating with other variables
such as online language presence.

Unrepresentativeness of online websites for
local cultural values: Several factors are likely
confounding the relationship between quantity of
online content and the model’s performance in
mimicking those societal values. These include
online censorship which is applicable to the coun-
tries where there was greatest deviation between
LLM answers and that of the WVS were Nigeria,
Zimbabwe, Ethiopia, and Tajikistan, amongst oth-
ers. All four countries rank “not free” on Freedom
House (Freedom House, 2023) and three out of
four of these countries score poorly on internet free-
dom (scores of less than 50/100) (Freedom House,
2022; Reporters without Borders, 2023). Another
confounding effect is the discrepency between the
social values of demographic groups more likely to
generate digital text, such as younger people, than
the brodaer society (Keshari et al., 2024; Rozado,
2024). Nevertheless, despite this confounding ef-
fect, the broad relationship across countries with
a diversity of mono- and multi-lingual features as
well as government types highlights an important
finding.

Limited variety of tested models: This analy-
sis focused on two iterations of the OpenAl GPT
model. With a verified dataset of survey ques-
tions in 21 country-language pairs, this analysis
can be expanded to examine the performance of
other model types. For instance, it can be hypothe-
sized that the performance of open-source models
pre-trained or fine-tuned on value-laden datasets
will be higher on value representation. This offers
paths for further experimentation and to support
this we will publish our verified survey questions,
datasets, and prompting code.
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A Proportion thresholds

The threshold for a question counting as an error
was set in this paper at 50%. In other terms, an
error would be counted if the LLM-generated an-
swer was more than 50% different than the original
average answer for the country-language pair in the
World Values Survey.

Given 50% is an arbitrary cut-off, the correl-
ative strength of a language’s resources and the
error-rate are provided at different thresholds be-
low. These demonstrate that the relationship be-
comes stronger until around 60% and then declines.
Given the range of posssible answers are finitely
defined within small scales (e.g., 0-2), there is an
upper bound for how *wrong’ an LLM can repre-
sent values, and thus this decline in strength for the
upper thresholds is intuitive.

Furthermore, it is notable that the lower thresh-
olds (e.g., 10%) demonstrate that nearly all lan-
guages are exhibiting high error-rates, but that the
relationship between error-rate and a language’s
resource is weaker at these lower thresholds. Put
simply, LLMs make errors in representing so-
cietal values across all country-language pairs,
but they demonstrate more significant errors if
the language is lower-resource.
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Error-rate of questions in language

Error-rate vs Log of Number of Websites, Across Multiple Proportion Thresholds
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Figure 5: Error-rate of languages across different proportion thresholds for the error (GPT-40)
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