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Abstract

Collaboration is a cornerstone of society. In the real world, human teammates make1

use of multi-sensory data to tackle challenging tasks in ever-changing environments.2

It is likewise essential for embodied agents collaborating in visually-rich environ-3

ments replete with dynamic interactions to understand multi-modal observations4

and task specifications. To evaluate the performance of generalizable multi-modal5

collaborative agents, we present TeamCraft , a multi-modal multi-agent benchmark6

built on top of the open-world video game Minecraft. The benchmark features7

55,000 task variants specified by multi-modal prompts, procedurally-generated8

expert demonstrations for imitation learning, and carefully designed protocols to9

evaluate model generalization capability. We also perform extensive analyses to10

better understand the limitations and strengths of existing approaches. Our results11

indicate that existing models continue to face significant challenges in generalizing12

to novel goals, scenes, and unseen numbers of agents. These findings underscore the13

potential for further research in this area. The TeamCraft platform and dataset are14

publicly available at https://github.com/teamcraft-bench/teamcraft.15

1 Introduction16

Developing collaborative skills is essential for embodied agents, as collaboration is a fundamental17

aspect of human intelligence (Smith & Gasser, 2005). In the AI community, multi-agent collaboration18

is frequently studied using grid-world environments (Leibo et al., 2021; Suarez et al., 2021; Stone &19

Veloso, 2000; Gong et al., 2023c; Dong et al., 2024; Puig et al., 2021; Park et al., 2023; Zhang et al.,20

2024a; Wu et al., 2021; Long et al., 2024a). However, agents in these environments lack multi-modal21

understanding. By contrast, learning within visually-rich environments enables agents to develop22

useful representations of multi-agent dynamics (Chen et al., 2020; Jaderberg et al., 2019), as vision23

facilitates implicit communication, coordination, and collaborative execution (Jain et al., 2020, 2019).24

Learning vision-based, multi-task, multi-agent systems is a challenging objective that presents several25

difficulties. These systems must develop detailed scene understanding to handle the diverse visual26

appearances of scenes. The complexity is further heightened by the numerous combinations of task27

configurations, such as object spatial arrangements, goal configurations, arbitrary numbers of agents,28

and heterogeneous agent capabilities. Consequently, it is essential for multi-agent systems to acquire29

generalizable skills that can be effectively transferred across different settings.30

An important step in addressing these challenges is to develop simulation systems that support31

multi-modal multi-agent learning. Recent advances in simulated environments have significantly32

facilitated progress in embodied vision-based systems (Yu et al., 2024; Jain et al., 2020; Chen et al.,33

∗Equal contribution.
†This work does not relate to the author’s position at Amazon.

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

https://teamcraft-bench.github.io/
https://github.com/teamcraft-bench/teamcraft


Benchmark MM Spec. 3D Observation MA Interaction Tool Generalization # Agents # Variants # Demonstrations

ALFRED (Shridhar et al., 2020a) ✗ ✓ V ✗ ✓ ✓ E 1 2,600+ 8,000+
FurnMove (Jain et al., 2020) ✗ ✓ V CD ✓ ✗ E 2 30 ✗
Marlo (Perez-Liebana et al., 2019) ✗ ✓ V D ✓ ✗ ✗ 4+ 14 ✗
MineDojo (Fan et al., 2022) ✗ ✓ V ✗ ✓ ✓ EG 1 3,000+ 740,000+
MindAgent (Gong et al., 2023c) ✗ ✓ VS C ✓ ✓ ✗ 4+ 39 ✗
Neural MMO 2.0 (Suárez et al., 2024) ✗ ✗ S CD ✓ ✓ EGA 128+ 25+ ✗
Overcooked-AI (Carroll et al., 2020) ✗ ✗ VS C ✓ ✓ ✗ 2 5 80
PARTNR (Chang et al., 2024) ✗ ✓ VS CD ✓ ✓ E 2 100,000+ 100,000+
RoCoBench (Mandi et al., 2024) ✗ ✓ S CD ✓ ✓ G 2 6 ✗
VIMA-Bench (Jiang et al., 2022) ✓ ✓ V ✗ ✓ ✓ EG 1 1,000+ 600,000+
Watch&Help (Puig et al., 2021) ✗ ✓ S CD ✓ ✓ EG 2 1,200+ 6,300+

TeamCraft ✓ ✓ VS CD ✓ ✓ EGA 4+ 55,000+ 55,000+

Table 1: Comparison with other benchmarks. TeamCraft features visual observation for multi-agent
control with widely-varied tasks specified by multi-modal prompts, targeting various types of gener-
alization essential for multi-agent teaming. MM Spec.: multi-modal task specification. Observation:
V for visual observation and S for state-based observation. MA: multi-agent control, C for centralized
and D for decentralized. Interaction: object interaction. Tool: tool use. Generalization: types of
generalization targeted, E for generalization on novel environments or scenes, G for novel goals, A
for novel numbers of agents. # Variants: number of task variants involved.

2020; Perez-Liebana et al., 2019; Das et al., 2019). Despite notable progress, these systems have34

several limitations: 1) many of them target one or two-agent scenarios (Jain et al., 2019; Mandi et al.,35

2024; Wang et al., 2023a), 2) they are often limited to indoor settings with a narrow range of tasks36

(Puig et al., 2021; Zhang et al., 2024c), and 3) the task specifications are generally purely in text (Liu37

et al., 2022b; Mandi et al., 2024), making it hard to specify subtle task differences accurately and38

efficiently.39

To drive progress in this area, we have developed a comprehensive benchmark, named TeamCraft , that40

features procedurally generated large-scale datasets specifically designed for multi-modal multi-agent41

systems. This benchmark utilizes the widely acclaimed open-world video game Minecraft as an42

experimental platform to engage with the complex dynamics of multi-modal multi-agent interactions.43

Inspired by the work of Jiang et al. (2022), we also leverage multi-modal prompts as task specifications44

to guide agent interactions, as language often fails to effectively convey spatial information (Cai45

et al., 2024). Our benchmark offers rich visual backgrounds, diverse object categories, complex46

crafting sequences, and varying task dynamics. These features enable systematic exploration of47

out-of-distribution generalization challenges for multi-modal, multi-task, multi-agent systems at scale.48

In particular, our benchmark evaluates a model’s ability to generalize to novel goal configurations,49

unseen number of agents, novel agent capabilities, and new types of visual backgrounds. To evaluate50

existing techniques using our benchmark, we design several baseline models to work within the51

framework and compare their performance. Our results highlight that current approaches to vision-52

conditioned collaboration and task planning encounter significant challenges when tested within53

TeamCraft’s complex and dynamic environment, especially when it comes to generalizations.54

In summary, the main contributions of this paper are:55

• TeamCraft , a new multi-modal multi-agent benchmark with its associated large-scale dataset56

encompassing complex tasks challenging multi-agent systems in a wide variety of generalization57

scenarios.58

• Extensive experiments and analyses on state-of-the-art multi-modal multi-agent models, uncovering59

their strengths and weaknesses to inform and inspire future research.60

• To ensure reproducibility and encourage future work in the research community, we open source61

the entire platform, its training and evaluation code, and release the model checkpoints and training62

data at https://github.com/teamcraft-bench/teamcraft.63

2 Related Work64

Embodied Language-Guided Benchmarks: Several researchers have looked at the problem of using65

natural language as the interface between embodied agents, either in the form of task specifications66

(Shridhar et al., 2020b,a; Zheng et al., 2022; Gong et al., 2023b), question answering (Das et al.,67

2018; Gordon et al., 2018; Ma et al., 2023; Majumdar et al., 2024), instruction following (Anderson68

et al., 2018; Narayan-Chen et al., 2019; Jayannavar et al., 2020; Gao et al., 2022; Padmakumar et al.,69

2022; Wan et al., 2022; Gao et al., 2023), or as means of task coordination (Li et al., 2023; Mandi70

et al., 2024). VIMA-Bench (Jiang et al., 2022) builds on previous efforts in language-guided robotic71
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Figure 1: We present example task configurations, as a combination of distinct biomes, playground
base blocks, task goals, target blocks materials and agent counts. Agents are initialized with unique
inventories, which provide them with different capabilities to complete various activities. A detailed
distribution is provided in the supplementary.

manipulation (Zeng et al., 2020; Shridhar et al., 2021; Mees et al., 2022) and uses multi-modal72

prompts as uniform task specifications for object manipulation. TeamCraft extends multi-modal73

prompts to the multi-agent domain and uses them to specify a wide variety of collaborative tasks that74

require object interaction and navigation.75

Benchmarks Based on Minecraft: Malmo (Johnson et al., 2016) marks the advent of a Gym-style76

platform tailored to Minecraft games. It paves the way for subsequent works such as MineRL (Guss77

et al., 2019), Voyager (Wang et al., 2023a), and MineDojo (Fan et al., 2022). Marlo (Perez-Liebana78

et al., 2019) extends Malmo to multi-agent scenarios, but the small number of task variations limit79

generalizations. Similar to our work, MindAgent (Gong et al., 2023c) and VillagerBench (Dong80

et al., 2024) focus on multi-agent collaboration in a multi-task setting. However, both of these81

use state-based observations, while TeamCraft tackles the more challenging problem of learning to82

collaborate from multi-modal perceptions. Table 1 compares TeamCraft with prior benchmarks.83

3 TeamCraft Benchmark84

3.1 Problem Formulation85

Assume that an embodied multi-agent system comprised of N agents needs to complete a complex86

task involving navigation and object manipulation. The task is specified in a multi-modal prompt87

xL = {xl}Ll=1, which is a sequence of interleaved language and image tokens with length L. At time88

step t, each agent receives partial observation otn ∈ O from the full observation space O. To complete89

the task, each agent can choose to perform a high level action at ∈ A from the full set of action A.90

The action can be further decomposed into a sequence of low level control signals.91

3.2 Simulation Environment92

TeamCraft utilizes Minecraft as its foundational simulation environment, offering a complex, open-93

world setting for multi-agent interactions. With a Gym-like environment, it facilitates the execution94

of intricate multi-agent commands via self-explanatory skills. Figure 3 illustrates the platform95

architecture. High level skills from the model can be translated into low level control signals via96

nested API calls through Mineflayer3. After execution, visual observation of each agent are rendered97

and provided as input to the model. Our simulation platform offers state-of-arts efficiency and98

scalability, detailed in the supplementary.99

Multi-Modal Prompts: In our work, the multi-modal prompt xL consisting of a language instruction100

interleaved with a set of orthographic projection images (i.e. top, left, front views) for task specifi-101

cation. Depending on the specific task, the images can specify either the initial states, intermediate102

states or the goal states.103

Observation and Actions: To mimic real world settings of embodied visual agent teaming, we use104

first-person view RGB image and inventory information as the observation on. The action space A105

involves high-level self-explanatory skills such as obtainBlock to obtain a block and farmWork to106

farm a crop. Most actions take three input parameters, including 1) agent name such as bot1, as the107

action-executing entity, 2) item name such as dirt, 3) a 3D vector indicating the position of the target.108

There are 8 types of actions in total. A complete list of actions are described in the supplementary.109

3https://github.com/PrismarineJS/mineflayer
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Prompt Three bots need to craft 3 smooth 
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‘sandstone’ with a pickaxe. Write 
actions for bot1, bot2, bot3 …
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Write actions for bot1, bot2 based 
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Three bots need to break everything 
on the platform. Write actions for 
bot1, bot2, bot3 based on given 
observation.

Three bots need to build a building 
on the platform. Write actions for 
bot1, bot2, bot3 based on given 
observation.

Language 
Instruction

First 
Person 
ViewObserv

ation bot1 has 1 beef,
bot2 has 1 iron_sword,
bot3 has 1 iron_shovel…

bot1 has 3 carrot,1 potato,
bot2 has 3 carrot, 2 beetroot…

bot1 has a stone_axe,
bot2 has a stone_pickaxe,
bot3 has a stone_sword…

bot1 has 5 bricks, 3 iron_ore,
bot2 has 2 sea_lantern,
bot3 has 1 brick…

Inventory
Information

putItem(bot1, 'sandstone', (0,0,-1)),
obtainBlock(bot2, (2,0,0)),
obtainBlock(bot3, (1,0,-3))

farmWork(bot1, (1,-1,1), sow, 'carrot')
farmWork(bot2, (-1,-1,-2), sow, 
'carrot')

mineBlock(bot1, (-1,0,1))
mineBlock(bot2, (-2,0,0))
mineBlock(bot3, (-1,1,1))

placeItem(bot1, 'bricks', (-1,0,-1))
placeItem(bot2, 'oak_planks', (0,0,0))
placeItem(bot3, 'iron_ore', (0,0,-1))

Action

Three 
Orthographic 
Views

Figure 2: Multi-modal prompts are provided for all tasks. The system prompt includes both the three
orthographic views and specific language instructions. Observations consist of first-person views
from different agents, along with agent-specific information.

3.3 Task Design110

TeamCraft introduces a variety of complex and interactive multi-agent cooperation tasks that chal-111

lenge the agents’ capabilities in planning, coordination, and execution within a collaborative and112

dynamic environment. Each task is designed to test different facets of MA interaction, including role113

distribution, real-time decision-making, and adaptability to changing environments. Task examples114

are shown in Figure 1 and the corresponding prompt examples are shown in Figure 2.115

Building: Agents erect a structure based on a provided orthographic view blueprint. Each agent116

possesses a unique inventory of building blocks necessary for the construction. Successful completion117

requires visual cognition to associate blueprint components with inventory items, spatial reasoning118

to reconstruct a 3D structure from 2D images and map it to 3D coordinates for action targets, and119

collaborative coordination with other agents to resolve action dependencies. For example, an agent120

cannot place a floating block and should wait for another agent to build the supporting block first.121

Clearing: Agents are required to remove all blocks from a specified area. Besides spatial under-122

standing and awareness of action dependencies, agents will be given different tools and must employ123

appropriate tools to break blocks, which vary in durability, thereby requiring multiple interactions124

for complete removal. The assign correct agent with correct tools can dramatically reduce the time125

required to remove blocks. Thus agents must coordinate task assignments to optimize block-breaking126

efficiency. Strategic coordination is essential in this task as agents need to dynamically decide which127

blocks to target based on their assigned tools, and assist each other even without the optimal tools.128

Farming: Agents sow and harvest crops on designated farmland plots. They must monitor crop129

growth stages, from newly planted to fully grown, and harvest only when crops reach maturity.130

Efficient task completion requires spatial reasoning to select appropriate farmland, visual cognition131

to assess crop maturity, and continuous updating of farmland states based on other agents’ actions.132

As the available farmland exceeds what is needed, understanding other agents’ actions to avoid133

redundancy, and dynamically allocating sub-tasks based on positions, available seeds, and crop134

maturity are essential. For example, some agents can sow while others are harvesting, stop when the135

total yield meets the goal.136

Smelting: Agents obtain processed items using furnaces by gathering materials and coordinating137

actions. They collect resources from the environment, by harvesting blocks or killing mobs, or use138

existing inventory items to produce goal items like cooked food or refined materials. Agents also139

need to gather fuel before they can make use of furnaces. Efficient task completion requires spatial140

understanding to locate furnaces and resources, coordinating actions with inter-agent dependencies,141

and assigning task to agent who has appropriate inventory and tools. For instance, if one agent142

equipped sword is collecting beef, others without sword should focus on gathering fuel rather than143

duplicating efforts. Working as a team to use limited furnaces efficiently is crucial, rather than each144

agent independently smelting their own goal item.145

3.4 Centralized and Decentralized Agents146

Centralized Agents: The centralized model is given the observational data of all agents, including147

the first-person view, action history, and inventory information. Based on these comprehensive data,148
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RGB Inventory

Observation Decentralized
VLM

Centralized
VLMor

…

Agent 1 Agent N

High Level Action

Build Break

Farm Cook

Mineflayer Low-level APIs

Building Clearing Farming Smelting
# Action Sequences 2 – 6 2 – 9 2 – 7 2 – 8
# Agents 2 – 3 2 – 3 2 – 3 2 – 3
# Tools – 1 – 4 – 1 – 4
# Scenes 6 5 4 5
# Base Types 10 11 9 11
# Furnaces – – – 1 – 2
# Target Block Types 19 16 3 13
# Target Block Counts 5 – 12 4 – 9 2 – 14 1 – 4
# Fuel Types – – – 12
# Resource Types – – – 20
# Dimensional Shapes 2 2 2 1
# Placement Shapes 7715 12724 13188 8885
# Total Demonstrations 14998 14641 14815 10803
# Test Set 50 50 50 50
# Generalization Set 200 200 150 200
# Generalization Conditions 4 4 3 4

Figure 3: (Left) The TeamCraft platform consists of three main components: 1) a Minecraft server
that hosts online game, 2) Mineflayer as the interface for controlling agents in the server, and 3) a
Gym-like environment that provides RGB and inventory observations to the models, allowing control
of multiple agents through high-level actions. (Right) Task variants and dataset statistics

the model generates the actions for all agents simultaneously. This approach leverages the full scope149

of information in the environment to coordinate and optimize the actions of all agents collectively.150

Decentralized Agents: The decentralized models do not receive information about other agents151

except for the initial inventory of the team. Each model generates actions solely for the individual152

agent based on its limited view. This setting simulates a more realistic scenario where agents operate153

independently with restricted information, focusing on their actions absent centralized coordination.154

3.5 Diversity155

The tasks are complex and challenging, testing multi-agent systems in diverse settings. Figure 3156

provides task statistics and variants, with visual diversity detailed in supplementary.157

Object Diversity: More than 30 target object or resource are used. Objects, such as fences, anvils,158

or stone, have different shapes and textures. Farm crops have different visual appearances during159

growth stage. Resources like chickens or rabbits have different appearances.160

Inventory Diversity: Agent’s inventory include essential items mixed with non-essential ones (i.e.,161

distractors), realistically simulating scenarios where agents must choose the right materials for162

specific tasks while managing inventory constraints. Agents are provided with random tools for each163

task. Appropriate tools significantly enhances efficiency in tasks like clearing. For smelting, some164

resources must be collected by agent with specific tools.165

Scene Diversity: More than 10 scenes are included in the tasks, covering biomes such as village,166

mountain, forest, swamp, desert, etc. Tasks take place on grounds with diverse textured bases such167

as glass, concrete, and quartz. Certain tasks may involve additional complexity, including farmland168

which are intermixed with non-plantable blocks.169

Goal Diversity: Each task requires achieving a varying number of goal targets. Building requires170

different blocks placed into various shapes, categorized based on dimensionalities, e.g., 2D (all blocks171

are at the same level) or 3D (some blocks are on top of others). Farming requires various target crops172

and yields. For the smelting task, the target object is sampled from various food or processed items.173

3.6 Tasks and Expert Demonstrations Generation174

To create a rich learning environment and effective imitation learning dataset, systematic scenario175

design and data collection methods are employed, as follows:176

Task Generation: Variables from a diversity pool, such as agent counts, scenes, and goals, are177

sampled to establish task configurations. Specifically, a solvable task is formulated by rejection178

sampling of the essential task variables. "Solvable" implies that the task can be completed within the179

Minecraft world rules and is within the agents’ capabilities. For example, in smelting tasks, fuel must180

either be available to collect in the scene or directly accessible in the inventory.181

Planner-Based Demonstrations Generation: Given the task specifications, a planner assigns actions182

to agents at every time step, utilizing privileged information of the environment. Assume agent i183

performing action j, the planner optimizes a cost function designed to minimize total task completion184

time T , idle actions Ei, action dependencies D, redundant actions U , and the cost cij for agent185
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Figure 4: The architecture of the TeamCraft-VLA model. Multi-modal task specifications combining
three orthographic views images of the task goal states and corresponding language instructions
are encoded as initial input to the model. Agents inventories and visual observations are further
encoded in each step to generate actions. For decentralized setting, the model only has access to one
agent’s information, exampled by Bot2: items associated with a * represent the fact that only the data
associated with agent 2 are available.

i performing action j:C = w1T + w2

∑N
i=1 Ei + w3D + w4

∑N
i=1

∑
j∈Ai

cij + w5U , where186

w1, w2, w3, w4, w5 are weighting coefficients. Details of the weights are in the supplementary.187

As shown in Figure 3, we generated 55,000 unique task variants, each with one demonstration. A188

demonstration consists of a multi-modal prompt as task specification, including three orthographic189

view images representing task initial states or goal states and the corresponding language instructions.190

At each time step, agent inventories, first-person RGB observations and actions are recorded.191

3.7 Test Set and Generalization Set192

TeamCraft features a test set, where tasks and agents variables follow the same distribution as training.193

To evaluate the model generalization, we further designed a generalization set with hold-out elements194

excluded from training data. In general, we withheld test cases involving four agents, whereas the195

training data include only two or three agents. We also introduced unseen scenes not present during196

training. In addition to these general hold-outs, we implemented task-specific exclusions as following:197

1) Building: novel shapes and materials to build. We exclude 8 block placement shapes, defining198

how target blocks are arranged on the ground. These shapes varied in complexity, containing 5 to 12199

blocks in both 2D and 3D configurations. Additionally, we omitted 3 block materials appeared in200

clearing but not in building. 2) Clearing: novel shapes and materials to clear. We held out 6 block201

placement shapes with block counts ranging from 4 to 9. We also excluded 3 block materials present202

in building but absent in clearing. 3) Farming: novel crops to farm and collect. 4) Smelting: novel203

number of furnaces and goal objects. We excluded 4 unseen goal objects and introduced scenarios204

with novel number of furnaces in the scene. As shown in Figure 3, with 50 samples per task per each205

generalization condition, TeamCraft contains a total of 950 test cases.206

4 Experiments207

4.1 Baselines and Ablations208

TeamCraft-VLA: We introduce TeamCraft-VLA, a multi-modal Vision-Language-Action (VLA)209

model designed for multi-agent collaborations. As shown in Figure 4, the model first encodes multi-210

modal prompts specifying the task, then encodes the visual observations and inventory information211

from agents during each time step to generate actions. Following Liu et al. (2024), the VLA model212

architecture consists of a CLIP encoder for images and a projector to align the image features with213

6
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training. The Goal, Scene and Agents categories represent generalization tasks involving unseen
goals, scenes, and tasks involving four agents, respectively. Average performance is presented in the
rightmost column.

the language model. We use CLIP ViT-L/14 as the visual encoder and a linear projector for modality214

alignment. The model is trained on demonstration data for three epochs before convergence.215

Grid-World Settings: To understand the impact of learning in multi-modal environments as opposed216

to purely text-based or state-based environments, we perform an ablation study by translating the217

TeamCraft environments into a 3D grid-world. We retain the same prompt structure of the training data218

used in the TeamCraft-VLA models, with the main difference being that environmental information219

(i.e., visual observations and three orthographic view images) is now represented in text, describing220

the voxel coordinate of each block; e.g., "brick is at (2,3,0), stone is at (2,3,1)...". We fine-tuned an221

LLM in a centralized setting with variance in the dataset size (10%, 50%, and 100% of the total data)222

for three epochs before convergence.223

Proprietary VLA: We evaluated four proprietary VLA models: GPT-4o, o4-mini, Claude 3.7, and224

Gemini-2.5-Pro, under two prompting settings: the Vanilla setting, which uses prompt structures225

similar to the centralized finetuned TeamCraft-VLA model, with additional information in the initial226

system prompt to supply sufficient task context, and the Grid setting, which is the same as the Grid227

World setting described above. This additional grounding compensates for the models’ extremely228

limited 3D spatial reasoning capabilities, enabling them to skip orthographic projection images, and229

generate plans consistent with the true scene context. See the supplementary for detailed prompts.230

Ablations: We performed a total of 15 ablation studies, varying in dataset sizes (10%, 50%, and 100%231

of the total data), control settings (centralized and decentralized), experiment settings (Multi-modal232

and Grid-World), and sizes of the VLA model (7B and 13B).233

4.2 Evaluation Metrics234

We evaluated the performance of the methods based on two key metrics: task success rate and subgoal235

success rate. With supplemental metrics: redundancy rate, action sequence length, and multi-agent236

effectiveness detailed in supplementary.237

Subgoal Success Rate: This metric evaluates the effectiveness of agents in completing tasks. Given238

M test cases, each test case m has sgm subgoals, and agents complete sdm subgoals. The subgoal239

success rate SGS is defined as SGS = 1
M

∑M
m=1

sdm
sgm

. Specifically, subgoals are designed based on240

the task requirements, i.e. the number of blocks to be built for building and the number of target241

objects to be created for smelting.242

Task Success Rate: This metric indicates the proportion of test cases that the model can suc-243

cessfully complete from start to finish. Specifically, the task success rate TS is defined as244

TS = 1
M

∑M
m=1 1

[
sdm = sgm

]
. A higher success rate reflects the model’s ability to consistently245

achieve the desired outcomes in various scenarios.246
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Figure 6: Task success rates (wide translucent bars) and subgoal success rates (narrow opaque
bars within) for centralized models. Each clustered bar encodes two metrics for the same model.
TeamCraft-VLA-7B and GPT-4o w/ Grid are tested under the Vanilla setting; other models are tested
under the Grid setting (extra voxel info). Only TeamCraft-VLA is trained on the full dataset.

4.3 Evaluation Results247

We evaluated the subgoal and task success rate of the models. As illustrated in Figure 5 and Figure 6.248

Success Rate: For both the 7B and 13B models, the subgoal success rate and task success rate fall249

short of optimal performance. This is particularly evident in challenging tasks such as smelting, with250

both subgoal and task success rates below 40%. This highlights inherent difficulty of the designed251

tasks and current limitations of VLA models in handling multi-step, sequentially dependent processes.252

Across Model Size: In Figure 5, we observe that as training data increases, the performance of the253

7B model approaches that of the 13B model, especially when generalizing to novel goals and agents254

counts, so blindly scaling up model sizes does not guarantee success.255

Multi-Modal Environment vs. Grid-World: The performance of the language model in the text-256

based Grid-World significantly surpasses VLA models in multi-modal settings. This suggests that257

state descriptions in text format are less challenging for models than multi-modal inputs, underscoring258

a notable gap in current VLA models’ ability to effectively interpret visual information. For the259

language model, we observe a surprising trend in the Goal and Agents splits: training with more260

data lower the success rate. This decline suggests that the generalization capacity for certain task261

categories actually diminishes as training goes on. One possible cause is when exposed to more data,262

the model relies more heavily on patterns specific to the training examples, limiting its ability to263

adapt to unseen scenarios.264

On Generalization Splits: For VLA models, performance generally drops when models transfer to265

novel generalization splits, especially in the Goal and Agents categories. The Scene split primarily266

tests image understanding, while the Goal and Agents splits emphasize task planning and allocation,267

critical factors in multi-agent systems. This indicates VLA models struggle with planning for unseen268

goals and adapting to variable numbers of agents.269

Scaling Law: As training data increases, both subgoal and task success rates across centralized270

and decentralized settings significant improvements, underscoring the importance of dataset size for271

achieving better performance. The improvement is particularly pronounced when the training data272

increases from 10% to 50% in centralized settings. This suggests that while more data generally leads273

to better performance, gains diminish beyond a certain point, especially in the decentralized setting.274

Centralized vs. Decentralized: Figure 5 compares centralized and decentralized settings in terms275

of subgoal and task success rates across all task variants. Centralized tasks outperform nearly all276

variants, highlighting the challenge of effective planning with partial information. This finding also277

demonstrates that multi-agent systems cannot be simplistically modeled as single agents interacting278

with environments containing other agents. In decentralized settings, the absence of agent modeling279

is particularly impactful, especially for cooperation-intensive tasks like "Farming" or "Building".280

Proprietary VLA — Vanilla: Figure 6 shows GPT-4o in the Vanilla setting, which failed on almost281

all the test cases. While GPT-4o is able to associate blocks with their name, it struggles with mapping282

block coordinates based on visual inputs, demonstrating a lack of the 3D spatial reasoning necessary283

for accurate task execution. A block recognition test across GPT-4o, GPT-4.1, o1, o3, and o4-mini,284

along with a case analysis of o1 and Claude 3.7, confirmed that other proprietary models exhibit the285

same behavior, as detailed in the supplementary. This shortcoming severely impacts performance,286

since most of our tasks require precise spatial orientation and alignment. For example, in the building287

task, a brick should be placed at (1,1,1), while the output of the model is "placeItem(bot1, ’bricks’,288

(1,0,1))", which results in wrong execution, and consequently affects the subsequent actions.289
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Proprietary VLA — Grid: As shown in Figure 6, all the models achieved strong performance, often290

matching or surpassing the trained TeamCraft-VLA. Among the proprietary models, Gemini 2.5 Pro291

led in both subgoal and task success rates, closely matching that of the trained TeamCraft-VLA in292

the grid world environment. The high success rate of the grid setting compared to the vanilla setting293

indicates the difficulty of orthographic projection from images. In particular, for the smelting task,294

which is characterized by higher action complexity and dependency, proprietary models with more295

parameters significantly outperformed TeamCraft-VLA, exhibiting greater ability in such complex,296

long-horizon tasks.297

4.4 Qualitative Analysis298

We performed a qualitative analysis across three generalization splits, examining how models handle299

novel goals, new scenes, and novel numbers of agents:300

Goals: When faced with novel goals, the models struggle to generalize beyond familiar items and fail301

to adapt to unseen objectives. For example, in the “farming” task, if instructed to farm beetroot—a302

crop not encountered in training—the model generates a command "farm_work(bot1, (9,3,3), ’sow’,303

’beef’)," causing Bot1 to sow "beef", which appears in the training data for "smelting". This behavior304

reflects the model’s reliance on similar, seen items in the training data and reveals limited ability to305

infer new tasks based on similarity.306

Object State Recognition: VLA models show strong generalization to new scenes, performing307

comparably to the Test set. However, errors often arise in recognizing object states. For example, in308

"farming" tasks, agents may harvest crops before they are fully grown due to challenges in identifying309

crop states, especially in new scenes. This highlights limitations in precise object state recognition310

when operating within unseen environments.311

Agents: For generalization to four agents, models often ignore the fourth agent and assign inefficiently312

only to two or three agents. For example, in "building", the model output actions {"placeItem(bot1,313

...)", "placeItem(bot2, ...)", "placeItem(bot3, ...)"} with the fourth agent overlooked, reducing pro-314

ductivity and preventing timely task completion. This limitation becomes especially evident in tasks315

requiring full coordination, such as "Building", where each of the four agents holds unique blocks in316

their inventory, and to complete the structure all agents must contribute some specific block that only317

they hold. The model’s inability to command all agents leads to incomplete structures or outright task318

failure, highlighting limitations in coordination and workload distribution for collaboration.319

5 Conclusions320

We have presented TeamCraft , a benchmark for multi-modal multi-agent collaborative task planning321

in Minecraft. The benchmark consists of challenging collaborative tasks and evaluation splits designed322

to systematically test multi-modal agents across novel goal configurations, unseen numbers of agents,323

and unseen scenes.324

5.1 Limitations and Future Work325

We have conducted extensive experiments and analyses to pinpoint the limitations of the current326

models and identified promising research directions for collaborative multi-modal agents. (1) Given327

the limited capacity of existing multi-agent VLA models, TeamCraft relies on MineFlayer as an oracle328

controller to execute skills predicted by the models. Enabling VLA models to directly control multiple329

agents via low-level control (Wang et al., 2023c,b) would be important future research. (2) We have330

trained the models using procedurally generated multi-agent demonstration data. Learning from noisy331

but more diverse real-world demonstrations of human players can potentially further strengthen model332

generalization (Baker et al., 2022; Fan et al., 2022). (3) Currently, decentralized TeamCraft agents333

rely solely on implicit communication (Jain et al., 2019); i.e., by passively perceiving other agents334

and the environment, to gather information and to collaborate. Enabling agents to communicate335

explicitly via natural language (Narayan-Chen et al., 2019; Jayannavar et al., 2020; Mandi et al.,336

2024) has great potential in avoiding redundant actions and increasing efficiency. (4) Multi-player337

video games have been widely used as testbeds for human-AI collaboration (Carroll et al., 2020; Gao338

et al., 2020; Amresh et al., 2023). Extending TeamCraft with human players is a promising direction.339
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violations of these assumptions (e.g., independence assumptions, noiseless settings,566

model well-specification, asymptotic approximations only holding locally). The authors567

should reflect on how these assumptions might be violated in practice and what the568

implications would be.569

• The authors should reflect on the scope of the claims made, e.g., if the approach was570

only tested on a few datasets or with a few runs. In general, empirical results often571

depend on implicit assumptions, which should be articulated.572

• The authors should reflect on the factors that influence the performance of the approach.573

For example, a facial recognition algorithm may perform poorly when image resolution574

is low or images are taken in low lighting. Or a speech-to-text system might not be575

used reliably to provide closed captions for online lectures because it fails to handle576

technical jargon.577

• The authors should discuss the computational efficiency of the proposed algorithms578

and how they scale with dataset size.579

• If applicable, the authors should discuss possible limitations of their approach to580

address problems of privacy and fairness.581

• While the authors might fear that complete honesty about limitations might be used by582

reviewers as grounds for rejection, a worse outcome might be that reviewers discover583

limitations that aren’t acknowledged in the paper. The authors should use their best584

judgment and recognize that individual actions in favor of transparency play an impor-585

tant role in developing norms that preserve the integrity of the community. Reviewers586

will be specifically instructed to not penalize honesty concerning limitations.587

3. Theory assumptions and proofs588

Question: For each theoretical result, does the paper provide the full set of assumptions and589

a complete (and correct) proof?590

Answer: [NA] .591
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Justification: No theoretical results included.592

Guidelines:593

• The answer NA means that the paper does not include theoretical results.594

• All the theorems, formulas, and proofs in the paper should be numbered and cross-595

referenced.596

• All assumptions should be clearly stated or referenced in the statement of any theorems.597

• The proofs can either appear in the main paper or the supplemental material, but if598

they appear in the supplemental material, the authors are encouraged to provide a short599

proof sketch to provide intuition.600

• Inversely, any informal proof provided in the core of the paper should be complemented601

by formal proofs provided in appendix or supplemental material.602

• Theorems and Lemmas that the proof relies upon should be properly referenced.603

4. Experimental result reproducibility604

Question: Does the paper fully disclose all the information needed to reproduce the main ex-605

perimental results of the paper to the extent that it affects the main claims and/or conclusions606

of the paper (regardless of whether the code and data are provided or not)?607

Answer: [Yes]608

Justification: Code and dataset are available at https://teamcraft-bench.github.io/.609

Detailed reproduction information in the supplemental material.610

Guidelines:611

• The answer NA means that the paper does not include experiments.612

• If the paper includes experiments, a No answer to this question will not be perceived613

well by the reviewers: Making the paper reproducible is important, regardless of614

whether the code and data are provided or not.615

• If the contribution is a dataset and/or model, the authors should describe the steps taken616

to make their results reproducible or verifiable.617

• Depending on the contribution, reproducibility can be accomplished in various ways.618

For example, if the contribution is a novel architecture, describing the architecture fully619

might suffice, or if the contribution is a specific model and empirical evaluation, it may620

be necessary to either make it possible for others to replicate the model with the same621

dataset, or provide access to the model. In general. releasing code and data is often622

one good way to accomplish this, but reproducibility can also be provided via detailed623

instructions for how to replicate the results, access to a hosted model (e.g., in the case624

of a large language model), releasing of a model checkpoint, or other means that are625

appropriate to the research performed.626

• While NeurIPS does not require releasing code, the conference does require all submis-627

sions to provide some reasonable avenue for reproducibility, which may depend on the628

nature of the contribution. For example629

(a) If the contribution is primarily a new algorithm, the paper should make it clear how630

to reproduce that algorithm.631

(b) If the contribution is primarily a new model architecture, the paper should describe632

the architecture clearly and fully.633

(c) If the contribution is a new model (e.g., a large language model), then there should634

either be a way to access this model for reproducing the results or a way to reproduce635

the model (e.g., with an open-source dataset or instructions for how to construct636

the dataset).637

(d) We recognize that reproducibility may be tricky in some cases, in which case638

authors are welcome to describe the particular way they provide for reproducibility.639

In the case of closed-source models, it may be that access to the model is limited in640

some way (e.g., to registered users), but it should be possible for other researchers641

to have some path to reproducing or verifying the results.642

5. Open access to data and code643

Question: Does the paper provide open access to the data and code, with sufficient instruc-644

tions to faithfully reproduce the main experimental results, as described in supplemental645

material?646
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Answer: [Yes]647

Justification: See https://github.com/teamcraft-bench/teamcraft for full set of648

code and see README.md for detailed instruction to reproduce the main experiment results.649

Guidelines:650

• The answer NA means that paper does not include experiments requiring code.651

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/652

public/guides/CodeSubmissionPolicy) for more details.653

• While we encourage the release of code and data, we understand that this might not be654

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not655

including code, unless this is central to the contribution (e.g., for a new open-source656

benchmark).657

• The instructions should contain the exact command and environment needed to run to658

reproduce the results. See the NeurIPS code and data submission guidelines (https:659

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.660

• The authors should provide instructions on data access and preparation, including how661

to access the raw data, preprocessed data, intermediate data, and generated data, etc.662

• The authors should provide scripts to reproduce all experimental results for the new663

proposed method and baselines. If only a subset of experiments are reproducible, they664

should state which ones are omitted from the script and why.665

• At submission time, to preserve anonymity, the authors should release anonymized666

versions (if applicable).667

• Providing as much information as possible in supplemental material (appended to the668

paper) is recommended, but including URLs to data and code is permitted.669

6. Experimental setting/details670

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-671

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the672

results?673

Answer: [Yes]674

Justification: In the supplemental material.675

Guidelines:676

• The answer NA means that the paper does not include experiments.677

• The experimental setting should be presented in the core of the paper to a level of detail678

that is necessary to appreciate the results and make sense of them.679

• The full details can be provided either with the code, in appendix, or as supplemental680

material.681

7. Experiment statistical significance682

Question: Does the paper report error bars suitably and correctly defined or other appropriate683

information about the statistical significance of the experiments?684

Answer: [Yes]685

Justification: Results are reported with mean performance across multiple evaluations.686

Guidelines:687

• The answer NA means that the paper does not include experiments.688

• The authors should answer "Yes" if the results are accompanied by error bars, confi-689

dence intervals, or statistical significance tests, at least for the experiments that support690

the main claims of the paper.691

• The factors of variability that the error bars are capturing should be clearly stated (for692

example, train/test split, initialization, random drawing of some parameter, or overall693

run with given experimental conditions).694

• The method for calculating the error bars should be explained (closed form formula,695

call to a library function, bootstrap, etc.)696

• The assumptions made should be given (e.g., Normally distributed errors).697
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• It should be clear whether the error bar is the standard deviation or the standard error698

of the mean.699

• It is OK to report 1-sigma error bars, but one should state it. The authors should700

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis701

of Normality of errors is not verified.702

• For asymmetric distributions, the authors should be careful not to show in tables or703

figures symmetric error bars that would yield results that are out of range (e.g. negative704

error rates).705

• If error bars are reported in tables or plots, The authors should explain in the text how706

they were calculated and reference the corresponding figures or tables in the text.707

8. Experiments compute resources708

Question: For each experiment, does the paper provide sufficient information on the com-709

puter resources (type of compute workers, memory, time of execution) needed to reproduce710

the experiments?711

Answer: [Yes]712

Justification: In the supplemental material.713

Guidelines:714

• The answer NA means that the paper does not include experiments.715

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,716

or cloud provider, including relevant memory and storage.717

• The paper should provide the amount of compute required for each of the individual718

experimental runs as well as estimate the total compute.719

• The paper should disclose whether the full research project required more compute720

than the experiments reported in the paper (e.g., preliminary or failed experiments that721

didn’t make it into the paper).722

9. Code of ethics723

Question: Does the research conducted in the paper conform, in every respect, with the724

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?725

Answer: [Yes]726

Justification: This research conducted in the paper conform with the NeurIPS Code of727

Ethics.728

Guidelines:729

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.730

• If the authors answer No, they should explain the special circumstances that require a731

deviation from the Code of Ethics.732

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-733

eration due to laws or regulations in their jurisdiction).734

10. Broader impacts735

Question: Does the paper discuss both potential positive societal impacts and negative736

societal impacts of the work performed?737

Answer: [Yes]738

Justification: See section 5.739

Guidelines:740

• The answer NA means that there is no societal impact of the work performed.741

• If the authors answer NA or No, they should explain why their work has no societal742

impact or why the paper does not address societal impact.743

• Examples of negative societal impacts include potential malicious or unintended uses744

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations745

(e.g., deployment of technologies that could make decisions that unfairly impact specific746

groups), privacy considerations, and security considerations.747
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• The conference expects that many papers will be foundational research and not tied748

to particular applications, let alone deployments. However, if there is a direct path to749

any negative applications, the authors should point it out. For example, it is legitimate750

to point out that an improvement in the quality of generative models could be used to751

generate deepfakes for disinformation. On the other hand, it is not needed to point out752

that a generic algorithm for optimizing neural networks could enable people to train753

models that generate Deepfakes faster.754

• The authors should consider possible harms that could arise when the technology is755

being used as intended and functioning correctly, harms that could arise when the756

technology is being used as intended but gives incorrect results, and harms following757

from (intentional or unintentional) misuse of the technology.758

• If there are negative societal impacts, the authors could also discuss possible mitigation759

strategies (e.g., gated release of models, providing defenses in addition to attacks,760

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from761

feedback over time, improving the efficiency and accessibility of ML).762

11. Safeguards763

Question: Does the paper describe safeguards that have been put in place for responsible764

release of data or models that have a high risk for misuse (e.g., pretrained language models,765

image generators, or scraped datasets)?766

Answer: [NA]767

Justification: The paper poses no such risks.768

Guidelines:769

• The answer NA means that the paper poses no such risks.770

• Released models that have a high risk for misuse or dual-use should be released with771

necessary safeguards to allow for controlled use of the model, for example by requiring772

that users adhere to usage guidelines or restrictions to access the model or implementing773

safety filters.774

• Datasets that have been scraped from the Internet could pose safety risks. The authors775

should describe how they avoided releasing unsafe images.776

• We recognize that providing effective safeguards is challenging, and many papers do777

not require this, but we encourage authors to take this into account and make a best778

faith effort.779

12. Licenses for existing assets780

Question: Are the creators or original owners of assets (e.g., code, data, models), used in781

the paper, properly credited and are the license and terms of use explicitly mentioned and782

properly respected?783

Answer: [Yes]784

Justification: All the creators and code sources are credited and licensed, and terms of use785

explicitly mentioned and properly respected.786

Guidelines:787

• The answer NA means that the paper does not use existing assets.788

• The authors should cite the original paper that produced the code package or dataset.789

• The authors should state which version of the asset is used and, if possible, include a790

URL.791

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.792

• For scraped data from a particular source (e.g., website), the copyright and terms of793

service of that source should be provided.794

• If assets are released, the license, copyright information, and terms of use in the795

package should be provided. For popular datasets, paperswithcode.com/datasets796

has curated licenses for some datasets. Their licensing guide can help determine the797

license of a dataset.798

• For existing datasets that are re-packaged, both the original license and the license of799

the derived asset (if it has changed) should be provided.800
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• If this information is not available online, the authors are encouraged to reach out to801

the asset’s creators.802

13. New assets803

Question: Are new assets introduced in the paper well documented and is the documentation804

provided alongside the assets?805

Answer: [Yes]806

Justification: See https://github.com/teamcraft-bench/teamcraft for our new807

assets.808

Guidelines:809

• The answer NA means that the paper does not release new assets.810

• Researchers should communicate the details of the dataset/code/model as part of their811

submissions via structured templates. This includes details about training, license,812

limitations, etc.813

• The paper should discuss whether and how consent was obtained from people whose814

asset is used.815

• At submission time, remember to anonymize your assets (if applicable). You can either816

create an anonymized URL or include an anonymized zip file.817

14. Crowdsourcing and research with human subjects818

Question: For crowdsourcing experiments and research with human subjects, does the paper819

include the full text of instructions given to participants and screenshots, if applicable, as820

well as details about compensation (if any)?821

Answer: [NA]822

Justification: This paper does not involve crowdsourcing nor research with human subjects.823

Guidelines:824

• The answer NA means that the paper does not involve crowdsourcing nor research with825

human subjects.826

• Including this information in the supplemental material is fine, but if the main contribu-827

tion of the paper involves human subjects, then as much detail as possible should be828

included in the main paper.829

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,830

or other labor should be paid at least the minimum wage in the country of the data831

collector.832

15. Institutional review board (IRB) approvals or equivalent for research with human833

subjects834

Question: Does the paper describe potential risks incurred by study participants, whether835

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)836

approvals (or an equivalent approval/review based on the requirements of your country or837

institution) were obtained?838

Answer: [NA]839

Justification: This paper does not involve crowdsourcing nor research with human subjects.840

Guidelines:841

• The answer NA means that the paper does not involve crowdsourcing nor research with842

human subjects.843

• Depending on the country in which research is conducted, IRB approval (or equivalent)844

may be required for any human subjects research. If you obtained IRB approval, you845

should clearly state this in the paper.846

• We recognize that the procedures for this may vary significantly between institutions847

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the848

guidelines for their institution.849

• For initial submissions, do not include any information that would break anonymity (if850

applicable), such as the institution conducting the review.851
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16. Declaration of LLM usage852

Question: Does the paper describe the usage of LLMs if it is an important, original, or853

non-standard component of the core methods in this research? Note that if the LLM is used854

only for writing, editing, or formatting purposes and does not impact the core methodology,855

scientific rigorousness, or originality of the research, declaration is not required.856

Answer: [NA]857

Justification: The core method development in this research does not involve LLMs as any858

important, original, or non-standard components859

Guidelines:860

• The answer NA means that the core method development in this research does not861

involve LLMs as any important, original, or non-standard components.862

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)863

for what should or should not be described.864
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Appendix865

A Additional Related Work866

Platforms for Multi-Agent Systems: The recent success of multi-agent reinforcement learning867

(MARL) methods (Lowe et al., 2020; Yu et al., 2021; Long et al., 2020, 2024b) has attracted attention,868

as these methods explore cooperation and competence behaviors among agents. However, many of869

the methods are evaluated in simplified 2D environments (Leibo et al., 2021; Suarez et al., 2021;870

Mordatch & Abbeel, 2017; Vinyals et al., 2019; Carroll et al., 2020). Recent work on embodied871

multi-agent benchmarks has considered more realistic tasks and environments (Liu et al., 2022a,b;872

Gong et al., 2023a; Park et al., 2023; Chang et al., 2024), but it often relies on certain privileged873

sensor information of the environment (Zhang et al., 2024b; Puig et al., 2021, 2023). Additionally,874

subject to environmental constraints, these works often have limited set of tasks (Jain et al., 2019;875

Tan et al., 2020) related to navigation and simple interactions such as object rearrangement (Szot876

et al., 2021). By comparison, TeamCraft is based on Minecraft, a three-dimensional, visually rich877

open-world realm characterized by procedurally generated landscapes and versatile game mechanics878

supporting an extensive spectrum of object interactions, providing rich activities ripe for intricate879

collaborations.880

B High Level Skills881

The action space of agents mainly involves high-level self-explanatory skills such as obtainBlock and882

farmWork. We provided 8 such skills. Most skills take three input parameters, including 1) agent883

name such as bot1, as the action executing entity, 2) item name such as dirt, which strongly associated884

with task goal or agent’s inventory, 3) a vector indicating the position of the target on the test field.885

For example, obtainBlock(bot1, new Vec3(1, 0, 1)) takes the agent name bot1 and a 3D886

vector (1, 0, 1) as its arguments. It directs bot1 to perform multiple actions in Minecraft via887

APIs provided by Mineflayer. First, it controls bot1 to goto a diggable position for block (1, 0,888

1), then has bot1’s vision ray cast to the block at (1, 0, 1) using the lookAt action. Next, it889

commands bot1 to equip a proper tool that can dig the block at (1, 0, 1) most efficiently, and890

then instructs bot1 to dig the target block. Once the target block has been mined, bot1 will goto891

the position where the block item dropped and collect it.892

Similarly, farmWork(bot2, "sow", "potato", new Vec3(2, 0, 4)) takes the agent name893

bot2, action type "sow" (as opposed to "harvest"), crop seed item "potato", and a 3D vector894

(2, 0, 4) as its arguments. It directs bot2 to goto a placeable position for farmland at (2, 0,895

4), then check if the seed is a valid item—that is, a crop seed available within bot2’s inventory.896

It then checks if the farmland at (2, 0, 4) is plantable. Finally, it instructs bot2 to lookAt the897

farmland and sow it with the seed "potato".898

Table 2 documents all the skills, which are implemented in JavaScript code with Mineflayer APIs.899

Type Arguments Description
placeItem BotID, ItemType, Location BotID places an item of ItemType at the specified 3D Location.

mineBlock BotID, Location BotID mines a block at the specified 3D Location.

farmWork BotID, Location, Action, ItemType BotID performs an Action (sow or harvest) on ItemType at the specified 3D Location.

obtainBlock BotID, Location BotID obtains a block from the specified 3D Location.

putFuelFurnace BotID, ItemType, Location BotID places an ItemType as fuel into a furnace at the specified 3D Location.

putItemFurnace BotID, ItemType, Location BotID inserts an ItemType into a furnace at the specified 3D Location.

takeOutFurnace BotID, ItemType, Location BotID removes an ItemType from a furnace at the specified 3D Location.

killMob BotID, Location BotID engages and eliminates a mob at the specified 3D Location.

Table 2: Action space within the TeamCraft .

C Low Level Atomic Actions900

High level skills are processed through multiple stages before reaching the final execution APIs. At901

each time step, TeamCraft accepts a list of skills as input, with a maximum length equal to the number902
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of agents involved in the current task and a minimum length of zero. Each agent can perform at903

most one skill per time step. The updated list of skills is then passed into the JavaScript environment904

along with the predefined atomic actions. Each atomic action is processed simultaneously, meaning905

that agents’ actions are executed concurrently rather than sequentially. This avoid the dependency906

issue that might occur in sequential execution. For example, if one agent’s action is executed ahead907

of another’s, the first agent may block the location where the next agent intends to place a block.908

The agent whose atomic action is executed first will have a higher chance of success, potentially909

altering the dynamics of the multi-agent setting. Executing actions concurrently ensures fairness910

among agents and maintains the equivalence of the multi-agent environment.911

D Simulator Efficiency, Scalability and Flexibility912

TeamCraft offers dedicated simulation architecture and optimized infrastructure components achieve913

highly efficient and scalable simulation. Other Minecraft simulation platforms, suffer either depre-914

cated support for multi-agent (MineRL) or architectural inefficiencies in agent scaling (MindAgent).915

Shown in Table 3, our codebase achieves a 13.6% performance improvement over MindAgent, a916

multi-agent extension of Voyager. Overall, our system supports over 10 agents, 800 additional block917

types, 1,500 extra items, and 50 additional biomes, enabling researchers to design millions of new918

tasks.

Average/Var 2 Agents & 2 Actions 3 Agents & 2 Actions 4 Agents & 2 Actions

TeamCraft 38.67 / 0.259 40.7 / 0.058 42.99 / 0.094
MindAgent 44.19 / 0.230 46.25 / 0.066 48.22 / 0.090
Average/Var 2 Agents & 10 Actions 3 Agents & 10 Actions 4 Agents & 10 Actions

TeamCraft 40.95 / 0.456 42.33 / 0.102 44.43 / 0.055
MindAgent 45.41 / 0.061 47.77 / 0.160 49.33 / 0.076

Table 3: Simulation Speed comparison. Units in seconds. Naive movement action. Ubuntu 22.04
with 1x Intel i9-14900KF

919

E Visual Diversity920

TeamCraft uses a set of visual variate to provide a visual rich environment. Each task is constructed921

from a random number of agents, in a randomly selected scene, achieving different goal on playground922

built by different base block.923

E.1 Shared Elements924

Each task begins with a basic setting involving multiple agents on a playground. Each agent has a925

unique skin, as illustrated in Figure 17, and is rendered as a two-block-high character. The playground926

combines a base platform spawned within a Minecraft biome. The base block is also randomly927

selected from a pool,shown in Figure 17. Each biome offers variations in special surrounding blocks,928

designs, and environments.929

For example, the seaside village biome is a village near the sea with houses made of oak wood930

and cobblestone, decorated with flowers and cow sheds, as shown in Figure 22. It also features a931

nearby farm surrounded by oak logs (Figure 23). Another variation of village is the desert village932

biome, built from acacia planks, acacia logs, and sandstone, blending seamlessly with the desert’s933

arid terrain, shown in Figure 24. Figure 25 illustrates a biome that is located on half of the mountains,934

where a small flat land protruding from a cliff. Additional examples of biomes used are shown in935

Figure 26, Figure 27, and Figure 28.936

E.2 Task Specific Diversity937

Clearing task uses a random set of blocks as its targets, illustrated in Figure 18. Building task also938

uses a random set of blocks as its target, with some blocks shared with clearing task, as illustrated939
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in Figure 19. Unlike other tasks, the Farming task does not use a regular base. The playground is940

constructed from a combination of farmland for planting crops, water blocks, and randomly selected941

unfarmable blockers from the base that replace some of the farmland. An example is shown in942

Figure 33. Each corps used in farming task has its own grown stage with different appearances, shown943

in Figure 20. Smelting task requires a wide varieties of resources to achieve its goal. Resources944

could be either entity, block, or item. Shown in Figure 21. Detailed statistics of each task is presented945

in Table 14, Table 15, Table 16 and Table 17.946

F Planner for Expert Demonstration947

TeamCraft employed a planner to assign actions to each agent at every time step, utilizing perfect948

knowledge of the task including goal object positions, agents’ inventories, and each agent’s efficiency949

in performing actions. The planner optimizes actions using a cost function designed to minimize the950

total time to complete the task, reduce idle times for agents, minimize action dependencies to prevent951

agents from waiting on others, maximize parallelism of actions, assign tasks to the most efficient952

agents, and eliminate redundant or unnecessary actions. The cost function considers the following953

components:954

Minimize Total Task Completion Time T : Denoted by minT , our primary objective is to reduce955

the overall time required to complete the task, measured in time steps until the last agent finishes956

their final action.957

Minimize Idle Actions for Each Agent E: Denoted by min
∑N

i=1 Ei, we minimize the total empty958

actions, the sum of empty action Ei preformed by agent i.959

Minimize Action Dependencies Across Agents D: Denoted by minD, we minimize dependencies960

cause agents to wait for others to complete certain actions.961

Minimize Redundant or Useless Actions U : Denoted by minU , we minimize the total number of962

redundant or unnecessary actions performed by all agents.963

Maximize Action Efficiency: Denoted by min
∑N

i=1

∑
j∈Ai

cij , we assign actions to agents with964

higher capabilities to reduce the overall cost, where cij be the cost (inverse of efficiency) for agent i965

to perform action j.966

We assign each component a weight:967

C = w1T + w2

N∑
i=1

Ei + w3D + w4

N∑
i=1

∑
j∈Ai

cij + w5U

where w1, w2, w3, w4, w5 are weighting coefficients, and adjusted for each tasks.968

Building: In the building task, where dependencies are moderate and parallelization is preferred, we969

place greater emphasis on minimizing idle actions by setting w2 = 1.4 and assign a weight of 0.9970

to the other components. This encourages agents to remain active and reduces idle time, enhancing971

overall efficiency.972

Clearing: In the clearing task, using the correct tools can significantly speed up block removal (up to973

a threefold increase). Therefore, we assign a higher weight of w4 = 1.8 to maximize action efficiency974

by assigning tasks to the most capable agents. The other weights are set to 0.8 to maintain overall975

performance while focusing on efficient tool usage.976

Farming: Farming task is not heavily constrained by action dependencies, we assign equal weights977

of 1 to all components, ensuring a balanced consideration of time minimization, idle actions, action978

dependencies, action efficiency, and redundancy elimination.979

Smelting: In the smelting task, which involves comparatively long and highly dependent action980

sequences, we prioritize minimizing action dependencies by setting w3 = 1.8. The other weights are981

assigned a value of 0.8 to support this focus, facilitating smoother coordination among agents and982

reducing waiting times.983
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F.1 Example Expert Demonstrations984

TeamCraft will provide a multi-modal prompt alone with a three orthographical view for each985

variant, each task. A prompt contains information of the task goal, inventory of each agent, and986

necessary information to complete the task. For each time step, only textual inventory information,987

first perspective view image for each bot, and a three orthographical view will be provided. Sky view988

image shown in each step is just for clarity and will not be provided to any of the tested models.989

Figure 29 and Figure 30 show a classic example of the building task, which involves three agents990

building a 2x3 building on the mountain half. Each of the agents has some of the needed blocks in991

their inventory to build the building. For every time step after step 0, each of the three agents build992

one block, from bottom level to the second level.993

Figure 31 shows an example of the clearing task. Two agents are assigned to clean the blocks on a994

6x6 platform. Each of them has a stone pickaxe in their inventory, which is the efficient tool to break995

"stone-like" blocks. In this case, they are able to break brick and sandstone in just one time step with996

pickaxe but requires two time step to break "wood-made" blocks like bookshelf and crafting table.997

This resulted time step 2 and 3 has exactly same visual observation, shown in Figure 32.998

Figure 33 and Figure 34 shows an example of two agents farming on a snow mountain for two extra999

carrots. In step 1, agent1 and agent2 both sow the carrots on the open ground. In step 2 they saw that1000

the carrots are ready to collect and they both collect one carrot in step 3 and eventually they collected1001

two carrots.1002

Figure 35 and Figure 36 shows an example of smelting task where two agents need to get two cooked1003

porkchops. In step 1, one agent is in charge of adding the fuel to the furnace and the other agent tries1004

to kill the pork to get the raw porkchop. Since bot2 already has one porkchop, it only requires one1005

additional porkchop. In step 2, both agents put the porkchop to the furnace and in step 3, they got 21006

cooked porkcops.1007

G Grid-World Settings1008

Under the grid-world setting, we replace the three orthographic view images and first person view1009

images with text descriptions of the task goal and current environment states, and provide them as1010

input to the model. Here we show one example of the prompt construction in each task.1011

Building: As shown in Figure 13, the system prompt consists of both task description and the target1012

building coordination of each block. The user prompt consists of the built blocks and the inventories1013

of the agents.1014

Clearing: As shown in Figure 14, the system prompt consists of both task description and the blocks1015

that appeared on the platform initially. The user prompt consists of the blocks that appeared on the1016

platform at current time step and the inventories of the agents.1017

Farming: As shown in Figure 15, the system prompt consists of both task description and the blocks1018

in the farmland. The user prompt consists of the blocks in the farmland and crops information at1019

current time step and the inventories of the agents.1020

Smelting: As shown in Figure 16, the system prompt consists of both task description, instructions to1021

craft different items and the blocks in the field. The user prompt consists of the blocks locations at1022

current time step and the inventories of the agents.1023

H TeamCraft-VLA Implementation Details1024

We use Vicuna-v1.5 as the LLM backbone. For the visual encoder, we employ CLIP ViT-L/14 to1025

process all input images, including three orthogonal views and the first-person view of the agents.1026

The image embeddings are then projected into the LLM space with a linear projection layer and1027

concatenated with the text embeddings. The combined embeddings are fed into the LLM, which1028

outputs the final action. During training, we froze the visual encoder and projector and only finetune1029

the LLM. All image embeddings are positioned before the text embeddings, separated by "image1030

start" and "image end" tokens. In centralized settings, where the number of images varies depending1031

on the number of agents, we pad a dummy image at the end for training stability if the task involves1032
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Top View

Side View

Front View

Figure 7: Combining three orthogonal view images into a single composite image as model input.

only two agents. In decentralized settings, the number of image inputs remains unaffected, as the1033

model processes only the first-person view of the current agent, excluding views from others.1034

We train each model for 3 epochs using the training split, leveraging 8 A100 GPUs with a global1035

batch size of 16. In the centralized setting, training the 7B model takes 36 hours, while the 13B1036

model requires 72 hours. In the decentralized setting, the training duration doubles, with the 7B1037

model requiring 72 hours and the 13B model taking 144 hours. In the grid-world setting, training the1038

7B model takes 20 hours.1039

H.1 Arrangement of Three Orthogonal Views1040

For training and evaluation, we combine the three orthogonal view images into a single composite1041

image by arranging them to the upper-left top-left corner, top-right corner, and the lower-left corner1042

of the composite image. An example of this arrangement is shown below Figure 7. This process is to1043

reduce the number of images provided to the model to conform with the 4096 context length limit.1044

H.2 Hyperparameters1045

We present the hyperparameters for VLA training in Table 4.1046

lr model max length vision tower patch size resolution language model optimizer lr scheduler type warmup ratio

2e-5 4096 openai-clip-vit-large 14 336*336 Vicuna-v1.5 AdamW constant_with_warmup 0.03

Table 4: Hyperparameters for TeamCraft-VLA

H.3 Model Output Parsing1047

The output of the model is a string which will be parsed into the pre-defined high level skills. The1048

string will be first processed by removing special sentence begin token, <s>, and ending token </s>.1049

It will then be split into a list, where each item is parsed as the skill of one agent.1050

I Additional Results of TeamCraft-VLA1051

I.1 Task Success Rate and Subgoal Success Rate1052

We show task success rate and subgoal success rate of centralized and decentralized 7B models with1053

different data scales in Table 10, and those of 13B models in Table 11. We compare among different1054

centralized models in Table 12.1055

I.2 Redundancy Rate1056

This metric assesses whether multiple agents are performing the same action at the same time, which1057

would lead to conflicts. Assume pm is the total number of actions for test case m and qm the number1058

of conflicts between agents, the redundancy rate RR is defined as:1059
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Test Goal Scene Agents Average

TeamCraft-VLA-7B-Cen 0.01 0.02 0.01 0.01 0.01
TeamCraft-VLA-13B-Cen 0.01 0.00 0.01 0.01 0.01
TeamCraft-VLA-7B-Dec 0.13 0.12 0.13 0.24 0.15
TeamCraft-VLA-13B-Dec 0.11 0.11 0.12 0.22 0.14

Table 5: Comparison of TeamCraft-VLA redundancy rates.

Test Goal Scene Agents Average

TeamCraft-VLA-7B-Cen 6.62 7.63 5.93 6.35 6.63
TeamCraft-VLA-13B-Cen 6.25 7.44 6.46 6.47 6.65
TeamCraft-VLA-7B-Dec 8.42 8.53 8.06 7.38 8.1
TeamCraft-VLA-13B-Dec 8.62 8.46 8.41 6.71 8.04

Table 6: Comparison of TeamCraft-VLA action sequence length.

RR =
1

M

M∑
m=1

qm
pm

A lower redundancy rate indicates better task allocation among agents and a higher level of cooperative1060

efficiency.1061

Table 5 compares redundancy rates between centralized and decentralized settings. Our results1062

show that decentralized agents exhibit significantly higher redundancy rates than centralized agents,1063

indicating reduced efficiency in task planning and allocation. This inefficiency becomes even more1064

pronounced as the number of agents increases, creating greater challenges for effective task allocation.1065

In decentralized settings, the absence of centralized control complicates the avoidance of redundant1066

work, as each agent must independently infer the intentions of others to prevent duplication. By1067

contrast, a centralized controller can efficiently assign distinct tasks to each agent, minimizing1068

overlap and enhancing overall efficiency. Both the 7B and 13B models exhibit redundancy issues in1069

decentralized settings. Increasing model size alone does not resolve the redundancy problem in such1070

scenarios. These findings suggest that VLA models lack explicit mechanisms to understand or infer1071

the actions of other agents, highlighting a critical need for improved inter-agent communication and1072

awareness within decentralized systems.1073

I.3 Action Sequence Length1074

We compared the average action lengths across different splits between the 7B and 13B models1075

under both centralized and decentralized settings, as shown in Table 6. In general, decentralized1076

settings require longer action sequences to complete tasks. Among the splits, the Goal split is the1077

most challenging, as it demands more actions to accomplish the tasks.1078

I.4 Multi-Agent Effectiveness1079

Table 7 comparing success rates and average steps under centralized and decentralized settings.1080

Overall, efficiency improves with more agents, which result a fewer steps to complete the task. In1081

the centralized setting, 3 agents exhibited better task completion. In the decentralized one, 2 agents1082

achieved a higher success rate, indicating the growing difficulty and complexity of coordination in1083

decentralized settings with more agents.1084

I.5 Case Study1085

We present a detailed failure cases analysis by categories.1086

Object Mismatching: As an example (Figure 8), in the farming tasks two agents need to get1087

10 beetroot. In step 0, the actions involve a mismatch in the objects; the agents mistakenly sow1088

"beet_seeds" instead of "beetroot_seeds." Consequently, in step 1, due to the object mismatch, no1089

crops grow on the farmland. As another example, two agents need to get 2 dried kelp in the smelting1090
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Agent # Task Success Rate Subgoal Success Rate Average Steps

TeamCraft-VLA-7B-Cen 2 Agents 0.506 0.722 7.487

TeamCraft-VLA-7B-Cen 3 Agents 0.540 0.755 5.744

TeamCraft-VLA-7B-Dec 2 Agents 0.075 0.427 9.764

TeamCraft-VLA-7B-Dec 3 Agents 0.074 0.403 7.536

Table 7: Comparison on the number of agents.

task (Figure 9). The task requires one bot to put the kelp and the other put the fuel. However, in this1091

example bot1 mistake the object "kelt" to "cobbl1".1092

Task Allocation Failure: This occurs when a task requires four agents. As two examples, four agents1093

must break everything on the platform in the clearing task (Figure 10), and construct on the platform1094

in the building task (Figure 11). Only three agents are assigned distinct actions, leaving the fourth1095

agent idle.1096

Object State Recognition Failure: As an example (Figure 12), a farming task requires two agents1097

to collect four additional carrots. In step 0, bot1 and bot2 both sow carrots and attempt to harvest1098

them in step 2. However, at that time, the carrots are still immature and not ready for collection. The1099

mature state of the carrot is shown in Figure 20.1100

Company Model Name

OpenAI GPT-4o gpt-4o-2024-08-06
OpenAI o4-mini o4-mini-2025-04-16
Anthropic Claude 3.7 claude-3-7-sonnet-20250219
Google Gemini 2.5 Pro gemini-2.5-pro-preview-05-06

Table 8: Proprietary VLA Models

J Proprietary VLA Model Implementations1101

We use GPT-4o, o4-mini, Claude 3.7, and Gemini 2.5 Pro as the proprietary VLA models. Details are1102

shown in Table 8. We test proprietary VLA models in two prompting settings: basic setting and grid1103

setting. Table 13 shows the detailed results.1104

J.1 Vanilla Setting1105

The Vanilla setting uses similar prompt structures as the centralized finetuned TeamCraft-VLA model,1106

with additional information in the initial system prompt to supply sufficient task context.1107

Specifically, all proprietary models share the same system prompt that (i) specifies the task objective,1108

(ii) enumerates observation inputs, (iii) stipulates the action and response syntax, (iv) lists all possible1109

blocks/items names that will be used in current task, but may not being used for a task variance, (v)1110

details workspace constraints together with coordinate-axis and orientation conventions, and (vi)1111

provides a fully worked roll-out for a closely related task. Figure 37 shows the system prompts for the1112

building task; Figure 40 shows the system prompts for the clearing task; Figure 42 shows the system1113

prompts for the farming task; Figure 45 and Figure 46 show the system prompts for the smelting task.1114

Based on the system prompts and user prompts, the model predicts the actions. As the interaction1115

progresses with subsequent prompts, the context is maintained and expanded with the addition of1116

prior responses and updated visual data. In the first step, we additionally provide the first user prompt,1117

where the model is given a specific multi-modal task specification accompanied by initial visual1118

observations and inventory details of the agents. Based on the system prompts and user prompts, the1119

model predicts the actions. As the interaction progresses with subsequent prompts, the context is1120

maintained and expanded with the addition of prior responses and updated visual data, as shown in1121

Figure 38 and Figure 39.1122
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Under the Vanilla setting, results from GPT-4o (as shown in Table 13), along with case studies on1123

GPT-4o, Claude 3.7, and o1, as well as block recognition tests involving GPT-4o, GPT-4.1, o1,1124

o3, and o4-mini, collectively indicate that the proprietary VLA models suffer a lack of 3D spatial1125

reasoning necessary for accurate task execution.1126

J.1.1 GPT-4o Error Analysis1127

Some failure cases are visualized in Figure 38, Figure 39, Figure 41, Figure 43, and Figure 44. In1128

general, GPT4-o fails to understand spatial relations and often chooses the incorrect coordinates1129

as the locations for placing and mining actions. In addition, the model sometimes fails to follow1130

instructions and does not harvest the crop in the farming task, as shown in Figure 43 and Figure 44.1131

J.1.2 o1 Error Analysis1132

We evaluated a subset of our test cases using o1-2024-12-17, a reasoning model that produces a1133

chain-of-thought at inference time. To accommodate its extended context length allowance, we1134

provided o1 with a more comprehensive system prompt, as illustrated in Figure 47. We also included1135

a one-shot example of a question and answer sequence, which is placed between the system prompt1136

and the actual test tasks, to clarify our specialized coordinate system (Figure 48).1137

Despite its ability to identify blocks accurately from the goal image, as is shown by Figure 49), o11138

exhibits significant deficiencies in adhering to task-specific constraints and performing reliable 3D1139

spatial reasoning. Notably, it even violates the system-level instruction to generate exactly one action1140

per agent, instead producing two actions, which leads to partial or unintended command execution.1141

Additionally, o1’s misinterpretation of absolute coordinates results in incorrect placements; for1142

example, positioning a sea_lantern at (0, 0, 0) rather than one block below the origin. Figure 491143

and Figure 50 further demonstrate o1’s struggle to reconcile multiple orthographic views to infer1144

vertical stacking, causing it to consistently place blocks at ground level instead of at the correct1145

elevated layer. Although o1 occasionally succeeds at recognizing lateral orientation from a first-1146

person viewpoint (e.g., determining the “right side” of a reference point), its broader challenge in1147

synthesizing 2D and 3D cues compromises the precise placement of blocks. Consequently, these1148

spatial miscalculations substantially diminish o1’s efficacy in tasks demanding fine-grained alignment,1149

thus revealing the model’s limitations in translating visual information into spatially coherent actions.1150

J.1.3 Claude 3.7 Error Analysis1151

We evaluated claude-3-7-sonnet-20250219 under the same conditions as the o1 model, employing a1152

comparable prompt configuration and environment constraints, as shown in Figure 51 and Figure 52.1153

As depicted in Figure 55 and Figure 56, Claude 3.7 accurately identifies blocks from the goal image1154

and associates them with their corresponding names. Moreover, it adheres to the system prompt’s1155

requirements by generating exactly one well-formed action per agent, thus meeting all specified1156

directives.1157

In Figure 53 and Figure 54, Claude 3.7 further demonstrates an ability to parse multiple orthographic1158

views, correctly placing blocks on the first layer prior to stacking additional blocks on top. However,1159

Figure 53 shows that the model’s spatial reasoning weakens when interpreting first-person orientation1160

cues: rather than arranging blocks horizontally, it produces a vertical configuration. This shortfall1161

becomes more evident in Figure 54, where Claude 3.7 consistently positions a sea_lantern on the1162

right side of the existing blocks instead of at the top. Similarly, when more blocks are placed, Claude1163

3.7 starts to struggle in tracking the special relationship of the blocks on the playground, and begins1164

placing block at ground level instead of in the intended second layer.1165

As illustrated by Figure 55, Figure 56, and Figure 57, Claude 3.7 eventually begins to place surplus1166

blocks from its inventory in a random manner, ultimately filling a substantial portion of the play area1167

with extraneous structures.1168

J.1.4 Block Recognition Test1169

We designed a dedicated test to evaluate proprietary VLA models on their 3D spatial reasoning1170

abilities. The models are provided with orthographic projection images and are asked to identify1171

all visible blocks along with their coordinates. As in the Vanilla setting, we provide detailed task1172
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Model Avg. Accuracy (↑) Block Type Accuracy (↑) False Positive Rate (↓)

GPT–4o 0.0507± 0.0121 0.4315± 0.0551 0.2363± 0.0764
GPT–4.1 0.1175± 0.0618 0.6519± 0.0423 0.2734± 0.0653
o1 0.0220± 0.0156 0.1296± 0.0805 0.0523± 0.0336
o3 0.0703± 0.0018 0.6659± 0.0896 0.1788± 0.0180
o4-mini 0.0124± 0.0098 0.1350± 0.0689 0.4893± 0.1169

Table 9: Overall comparison of model performance. Higher values are better for Accuracy and Block
Recognition Accuracy, while lower values are better for False Positive Rate.

instructions, including the list of all possible block/item types, the coordinate system and axis1173

orientation, and a sample input-output pair to enable single-shot learning.1174

We define three evaluation metrics:1175

Average Accuracy (Apos): Measures the fraction of blocks correctly identified by both name and1176

position:1177

Apos =
Ncorrect_name_and_position

Ntotal
,

where Ncorrect_name_and_position is the number of blocks correctly predicted in both type and 3D location,1178

and Ntotal is the total number of blocks in the image.1179

Block Type Accuracy (Atype): Evaluates how well the model identifies block types and their counts,1180

regardless of position:1181

Atype =
Ncorrect_types

Ntotal
,

where Ncorrect_types is the number of block types correctly identified with the correct count. Over-1182

reporting a block type (e.g., reporting two gold blocks when only one exists) results in only the first1183

being counted as correct.1184

False Positive Rate (FPR): Measures the proportion of reported blocks that do not exist in the1185

scene, based on type:1186

FPR =
Nfalse_positives

Ntotal
,

where Nfalse_positives is the number of reported blocks of types not present in the image.1187

As shown in Table 9, all models achieve an average accuracy Apos < 0.1, revealing poor performance1188

in 3D spatial reasoning and localization. However, their low false positive rate (FPR), attributed to1189

texture-based type identification, suggests that the models can still recognize block types with high1190

visual fidelity due to their training on Minecraft data.1191

J.2 Grid Setting1192

The Grid setting retains the same structures as the basic setting but supplies extra grid information1193

that translates the orthographic projection images to text, by describing the voxel coordinate of each1194

block; e.g., "brick is at (2,3,0)". The grid information text is similar to the user prompt in Figure 16,1195

but only appears once at the very first user prompt to describe orthographic projection images. This1196

additional grounding compensates for the models’ extremely limited 3D spatial reasoning abilities,1197

enabling them to skip orthographic projection images and generate plans consistent with the true1198

scene context.1199
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Tasks Condition
Centralized Decentralized

10% 50% 100% 10% 50% 100%

Building

Test 0.00 (0.12) 0.38 (0.76) 0.42 (0.81) 0.00 (0.18) 0.00 (0.28) 0.00 (0.38)
Shape 0.00 (0.12) 0.20 (0.67) 0.30 (0.75) 0.00 (0.15) 0.00 (0.25) 0.00 (0.40)
Material 0.00 (0.13) 0.18 (0.64) 0.30 (0.74) 0.00 (0.13) 0.00 (0.20) 0.00 (0.34)
Scene 0.00 (0.15) 0.36 (0.73) 0.40 (0.83) 0.00 (0.16) 0.00 (0.21) 0.00 (0.36)
Agents 0.00 (0.18) 0.02 (0.50) 0.02 (0.57) 0.00 (0.12) 0.00 (0.20) 0.00 (0.14)

Clearing

Test 0.00 (0.13) 0.08 (0.43) 0.64 (0.91) 0.00 (0.45) 0.02 (0.35) 0.20 (0.68)
Shape 0.00 (0.09) 0.08 (0.34) 0.56 (0.91) 0.00 (0.47) 0.02 (0.27) 0.16 (0.74)
Material 0.00 (0.10) 0.12 (0.45) 0.56 (0.90) 0.00 (0.48) 0.00 (0.22) 0.16 (0.67)
Scene 0.00 (0.11) 0.10 (0.44) 0.58 (0.92) 0.00 (0.41) 0.04 (0.37) 0.10 (0.64)
Agents 0.00 (0.16) 0.14 (0.64) 0.36 (0.81) 0.02 (0.50) 0.02 (0.54) 0.12 (0.60)

Farming

Test 0.14 (0.43) 0.34 (0.60) 0.36 (0.63) 0.02 (0.07) 0.02 (0.14) 0.00 (0.09)
Crop 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Scene 0.16 (0.39) 0.34 (0.65) 0.38 (0.67) 0.00 (0.05) 0.00 (0.11) 0.02 (0.07)
Agents 0.02 (0.18) 0.18 (0.61) 0.38 (0.68) 0.00 (0.08) 0.00 (0.11) 0.04 (0.27)

Smelting

Test 0.06 (0.17) 0.20 (0.36) 0.24 (0.28) 0.08 (0.13) 0.08 (0.09) 0.16 (0.29)
Goal 0.08 (0.21) 0.04 (0.07) 0.00 (0.00) 0.08 (0.17) 0.00 (0.00) 0.00 (0.00)
Furnace 0.10 (0.28) 0.10 (0.20) 0.18 (0.20) 0.06 (0.07) 0.06 (0.06) 0.06 (0.16)
Scene 0.08 (0.19) 0.14 (0.28) 0.18 (0.23) 0.08 (0.19) 0.14 (0.19) 0.12 (0.28)
Agents 0.00 (0.15) 0.02 (0.24) 0.06 (0.13) 0.04 (0.05) 0.00 (0.02) 0.02 (0.28)

Table 10: Task success rates and subgoal success rates of the TeamCraft-VLA-7B-Cen and TeamCraft-
VLA-7B-Dec models. Subgoal success rates are given in parentheses.

Tasks Condition
Centralized Decentralized

10% 50% 100% 10% 50% 100%

Building

Test 0.00 (0.18) 0.46 (0.80) 0.48 (0.79) 0.00 (0.13) 0.00 (0.18) 0.00 (0.31)
Shape 0.00 (0.16) 0.30 (0.73) 0.26 (0.69) 0.00 (0.15) 0.00 (0.15) 0.00 (0.32)
Material 0.00 (0.15) 0.24 (0.65) 0.08 (0.63) 0.00 (0.14) 0.00 (0.14) 0.00 (0.31)
Scene 0.00 (0.16) 0.38 (0.75) 0.48 (0.83) 0.00 (0.17) 0.00 (0.17) 0.00 (0.28)
Agents 0.00 (0.16) 0.00 (0.49) 0.04 (0.59) 0.00 (0.14) 0.00 (0.16) 0.00 (0.23)

Clearing

Test 0.04 (0.37) 0.42 (0.83) 0.64 (0.94) 0.00 (0.46) 0.02 (0.62) 0.02 (0.60)
Shape 0.00 (0.26) 0.42 (0.85) 0.78 (0.96) 0.00 (0.47) 0.00 (0.57) 0.04 (0.58)
Material 0.04 (0.36) 0.36 (0.83) 0.56 (0.92) 0.02 (0.53) 0.00 (0.60) 0.02 (0.58)
Scene 0.06 (0.35) 0.44 (0.88) 0.48 (0.90) 0.00 (0.55) 0.02 (0.59) 0.08 (0.64)
Agents 0.02 (0.55) 0.16 (0.65) 0.16 (0.77) 0.02 (0.50) 0.02 (0.52) 0.02 (0.50)

Farming

Test 0.4 (0.72) 0.62 (0.79) 0.46 (0.73) 0.08 (0.39) 0.04 (0.23) 0.02 (0.33)
Crop 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Scene 0.30 (0.69) 0.52 (0.76) 0.44 (0.75) 0.04 (0.32) 0.06 (0.29) 0.10 (0.33)
Agents 0.12 (0.54) 0.44 (0.79) 0.36 (0.72) 0.02 (0.22) 0.00 (0.19) 0.02 (0.23)

Smelting

Test 0.06 (0.08) 0.22 (0.44) 0.32 (0.59) 0.10 (0.25) 0.06 (0.09) 0.10 (0.19)
Goal 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.10) 0.00 (0.00) 0.00 (0.00)
Furnace 0.06 (0.08) 0.20 (0.40) 0.18 (0.38) 0.06 (0.12) 0.04 (0.08) 0.04 (0.07)
Scene 0.04 (0.08) 0.16 (0.43) 0.24 (0.56) 0.12 (0.28) 0.04 (0.09) 0.08 (0.18)
Agents 0.00 (0.03) 0.00 (0.26) 0.04 (0.37) 0.00 (0.02) 0.00 (0.01) 0.00 (0.00)

Table 11: Task success rates and subgoal success rates of the TeamCraft-VLA-13B-Cen and
TeamCraft-VLA-13B-Dec models. Subgoal success rates are given in parentheses.

31



Tasks Condition TeamCraft-VLA-7B TeamCraft-VLA-13B GPT-4o TeamCraft-7B-GridWorld

Building

Test 0.42 (0.81) 0.48 (0.79) 0.00 (0.07) 0.42 (0.88)
Shape 0.30 (0.75) 0.26 (0.69) 0.00 (0.08) 0.50 (0.90)
Material 0.30 (0.74) 0.08 (0.63) 0.00 (0.07) 0.26 (0.82)
Scene 0.40 (0.83) 0.48 (0.83) 0.00 (0.07) 0.48 (0.89)
Agents 0.02 (0.57) 0.04 (0.59) 0.00 (0.00) 0.12 (0.71)

Clearing

Test 0.64 (0.91) 0.64 (0.94) 0.00 (0.03) 1.00 (1.00)
Shape 0.56 (0.91) 0.78 (0.96) 0.00 (0.04) 1.00 (1.00)
Material 0.56 (0.91) 0.56 (0.92) 0.00 (0.12) 1.00 (1.00)
Scene 0.58 (0.92) 0.48 (0.90) 0.00 (0.06) 1.00 (1.00)
Agents 0.36 (0.81) 0.16 (0.77) 0.00 (0.00) 0.84 (0.97)

Farming

Test 0.36 (0.64) 0.46 (0.73) 0.00 (0.00) 0.78 (0.86)
Crop 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Scene 0.38 (0.67) 0.44 (0.75) 0.00 (0.00) 0.90 (0.96)
Agents 0.38 (0.68) 0.36 (0.72) 0.00 (0.00) 0.40 (0.73)

Smelting

Test 0.24 (0.28) 0.32 (0.59) 0.02 (0.02) 0.24 (0.51)
Goal 0.00 (0.00) 0.00 (0.00) 0.08 (0.08) 0.00 (0.00)
Furnace 0.18 (0.20) 0.18 (0.38) 0.00 (0.00) 0.24 (0.39)
Scene 0.18 (0.23) 0.24 (0.56) 0.00 (0.00) 0.36 (0.58)
Agents 0.06 (0.13) 0.04 (0.37) 0.00 (0.00) 0.00 (0.31)

Table 12: Task success rates and subgoal success rates of various centralized models. Subgoal success
rates are given in parentheses. All models are trained with the full training data except GPT-4o.

Tasks Condition TeamCraft-VLA-7B GPT–4o w/o Grid GPT–4o o4-mini Claude-3.7 Gemini-2.5-Pro

Building

Test 0.42 (0.81) 0.07 (0.00) 0.68 (0.16) 0.80 (0.48) 0.66 (0.16) 0.89 (0.58)
Shape 0.30 (0.75) 0.08 (0.00) 0.64 (0.10) 0.81 (0.48) 0.54 (0.10) 0.88 (0.58)
Material 0.30 (0.74) 0.07 (0.00) 0.66 (0.12) 0.85 (0.54) 0.59 (0.12) 0.91 (0.72)
Scene 0.40 (0.83) 0.07 (0.00) 0.60 (0.10) 0.70 (0.10) 0.62 (0.00) 0.91 (0.66)
Agents 0.02 (0.57) 0.00 (0.00) 0.57 (0.08) 0.80 (0.38) 0.64 (0.13) 0.87 (0.66)

Clearing

Test 0.64 (0.91) 0.04 (0.00) 0.87 (0.82) 0.90 (0.84) 0.94 (0.84) 0.98 (0.98)
Shape 0.56 (0.91) 0.03 (0.00) 0.85 (0.70) 0.83 (0.76) 0.95 (0.92) 0.98 (0.96)
Material 0.56 (0.91) 0.12 (0.00) 0.88 (0.70) 0.85 (0.78) 0.91 (0.88) 0.94 (0.94)
Scene 0.58 (0.92) 0.06 (0.00) 0.85 (0.64) 0.86 (0.72) 0.93 (0.90) 0.92 (0.92)
Agents 0.36 (0.81) 0.00 (0.00) 0.85 (0.68) 0.91 (0.85) 0.93 (0.92) 0.98 (0.92)

Farming

Test 0.36 (0.64) 0.00 (0.00) 0.43 (0.28) 0.28 (0.24) 0.33 (0.28) 0.66 (0.50)
Crop 0.00 (0.00) 0.00 (0.00) 0.76 (0.48) 0.73 (0.64) 0.31 (0.24) 0.86 (0.82)
Scene 0.38 (0.67) 0.00 (0.00) 0.35 (0.16) 0.31 (0.24) 0.34 (0.30) 0.65 (0.52)
Agents 0.38 (0.68) 0.00 (0.00) 0.40 (0.17) 0.34 (0.24) 0.31 (0.18) 0.44 (0.39)

Smelting

Test 0.24 (0.28) 0.02 (0.02) 0.43 (0.24) 0.25 (0.10) 0.64 (0.38) 0.91 (0.80)
Goal 0.00 (0.00) 0.08 (0.08) 0.34 (0.20) 0.35 (0.24) 0.63 (0.46) 0.88 (0.70)
Furnace 0.18 (0.20) 0.00 (0.00) 0.31 (0.16) 0.15 (0.10) 0.62 (0.42) 0.90 (0.84)
Scene 0.18 (0.23) 0.00 (0.00) 0.51 (0.24) 0.31 (0.20) 0.64 (0.40) 0.83 (0.68)
Agents 0.06 (0.13) 0.00 (0.00) 0.35 (0.20) 0.39 (0.21) 0.69 (0.43) 0.88 (0.72)

Table 13: Task success rates and subgoal success rates of various centralized models. Subgoal success
rates are given in parentheses. TeamCraft-VLA-7B is trained with the full training data. GPT-4o w/o
Grid is tested under Vanilla setting with no grid information provided. GPT-4o, o4-mini, Claude-3.7
and Gemini-2.5-Pro are tested under Grid setting with grid information provided.
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System Prompt
Two bots need to grow on the platform. The goal is to get 10 beetroot. Write the actions for
bot1, bot2 based on this given observation."

(a) orthographic views
of the task

Step 0:

User Prompt
bot1 has 7 beetroot_seeds. bot1 has 1 carrot. bot1 has 3 potato. bot2 has 5 beet-
root_seeds. bot2 has 2 wheat_seeds. Write the actions for bot1, bot2 based on this
given observation.

(b) Agent1 observa-
tion

(c) Agent2 observa-
tion

Actions
["farm_work(bot1, new Vec3(-1,-1,2), ’sow’, ’beat_seeds’)",
"farm_work(bot2, new Vec3(-2,-1,-2), , ’sow’, ’beat_seeds’)"]

Step 1:

User Prompt
bot1 has 7 beetroot_seeds. bot1 has 1 carrot. bot1 has 3 potato. bot2 has 5 beet-
root_seeds. bot2 has 2 wheat_seeds. Write the actions for bot1, bot2 based on this
given observation.

(d) Agent1 observa-
tion

(e) Agent2 observa-
tion

Actions
["farm_work(bot1, new Vec3(3,-1,-1), ’sow’, ’beat_seeds’)",
"farm_work(bot2, new Vec3(0,-1,-1), ’sow’, ’beat_seeds’)"]

Figure 8: Object mismatching example 1.
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System Prompt
"Two bots need to craft 2 dried_kelp. here are the instructions: . . . To cook a ’dried_kelp’, I
need a ’kelp’. ... ",

(a) orthographic views
of the task

Step 0:

User Prompt
bot1 has 1 iron_pickaxe. bot1 has 1 iron_axe. bot2 has 2 charcoal. bot2 has 1
iron_shovel. bot2 has 1 iron_sword. Write the actions for bot1, bot2 based on this
given observation.

(b) Agent1 observa-
tion

(c) Agent2 observa-
tion

Actions
[putItemFurnace(bot1, ’cobbl1’, new Vec3(0,0,-1)),
putFuelFurnace(bot2, ’charcoal’, new Vec3(0,0,-1))]

Step 1:

User Prompt
bot1 has 2 kelp. bot1 has 1 iron_pickaxe. bot1 has 1 iron_axe. bot2 has 1 charcoal.
bot2 has 1 iron_shovel. bot2 has 1 iron_sword. Write the actions for bot1, bot2 based
on this given observation.

(d) Agent1 observa-
tion

(e) Agent2 observa-
tion

Actions
[putItemFurnace(bot1, ’cobbl1’, new Vec3(0,0,-1)),
putFuelFurnace(bot2, ’charcoal’, new Vec3(0,0,-1))]

Figure 9: Object mismatching example 2.
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System Prompt
"Four bots need to break everything on the platform." ",

(a) orthographic views
of the task

Step 0:

User Prompt
bot0 has 1 stone_axe. bot1 has 1 stone_shovel. bot2 has 1 stone_pickaxe. bot3
has 1 stone_sword. Write the actions for bot0, bot1, bot2, bot3 based on this given
observation.

(b) Agent0 observa-
tion

(c) Agent1 observa-
tion

(d) Agent2 observa-
tion

(e) Agent3 observa-
tion

Actions
[" mineBlock(bot1, new Vec3(-2,0,1)),
mineBlock(bot2, new Vec3(-1,0,0)),
mineBlock(bot3, new Vec3(1,0,1))", ]

Step 1:

User Prompt
Write the actions for bot0, bot1, bot2, bot3 based on this given observation."

(f) Agent0 observa-
tion

(g) Agent1 observa-
tion

(h) Agent2 observa-
tion

(i) Agent3 observa-
tion

Actions
[" mineBlock(bot1, new Vec3(1,0,0)),
mineBlock(bot2, new Vec3(-2,0,-2)),
mineBlock(bot3, new Vec3(1,0,1))", ]

Figure 10: Task allocation failure example 3.
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System Prompt
"Four bots need to build a building on the platform. "

(a) orthographic views
of the task

Step 0:

User Prompt
bot0 has 4 bricks. bot0 has 5 sponge. bot0 has 2 oak_planks...bot1 has 1 pumpkin...
bot2 has 3 bricks... bot3 has 1 clay... Write the actions for bot0, bot1, bot2, bot3
based on this given observation.

(b) Agent0 observa-
tion

(c) Agent1 observa-
tion

(d) Agent2 observa-
tion

(e) Agent3 observa-
tion

Actions
[ " placeItem(bot1, ’bricks’, new Vec3(0,0,-1)),
placeItem(bot2, ’clay’, new Vec3(-1,0,-1)),
placeItem(bot3, ’clay’, new Vec3(1,0,-1))" ]

Step 1:

User Prompt
Write the actions for bot0, bot1, bot2, bot3 based on this given observation.

(f) Agent0 observa-
tion

(g) Agent1 observa-
tion

(h) Agent2 observa-
tion

(i) Agent3 observa-
tion

Actions
["placeItem(bot1, ’sponge’, new Vec3(-1,1,-1)),
placeItem(bot2, ’bricks’, new Vec3(1,1,-1)),
placeItem(bot3, ’sponge’, new Vec3(0,1,-1))", ]

Figure 11: Task allocation failure example 4.
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System Prompt
Two bots need to grow on the platform. The goal is to get 4 carrot.

(a) orthographic views
of the task

Step 0:

User Prompt
"bot1 has 4 carrot. bot1 has 1 potato. bot1 has 1 beetroot. bot2 has 5 carrot. bot2
has 2 beetroot. bot2 has 3 wheat_seeds. bot2 has 2 potato. Write the actions for bot1,
bot2 based on this given observation."

(b) Agent1 observa-
tion

(c) Agent2 observa-
tion

Actions
[" farm_work(bot1, new Vec3(1,-1,-2), ’sow’, ’carrot’),
farm_work(bot2, new Vec3(2,-1,-2), ’sow’, ’carrot’)", ]

Step 2:

User Prompt
"bot1 has 3 carrot. bot1 has 1 potato. bot1 has 1 beetroot. bot2 has 5 carrot. bot2
has 2 beetroot. bot2 has 3 wheat_seeds. bot2 has 2 potato. Write the actions for bot1,
bot2 based on this given observation."

(d) Agent1 observa-
tion

(e) Agent2 observa-
tion

Actions
[" farm_work(bot1, new Vec3(-2,-1,-2), ’sow’, ’carrot’),
farm_work(bot2, new Vec3(-1,-1,1), ’sow’, ’carrot’)", ]

Figure 12: Object state recognition failure example 5.
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System Prompt Three bots need to build a building on the platform. Target building is:
Put sea_lantern on [0 ,1 ,0]. Put oak_fence on [-1 ,1 ,0]. Put sponge on [0 ,1 ,-1]. Put
emerald_block on [-1 ,1 ,-1]. Put dirt on [0 ,0 ,0]. Put bricks on [-1 ,0 ,0]. Put emerald_block
on [0 ,0 ,-1]. Put clay on [-1 ,0 ,-1]. .

User Prompt
bot1 has 4 dirt. bot1 has 3 clay. bot1 has 7 emerald_block. bot1 has 1 oak_fence. bot1 has 3
sponge. bot1 has 1 bricks. bot1 has 3 sea_lantern. bot2 has 4 bricks. bot2 has 2 sponge. bot2
has 6 sea_lantern. bot2 has 2 oak_fence. bot2 has 4 emerald_block. bot2 has 1 dirt. bot2 has
3 clay. bot3 has 6 emerald_block. bot3 has 4 oak_fence. bot3 has 2 dirt. bot3 has 2 sponge.
bot3 has 3 clay. bot3 has 2 sea_lantern. bricks is on [-1 ,0 ,0]. dirt is on [0 ,0 ,0]. Write the
actions for bot1, bot2 and bot3 based on this given observation.

Figure 13: Prompt example for Building task under the grid-world setting.

System Prompt Three bots need to break everything on the platform. clay is on [-2 ,0 ,-2].
birch_log is on [-2 ,0 ,0]. dirt is on [-1 ,0 ,-2]. crafting_table is on [-1 ,0 ,1]. anvil is on [-1 ,1
,1]. anvil is on [0 ,0 ,-2]. iron_ore is on [0 ,0 ,1]. cobweb is on [1 ,0 ,1].

User Prompt bot1 has 1 stone_pickaxe. bot1 has 1 anvil. bot2 has 1 stone_axe. bot2 has 1
crafting_table. bot3 has 1 stone_pickaxe. bot3 has 1 dirt. clay is on [-2 ,0 ,-2]. birch_log is
on [-2 ,0 ,0]. iron_ore is on [0 ,0 ,1]. cobweb is on [1 ,0 ,1]. Write the actions for bot1, bot2
and bot3 based on this given observation.

Figure 14: Prompt example for Clearing task under the grid-world setting.
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System Prompt Two bots need to grow on the platform. The goal is to get 5 carrot. farmland
is on [-3 ,-1 ,-2] with value of 7. cyan_concrete is on [-3 ,-1 ,-1]. water is on [-3 ,-1 ,0].
cyan_concrete is on [-3 ,-1 ,1]. cyan_concrete is on [-3 ,-1 ,2]. farmland is on [-2 ,-1 ,-2]
with value of 7. cyan_concrete is on [-2 ,-1 ,-1]. water is on [-2 ,-1 ,0]. farmland is on
[-2 ,-1 ,1] with value of 7. cyan_concrete is on [-2 ,-1 ,2]. cyan_concrete is on [-1 ,-1 ,-2].
cyan_concrete is on [-1 ,-1 ,-1]. water is on [-1 ,-1 ,0]. farmland is on [-1 ,-1 ,1] with value of
7. farmland is on [-1 ,-1 ,2] with value of 7. cyan_concrete is on [0 ,-1 ,-2]. farmland is on [0
,-1 ,-1] with value of 7. water is on [0 ,-1 ,0]. cyan_concrete is on [0 ,-1 ,1]. cyan_concrete is
on [0 ,-1 ,2]. cyan_concrete is on [1 ,-1 ,-2]. cyan_concrete is on [1 ,-1 ,-1]. water is on [1 ,-1
,0]. farmland is on [1 ,-1 ,1] with value of 7. cyan_concrete is on [1 ,-1 ,2]. cyan_concrete is
on [2 ,-1 ,-2]. cyan_concrete is on [2 ,-1 ,-1]. water is on [2 ,-1 ,0]. cyan_concrete is on [2 ,-1
,1]. farmland is on [2 ,-1 ,2] with value of 7. cyan_concrete is on [3 ,-1 ,-2]. farmland is on [3
,-1 ,-1] with value of 7. water is on [3 ,-1 ,0]. cyan_concrete is on [3 ,-1 ,1]. farmland is on [3
,-1 ,2] with value of 7.

User Prompt
bot1 has 5 carrot. bot1 has 2 beetroot. bot1 has 3 potato. bot2 has 2 carrot. bot2 has 2
beetroot. bot2 has 2 wheat_seeds. farmland is on [-3 ,-1 ,-2] with value of 7. cyan_concrete
is on [-3 ,-1 ,-1]. water is on [-3 ,-1 ,0]. cyan_concrete is on [-3 ,-1 ,1]. cyan_concrete is
on [-3 ,-1 ,2]. farmland is on [-2 ,-1 ,-2] with value of 7. cyan_concrete is on [-2 ,-1 ,-1].
water is on [-2 ,-1 ,0]. farmland is on [-2 ,-1 ,1] with value of 7. cyan_concrete is on [-2
,-1 ,2]. cyan_concrete is on [-1 ,-1 ,-2]. cyan_concrete is on [-1 ,-1 ,-1]. water is on [-1 ,-1
,0]. farmland is on [-1 ,-1 ,1] with value of 7. farmland is on [-1 ,-1 ,2] with value of 7.
cyan_concrete is on [0 ,-1 ,-2]. farmland is on [0 ,-1 ,-1] with value of 7. water is on [0 ,-1 ,0].
cyan_concrete is on [0 ,-1 ,1]. cyan_concrete is on [0 ,-1 ,2]. cyan_concrete is on [1 ,-1 ,-2].
cyan_concrete is on [1 ,-1 ,-1]. water is on [1 ,-1 ,0]. farmland is on [1 ,-1 ,1] with value of 7.
cyan_concrete is on [1 ,-1 ,2]. cyan_concrete is on [2 ,-1 ,-2]. cyan_concrete is on [2 ,-1 ,-1].
water is on [2 ,-1 ,0]. cyan_concrete is on [2 ,-1 ,1]. farmland is on [2 ,-1 ,2] with value of 7.
cyan_concrete is on [3 ,-1 ,-2]. farmland is on [3 ,-1 ,-1] with value of 7. water is on [3 ,-1 ,0].
cyan_concrete is on [3 ,-1 ,1]. farmland is on [3 ,-1 ,2] with value of 7. carrots is on [3 ,0 ,-1]
with value of 0. carrots is on [3 ,0 ,2] with value of 0. Write the actions for bot1, bot2 based
on this given observation.

Figure 15: Prompt example for Farming task under the grid-world setting.

System Prompt Two bots need to craft 2 stone. here are the instructions: Cooking Food: 1.
To cook a ’cooked_beef’... cobblestone is on [-2 ,0 ,2]. furnace is on [0 ,0 ,1]. spruce_planks
is on [2 ,0 ,-3]. cobblestone is on [2 ,0 ,-1].

User Prompt
bot1 has 1 iron_sword. bot1 has 1 iron_shovel. bot1 has 1 iron_pickaxe. bot1 has 1
cobblestone. bot1 has 1 spruce_planks. bot2 has 1 spruce_planks. bot2 has 1 iron_shovel.
bot2 has 2 iron_pickaxe. cobblestone is on [-2 ,0 ,2]. furnace is on [0 ,0 ,1]. spruce_planks is
on [2 ,0 ,-3]. cobblestone is on [2 ,0 ,-1]. Write the actions for bot1, bot2 based on this given
observation.

Figure 16: Prompt example for Smelting task under the grid-world setting.
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GlowstonePodzolObsidianOak Wood Grass Block

Gold BlockStoneSmooth QuartzCyan Concrete Glass Hay Block Pink Wool

Bot3Bot2Bot1Bot0

Base Blocks

Bot Skins

Figure 17: A close-up view of the shared visual diversity in every tasks.

Crafting TablePumpkinGold OreOrange Concrete Bookshelf Sandstone Bricks

CobwebBirch LogGrass BlockAnvil Clay Coal Ore Dirt

Oak LogStoneOak FenceAcacia Fence Iron Ore

Stone PickaxeStone SwordStone ShovelStone Axe

Clearing
Targets

Clearing
Tools

Figure 18: A close-up view of the visual diversity in clearing tasks.
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Coal OrePumpkinGold OreOrange Concrete Oak Fence Sandstone Bricks

Birch LogIron OreDirt Clay Stone

Oak PlanksPurple WoolEnd StoneSponge

Building
Targets

(shared w/ Clearing)

Grass Block

Sea Lantern Emerald Block

Building
Targets

Acacia Fence

Bookshelf

Oak Log

Figure 19: A close-up view of the visual diversity in building tasks.

Age 7Age 4-6Age 2-3Age 0-1

Farming
Crops

Age 7Age 4-6Age 2-3Age 0-1

Age 3Age 2Age 1Age 0 Age 4 Age 5

Age 6 Age 7

Age 3Age 2Age 1Age 0

Beetroot

Wheat

Potato

Carrot

Figure 20: A close-up view of crops appearances across various growing stages in farming tasks.
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SandstoneIron OreGold Ore Cobblestone

Smelting
Resources

Smelting
Resources

(Fuel)

Red Sand

ChickenMooshroomPig Cow Sheep Rabbit Salmon

Cod

Oak PlanksBirch PlanksSpruce PlanksAcacia Planks Coal Block Coal

CharcoalOak LogBirch LogSpruce LogAcacia Log Lava Bucket

Coal Ore

Potato

Wet Sponge Quartz Block Kelp

Iron PickaxeIron SwordIron ShovelIron Axe

StakeCooked ChickenCooked BeefCooked Porkchop Cooked SalmonCooked RabbitCooked Mutton

StoneSmooth SandstoneIron IngotGold Ingot Baked PotatoCooked CodGlass

Dried KelpSmooth QuartzSponge

Smelting
Goal

Smelting
Tools

Furnace

Figure 21: A close-up view of the visual diversity in smelting tasks.
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Figure 22: One example scene in the seaside village biome.

Figure 23: One example scene in the grass village biome.
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Figure 24: One example scene in the dessert village biome.

Figure 25: One example scene in the half mountain biome.
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Figure 26: One example scene in the swamp biome.

Figure 27: One example scene in the iceberg biome.
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Figure 28: One example scene in the snow mountain biome.
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Bot1 Bot2

Bricks

build a building on the playground base  

below. has 5                  , 2                   , 1                  .

Building 01:

4                  . The blueprint looks like:

Step 0:

Actions: None

FrontTop Side

Reward: 0

Bot2Bot1 Sky View

Step 1:

Actions: placeItem(bot1, 'pumpkin', new Vec3(-1,0,-1)), placeItem(bot2, 'coal_ore', new Vec3(1,0,-1)), 
placeItem(bot3, 'bricks', new Vec3(0,0,-1))

Reward: 0.5

Bot2Bot1 Sky View

Bot3 Hay Block

halfway up the mountain, following the blueprint given

Pumpkin Sea Lantern Coa Ore

has 3                   , 2                  , 2                  .

Coa Ore Orange Concrete Oak Planks

has 3                   ,

Oak Planks

Bot3

Bot3

Bot1 Bot2 Bot3

Figure 29: An example demonstration in the building task, part I.

Step 2:

Actions: placeItem(bot1, 'sea_lantern', new Vec3(1,1,-1)), placeItem(bot2, 'orange_concrete', new Vec3(-1,1,-1)),
placeItem(bot3, 'oak_planks', new Vec3(0,1,-1))

Reward: 1.0

Bot2Bot1 Sky ViewBot3

Figure 30: An example demonstration in the building task, part II.
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remove 

Bot1 Bot2 Bookshelf Sandstone BricksCrafting Table

blocks on the playground base  

Gold Block

in a dissert village. 

Stone Pickaxe

,           has 1has 1 .                     requires only one timestep to break                                  , but two timesteps

Clearing 01:

Stone Pickaxe Stone Pickaxe Sandstone Bricks

Bookshelf Crafting Table

. The initial playground looks like:

Step 0:

Actions:None

FrontTop Side

Reward: 0

Bot2Bot1 Sky View

to break or 

Bot1

Bot2

Figure 31: An example demonstration in the clearing task, part I.

Step 1:

Actions: mineBlock(bot1, new Vec3(1,0,0)), mineBlock(bot2, new Vec3(0,0,-1))

Reward: 0.5

Bot2Bot1 Sky View

Step 2:

Actions: mineBlock(bot1, new Vec3(-1,0,1)), mineBlock(bot2, new Vec3(-2,0,1))

Reward: 0.5

Step 3:

Actions: mineBlock(bot1, new Vec3(-1,0,1)), mineBlock(bot2, new Vec3(-2,0,1))

Reward: 1.0

Bot2Bot1 Sky View

Same visual observation as it requires two timesteps to break. 

Figure 32: An example demonstration in the clearing task, part II.
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sow and harvest for 2 more                      on                   on an iceberg. Some   

Bot1 Bot2

are blocked by                   .

Crops take up to three timesteps to grow from                to                  to be harvestable. Each                  gives 2                   .

has  2                 , 3                 . 

Farming 01:

has 1                 , 1                 .    The initial playground looks like:

FrontTop Side

Farmland Farmland Smooth Quartz

Age 0 Age 7

Bot1 Beetroots Bot2 Potato

Carrot

Age 7 Carrot

Carrot Carrot

Figure 33: An example demonstration in the farming task, part I.

Step 0:

Actions: None

Reward: 0

Bot2Bot1 Sky View

Step 1:

Actions: farm_work(bot1, new Vec3(-2,-1,-1), 'sow', 'carrot’), farm_work(bot2, new Vec3(-1,-1,1), 'sow', 'carrot')

Reward: 0

Bot2Bot1 Sky View

Step 2:
Actions: None

Reward: 0.5

Bot2Bot1 Sky View

Step 3:
Actions: farm_work(bot1, new Vec3(-2,0,-1), 'harvest’), farm_work(bot2, new Vec3(-1,0,1), 'harvest')

Reward: 1.0

Bot2Bot1 Sky View

Figure 34: An example demonstration in the farming task, part II.
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cook for 2                        in a dissert village. To get 

Bot1 Bot2

, smelt                  with                   as fuel in                   .

Resources are on base                   or in inventory. To get , kill                     with                 . To get                  , collect with      

has 1                 . 

Smelting 01:

has 1                , 1                 , and                    . The initial playground looks like:

Step 0:

Actions: None

FrontTop Side

Reward: 0

Bot2Bot1 Sky View

Step 1:
Actions: killMob(bot1, new Vec3(2,0,-3)), putFuelFurnace(bot2, 'birch_log', new Vec3(0,0,0))

Reward: 0

Bot2Bot1 Sky View

Furnace

Bot1 Bot2

Cooked Porkchop Cooked Porkchop Porkchop Birch Log

PorkchopHay Block Pig Iron Sword Birch Log

Iron Axe

.

Iron Sword Iron Axe Porkchop Birch Log

Figure 35: An example demonstration in the smelting task, part I.
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Step 2:
Actions: putItemFurnace(bot1, 'porkchop', new Vec3(0,0,0)), putItemFurnace(bot2, 'porkchop', new Vec3(0,0,0))

Reward: 0.5

Step 3:
Actions: obtainBlock(bot1, new Vec3(-3,0,-3))

Reward: 1.0

Bot2Bot1 Sky View

Step 4:
Actions: putFuelFurnace(bot1, 'birch_log', new Vec3(0,0,0))

Reward: 1.0

Bot2Bot1 Sky View

Step 5:
Actions: takeOutFurnace(bot1, new Vec3(0,0,0))

Reward: 1.0

Same visual observation as step 4. 

Figure 36: An example demonstration in the smelting task, part II.
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System Prompt
You are controlling up to 4 bots in a Minecraft world. Your mission is to build a specific
structure on a platform by coordinating the bots’ actions across multiple timesteps with
observation feedback.
**Observations:** - **Images:** - Up to 4 first-person perspective images (one from each
bot), all agent’s view will reset to look at the middle of the platform for each timestep -
The goal structure (last image): Contains three orthographic views of the target structure. *
Top-left: Top view (looking down from above, shows x-z plane, x increasing to the right, z
increasing to the top) Note if the structure has two layers, the top view will show the top
layer. * Top-right: Front view (looking from front, shows x-y plane, x increasing to the right,
y increasing to the top) * Bottom-left: Right side view (looking from right side, shows z-y
plane, z increasing to the right, y increasing to the top) * Bottom-right: Pure black image (no
information) - **Current State:** - A text description of inventory information for each bot
**Action Format:** - Use the placeItem() function with these parameters: - botID: ’bot1’,
’bot2’, ’bot3’ (for agent number 1, 2, 3, depending on number of bots available); ’bot0’,
’bot1’, ’bot2’, ’bot3’ (if 4 bots are available) - block: The type of block to place (must be
in bot’s inventory) - position: new Vec3(x,y,z) where (based on the top view image): * x:
vertical axis (-2 to 2) * y: height axis (0 to 1) * z: horizontal axis (-2 to 2) - No space in
coordinates x,y,z **Available Blocks:**
’oak_fence’, ’birch_log’, ’coal_ore’, ’bricks’, ’sandstone’, ’stone’,
’iron_ore’, ’gold_ore’, ’sponge’, ’sea_lantern’, ’dirt’, ’grass_block’,
’clay’, ’oak_planks’, ’emerald_block’, ’pumpkin’, ’orange_concrete’,
’purple_wool’, ’end_stone’, ’bookshelf’, ’acacia_fence’, ’oak_log’
**Constraints:** - Each bot can only place blocks from its own inventory - Inventory may
contain unneeded blocks - No overlapping blocks at the same position - No floating blocks
(must build on existing structures) - Each bot can place at most one block per timestep
**Workspace Coordinates:** - Center: (0,0,0) - Platform size: 5x5 units (x and z axes) -
Platform corners (**based on the top view image**): * Top-left: (2,0,-2) * Top-right: (2,0,2)
* Bottom-right: (-2,0,2) * Bottom-left: (-2,0,-2) - Height: * 0: Ground level (one block above
the workspace platform, lowest height to place blocks) * 1: Above ground level
**Orientation Strategy:** - Bot positions and orientations vary at each timestep, meaning
bot’s left might not be the same as the previous timestep, or the same as the other bots, or the
same as the goal image - Recommended approach: First place blocks at known coordinates
(like center 0,0,0 and one-block-to-the-left 0,0,-1) to establish reference points in bot’s view -
Use placed blocks and its positions in your action output to confirm your understanding of
the coordinate system
**Response Format:** - Provide only action commands, each on a new line using new line as
separator - Do not include explanations, markdown, or code blocks - A bot can be idle (no
action) for a timestep, simply not output such bot’s action - Use "NULL" if all bots are idle
**Example Response:**
placeItem(bot1, ’pumpkin’, new Vec3(-1,0,-1))
placeItem(bot2, ’purple_wool’, new Vec3(1,0,-1))
placeItem(bot3, ’coal_ore’, new Vec3(0,0,-1))

Figure 37: Sample rollouts of GPT-4o in a building task, part I.

52



User Prompt
Here are the observations at the current time step for each agent. The final image is the goal
image. bot1 has 5 dirt. bot1 has 3 clay. bot1 has 7 emerald block. bot1 has 1 oak fence. bot1
has 3 sponge. bot1 has 1 bricks. bot1 has 3 sea lantern. bot2 has 5 bricks. bot2 has 2 sponge.
bot2 has 6 sea lantern. bot2 has 2 oak fence. bot2 has 4 emerald block. bot2 has 1 dirt. bot2
has 3 clay. bot3 has 6 emerald block. bot3 has 4 oak fence. bot3 has 2 dirt. bot3 has 2 sponge.
bot3 has 3 clay. bot3 has 2 sea lantern.

(a) Agent1 observation (b) Agent2 observation (c) Agent3 observation
(d) orthographic views
of the goal

Assistant
[placeItem(bot1, emerald block, new Vec3(-1,0,-1)), placeItem(bot2, bricks, new
Vec3(0,0,0)),
placeItem(bot3, sea lantern, new Vec3(-1,0,0))]

Figure 38: Sample rollouts of GPT-4o in a building task, part II.
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User Prompt
Here are the observations at the current time step for each agent. The final image is the goal
image. bot1 has ...

(a) Agent1 observation (b) Agent2 observation (c) Agent3 observation
(d) orthographic views
of the goal

Assistant
[placeItem(bot1, sponge, new Vec3(1,0,-1)), placeItem(bot2, oak fence, new Vec3(0,0,1))]

User Prompt
Here are the observations at the current time step for each agent. The final image is the goal
image. bot1 has ...

(e) Agent1 observation (f) Agent2 observation (g) Agent3 observation
(h) orthographic views
of the goal

Assistant
[placeItem(bot3, sea lantern , new Vec3(0,0,-1))]

Comment
GPT-4o failed to place the blocks in the correct location. The agents placed an additional
fence that is not required by the goal. The sponge (yellow) block should be placed next to a
sea lattern (white) block.

Figure 39: Sample rollouts of GPT-4o in a building task, part III.
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System Prompt
You are controlling up to 4 bots in a Minecraft world. Your mission is to clear all the blocks
on the platform, by coordinating the bots’ actions across multiple timesteps with observation
feedback.
**Observations:** - **Images:** - Up to 4 first-person perspective images (one from each
bot), all agent’s view will reset to look at the middle of the platform for each timestep -
The goal structure (last image): Contains three orthographic views of the target structure. *
Top-left: Top view (looking down from above, shows x-z plane, x increasing to the right, z
increasing to the top) Note if the structure has two layers, the top view will show the top
layer. * Top-right: Front view (looking from front, shows x-y plane, x increasing to the right,
y increasing to the top) * Bottom-left: Right side view (looking from right side, shows z-y
plane, z increasing to the right, y increasing to the top) * Bottom-right: Pure black image (no
information) - **Current State:** - A text description of inventory information for each bot
**Action Format:** - Use the mineBlock() function with these parameters: - botID: ’bot1’,
’bot2’, ’bot3’ (for agent number 1, 2, 3, depending on number of bots available); ’bot0’,
’bot1’, ’bot2’, ’bot3’ (if 4 bots are available) - position: new Vec3(x,y,z) where (based on the
top view image): * x: vertical axis (-3 to 2) * y: height axis (0 to 1) * z: horizontal axis (-3 to
2) - No space in coordinates x,y,z
**Available Blocks:**
’oak_fence’, ’birch_log’, ’coal_ore’, ’bricks’, ’sandstone’, ’stone’,
’iron_ore’,’dirt’, ’grass_block’, ’clay’, ’bookshelf’, ’acacia_fence’,
’oak_log’, ’crafting_table’, ’anvil’, ’cobweb’, ’pumpkin’,
’orange_concrete’, ’gold_ore’
**Constraints:** - Each bot can only mine one block per timestep - Each bot has tools in their
inventory to break blocks. Plan the mining sequence based on the tools in the inventory - You
must mine blocks that is exposed to the air, you cannot mine blocks that are inside the block
**Workspace Coordinates:** - Center: (0,0,0) - Platform size: 6x6 units (x and z axes) -
Platform corners (**based on the top view image**): * Top-left: (2,0,-3) * Top-right: (2,0,2)
* Bottom-right: (-3,0,2) * Bottom-left: (-3,0,-3) - Height: * 0: Ground level (one block above
the workspace platform, lowest height to place blocks) * 1: Above ground level
**Orientation Strategy:** - Bot positions and orientations vary at each timestep, meaing bot’s
left might not be the same as the previous timestep, or the same as the other bots, or the same
as the goal image - Recommended approach: First place blocks at known coordinates (like
center 0,0,0 and one-block-to-the-left 0,0,-1) to establish reference points in bot’s view - Use
placed blocks and its positions in your action output to confirm your understanding of the
coordinate system
**Response Format:** - Provide only action commands, each on a new line using new line as
separator - Do not include explanations, markdown, or code blocks - A bot can be idle (no
action) for a timestep, simply not output such bot’s action - Use "NULL" if all bots are idle
**Example Response:**
mineBlock(bot1, new Vec3(-1,0,-1))
mineBlock(bot2, new Vec3(1,0,-1))
mineBlock(bot3, new Vec3(0,0,-1))

Figure 40: Sample rollouts of GPT-4o in a clearing task, part I.
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User Prompt
Here are the observations at the current time step for each agent.

(a) Agent1 observation (b) Agent2 observation (c) Agent3 observation (d) orthographic views

Assistant
[mineBlock(bot1, new Vec3(3,0,2)), mineBlock(bot2, new Vec3(2,0,1))]

User Prompt
Here are the observations at the current time step for each agent. The final image is the goal
image. bot1 has ...

(e) Agent1 observation (f) Agent2 observation (g) Agent3 observation (h) orthographic views

Assistant
[mineBlock(bot1, new Vec3(3,0,2)), mineBlock(bot2, new Vec3(2,0,1))]

User Prompt
Here are the observations at the current time step for each agent. The final image is the goal
image. bot1 has ...

(i) Agent1 observation (j) Agent2 observation (k) Agent3 observation (l) orthographic views

Assistant
[mineBlock(bot1, new Vec3(1,0,2)), mineBlock(bot2, new Vec3(2,0,1))]

Comment
The model did not predict correct block locations and failed to mine any blocks.

Figure 41: Sample rollouts of GPT-4o in a clearing task, part II.
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System Prompt
You are controlling up to 4 bots in a Minecraft world. Your mission is control bots to sow
seeds, wait until crops grow, and harvest them, in a designated farming area. The goal is
to get a certain number of crops to any bots’ inventory. Coordinate the bots’ actions across
multiple timesteps with observation feedback.
**Observations:** - **Images:** - Up to 4 first-person perspective images (one from each
bot), all agent’s view will reset to look at the middle of the platform for each timestep -
The goal structure (last image): Contains three orthographic views of the target structure. *
Top-left: Top view (looking down from above, shows x-z plane, x increasing to the right, z
increasing to the top) Note if the structure has two layers, the top view will show the top
layer. * Top-right: Front view (looking from front, shows x-y plane, x increasing to the right,
y increasing to the top) * Bottom-left: Right side view (looking from right side, shows z-y
plane, z increasing to the right, y increasing to the top) * Bottom-right: Pure black image (no
information) - **Current State:** - A text description of inventory information for each bot
**Action Format:** - Use the farm_work() function with these parameters: - botID: ’bot1’,
’bot2’, ’bot3’ (for agent number 1, 2, 3, depending on number of bots available); ’bot0’,
’bot1’, ’bot2’, ’bot3’ (if 4 bots are available) - position: new Vec3(x,y,z) where (based on
the top view image): * x: vertical axis (-3 to 3) * y: height axis (-1 to 0) * z: horizontal axis
(-3 to 3) - action: ’sow’, ’harvest’ - crop: (optional for harvest action) A string, surround by
single quote, the type of crop to sow (must be in bot’s inventory) - No space in coordinates
x,y,z - one action per bot per timestep
**Available Blocks:**
’water’, ’farmland’, ’cyan_concrete’, ’stone’, ’oak_wood’,
’hay_block’, ’glass’,’dirt’, ’pink_wool’, ’obsidian’,
’smooth_quartz’
**Available Seeds**
’wheat_seeds’, ’carrot’, ’potato’, ’beetroot_seeds’
**Constraints:** - Each bot can only act one action per timestep, either sow or harvest one
crop. If you have two bots, you can only output two actions per timestep. - Observe the crop
growth, a crop may take up to 3 timesteps to grow, you can only harvest when crops is full
grown. You can only harvest what you sow. - You can only sow seeds on empty farmland, not
on other crops - A good strategy is to sow seeds a farmland for the first three timesteps, and
then harvest the crop sown on the first timestep, then harvest the crop sown on the second
timestep, and sow seeds on the third timestep. - Ensure action bot has the necessary items
(seeds) in their inventory - Do not assign multiple bots to perform the same action on the
same crop plot simultaneously - Inventory may contain unneeded seeds or tools
**Workspace Coordinates:** - Center: (0,0,0) - Platform size: could be random size, surround
by a single type of block, could be a oak, or dirt, ice, etc. - Platform corners (based on the top
view image): * Top-left: (-3,0,-3) * Top-right: (3,0,3) * Bottom-right: (-3,0,3) * Bottom-left:
(-3,0,-3) - Height: * -1: Farmland level (where the sow action can be performed) * 0: Crop
level (where the harvest action can be performed)
**Orientation Strategy:** - Bot positions and orientations vary at each timestep, meaing bot’s
left might not be the same as the previous timestep, or the same as the other bots, or the same
as the goal image - Recommended approach: First place blocks at known coordinates (like
center 0,0,0 and one-block-to-the-left 0,0,-1) to establish reference points in bot’s view - Use
placed blocks and its positions in your action output to confirm your understanding of the
coordinate system
**Response Format:** - Provide only action commands, each on a new line using new line
separator - Do not include explanations, markdown, or code blocks - A bot can be idle (no
action) for a timestep, simply not output such bot’s action - Use "NULL" if all bots are idle
**Example Response:**
farm_work(bot1, new Vec3(0,-1,1), ’sow’, ’wheat_seeds’)
farm_work(bot2, new Vec3(1,0,0), ’harvest’)

Figure 42: Sample rollouts of GPT-4o in a farming task, part I.
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User Prompt
Here are the observations at the current time step for each agent. Please harvest the crops
when they are ready! You can only harvest what you sow. You can only sow seeds on empty
plots, and you can only sow what you have in your inventory. When harvesting, do not specify
the crop type. Here is the inventory status for each bot: bot1 has 7 xxx

(a) Agent1 observation (b) Agent2 observation (c) Agent3 observation (d) orthographic views

Assistant
farmwork(bot1, new Vec3(0, 0, -1), ’sow’, ’potato’)
farmwork(bot2, new Vec3(1, 0, 0), ’sow’, ’potato’)
farmwork(bot3, new Vec3(-1, 0, 1), ’sow’, ’potato’)

Figure 43: Sample rollouts of GPT-4o in a farming task, part II.
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User Prompt
Here are the observations at the current time step for each agent. bot1 has ...

(a) Agent1 observation (b) Agent2 observation (c) Agent3 observation (d) orthographic views

Assistant
farmwork(bot1, new Vec3(0, 0, 1), ’sow’, ’potato’),
farmwork(bot2, new Vec3(0, 0, -1), ’sow’, ’potato’),
farmwork(bot3, new Vec3(1, 0, 0), ’sow’, ’potato’)

User Prompt
Here are the observations at the current time step for each agent. bot1 has ...

(e) Agent1 observation (f) Agent2 observation (g) Agent3 observation (h) orthographic views

Assistant
farmwork(bot1, new Vec3(-1, 0, 0), ’sow’, ’potato’),
farmwork(bot2, new Vec3(1, 0, 0), ’sow’, ’potato’),
farmwork(bot3, new Vec3(0, 0, 1), ’sow’, ’potato’)

Comment
The model does not follow instruction, and keeps predicting the sowing actions without
harvesting.

Figure 44: Sample rollouts of GPT-4o in a farming task, part III.
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System Prompt
You are controlling up to 4 bots in a Minecraft world. Your mission is to control bots to smelt
for specific goal items for a specific amount, by coordinating the bots’ actions across multiple
timesteps with observation feedback. To get final goal items, you need to obtain resouces like
fuel, kill mobs or collect item to be smelted, put items and fuels in furnace, and take out the
smelted item so that it is in any bot’s inventory.
**Observations:** - **Images:** - Up to 4 first-person perspective images (one from each
bot), all agent’s view will reset to look at the middle of the platform for each timestep -
The goal structure (last image): Contains three orthographic views of the target structure. *
Top-left: Top view (looking down from above, shows x-z plane, x increasing to the right, z
increasing to the top) Note if the structure has two layers, the top view will show the top
layer. * Top-right: Front view (looking from front, shows x-y plane, x increasing to the right,
y increasing to the top) * Bottom-left: Right side view (looking from right side, shows z-y
plane, z increasing to the right, y increasing to the top) * Bottom-right: Pure black image (no
information) - **Grid Information:** - The grid information that describes the blocks on the
platform, as shown in the last image, is a 2D grid of blocks, with the center of the grid being
(0,0,0). - **Current State:** - A text description of inventory information for each bot
**Action Format:** - "obtainBlock(botID, position)" - "putFuelFurnace(botID, ’item’, po-
sition)" - "putItemFurnace(botID, ’item’, position)" - "takeOutFurnace(botID, position)" -
"killMob(botID, position)" with these parameters: - botID: ’bot1’, ’bot2’, ’bot3’ (for agent
number 1, 2, 3, depending on number of bots available); ’bot0’, ’bot1’, ’bot2’, ’bot3’ (if 4
bots are available) - item: A string, surround by single quote, the type of item to place (must
be in bot’s inventory) - position: new Vec3(x,y,z) where (based on the top view image): *
x: vertical axis (-2 to 2) * y: height axis (0 to 1) * z: horizontal axis (-2 to 2) - No space in
coordinates x,y,z - one action per bot per timestep
**Available Blocks:**
’acacia_log’, ’acacia_planks’, ’birch_log’, ’birch_planks’,
’chicken’, ’coal_ore’,’cobblestone’, ’cow’, ’furnace’,
’gold_ore’, ’iron_ore’, ’mooshroom’, ’oak_log’,
’oak_planks’, ’pig’, ’quartz_block’, ’rabbit’,
’red_sand’, ’sandstone’, ’sheep’,’spruce_log’,
’spruce_planks’, ’wet_sponge’
**Constraints:** - Each bot can only act one action per timestep. If you have two bots, you
can only output two actions per timestep. – Bots must take out the item from the furnace to
count as a successful smelting target acquired - Only one type of fuel can be used for one
furnace - Bot can only place items from its own inventory - Bot can also obtain blocks needed
for smelting. - Bot do not need to get those resources if they already in inventory. - Inventory
may contain unneeded items - No overlapping items at the same position
**Workspace Coordinates:** - Center: (0,0,0) - Platform size: 5x5 units (x and z axes) -
Platform corners (**based on the top view image**): * Top-left: (2,0,-2) * Top-right: (2,0,2)
* Bottom-right: (-2,0,2) * Bottom-left: (-2,0,-2) - Height: * 0: Ground level (one block above
the workspace platform, lowest height to place blocks) * 1: Above ground level
**Orientation Strategy:** - Bot positions and orientations vary at each timestep, meaing bot’s
left might not be the same as the previous timestep, or the same as the other bots, or the same
as the goal image - Recommended approach: First place blocks at known coordinates (like
center 0,0,0 and one-block-to-the-left 0,0,-1) to establish reference points in bot’s view - Use
placed blocks and its positions in your action output to confirm your understanding of the
coordinate system
**Response Format:** - Provide only action commands, each on a new line using new line
separator - Do not include explanations, markdown, or code blocks - A bot can be idle (no
action) for a timestep, simply not output such bot’s action - Use "NULL" if all bots are idle
**Example Response:**
killMob(bot1, new Vec3(1,0,1))
putFuelFurnace(bot2, ’oak_log’, new Vec3(0,0,0))
putItemFurnace(bot3, ’porkchop’, new Vec3(2,0,2))

Figure 45: Sample system prompt of GPT-4o in a smelt task, part I.
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System Prompt
**Recepit:**
Cooking Food:
1. To cook a ’cooked_beef’, I need ’beef’. To get ’beef’, I need to kill a ’cow’ or a
’mushroom’.
2. To cook a ’cooked_porkchop’, I need ’porkchop’. To get ’porkchop’, I need to kill a ’pig’.
3. To cook a ’cooked_mutton’, I need ’mutton’. To get ’mutton’, I need to kill a ’sheep’.
4. To cook a ’cooked_chicken’, I need ’chicken’. To get ’chicken’, I need to kill a ’chicken’.
5. To cook a ’cooked_rabbit’, I need ’rabbit’. To get ’rabbit’, I need to kill a ’rabbit’.
6. To cook a ’cooked_cod’, I need ’cod’.
7. To cook a ’cooked_salmon’, I need ’salmon’.
8. To cook a ’baked_potato’, I need a ’potato’.
Crafting Items:
1. To craft a ’gold_ingot’, I need ’gold_ore’. To get ’gold_ore’, I need to obtain ’gold_ore
blocks with a pickaxe.
2. To craft an ’iron_ingot’, I need ’iron_ore’. To get ’iron_ore’, I need to obtain ’iron_ore
blocks with a pickaxe.
3. To craft ’glass’, I need ’red_sand’. To get ’red_sand’, I need to obtain ’red_sand’.
4. To craft ’smooth_sandstone’, I need ’sandstone’. To get ’sandstone’, I need to obtain
’sandstone’ with a pickaxe.
5. To craft ’stone’, I need ’cobblestone’. To get ’cobblestone’, I need to obtain ’cobblestone’
with a pickaxe.
Fuel Sources:
1. To fuel the furnace, I can use ’coal’. To get ’coal’, I need to obtain ’coal_ore’.
2. To fuel the furnace, I can use ’lava_bucket’, ’coal_block’, ’charcoal’, .
3. To fuel the furnace, I can use ’oak_log’, ’birch_log’, ’acacia_log’, ’spruce_log’,
’oak_planks’, ’birch_planks’, ’acacia_planks’, or ’spruce_planks’.

Figure 46: Sample system prompt of GPT-4o in a smelt task, part II.

61



System Prompt
You are controlling up to 4 bots in a Minecraft world. Your mission is to build a specific
structure on a platform by coordinating the bots’ actions across multiple timesteps with
observation feedback.
**Observations:** - **Images:** - Up to 4 first-person perspective images (one from each
bot), all agent’s view will reset to look at the middle of the platform for each timestep -
The goal structure (last image): Contains three orthographic views of the target structure. *
Top-left: Top view (looking down from above, shows x-z plane, x increasing to the right, z
increasing to the top) Note if the structure has two layers, the top view will show the top
layer. * Top-right: Front view (looking from front, shows x-y plane, x increasing to the right,
y increasing to the top) * Bottom-left: Right side view (looking from right side, shows z-y
plane, z increasing to the right, y increasing to the top) * Bottom-right: Pure black image (no
information) - **Current State:** - A text description of inventory information for each bot
**Action Format:** - Use the placeItem() function with these parameters: - botID: ’bot1’,
’bot2’, ’bot3’ (for agent number 1, 2, 3, depending on number of bots available); ’bot0’,
’bot1’, ’bot2’, ’bot3’ (if 4 bots are available) - block: The type of block to place (must be
in bot’s inventory) - position: new Vec3(x,y,z) where (based on the top view image): * x:
vertical axis (-2 to 2) * y: height axis (0 to 1) * z: horizontal axis (-2 to 2) - No space in
coordinates x,y,z **Available Blocks:**
’oak_fence’, ’birch_log’, ’coal_ore’, ’bricks’, ’sandstone’, ’stone’,
’iron_ore’, ’gold_ore’, ’sponge’, ’sea_lantern’, ’dirt’, ’grass_block’,
’clay’, ’oak_planks’, ’emerald_block’, ’pumpkin’, ’orange_concrete’,
’purple_wool’, ’end_stone’, ’bookshelf’, ’acacia_fence’, ’oak_log’
**Constraints:** - Each bot can only place blocks from its own inventory - Inventory may
contain unneeded blocks - No overlapping blocks at the same position - No floating blocks
(must build on existing structures) - Each bot can place at most one block per timestep
**Workspace Coordinates:** - Center: (0,0,0) - Platform size: 5x5 units (x and z axes) -
Platform corners (**based on the top view image**): * Top-left: (2,0,-2) * Top-right: (2,0,2)
* Bottom-right: (-2,0,2) * Bottom-left: (-2,0,-2) - Height: * 0: Ground level (one block above
the workspace platform, lowest height to place blocks) * 1: Above ground level
**Orientation Strategy:** - Bot positions and orientations vary at each timestep, meaning
bot’s left might not be the same as the previous timestep, or the same as the other bots, or the
same as the goal image - Recommended approach: First place blocks at known coordinates
(like center 0,0,0 and one-block-to-the-left 0,0,-1) to establish reference points in bot’s view -
Use placed blocks and its positions in your action output to confirm your understanding of
the coordinate system
**Response Format:** - Provide only action commands, each on a new line using new line as
separator - Do not include explanations, markdown, or code blocks - A bot can be idle (no
action) for a timestep, simply not output such bot’s action - Use "NULL" if all bots are idle
**Example Response:**
placeItem(bot1, ’pumpkin’, new Vec3(-1,0,-1))
placeItem(bot2, ’purple_wool’, new Vec3(1,0,-1))
placeItem(bot3, ’coal_ore’, new Vec3(0,0,-1))

Figure 47: Sample system (developer) prompt of o1 in a building task, o1 part I.
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User Prompt
what is the block and its position in the image?

(a) orthographic views

Assistant
’oak_planks’ at new Vec3(0,0,0)
’bricks’ at new Vec3(0,0,-1)
’sponge’ at new Vec3(-1,0,0)
’pumpkin’ at new Vec3(-1,0,-1)
’bricks’ at new Vec3(0,1,0)

Figure 48: Sample one shot prompt and answer example for special coordinate system, o1 part II.
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User Prompt
Here are the observations at the current time step for each agent. bot1 has ...

(a) Agent1 observation (b) Agent2 observation (c) Agent3 observation (d) orthographic views

Assistant
placeItem(bot1, ’stone’, new Vec3(-1,0,0))
placeItem(bot2, ’gold_ore’, new Vec3(1,0,0))
placeItem(bot3, ’sea_lantern’, new Vec3(0,0,0))
placeItem(bot1, ’gold_ore’, new Vec3(0,0,-1))
placeItem(bot2, ’emerald_block’, new Vec3(0,1,0))
placeItem(bot3, ’stone’, new Vec3(0,1,-1))

Comment
The model is able to recognize the blocks in the goal image and associate blocks with their
name.
The model does not follow instruction, generating two actions per agent, instead of the
required one action per agent as specified in the system prompt. This result only random one
out of two actions for each bot is being executed.
The model confused the spacial absolute space, miss placing the sea_lantern at (0,0,0), where
it should be one block below the origin.
The model confused the spacial relative position, and fail to eductive from three orthographic
views that the gold_ore is on the second layer (above another block), not the first layer
(directly on ground).

(e) sky view at step 0 (f) orthographic views (goal)

Figure 49: Step 1 of the sample building task, o1 part III.
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User Prompt
Here are the observations at the current time step for each agent. bot1 has ...

(a) Agent1 observation (b) Agent2 observation (c) Agent3 observation (d) orthographic views

Assistant
placeItem(bot1, ’sponge’, new Vec3(0,0,1))
placeItem(bot2, ’gold_ore’, new Vec3(1,0,1))
placeItem(bot3, ’emerald_block’, new Vec3(0,1,0))

Comment
The model is able to figure the special orientation from agent’s first perspective view. i.e. put
sponge on the right side of the center point.
The model is still confused with the spacial relative position, and fail to eductive from three
orthographic views that the sponge should be on the second layer (above another block), not
the first layer (directly on ground).

(e) sky view at step 0 (f) orthographic views (goal)

Figure 50: Step 2 of the sample building task, o1 part IV.
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System Prompt
You are controlling up to 4 bots in a Minecraft world. Your mission is to build a specific
structure on a platform by coordinating the bots’ actions across multiple timesteps with
observation feedback.
**Observations:** - **Images:** - Up to 4 first-person perspective images (one from each
bot), all agent’s view will reset to look at the middle of the platform for each timestep -
The goal structure (last image): Contains three orthographic views of the target structure. *
Top-left: Top view (looking down from above, shows x-z plane, x increasing to the right, z
increasing to the top) Note if the structure has two layers, the top view will show the top
layer. * Top-right: Front view (looking from front, shows x-y plane, x increasing to the right,
y increasing to the top) * Bottom-left: Right side view (looking from right side, shows z-y
plane, z increasing to the right, y increasing to the top) * Bottom-right: Pure black image (no
information) - **Current State:** - A text description of inventory information for each bot
**Action Format:** - Use the placeItem() function with these parameters: - botID: ’bot1’,
’bot2’, ’bot3’ (for agent number 1, 2, 3, depending on number of bots available); ’bot0’,
’bot1’, ’bot2’, ’bot3’ (if 4 bots are available) - block: The type of block to place (must be
in bot’s inventory) - position: new Vec3(x,y,z) where (based on the top view image): * x:
vertical axis (-2 to 2) * y: height axis (0 to 1) * z: horizontal axis (-2 to 2) - No space in
coordinates x,y,z **Available Blocks:**
’oak_fence’, ’birch_log’, ’coal_ore’, ’bricks’, ’sandstone’, ’stone’,
’iron_ore’, ’gold_ore’, ’sponge’, ’sea_lantern’, ’dirt’, ’grass_block’,
’clay’, ’oak_planks’, ’emerald_block’, ’pumpkin’, ’orange_concrete’,
’purple_wool’, ’end_stone’, ’bookshelf’, ’acacia_fence’, ’oak_log’
**Constraints:** - Each bot can only place blocks from its own inventory - Inventory may
contain unneeded blocks - No overlapping blocks at the same position - No floating blocks
(must build on existing structures) - Each bot can place at most one block per timestep
**Workspace Coordinates:** - Center: (0,0,0) - Platform size: 5x5 units (x and z axes) -
Platform corners (**based on the top view image**): * Top-left: (2,0,-2) * Top-right: (2,0,2)
* Bottom-right: (-2,0,2) * Bottom-left: (-2,0,-2) - Height: * 0: Ground level (one block above
the workspace platform, lowest height to place blocks) * 1: Above ground level
**Orientation Strategy:** - Bot positions and orientations vary at each timestep, meaning
bot’s left might not be the same as the previous timestep, or the same as the other bots, or the
same as the goal image - Recommended approach: First place blocks at known coordinates
(like center 0,0,0 and one-block-to-the-left 0,0,-1) to establish reference points in bot’s view -
Use placed blocks and its positions in your action output to confirm your understanding of
the coordinate system
**Response Format:** - Provide only action commands, each on a new line using new line as
separator - Do not include explanations, markdown, or code blocks - A bot can be idle (no
action) for a timestep, simply not output such bot’s action - Use "NULL" if all bots are idle
**Example Response:**
placeItem(bot1, ’pumpkin’, new Vec3(-1,0,-1))
placeItem(bot2, ’purple_wool’, new Vec3(1,0,-1))
placeItem(bot3, ’coal_ore’, new Vec3(0,0,-1))

Figure 51: Sample system (developer) prompt of Claude 3.7 Sonnet in a building task, Claude part I.
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User Prompt
what is the block and its position in the image?

(a) orthographic views

Assistant
’oak_planks’ at new Vec3(0,0,0)
’bricks’ at new Vec3(0,0,-1)
’sponge’ at new Vec3(-1,0,0)
’pumpkin’ at new Vec3(-1,0,-1)
’bricks’ at new Vec3(0,1,0)

Figure 52: Sample one shot prompt and answer example for special coordinate system, Claude part
II.
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User Prompt
Here are the observations at the current time step for each agent. bot1 has ...

(a) Agent1 observation (b) Agent2 observation (c) Agent3 observation (d) orthographic views

Assistant
placeItem(bot1, ’sandstone’, new Vec3(0,0,0))
placeItem(bot2, ’coal_ore’, new Vec3(1,0,0))
placeItem(bot3, ’end_stone’, new Vec3(-1,0,0))

Comment
The model is able to recognize the blocks in the goal image and associate blocks with their
name.
The model can follow the instruction to generate required format for actions. Generated
actions satisfy all requirements given in the system prompt.
The model can understand the spacial relative position, and able to deductive from three
orthographic views that it needs to place blocks that on the first layer first.
The model is not able to figure the special orientation from agent’s first perspective view. i.e.
the first three blocks should be form a horizontal line but actually formed a vertical line.

(e) sky view at step 0 (f) orthographic views (goal)

Figure 53: Step 1 of the sample building task, Claude part III.
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User Prompt
Here are the observations at the current time step for each agent. bot1 has ...

(a) Agent1 observation (b) Agent2 observation (c) Agent3 observation (d) orthographic views

Assistant
placeItem(bot1, ’sea_lantern’, new Vec3(-1,0,1))
placeItem(bot2, ’sandstone’, new Vec3(0,0,1))
placeItem(bot3, ’emerald_block’, new Vec3(-1,0,-1))

Comment
The model starts to be confused with the spacial relative position, and fail to eductive from
three orthographic views that the sea_lantern should be on the second layer (above another
block), not the first layer (directly on ground).

(e) sky view at step 0 (f) orthographic views (goal)

Figure 54: Step 2 of the sample building task, Claude part IV.
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User Prompt
Here are the observations at the current time step for each agent. bot1 has ...

(a) Agent1 observation (b) Agent2 observation (c) Agent3 observation (d) orthographic views

Assistant
placeItem(bot1, ’sea_lantern’, new Vec3(-1,0,1))
placeItem(bot2, ’sandstone’, new Vec3(0,0,1))
placeItem(bot3, ’emerald_block’, new Vec3(-1,0,-1))

Comment
The model begins to randomly place disturbing blocks (those not on the goal image but in
agents’ inventories) on the ground.

(e) sky view at step 0 (f) orthographic views (goal)

Figure 55: Step 3 of the sample building task, Claude part IV.
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User Prompt
Here are the observations at the current time step for each agent. bot1 has ...

(a) Agent1 observation (b) Agent2 observation (c) Agent3 observation (d) orthographic views

Assistant
placeItem(bot1, ’bricks’, new Vec3(0,0,-1))
placeItem(bot2, ’coal_ore’, new Vec3(1,0,-1))
placeItem(bot3, ’emerald_block’, new Vec3(0,1,-1))

Comment

(e) sky view at step 0 (f) orthographic views (goal)

Figure 56: Step 4 of the sample building task, Claude part V.
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User Prompt
Here are the observations at the current time step for each agent. bot1 has ...

(a) Agent1 observation (b) Agent2 observation (c) Agent3 observation (d) orthographic views

Assistant
placeItem(bot1, ’emerald_block’, new Vec3(-1,1,0))
placeItem(bot2, ’sea_lantern’, new Vec3(1,0,1))
placeItem(bot3, ’end_stone’, new Vec3(1,1,0))

Comment

(e) sky view at step 0 (f) orthographic views (goal)

Figure 57: Step 5 of the sample building task, Claude part VI.
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User Prompt
Here are the observations at the current time step for each agent. bot1 has ...

(a) Agent1 observation (b) Agent2 observation (c) Agent3 observation (d) orthographic views

Assistant
placeItem(bot1, ’bricks’, new Vec3(0,1,0))
placeItem(bot2, ’sea_lantern’, new Vec3(0,1,1))
placeItem(bot3, ’end_stone’, new Vec3(1,0,-1))

Comment

(e) sky view at step 0 (f) orthographic views (goal)

Figure 58: Step 6 of the sample building task, Claude part VII.
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User Prompt
Here are the observations at the current time step for each agent. bot1 has ...

(a) Agent1 observation (b) Agent2 observation (c) Agent3 observation (d) orthographic views

Assistant
placeItem(bot1, ’sponge’, new Vec3(0,0,-1))
placeItem(bot2, ’bricks’, new Vec3(-1,1,-1))
placeItem(bot3, ’end_stone’, new Vec3(-1,1,1))

Comment
The model uses all available blocks in agents’ inventories, and almost fill the entire playground
by generating place action every time step.

(e) sky view at step 0 (f) orthographic views (goal)

Figure 59: Step 7 of the sample building task, Claude part VIII.
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K Dataset Statistics Tables1200

Table 14: Building Task Diversity Statistics
Diversity Type Count Percentage

Action Sequences
3 7,777 51.85%
2 3,207 21.38%
4 3,091 20.61%
5 483 3.22%
6 440 2.93%

Agents
3 7,505 50.03%
2 7,493 49.97%

Scenes
ice_on_water 2,555 17.04%
mountain_half 2,553 17.03%
village 2,482 16.55%
desert_village 2,480 16.53%
snow_mountain 2,478 16.52%
swamp 2,450 16.34%

Background Types
stone 1,530 10.20%
pink_wool 1,527 10.19%
glowstone 1,522 10.15%
obsidian 1,511 10.08%
glass 1,509 10.07%
smooth_quartz 1,499 10.00%
hay_block 1,494 9.96%
gold_block 1,473 9.82%
oak_wood 1,471 9.81%
cyan_concrete 1,462 9.75%

Target Types
bricks 10,391 9.92%
sponge 5,438 5.19%
coal_ore 5,370 5.13%
grass_block 5,327 5.09%
clay 5,318 5.08%
sea_lantern 5,296 5.06%
orange_concrete 5,287 5.05%
pumpkin 5,269 5.03%
purple_wool 5,257 5.02%
gold_ore 5,247 5.01%
oak_fence 5,234 5.00%
oak_planks 5,216 4.98%
birch_log 5,184 4.95%
stone 5,182 4.95%
sandstone 5,176 4.94%
emerald_block 5,164 4.93%
iron_ore 5,160 4.93%
dirt 5,124 4.89%
end_stone 5,119 4.89%

Target Counts
6 5,653 37.69%
7 2,625 17.50%
8 2,573 17.15%
5 2,122 14.15%
10 526 3.51%
12 515 3.43%
9 496 3.31%
11 488 3.25%

Dimensional Shapes
[3, 1, 2] 3,859 25.73%
[4, 1, 2] 3,770 25.14%
[2, 3, 2] 3,695 24.63%
[2, 2, 2] 3,674 24.49%

Table 15: Clearing Task Diversity Statistics
Diversity Type Count Percentage

Action Sequences
4 4,027 27.51%
5 3,751 25.61%
6 3,270 22.32%
3 1,561 10.66%
7 1,396 9.53%
8 424 2.89%
9 133 0.91%
2 79 0.54%

Agents
2 7,358 50.28%
3 7,283 49.72%

Scenes
desert_village 3,012 20.56%
snow_mountain 2,948 20.13%
swamp 2,929 20.00%
ice_on_water 2,894 19.76%
village 2,858 19.54%

Background Types
smooth_quartz 1,405 9.59%
pink_wool 1,357 9.27%
gold_block 1,353 9.24%
oak_wood 1,334 9.10%
hay_block 1,332 9.09%
cyan_concrete 1,332 9.09%
grass_block 1,328 9.06%
glass 1,325 9.04%
glowstone 1,309 8.93%
stone 1,302 8.89%
obsidian 1,264 8.63%

Target Counts
6 4,310 29.43%
5 2,499 17.07%
4 2,436 16.64%
8 1,843 12.58%
7 1,803 12.31%
9 1,750 11.95%

Target Types
oak_fence 5,879 6.45%
grass_block 5,836 6.40%
clay 5,816 6.38%
oak_log 5,772 6.33%
sandstone 5,748 6.30%
acacia_fence 5,744 6.30%
birch_log 5,732 6.28%
bookshelf 5,726 6.28%
stone 5,709 6.26%
bricks 5,695 6.25%
crafting_table 5,684 6.23%
dirt 5,671 6.22%
cobweb 5,605 6.15%
iron_ore 5,603 6.14%
coal_ore 5,555 6.09%
anvil 5,439 5.96%

Dimensional Shapes
3 7,346 50.15%
2 7,295 49.84%

Tools
stone_pickaxe 9,329 25.51%
stone_sword 9,180 25.10%
stone_axe 9,150 24.99%
stone_shovel 8,906 24.36%
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Table 16: Farming Task Diversity Statistics
Diversity Type Count Percentage

Action Sequences
4 7,458 50.33%
5 3,731 25.17%
3 3,264 22.02%
6 270 1.82%
2 81 0.55%
7 11 0.07%

Agents
2 7,465 50.37%
3 7,350 49.63%

Scenes
snow_mountain 3,732 25.18%
swamp 3,722 25.11%
ice_on_water 3,707 25.01%
village 3,654 24.69%

Background Types
stone 2,892 19.51%
obsidian 1,549 10.46%
hay_block 1,527 10.30%
oak_wood 1,524 10.28%
cyan_concrete 1,492 10.06%
glass 1,465 9.88%
smooth_quartz 1,462 9.86%
pink_wool 1,455 9.81%
dirt 1,449 9.77%

Target Types
potato 4,972 33.56%
carrot 4,955 33.45%
wheat 4,888 32.99%

Target Counts
4 2,873 19.39%
3 2,269 15.31%
5 2,256 15.22%
6 2,151 14.51%
2 1,240 8.37%
8 1,112 7.50%
10 1,062 7.17%
7 933 6.29%
12 512 3.45%
14 407 2.75%

Table 17: Smelting Task Diversity Statistics
Diversity Type Count Percentage

Action Sequences
5 3,261 30.20%
4 3,072 28.45%
6 2,041 18.89%
3 1,824 16.88%
2 358 3.31%
7 239 2.21%
8 8 0.07%

Agents
3 5,480 50.75%
2 5,323 49.25%

Scenes
snow_mountain 2,272 21.04%
desert_villege 2,257 20.92%
swamp 2,171 20.08%
ice_on_water 2,059 19.09%
villege 2,044 18.87%

Background Types
gold_block 1,014 9.22%
smooth_quartz 1,010 9.19%
cyan_concrete 995 9.02%
glowstone 981 8.92%
pink_wool 990 8.99%
glass 978 8.89%
oak_wood 987 8.98%
grass_block 977 8.88%
hay_block 968 8.80%
stone 964 8.76%
obsidian 939 8.54%

Furnace
1 5,772 53.45%
2 5,031 46.55%

Fuel Types
coal_block 999 9.58%
charcoal 962 9.22%
lava_bucket 940 9.01%
coal 921 8.84%
spruce_planks 910 8.73%
acacia_planks 906 8.69%
oak_planks 861 8.26%
birch_log 893 8.57%
acacia_log 887 8.50%
spruce_log 845 8.10%
oak_log 840 8.05%
birch_planks 839 8.04%

Goal Types
food 5,412 50.09%
item 5,391 49.91%

Target Types
glass 1,144 10.26%
gold_ingot 1,094 9.81%
stone 1,077 9.66%
smooth_sandstone 1,040 9.32%
iron_ingot 1,036 9.29%
cooked_salmon 712 6.38%
cooked_cod 708 6.35%
baked_potato 758 6.80%
cooked_mutton 664 5.95%
cooked_rabbit 648 5.81%
cooked_porkchop 668 5.99%
cooked_beef 627 5.62%
cooked_chicken 627 5.62%

Target Counts
2 3,999 37.01%
3 3,363 31.13%
1 1,909 17.68%
4 1,532 14.18%

Tools
iron_pickaxe 18,633 29.69%
iron_shovel 13,676 21.78%
iron_axe 13,453 21.43%
iron_sword 13,448 21.42%

Resource Types
red_sand 2,032 10.37%
gold_ore 1,999 10.20%
cobblestone 1,915 9.77%
sandstone 1,818 9.28%
iron_ore 1,780 9.08%
coal_ore 1,714 8.75%
acacia_planks 1,564 7.98%
oak_planks 1,503 7.67%
birch_log 1,486 7.58%
spruce_log 1,477 7.54%
oak_log 1,456 7.44%
spruce_planks 1,471 7.51%
birch_planks 1,344 6.86%
sheep 1,119 5.71%
pig 1,104 5.63%
rabbit 1,097 5.60%
chicken 1,081 5.52%
cow 700 3.57%
mooshroom 675 3.44%
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L Datasheet1201

Motivation

For what purpose was the dataset created?
Was there a specific task in mind? Was
there a specific gap that needed to be filled?
Please provide a description.

The TeamCraft dataset was created to support
development and evaluation for multi-modal
multi-agent systems in MineCraft.

Who created the dataset (e.g., which team,
research group) and on behalf of which entity
(e.g., company, institution, organization)?

The dataset was created by the TeamCraft team.

Who funded the creation of the dataset? If
there is an associated grant, please provide
the name of the grantor and the grant name
and number.

The dataset was funded by the TeamCraft team.

Any other comments?

None.

Composition

What do the instances that comprise the
dataset represent (e.g., documents, photos,
people, countries)? Are there multiple types
of instances (e.g., movies, users, and rat-
ings; people and interactions between them;
nodes and edges)? Please provide a descrip-
tion.

Each instance contains a ground-truth expert
demonstration of a multi-agent team finishing a
task in Minecraft, and the corresponding multi-
modal prompts specifying the task.

How many instances are there in total (of
each type, if appropriate)?

There are in total 57,207 instances.

Does the dataset contain all possible in-
stances or is it a sample (not necessarily
random) of instances from a larger set? If
the dataset is a sample, then what is the
larger set? Is the sample representative of
the larger set (e.g., geographic coverage)?
If so, please describe how this representa-

tiveness was validated/verified. If it is not
representative of the larger set, please de-
scribe why not (e.g., to cover a more diverse
range of instances, because instances were
withheld or unavailable).

The dataset contain all possible instances.

What data does each instance consist of?
“Raw” data (e.g., unprocessed text or images)
or features? In either case, please provide a
description.

Each instance consists of a multi-modal task
specification, agents observations and expert tra-
jectories. Each task specification contains one
raw language instruction and three orthographic
views images. Agents observations contain the
first-person view RGB images and the inventory
information.

Is there a label or target associated with each
instance? If so, please provide a description.

N/A.

Is any information missing from individual in-
stances? If so, please provide a description,
explaining why this information is missing
(e.g., because it was unavailable). This does
not include intentionally removed information,
but might include, e.g., redacted text.

We intentionally removed the expert demonstra-
tion in the test set to prevent over-fitting.

Are relationships between individual in-
stances made explicit (e.g., users’ movie rat-
ings, social network links)? If so, please de-
scribe how these relationships are made ex-
plicit.

Each instance in the dataset corresponds to an
individual task variant that belongs to one of the
four task types (i.e. building, clearing, farming,
smelting). The task type is explicitly specified in
the file name.

Are there recommended data splits (e.g.,
training, development/validation, testing)? If
so, please provide a description of these
splits, explaining the rationale behind them.

The dataset has been split into a training set
(55,257 instances), a validation set (1,000 in-
stances) and a test set (950 instances). The
training set is designed for model training while

77



the validation set is for hyperparameter tuning
and checkpoint selection. The test set is designed
to evaluate the model’s generalization capabilities
across novel scenes, novel goal states and novel
agent numbers.

Are there any errors, sources of noise, or
redundancies in the dataset? If so, please
provide a description.

None as we know.

Is the dataset self-contained, or does it link
to or otherwise rely on external resources
(e.g., websites, tweets, other datasets)? If
it links to or relies on external resources, a)
are there guarantees that they will exist, and
remain constant, over time; b) are there offi-
cial archival versions of the complete dataset
(i.e., including the external resources as they
existed at the time the dataset was created);
c) are there any restrictions (e.g., licenses,
fees) associated with any of the external re-
sources that might apply to a dataset con-
sumer? Please provide descriptions of all
external resources and any restrictions as-
sociated with them, as well as links or other
access points, as appropriate.

The dataset is entirely self-contained.

Does the dataset contain data that might be
considered confidential (e.g., data that is pro-
tected by legal privilege or by doctor– patient
confidentiality, data that includes the content
of individuals’ non-public communications)?
If so, please provide a description.

None as we know.

Does the dataset contain data that, if viewed
directly, might be offensive, insulting, threat-
ening, or might otherwise cause anxiety? If
so, please describe why.

None as we know.

Does the dataset identify any subpopulations
(e.g., by age, gender)? If so, please describe
how these subpopulations are identified and
provide a description of their respective dis-
tributions within the dataset.

No.

Is it possible to identify individuals (i.e., one
or more natural persons), either directly or

indirectly (i.e., in combination with other data)
from the dataset? If so, please describe how.

No.

Does the dataset contain data that might be
considered sensitive in any way (e.g., data
that reveals race or ethnic origins, sexual ori-
entations, religious beliefs, political opinions
or union memberships, or locations; finan-
cial or health data; biometric or genetic data;
forms of government identification, such as
social security numbers; criminal history)? If
so, please provide a description.

None as we know.

Any other comments?

None.

Collection Process

How was the data associated with each in-
stance acquired? Was the data directly ob-
servable (e.g., raw text, movie ratings), re-
ported by subjects (e.g., survey responses),
or indirectly inferred/derived from other data
(e.g., part-of-speech tags, model-based
guesses for age or language)? If the data
was reported by subjects or indirectly in-
ferred/derived from other data, was the data
validated/verified? If so, please describe
how.

In each data instance, the expert trajectory was
generated programmatically via a planning al-
gorithm. The language instruction was created
by language templates. The orthographic views
images and agent observations were collected in
MineCraft.

What mechanisms or procedures were used
to collect the data (e.g., hardware appara-
tuses or sensors, manual human curation,
software programs, software APIs)? How
were these mechanisms or procedures vali-
dated?

The data is automatically generated by running
the data collection scripts. The procedure is fur-
ther verified by the team via manual inspection.

If the dataset is a sample from a larger set,
what was the sampling strategy (e.g., deter-
ministic, probabilistic with specific sampling
probabilities)?
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N/A.

Who was involved in the data collection pro-
cess (e.g., students, crowdworkers, contrac-
tors) and how were they compensated (e.g.,
how much were crowdworkers paid)?

Only the TeamCraft team members are voluntar-
ily involved in the data collection process.

Over what timeframe was the data collected?
Does this timeframe match the creation time-
frame of the data associated with the in-
stances (e.g., recent crawl of old news ar-
ticles)? If not, please describe the time-
frame in which the data associated with the
instances was created.

The data were collected between February 2024
and September 2024.

Were any ethical review processes con-
ducted (e.g., by an institutional review
board)? If so, please provide a description
of these review processes, including the out-
comes, as well as a link or other access point
to any supporting documentation.

No.

Did you collect the data from the individu-
als in question directly, or obtain it via third
parties or other sources (e.g., websites)?

N/A.

Were the individuals in question notified
about the data collection? If so, please de-
scribe (or show with screenshots or other
information) how notice was provided, and
provide a link or other access point to, or oth-
erwise reproduce, the exact language of the
notification itself.

N/A.

Did the individuals in question consent to the
collection and use of their data? If so, please
describe (or show with screenshots or other
information) how consent was requested and
provided, and provide a link or other access
point to, or otherwise reproduce, the exact
language to which the individuals consented.

N/A.

If consent was obtained, were the consent-
ing individuals provided with a mechanism to

revoke their consent in the future or for cer-
tain uses? If so, please provide a description,
as well as a link or other access point to the
mechanism (if appropriate).

N/A.

Has an analysis of the potential impact of the
dataset and its use on data subjects (e.g., a
data protection impact analysis) been con-
ducted? If so, please provide a description
of this analysis, including the outcomes, as
well as a link or other access point to any
supporting documentation.

No.

Any other comments?

None.

Preprocessing/cleaning/labeling

Was any preprocessing/cleaning/labeling of
the data done (e.g., discretization or buck-
eting, tokenization, part-of-speech tagging,
SIFT feature extraction, removal of instances,
processing of missing values)? If so, please
provide a description. If not, you may skip
the remaining questions in this section.

Yes. In each data instance, the three orthographic
views images rendered by MineCraft are manu-
ally concatenated as one image.

Was the “raw” data saved in addition to the
preprocessed/cleaned/labeled data (e.g., to
support unanticipated future uses)? If so,
please provide a link or other access point to
the “raw” data.

No.

Is the software that was used to preprocess/-
clean/label the data available? If so, please
provide a link or other access point.

N/A.

Any other comments?

None.

Uses

Has the dataset been used for any tasks al-
ready? If so, please provide a description.
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The dataset is used to develop the TeamCraft-
VLA model, as described in this paper.

Is there a repository that links to any or all pa-
pers or systems that use the dataset? If so,
please provide a link or other access point.

No.

What (other) tasks could the dataset be used
for?

This dataset can be used for the development and
evaluation of multi-modal multi-agent systems in
MineCraft.

Is there anything about the composition of
the dataset or the way it was collected and
preprocessed/cleaned/labeled that might im-
pact future uses? For example, is there any-
thing that a dataset consumer might need to
know to avoid uses that could result in un-
fair treatment of individuals or groups (e.g.,
stereotyping, quality of service issues) or
other risks or harms (e.g., legal risks, finan-
cial harms)? If so, please provide a descrip-
tion. Is there anything a dataset consumer
could do to mitigate these risks or harms?

Unknown to the authors of the datasheet.

Are there tasks for which the dataset should
not be used? If so, please provide a descrip-
tion.

Unknown to the authors of the datasheet.

Any other comments?

None.

Distribution

Will the dataset be distributed to third par-
ties outside of the entity (e.g., company, insti-
tution, organization) on behalf of which the
dataset was created? If so, please provide a
description.

Yes, the dataset is available on the Internet.

How will the dataset will be distributed (e.g.,
tarball on website, API, GitHub)? Does the
dataset have a digital object identifier (DOI)?

The dataset will be available on Huggingface. It
does not have a DOI.

When will the dataset be distributed?

The dataset will be available online by
12/01/2024.

Will the dataset be distributed under a copy-
right or other intellectual property (IP) license,
and/or under applicable terms of use (ToU)?
If so, please describe this license and/or ToU,
and provide a link or other access point to, or
otherwise reproduce, any relevant licensing
terms or ToU, as well as any fees associated
with these restrictions.

The dataset is under Apache 2.0 license.

Have any third parties imposed IP-based or
other restrictions on the data associated with
the instances? If so, please describe these
restrictions, and provide a link or other ac-
cess point to, or otherwise reproduce, any
relevant licensing terms, as well as any fees
associated with these restrictions.

None as we know.

Do any export controls or other regulatory
restrictions apply to the dataset or to individ-
ual instances? If so, please describe these
restrictions, and provide a link or other ac-
cess point to, or otherwise reproduce, any
supporting documentation.

Unknown to authors of the datasheet.

Any other comments?

None.

Maintenance

Who will be supporting/hosting/maintaining
the dataset?

The TeamCraft team will be maintaining the
dataset.

How can the owner/curator/manager of the
dataset be contacted (e.g., email address)?

Email: teamcraftbench@gmail.com

Is there an erratum? If so, please provide a
link or other access point.

No.

80

https://huggingface.co/datasets/teamcraft/teamcraft_data


Will the dataset be updated (e.g., to correct
labeling errors, add new instances, delete
instances)? If so, please describe how often,
by whom, and how updates will be commu-
nicated to dataset consumers (e.g., mailing
list, GitHub)?

No planned updates at the time of preparing this
datasheet.

If the dataset relates to people, are there ap-
plicable limits on the retention of the data
associated with the instances (e.g., were the
individuals in question told that their data
would be retained for a fixed period of time
and then deleted)? If so, please describe
these limits and explain how they will be en-
forced.

Unknown to authors of the datasheet.

Will older versions of the dataset continue
to be supported/hosted/maintained? If so,

please describe how. If not, please describe
how its obsolescence will be communicated
to dataset consumers.

N/A.

If others want to extend/augment/build on/-
contribute to the dataset, is there a mecha-
nism for them to do so? If so, please provide
a description. Will these contributions be val-
idated/verified? If so, please describe how.
If not, why not? Is there a process for com-
municating/distributing these contributions to
dataset consumers? If so, please provide a
description.

Others may do so and should contact the original
authors about incorporating fixes/extensions.

Any other comments?

None.
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