© ® N O g A~ W N =

TeamCraft: A Multi-Modal Benchmark for
Collaborative Agents in Minecraft

Zhi Li'} Qian Long'} Ran Gong', Ying Nian Wu', Demetri Terzopoulos', Xiaofeng Gao’f
1University of California, Los Angeles, 2 Amazon AGI
teamcraftbench@gmail.com
https://teamcraft-bench.github.io/

Abstract

Collaboration is a cornerstone of society. In the real world, human teammates make
use of multi-sensory data to tackle challenging tasks in ever-changing environments.
It is likewise essential for embodied agents collaborating in visually-rich environ-
ments replete with dynamic interactions to understand multi-modal observations
and task specifications. To evaluate the performance of generalizable multi-modal
collaborative agents, we present TeamCraft, a multi-modal multi-agent benchmark
built on top of the open-world video game Minecraft. The benchmark features
55,000 task variants specified by multi-modal prompts, procedurally-generated
expert demonstrations for imitation learning, and carefully designed protocols to
evaluate model generalization capability. We also perform extensive analyses to
better understand the limitations and strengths of existing approaches. Our results
indicate that existing models continue to face significant challenges in generalizing
to novel goals, scenes, and unseen numbers of agents. These findings underscore the
potential for further research in this area. The TeamCraft platform and dataset are
publicly available at https://github. com/teamcraft-bench/teamcraft.

1 Introduction

Developing collaborative skills is essential for embodied agents, as collaboration is a fundamental
aspect of human intelligence (Smith & Gasser, 2005). In the Al community, multi-agent collaboration
is frequently studied using grid-world environments (Leibo et al., 2021; Suarez et al., 2021; Stone &
Veloso, 2000; Gong et al., 2023c; Dong et al., 2024; Puig et al., 2021; Park et al., 2023; Zhang et al.,
2024a; Wu et al., 2021; Long et al., 2024a). However, agents in these environments lack multi-modal
understanding. By contrast, learning within visually-rich environments enables agents to develop
useful representations of multi-agent dynamics (Chen et al., 2020; Jaderberg et al., 2019), as vision
facilitates implicit communication, coordination, and collaborative execution (Jain et al., 2020, 2019).

Learning vision-based, multi-task, multi-agent systems is a challenging objective that presents several
difficulties. These systems must develop detailed scene understanding to handle the diverse visual
appearances of scenes. The complexity is further heightened by the numerous combinations of task
configurations, such as object spatial arrangements, goal configurations, arbitrary numbers of agents,
and heterogeneous agent capabilities. Consequently, it is essential for multi-agent systems to acquire
generalizable skills that can be effectively transferred across different settings.

An important step in addressing these challenges is to develop simulation systems that support
multi-modal multi-agent learning. Recent advances in simulated environments have significantly
facilitated progress in embodied vision-based systems (Yu et al., 2024; Jain et al., 2020; Chen et al.,

*Equal contribution.
This work does not relate to the author’s position at Amazon.

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

https://teamcraft-bench.github.io/
https://github.com/teamcraft-bench/teamcraft

34
35
36
37
38
39

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

55

56
57
58

59
60

61
62
63

64

65
66
67
68
69
70
71

Benchmark MM Spec. 3D Observation MA Interaction Tool Generalization # Agents # Variants # Demonstrations

ALFRED (Shridhar et al., 2020a) X v v X 4 v E 1 2,600+ 8,000+
FurnMove (Jain et al., 2020) X v \% CD v X E 2 30 X
Marlo (Perez-Liebana et al., 2019) X v v D v X X 4+ 14 X
MineDojo (Fan et al., 2022) X v v X 4 v EG 1 3,000+ 740,000+
MindAgent (Gong et al., 2023c¢) X v VS C v v X 4+ 39 X
Neural MMO 2.0 (Sudrez et al., 2024) X X S CD v v EGA 128+ 25+ X
Overcooked-Al (Carroll et al., 2020) X X \S C v v X 2 5 80
PARTNR (Chang et al., 2024) X v \S CD 4 v E 2 100,000+ 100,000+
RoCoBench (Mandi et al., 2024) X v S CD v v G 2 6 X
VIMA-Bench (Jiang et al., 2022) v v v X v v EG 1 1,000+ 600,000+
Watch&Help (Puig et al., 2021) X v S CD 4 v EG 2 1,200+ 6,300+
TeamCraft v v VS CD v v EGA 4+ 55,000+ 55,000+

Table 1: Comparison with other benchmarks. TeamCraft features visual observation for multi-agent
control with widely-varied tasks specified by multi-modal prompts, targeting various types of gener-
alization essential for multi-agent teaming. MM Spec.: multi-modal task specification. Observation:
V for visual observation and S for state-based observation. MA: multi-agent control, C for centralized
and D for decentralized. Interaction: object interaction. Tool: tool use. Generalization: types of
generalization targeted, E for generalization on novel environments or scenes, G for novel goals, A
for novel numbers of agents. # Variants: number of task variants involved.

2020; Perez-Liebana et al., 2019; Das et al., 2019). Despite notable progress, these systems have
several limitations: 1) many of them target one or two-agent scenarios (Jain et al., 2019; Mandi et al.,
2024; Wang et al., 2023a), 2) they are often limited to indoor settings with a narrow range of tasks
(Puig et al., 2021; Zhang et al., 2024c¢), and 3) the task specifications are generally purely in text (Liu
et al., 2022b; Mandi et al., 2024), making it hard to specify subtle task differences accurately and
efficiently.

To drive progress in this area, we have developed a comprehensive benchmark, named TeamCraft, that
features procedurally generated large-scale datasets specifically designed for multi-modal multi-agent
systems. This benchmark utilizes the widely acclaimed open-world video game Minecraft as an
experimental platform to engage with the complex dynamics of multi-modal multi-agent interactions.
Inspired by the work of Jiang et al. (2022), we also leverage multi-modal prompts as task specifications
to guide agent interactions, as language often fails to effectively convey spatial information (Cai
et al., 2024). Our benchmark offers rich visual backgrounds, diverse object categories, complex
crafting sequences, and varying task dynamics. These features enable systematic exploration of
out-of-distribution generalization challenges for multi-modal, multi-task, multi-agent systems at scale.
In particular, our benchmark evaluates a model’s ability to generalize to novel goal configurations,
unseen number of agents, novel agent capabilities, and new types of visual backgrounds. To evaluate
existing techniques using our benchmark, we design several baseline models to work within the
framework and compare their performance. Our results highlight that current approaches to vision-
conditioned collaboration and task planning encounter significant challenges when tested within
TeamCraft’s complex and dynamic environment, especially when it comes to generalizations.

In summary, the main contributions of this paper are:

* TeamCraft, a new multi-modal multi-agent benchmark with its associated large-scale dataset
encompassing complex tasks challenging multi-agent systems in a wide variety of generalization
scenarios.

 Extensive experiments and analyses on state-of-the-art multi-modal multi-agent models, uncovering
their strengths and weaknesses to inform and inspire future research.

* To ensure reproducibility and encourage future work in the research community, we open source
the entire platform, its training and evaluation code, and release the model checkpoints and training
data at https://github.com/teamcraft-bench/teamcraft.

2 Related Work

Embodied Language-Guided Benchmarks: Several researchers have looked at the problem of using
natural language as the interface between embodied agents, either in the form of task specifications
(Shridhar et al., 2020b,a; Zheng et al., 2022; Gong et al., 2023b), question answering (Das et al.,
2018; Gordon et al., 2018; Ma et al., 2023; Majumdar et al., 2024), instruction following (Anderson
et al., 2018; Narayan-Chen et al., 2019; Jayannavar et al., 2020; Gao et al., 2022; Padmakumar et al.,
2022; Wan et al., 2022; Gao et al., 2023), or as means of task coordination (Li et al., 2023; Mandi
et al., 2024). VIMA-Bench (Jiang et al., 2022) builds on previous efforts in language-guided robotic

https://github.com/teamcraft-bench/teamcraft

72
73
74
75

76
7
78
79
80
81
82
83

84

85

86
87
88
89
90
91

92

93
94
95
96
97
98
99

100
101
102
103

104
105
106
107
108
109

Building Clearing Farming Farming Smelting Smelting

Scenes village snow_mountain village swamp ice_on_water desert_villege

Base cyan_concrete gold_block hay_block obsidian oak_wood glass

Goal Build 1x2x4 building Clean 3D building Potato *3 wheat *4 cooked_mutton *1 smooth_quartz *2

Object [dirt, wool, fence [grass_block, dirt - - [birch_planks, sheep] [oak_planks,
sandstone, sponge] birch_log, bookshelf,] quartz_block]

Agent 3 3 2 2 3 2

Inventory [dirt, wool, fence, [stone_axe, [carrot, [wheat_seeds, [iron_pickaxe, [iron_pickaxe,
sponge,log, stone] stone_sword] beetroot] carrot, potato] iron_axe, iron_sword] iron_axe]

e
Demonstration m " s

e Fall = s
SS7/ZEN] r

Figure 1: We present example task configurations, as a combination of distinct biomes, playground
base blocks, task goals, target blocks materials and agent counts. Agents are initialized with unique
inventories, which provide them with different capabilities to complete various activities. A detailed
distribution is provided in the supplementary.

manipulation (Zeng et al., 2020; Shridhar et al., 2021; Mees et al., 2022) and uses multi-modal
prompts as uniform task specifications for object manipulation. TeamCraft extends multi-modal
prompts to the multi-agent domain and uses them to specify a wide variety of collaborative tasks that
require object interaction and navigation.

Benchmarks Based on Minecraft: Malmo (Johnson et al., 2016) marks the advent of a Gym-style
platform tailored to Minecraft games. It paves the way for subsequent works such as MineRL (Guss
et al., 2019), Voyager (Wang et al., 2023a), and MineDojo (Fan et al., 2022). Marlo (Perez-Liebana
et al., 2019) extends Malmo to multi-agent scenarios, but the small number of task variations limit
generalizations. Similar to our work, MindAgent (Gong et al., 2023c) and VillagerBench (Dong
et al., 2024) focus on multi-agent collaboration in a multi-task setting. However, both of these
use state-based observations, while TeamCraft tackles the more challenging problem of learning to
collaborate from multi-modal perceptions. Table 1 compares TeamCraft with prior benchmarks.

3 TeamCraft Benchmark

3.1 Problem Formulation

Assume that an embodied multi-agent system comprised of N agents needs to complete a complex
task involving navigation and object manipulation. The task is specified in a multi-modal prompt
T = {xl}lL: 1> which is a sequence of interleaved language and image tokens with length L. At time
step ¢, each agent receives partial observation o, € O from the full observation space O. To complete
the task, each agent can choose to perform a high level action a; € A from the full set of action A.
The action can be further decomposed into a sequence of low level control signals.

3.2 Simulation Environment

TeamCraft utilizes Minecraft as its foundational simulation environment, offering a complex, open-
world setting for multi-agent interactions. With a Gym-like environment, it facilitates the execution
of intricate multi-agent commands via self-explanatory skills. Figure 3 illustrates the platform
architecture. High level skills from the model can be translated into low level control signals via
nested API calls through Mineflayer®. After execution, visual observation of each agent are rendered
and provided as input to the model. Our simulation platform offers state-of-arts efficiency and
scalability, detailed in the supplementary.

Multi-Modal Prompts: In our work, the multi-modal prompt =, consisting of a language instruction
interleaved with a set of orthographic projection images (i.e. top, left, front views) for task specifi-
cation. Depending on the specific task, the images can specify either the initial states, intermediate
states or the goal states.

Observation and Actions: To mimic real world settings of embodied visual agent teaming, we use
first-person view RGB image and inventory information as the observation o,,. The action space A
involves high-level self-explanatory skills such as obtainBlock to obtain a block and farmWork to
farm a crop. Most actions take three input parameters, including 1) agent name such as bot1, as the
action-executing entity, 2) item name such as dirt, 3) a 3D vector indicating the position of the target.
There are 8 types of actions in total. A complete list of actions are described in the supplementary.

*https://github.com/PrismarineJS/mineflayer

https://github.com/PrismarineJS/mineflayer

110

111
112
113
114
115

116
117
118
119
120
121

122
123
124
125
126
127
128

129
130
131
132
133
134
135
136

137
138
139
140
141
142
143
144
145

146

147
148

Three
Orthographic
Views
System
Prompt
Language
Instruction

Building

Clearing

Farming

Lleesy

Three bots need to build a building
on the platform. Write actions for
bot1, bot2, bot3 based on given

Three bots need to break everything

on the platform. Write actions for
bot1, bot2, bot3 based on given

Smelting

Two bots need to grow on the
platform. The goal is to get 4 carrot.
Write actions for bot1, bot2 based

Three bots need to craft 3 smooth
sandstone. To craft, | need obtain
‘sandstone’ with a pickaxe. Write

observation. observation.

bot1 has 5 bricks, 3 iron_ore, bot1 has a stone_axe,

bot2 has 2 sea_lantern, bot2 has a stone_pickaxe,
bot3 has 1 brick... bot3 has a stone_sword...

on given observation.

bot1 has 3 carrot,1 potato,
bot2 has 3 carrot, 2 beetroot...

actions for bot1, bot2, bot3 ...

First
Person
Observ U
ation bot1 has 1 beef,
bot2 has 1 iron_sword,

bot3 has 1iron_shovel...

Inventory
Information

placeltem(bot1, 'bricks!, (-1,0,-1))
placeltem(bot2, 'oak_planks', (0,0,0))
placeltem(bot3, 'iron_ore!, (0,0,-1))

mineBlock(bot1, (-1,0,1))
mineBlock(bot2, (-2,0,0))
mineBlock(bot3, (-1,1,1))

farmWork(bot1, (1,-1,1), sow, ‘carrot’)
farmWork(bot2, (-1,-1,-2), sow,
‘carrot’)

putltem(bot1, 'sandstone), (0,0,-1)),
obtainBlock(bot2, (2,0,0)),
obtainBlock(bot3, (1,0,-3))

Action

Figure 2: Multi-modal prompts are provided for all tasks. The system prompt includes both the three
orthographic views and specific language instructions. Observations consist of first-person views
from different agents, along with agent-specific information.

3.3 Task Design

TeamCraft introduces a variety of complex and interactive multi-agent cooperation tasks that chal-
lenge the agents’ capabilities in planning, coordination, and execution within a collaborative and
dynamic environment. Each task is designed to test different facets of MA interaction, including role
distribution, real-time decision-making, and adaptability to changing environments. Task examples
are shown in Figure 1 and the corresponding prompt examples are shown in Figure 2.

Building: Agents erect a structure based on a provided orthographic view blueprint. Each agent
possesses a unique inventory of building blocks necessary for the construction. Successful completion
requires visual cognition to associate blueprint components with inventory items, spatial reasoning
to reconstruct a 3D structure from 2D images and map it to 3D coordinates for action targets, and
collaborative coordination with other agents to resolve action dependencies. For example, an agent
cannot place a floating block and should wait for another agent to build the supporting block first.

Clearing: Agents are required to remove all blocks from a specified area. Besides spatial under-
standing and awareness of action dependencies, agents will be given different tools and must employ
appropriate tools to break blocks, which vary in durability, thereby requiring multiple interactions
for complete removal. The assign correct agent with correct tools can dramatically reduce the time
required to remove blocks. Thus agents must coordinate task assignments to optimize block-breaking
efficiency. Strategic coordination is essential in this task as agents need to dynamically decide which
blocks to target based on their assigned tools, and assist each other even without the optimal tools.

Farming: Agents sow and harvest crops on designated farmland plots. They must monitor crop
growth stages, from newly planted to fully grown, and harvest only when crops reach maturity.
Efficient task completion requires spatial reasoning to select appropriate farmland, visual cognition
to assess crop maturity, and continuous updating of farmland states based on other agents’ actions.
As the available farmland exceeds what is needed, understanding other agents’ actions to avoid
redundancy, and dynamically allocating sub-tasks based on positions, available seeds, and crop
maturity are essential. For example, some agents can sow while others are harvesting, stop when the
total yield meets the goal.

Smelting: Agents obtain processed items using furnaces by gathering materials and coordinating
actions. They collect resources from the environment, by harvesting blocks or killing mobs, or use
existing inventory items to produce goal items like cooked food or refined materials. Agents also
need to gather fuel before they can make use of furnaces. Efficient task completion requires spatial
understanding to locate furnaces and resources, coordinating actions with inter-agent dependencies,
and assigning task to agent who has appropriate inventory and tools. For instance, if one agent
equipped sword is collecting beef, others without sword should focus on gathering fuel rather than
duplicating efforts. Working as a team to use limited furnaces efficiently is crucial, rather than each
agent independently smelting their own goal item.

3.4 Centralized and Decentralized Agents

Centralized Agents: The centralized model is given the observational data of all agents, including
the first-person view, action history, and inventory information. Based on these comprehensive data,

149
150

151
152
153
154

155

156
157

158
159
160

161
162
163
164
165

166
167
168
169

170
171
172
173

174

175
176

177
178
179
180
181

182
183
184
185

Building Clearing Farming Smelting

Observation Decentralized | | Centialized # Action Sequences 2-6 2-9 2_7 -8
i+ VLM vim # Agents 2-3 2-3 2-3 2-3
R High Level Action # Tools - 1-4 — 1-4
E:-EEEEE ﬁ Build Break # Scenes 6 5 4 5
LT ‘ & k ﬁ # Base Types 10 11 9 11
Farm # Furnaces - - - 1-2
e | ¥ ‘ Q @ Cook # Target Block Types 19 16 3 13
y # Target Block Counts 5-12 4-9 2-14 1-4
Mineflayer Low-level APIs # Fuel Types - - - 12
Resource Types - - - 20
Agent 1 AgentN # Dimensional Shapes 2 2 2 1
Placement Shapes 7715 12724 13188 8885
Total Demonstrations 14998 14641 14815 10803
Test Set 50 50 50 50
Generalization Set 200 200 150 200
Generalization Conditions 4 4 3 4

Figure 3: (Left) The TeamCraft platform consists of three main components: 1) a Minecraft server
that hosts online game, 2) Mineflayer as the interface for controlling agents in the server, and 3) a
Gym-like environment that provides RGB and inventory observations to the models, allowing control
of multiple agents through high-level actions. (Right) Task variants and dataset statistics

the model generates the actions for all agents simultaneously. This approach leverages the full scope
of information in the environment to coordinate and optimize the actions of all agents collectively.

Decentralized Agents: The decentralized models do not receive information about other agents
except for the initial inventory of the team. Each model generates actions solely for the individual
agent based on its limited view. This setting simulates a more realistic scenario where agents operate
independently with restricted information, focusing on their actions absent centralized coordination.

3.5 Diversity

The tasks are complex and challenging, testing multi-agent systems in diverse settings. Figure 3
provides task statistics and variants, with visual diversity detailed in supplementary.

Object Diversity: More than 30 target object or resource are used. Objects, such as fences, anvils,
or stone, have different shapes and textures. Farm crops have different visual appearances during
growth stage. Resources like chickens or rabbits have different appearances.

Inventory Diversity: Agent’s inventory include essential items mixed with non-essential ones (i.e.,
distractors), realistically simulating scenarios where agents must choose the right materials for
specific tasks while managing inventory constraints. Agents are provided with random tools for each
task. Appropriate tools significantly enhances efficiency in tasks like clearing. For smelting, some
resources must be collected by agent with specific tools.

Scene Diversity: More than 10 scenes are included in the tasks, covering biomes such as village,
mountain, forest, swamp, desert, etc. Tasks take place on grounds with diverse textured bases such
as glass, concrete, and quartz. Certain tasks may involve additional complexity, including farmland
which are intermixed with non-plantable blocks.

Goal Diversity: Each task requires achieving a varying number of goal targets. Building requires
different blocks placed into various shapes, categorized based on dimensionalities, e.g., 2D (all blocks
are at the same level) or 3D (some blocks are on top of others). Farming requires various target crops
and yields. For the smelting task, the target object is sampled from various food or processed items.

3.6 Tasks and Expert Demonstrations Generation

To create a rich learning environment and effective imitation learning dataset, systematic scenario
design and data collection methods are employed, as follows:

Task Generation: Variables from a diversity pool, such as agent counts, scenes, and goals, are
sampled to establish task configurations. Specifically, a solvable task is formulated by rejection
sampling of the essential task variables. "Solvable" implies that the task can be completed within the
Minecraft world rules and is within the agents’ capabilities. For example, in smelting tasks, fuel must
either be available to collect in the scene or directly accessible in the inventory.

Planner-Based Demonstrations Generation: Given the task specifications, a planner assigns actions
to agents at every time step, utilizing privileged information of the environment. Assume agent ¢
performing action j, the planner optimizes a cost function designed to minimize total task completion
time T, idle actions E;, action dependencies D, redundant actions U, and the cost c;; for agent

186
187

188
189
190
191

192

193
194
195
196
197
198

200
201
202
203
204

206

207

208

209
210
211
212
213

placeltem(bot1, purple_wool, [-1,0,-1]) placeltem(bot1, grass_block, [-1,1,1])

legend Image Text * placeltem(bot2, iron_ore, [-1,0,1]) * placeltem(bot2, grass_block, [-1,1,0])
placeltem(bot3, sea_lantern, [-1,0,0]) placeltem(bot3, birch_log, [-1,1,-1])

Prompt Tokens
Vision Language Action Model
Language Instruction History Tokens
Three bots need to build a
buiding . .
Write actions for bots based
on given task descriptions.
Agent Inventory* Agent Inventory* Agent Inventory*
Image Encoder
Multimodal cLpP
Projector Image Encoder Image Encoder Image Encoder

Bot1 ' m'
*
=R
.
Step 0 Step 1

Multimodal Prompts Multimodal Observations

- a

o
Step 2

Goal

Figure 4: The architecture of the TeamCraft-VLA model. Multi-modal task specifications combining
three orthographic views images of the task goal states and corresponding language instructions
are encoded as initial input to the model. Agents inventories and visual observations are further
encoded in each step to generate actions. For decentralized setting, the model only has access to one
agent’s information, exampled by Bot2: items associated with a * represent the fact that only the data
associated with agent 2 are available.

i performing action j:C = w1 T + wo Zfil E; + wsD + wy Zi\; ZjeAi ¢ij + wsU , where
wy, We, W3, Wy, ws are weighting coefficients. Details of the weights are in the supplementary.

As shown in Figure 3, we generated 55,000 unique task variants, each with one demonstration. A
demonstration consists of a multi-modal prompt as task specification, including three orthographic
view images representing task initial states or goal states and the corresponding language instructions.
At each time step, agent inventories, first-person RGB observations and actions are recorded.

3.7 Test Set and Generalization Set

TeamCraft features a test set, where tasks and agents variables follow the same distribution as training.
To evaluate the model generalization, we further designed a generalization set with hold-out elements
excluded from training data. In general, we withheld test cases involving four agents, whereas the
training data include only two or three agents. We also introduced unseen scenes not present during
training. In addition to these general hold-outs, we implemented task-specific exclusions as following:
1) Building: novel shapes and materials to build. We exclude 8 block placement shapes, defining
how target blocks are arranged on the ground. These shapes varied in complexity, containing 5 to 12
blocks in both 2D and 3D configurations. Additionally, we omitted 3 block materials appeared in
clearing but not in building. 2) Clearing: novel shapes and materials to clear. We held out 6 block
placement shapes with block counts ranging from 4 to 9. We also excluded 3 block materials present
in building but absent in clearing. 3) Farming: novel crops to farm and collect. 4) Smelting: novel
number of furnaces and goal objects. We excluded 4 unseen goal objects and introduced scenarios
with novel number of furnaces in the scene. As shown in Figure 3, with 50 samples per task per each
generalization condition, TeamCraft contains a total of 950 test cases.

4 Experiments

4.1 Baselines and Ablations

TeamCraft-VLA: We introduce TeamCraft-VLA, a multi-modal Vision-Language-Action (VLA)
model designed for multi-agent collaborations. As shown in Figure 4, the model first encodes multi-
modal prompts specifying the task, then encodes the visual observations and inventory information
from agents during each time step to generate actions. Following Liu et al. (2024), the VLA model
architecture consists of a CLIP encoder for images and a projector to align the image features with

214
215

216
217
218
219
220
221
222
223

224
225
226
227
228
229
230

231
232
233

234

235
236
237

238

240

241
242

243
244

245
246

Subgoal Success Rate

1.00 1.00 1.00 1.00 1.00
0.75 0.75 0.75 0.75 0.75
0.50 0.50 0.50 0.50 0.50
0.25 0.25 0.25 0.25 0.25

0.00

0.00, 0.00, 0.00, 0.00,
10% 50% 100% 10% 50% 100% 10% 50% 100% 10% 50% 100% 10% 50% 100%

Test Goal Scene Agents Average
Task Success Rate

0.75 0.75 0.75 0.75 0.75

0.50 0.50 0.50 0.50 0.50

0.25 0.25 0.25 0.25 0.25

0.00 0.00 0.00 0.00 0.00

10% 50% 100% 10% 50% 100% 10% 50% 100% 10% 50% 100% 10% 50% 100%
Test Goal Scene Agents Average
TeamCraft-VLA-7B-Cen TeamCraft-VLA-7B-Dec TeamCraft-VLA-13B-Cen TeamCraft-VLA-13B-Dec TeamCraft-7B-GridWorld

Figure 5: Subgoal success rate and task success rate across centralized, decentralized and grid-world
settings. The leftmost column displays the 7est category, which shares similar data distribution as
training. The Goal, Scene and Agents categories represent generalization tasks involving unseen
goals, scenes, and tasks involving four agents, respectively. Average performance is presented in the
rightmost column.

the language model. We use CLIP ViT-L/14 as the visual encoder and a linear projector for modality
alignment. The model is trained on demonstration data for three epochs before convergence.

Grid-World Settings: To understand the impact of learning in multi-modal environments as opposed
to purely text-based or state-based environments, we perform an ablation study by translating the
TeamCraft environments into a 3D grid-world. We retain the same prompt structure of the training data
used in the TeamCraft-VLA models, with the main difference being that environmental information
(i.e., visual observations and three orthographic view images) is now represented in text, describing
the voxel coordinate of each block; e.g., "brick is at (2,3,0), stone is at (2,3,1)...". We fine-tuned an
LLM in a centralized setting with variance in the dataset size (10%, 50%, and 100% of the total data)
for three epochs before convergence.

Proprietary VLA: We evaluated four proprietary VLA models: GPT-40, 04-mini, Claude 3.7, and
Gemini-2.5-Pro, under two prompting settings: the Vanilla setting, which uses prompt structures
similar to the centralized finetuned TeamCraft-VLA model, with additional information in the initial
system prompt to supply sufficient task context, and the Grid setting, which is the same as the Grid
World setting described above. This additional grounding compensates for the models’ extremely
limited 3D spatial reasoning capabilities, enabling them to skip orthographic projection images, and
generate plans consistent with the true scene context. See the supplementary for detailed prompts.

Ablations: We performed a total of 15 ablation studies, varying in dataset sizes (10%, 50%, and 100%
of the total data), control settings (centralized and decentralized), experiment settings (Multi-modal
and Grid-World), and sizes of the VLA model (7B and 13B).

4.2 Evaluation Metrics

We evaluated the performance of the methods based on two key metrics: task success rate and subgoal
success rate. With supplemental metrics: redundancy rate, action sequence length, and multi-agent
effectiveness detailed in supplementary.

Subgoal Success Rate: This metric evaluates the effectiveness of agents in completing tasks. Given

M test cases, each test case m has s9, subgoals, and agents complete s&, subgoals. The subgoal
d

success rate SGS is defined as SGS = ﬁ Zﬁf:l :;” . Specifically, subgoals are designed based on

the task requirements, i.e. the number of blocks to be built for building and the number of target

objects to be created for smelting.

Task Success Rate: This metric indicates the proportion of test cases that the model can suc-
cessfully complete from start to finish. Specifically, the task success rate 7S is defined as

TS = L5M 1[s¢ =s9,]. A higher success rate reflects the model’s ability to consistently

achieve the desired outcomes in various scenarios.

247

248

249
250
251
252

253
254

256
257
258
259
260
261
262
263
264

265

267
268
269

270
271
272
273
274

275
276
277
278
279
280

281
282
283
284
285
286
287
288
289

0.9
0.7
0.5
0.3
0.1
-0.1

e e e & x x A
oo @\“ o QQY\‘ xo® @x\?’ e e A% S Qeﬁé o (‘\a" o Qeaé‘
Building Breaking Farming Smelting
GPT-40 w/o Grid GPT-40 o4-mini Claude-3.7 Gemini-2.5-Pro TeamCraft-VLA-7B

Figure 6: Task success rates (wide translucent bars) and subgoal success rates (narrow opaque
bars within) for centralized models. Each clustered bar encodes two metrics for the same model.
TeamCraft-VLA-7B and GPT-40 w/ Grid are tested under the Vanilla setting; other models are tested
under the Grid setting (extra voxel info). Only TeamCraft-VLA is trained on the full dataset.

4.3 Evaluation Results

We evaluated the subgoal and task success rate of the models. As illustrated in Figure 5 and Figure 6.

Success Rate: For both the 7B and 13B models, the subgoal success rate and task success rate fall
short of optimal performance. This is particularly evident in challenging tasks such as smelting, with
both subgoal and task success rates below 40%. This highlights inherent difficulty of the designed
tasks and current limitations of VLA models in handling multi-step, sequentially dependent processes.

Across Model Size: In Figure 5, we observe that as training data increases, the performance of the
7B model approaches that of the 13B model, especially when generalizing to novel goals and agents
counts, so blindly scaling up model sizes does not guarantee success.

Multi-Modal Environment vs. Grid-World: The performance of the language model in the text-
based Grid-World significantly surpasses VLA models in multi-modal settings. This suggests that
state descriptions in text format are less challenging for models than multi-modal inputs, underscoring
a notable gap in current VLA models’ ability to effectively interpret visual information. For the
language model, we observe a surprising trend in the Goal and Agents splits: training with more
data lower the success rate. This decline suggests that the generalization capacity for certain task
categories actually diminishes as training goes on. One possible cause is when exposed to more data,
the model relies more heavily on patterns specific to the training examples, limiting its ability to
adapt to unseen scenarios.

On Generalization Splits: For VLA models, performance generally drops when models transfer to
novel generalization splits, especially in the Goal and Agents categories. The Scene split primarily
tests image understanding, while the Goal and Agents splits emphasize task planning and allocation,
critical factors in multi-agent systems. This indicates VLA models struggle with planning for unseen
goals and adapting to variable numbers of agents.

Scaling Law: As training data increases, both subgoal and task success rates across centralized
and decentralized settings significant improvements, underscoring the importance of dataset size for
achieving better performance. The improvement is particularly pronounced when the training data
increases from 10% to 50% in centralized settings. This suggests that while more data generally leads
to better performance, gains diminish beyond a certain point, especially in the decentralized setting.

Centralized vs. Decentralized: Figure 5 compares centralized and decentralized settings in terms
of subgoal and task success rates across all task variants. Centralized tasks outperform nearly all
variants, highlighting the challenge of effective planning with partial information. This finding also
demonstrates that multi-agent systems cannot be simplistically modeled as single agents interacting
with environments containing other agents. In decentralized settings, the absence of agent modeling
is particularly impactful, especially for cooperation-intensive tasks like "Farming" or "Building".

Proprietary VLA — Vanilla: Figure 6 shows GPT-4o in the Vanilla setting, which failed on almost
all the test cases. While GPT-4o is able to associate blocks with their name, it struggles with mapping
block coordinates based on visual inputs, demonstrating a lack of the 3D spatial reasoning necessary
for accurate task execution. A block recognition test across GPT-40, GPT-4.1, ol, 03, and 04-mini,
along with a case analysis of ol and Claude 3.7, confirmed that other proprietary models exhibit the
same behavior, as detailed in the supplementary. This shortcoming severely impacts performance,
since most of our tasks require precise spatial orientation and alignment. For example, in the building
task, a brick should be placed at (1,1,1), while the output of the model is "placeltem(bot1, ’bricks’,
(1,0,1))", which results in wrong execution, and consequently affects the subsequent actions.

290
291
292
293
294
295

297

299
300

301
302
303
304
305
306

307
308
309
310
311

312
313
314
315
316
317

319

320

321
322
323
324

325

326
327
328
329
330
331
332
333
334
335
336

338
339

Proprietary VLA — Grid: As shown in Figure 6, all the models achieved strong performance, often
matching or surpassing the trained TeamCraft-VLA. Among the proprietary models, Gemini 2.5 Pro
led in both subgoal and task success rates, closely matching that of the trained TeamCraft-VLA in
the grid world environment. The high success rate of the grid setting compared to the vanilla setting
indicates the difficulty of orthographic projection from images. In particular, for the smelting task,
which is characterized by higher action complexity and dependency, proprietary models with more
parameters significantly outperformed TeamCraft-VLA, exhibiting greater ability in such complex,
long-horizon tasks.

4.4 Qualitative Analysis

We performed a qualitative analysis across three generalization splits, examining how models handle
novel goals, new scenes, and novel numbers of agents:

Goals: When faced with novel goals, the models struggle to generalize beyond familiar items and fail
to adapt to unseen objectives. For example, in the “farming” task, if instructed to farm beetroot—a
crop not encountered in training—the model generates a command "farm_work(bot1, (9,3,3), sow’,
"beef’)," causing Botl to sow "beef", which appears in the training data for "smelting". This behavior
reflects the model’s reliance on similar, seen items in the training data and reveals limited ability to
infer new tasks based on similarity.

Object State Recognition: VLA models show strong generalization to new scenes, performing
comparably to the Test set. However, errors often arise in recognizing object states. For example, in
"farming" tasks, agents may harvest crops before they are fully grown due to challenges in identifying
crop states, especially in new scenes. This highlights limitations in precise object state recognition
when operating within unseen environments.

Agents: For generalization to four agents, models often ignore the fourth agent and assign inefficiently
only to two or three agents. For example, in "building", the model output actions {"placeltem(botl,
..)", "placeltem(bot2, ...)", "placeltem(bot3, ...)"} with the fourth agent overlooked, reducing pro-
ductivity and preventing timely task completion. This limitation becomes especially evident in tasks
requiring full coordination, such as "Building", where each of the four agents holds unique blocks in
their inventory, and to complete the structure all agents must contribute some specific block that only
they hold. The model’s inability to command all agents leads to incomplete structures or outright task
failure, highlighting limitations in coordination and workload distribution for collaboration.

5 Conclusions

We have presented TeamCraft, a benchmark for multi-modal multi-agent collaborative task planning
in Minecraft. The benchmark consists of challenging collaborative tasks and evaluation splits designed
to systematically test multi-modal agents across novel goal configurations, unseen numbers of agents,
and unseen scenes.

5.1 Limitations and Future Work

We have conducted extensive experiments and analyses to pinpoint the limitations of the current
models and identified promising research directions for collaborative multi-modal agents. (1) Given
the limited capacity of existing multi-agent VLA models, TeamCraft relies on MineFlayer as an oracle
controller to execute skills predicted by the models. Enabling VLA models to directly control multiple
agents via low-level control (Wang et al., 2023c,b) would be important future research. (2) We have
trained the models using procedurally generated multi-agent demonstration data. Learning from noisy
but more diverse real-world demonstrations of human players can potentially further strengthen model
generalization (Baker et al., 2022; Fan et al., 2022). (3) Currently, decentralized TeamCraft agents
rely solely on implicit communication (Jain et al., 2019); i.e., by passively perceiving other agents
and the environment, to gather information and to collaborate. Enabling agents to communicate
explicitly via natural language (Narayan-Chen et al., 2019; Jayannavar et al., 2020; Mandi et al.,
2024) has great potential in avoiding redundant actions and increasing efficiency. (4) Multi-player
video games have been widely used as testbeds for human-AlI collaboration (Carroll et al., 2020; Gao
et al., 2020; Amresh et al., 2023). Extending TeamCraft with human players is a promising direction.

340

341
342
343

344
345
346
347

348
349
350
351

352
353

355
356
357

358
359
360
361

362
363

364
365
366

367
368
369

370
371
372
373
374

375
376
377

378
379
380

381
382
383
384

385
386
387

References

Ashish Amresh, Nancy Cooke, and Adam Fouse. A minecraft based simulated task environment
for human ai teaming. In Proceedings of the 23rd ACM International Conference on Intelligent
Virtual Agents, pp. 1-3, 2023.

Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko Siinderhauf, Ian Reid,
Stephen Gould, and Anton Van Den Hengel. Vision-and-language navigation: Interpreting visually-
grounded navigation instructions in real environments. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 3674-3683, 2018.

Bowen Baker, Ilge Akkaya, Peter Zhokov, Joost Huizinga, Jie Tang, Adrien Ecoffet, Brandon
Houghton, Raul Sampedro, and Jeff Clune. Video pretraining (vpt): Learning to act by watching
unlabeled online videos. Advances in Neural Information Processing Systems, 35:24639-24654,
2022.

Shaofei Cai, Zihao Wang, Kewei Lian, Zhancun Mu, Xiaojian Ma, Anji Liu, and Yitao Liang.
Rocket-1: Master open-world interaction with visual-temporal context prompting. arXiv preprint
arXiv:2410.17856, 2024.

Micah Carroll, Rohin Shah, Mark K. Ho, Thomas L. Griffiths, Sanjit A. Seshia, Pieter Abbeel, and
Anca Dragan. On the utility of learning about humans for human-Al coordination. arXiv preprint
arXiv:1910.05789, 2020.

Matthew Chang, Gunjan Chhablani, Alexander Clegg, Mikael Dallaire Cote, Ruta Desai, Michal
Hlavac, Vladimir Karashchuk, Jacob Krantz, Roozbeh Mottaghi, Priyam Parashar, et al. Partnr:
A benchmark for planning and reasoning in embodied multi-agent tasks. arXiv preprint
arXiv:2411.00081, 2024.

Boyuan Chen, Shuran Song, Hod Lipson, and Carl Vondrick. Visual hide and seek. In Artificial Life
Conference Proceedings 32, pp. 645-655, 2020.

Abhishek Das, Samyak Datta, Georgia Gkioxari, Stefan Lee, Devi Parikh, and Dhruv Batra. Embodied
question answering. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 1-10, 2018.

Abhishek Das, Théophile Gervet, Joshua Romoff, Dhruv Batra, Devi Parikh, Mike Rabbat, and Joelle
Pineau. Tarmac: Targeted multi-agent communication. In International Conference on machine
learning, pp. 1538—-1546. PMLR, 2019.

Yubo Dong, Xukun Zhu, Zhengzhe Pan, Linchao Zhu, and Yi Yang. VillagerAgent: A graph-based
multi-agent framework for coordinating complex task dependencies in Minecraft. In Lun-Wei
Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of the Association for Computational
Linguistics: ACL 2024, pp. 16290-16314, Bangkok, Thailand, August 2024. Association for
Computational Linguistics.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang,
De-An Huang, Yuke Zhu, and Anima Anandkumar. MineDojo: Building open-ended embodied
agents with internet-scale knowledge, 2022.

Qiaozi Gao, Govind Thattai, Xiaofeng Gao, Suhaila Shakiah, Shreyas Pansare, Vasu Sharma, Gaurav
Sukhatme, Hangjie Shi, Bofei Yang, Desheng Zheng, et al. Alexa arena: A user-centric interactive
platform for embodied Al. arXiv preprint arXiv:2303.01586, 2023.

Xiaofeng Gao, Ran Gong, Yizhou Zhao, Shu Wang, Tianmin Shu, and Song-Chun Zhu. Joint mind
modeling for explanation generation in complex human-robot collaborative tasks. In 2020 29th
IEEE international conference on robot and human interactive communication (RO-MAN), pp.
1119-1126. IEEE, 2020.

Xiaofeng Gao, Qiaozi Gao, Ran Gong, Kaixiang Lin, Govind Thattai, and Gaurav S Sukhatme.

Dialfred: Dialogue-enabled agents for embodied instruction following. IEEE Robotics and
Automation Letters, 7(4):10049-10056, 2022.

10

388
389
390

391
392
393
394

395
396
397

398
399
400

401
402
403

404
405
406
407

408

410

411
412
413

414
415
416

417
418
419

420
421

422
423
424

425
426
427

428
429

431

432
433
434

Ran Gong, Xiaofeng Gao, Qiaozi Gao, Suhaila Shakiah, Govind Thattai, and Gaurav S Sukhatme.
Lemma: Learning language-conditioned multi-robot manipulation. IEEE Robotics and Automation
Letters, 2023a.

Ran Gong, Jiangyong Huang, Yizhou Zhao, Haoran Geng, Xiaofeng Gao, Qingyang Wu, Wensi Ai,
Ziheng Zhou, Demetri Terzopoulos, Song-Chun Zhu, et al. Arnold: A benchmark for language-
grounded task learning with continuous states in realistic 3d scenes. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV), 2023b.

Ran Gong, Qiuyuan Huang, Xiaojian Ma, Hoi Vo, Zane Durante, Yusuke Noda, Zilong Zheng,
Song-Chun Zhu, Demetri Terzopoulos, Li Fei-Fei, and Jianfeng Gao. MindAgent: Emergent
gaming interaction. arXiv preprint arXiv:2309.09971, 2023c.

Daniel Gordon, Aniruddha Kembhavi, Mohammad Rastegari, Joseph Redmon, Dieter Fox, and Ali
Farhadi. Iqa: Visual question answering in interactive environments. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 4089—4098, 2018.

William H. Guss, Brandon Houghton, Nicholay Topin, Phillip Wang, Cayden Codel, Manuela Veloso,
and Ruslan Salakhutdinov. MineRL: A large-scale dataset of minecraft demonstrations. arXiv
preprint arXiv:1907.13440, 2019.

Max Jaderberg, Wojciech M Czarnecki, Iain Dunning, Luke Marris, Guy Lever, Antonio Garcia
Castaneda, Charles Beattie, Neil C Rabinowitz, Ari S Morcos, Avraham Ruderman, et al. Human-
level performance in 3d multiplayer games with population-based reinforcement learning. Science,
364(6443):859-865, 2019.

Unnat Jain, Luca Weihs, Eric Kolve, Mohammad Rastegari, Svetlana Lazebnik, Ali Farhadi, Alexan-
der Schwing, and Aniruddha Kembhavi. Two body problem: Collaborative visual task completion,
2019.

Unnat Jain, Luca Weihs, Eric Kolve, Ali Farhadi, Svetlana Lazebnik, Aniruddha Kembhavi, and
Alexander Schwing. A cordial sync: Going beyond marginal policies for multi-agent embodied
tasks, 2020.

Prashant Jayannavar, Anjali Narayan-Chen, and Julia Hockenmaier. Learning to execute instruc-
tions in a minecraft dialogue. In Proceedings of the 58th annual meeting of the association for
computational linguistics, pp. 2589-2602, 2020.

Yunfan Jiang, Agrim Gupta, Zichen Zhang, Guanzhi Wang, Yonggiang Dou, Yanjun Chen, Li Fei-Fei,
Anima Anandkumar, Yuke Zhu, and Linxi Fan. Vima: General robot manipulation with multimodal
prompts. arXiv preprint arXiv:2210.03094, 2(3):6, 2022.

Matthew Johnson, Katja Hofmann, Tim Hutton, and David Bignell. The malmo platform for artificial
intelligence experimentation. In Ijcai, pp. 4246-4247, 2016.

Joel Z. Leibo, Edgar Duéfiez-Guzmadn, Alexander Sasha Vezhnevets, John P. Agapiou, Peter Sunehag,
Raphael Koster, Jayd Matyas, Charles Beattie, Igor Mordatch, and Thore Graepel. Scalable
evaluation of multi-agent reinforcement learning with melting pot, 2021.

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem. Camel: Com-
municative agents for" mind" exploration of large language model society. Advances in Neural
Information Processing Systems, 36:51991-52008, 2023.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances in
neural information processing systems, 36, 2024.

Xinzhu Liu, Di Guo, Huaping Liu, and Fuchun Sun. Multi-agent embodied visual semantic navigation
with scene prior knowledge. IEEE Robotics and Automation Letters, 7(2):3154-3161, 2022a.

Xinzhu Liu, Xinghang Li, Di Guo, Sinan Tan, Huaping Liu, and Fuchun Sun. Embodied multi-agent

task planning from ambiguous instruction. Proceedings of Robotics: Science and Systems, New
York City, NY, USA, pp. 1-14, 2022b.

11

435
436
437

438
439

440
441
442

443
444

445
446

447
448
449

451
452
453

454
455
456

474

475
476
477

478
479
480

481
482
483

Qian Long, Zihan Zhou, Abhibav Gupta, Fei Fang, Yi Wu, and Xiaolong Wang. Evolutionary popula-
tion curriculum for scaling multi-agent reinforcement learning. arXiv preprint arXiv:2003.10423,
2020.

Qian Long, Ruoyan Li, Minglu Zhao, Tao Gao, and Demetri Terzopoulos. Inverse attention agent for
multi-agent system. arXiv preprint arXiv:2410.21794, 2024a.

Qian Long, Fangwei Zhong, Mingdong Wu, Yizhou Wang, and Song-Chun Zhu. Socialgfs: Learning
social gradient fields for multi-agent reinforcement learning. arXiv preprint arXiv:2405.01839,
2024b.

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-agent actor-
critic for mixed cooperative-competitive environments, 2020.

Xiaojian Ma, Silong Yong, Zilong Zheng, Qing Li, Yitao Liang, Song-Chun Zhu, and Siyuan Huang.
SQA3D: Situated question answering in 3d scenes. arXiv preprint arXiv:2210.07474, 2023.

Arjun Majumdar, Anurag Ajay, Xiaohan Zhang, Pranav Putta, Sriram Yenamandra, Mikael Henaff,
Sneha Silwal, Paul Mcvay, Oleksandr Maksymets, Sergio Arnaud, et al. Openega: Embodied
question answering in the era of foundation models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 16488—16498, 2024.

Zhao Mandi, Shreeya Jain, and Shuran Song. Roco: Dialectic multi-robot collaboration with large
language models. In 2024 IEEE International Conference on Robotics and Automation (ICRA), pp.
286-299. IEEE, 2024.

Oier Mees, Lukas Hermann, Erick Rosete-Beas, and Wolfram Burgard. Calvin: A benchmark for
language-conditioned policy learning for long-horizon robot manipulation tasks. IEEE Robotics
and Automation Letters, 7(3):7327-7334, 2022.

Igor Mordatch and Pieter Abbeel. Emergence of grounded compositional language in multi-agent
populations. arXiv preprint arXiv:1703.04908, 2017.

Anjali Narayan-Chen, Prashant Jayannavar, and Julia Hockenmaier. Collaborative dialogue in
minecraft. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pp. 5405-5415, 2019.

Aishwarya Padmakumar, Jesse Thomason, Ayush Shrivastava, Patrick Lange, Anjali Narayan-Chen,
Spandana Gella, Robinson Piramuthu, Gokhan Tur, and Dilek Hakkani-Tur. Teach: Task-driven
embodied agents that chat. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pp. 2017-2025, 2022.

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and Michael S
Bernstein. Generative agents: Interactive simulacra of human behavior. In Proceedings of the 36th
annual acm symposium on user interface software and technology, pp. 1-22, 2023.

Diego Perez-Liebana, Katja Hofmann, Sharada Prasanna Mohanty, Noburu Kuno, Andre Kramer,
Sam Devlin, Raluca D Gaina, and Daniel Ionita. The multi-agent reinforcement learning in malm\"
o (marl\" o) competition. arXiv preprint arXiv:1901.08129, 2019.

Xavier Puig, Tianmin Shu, Shuang Li, Zilin Wang, Yuan-Hong Liao, Joshua B. Tenenbaum, Sanja
Fidler, and Antonio Torralba. Watch-And-Help: A challenge for social perception and human-ai
collaboration. arXiv preprint arXiv:2010.09890, 2021.

Xavier Puig, Tianmin Shu, Joshua B Tenenbaum, and Antonio Torralba. Nopa: Neurally-guided
online probabilistic assistance for building socially intelligent home assistants. In 2023 IEEE
International Conference on Robotics and Automation (ICRA), pp. 7628-7634. IEEE, 2023.

Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh Mottaghi,
Luke Zettlemoyer, and Dieter Fox. ALFRED: A benchmark for interpreting grounded instructions
for everyday tasks, 2020a.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre C6té, Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. Alfworld: Aligning text and embodied environments for interactive learning. arXiv
preprint arXiv:2010.03768, 2020b.

12

484
485

486
487

488
489

490
491
492

494
495
496

497
498
499
500

502
503

504

514

522
523

524
525
526
527

528
529
530
531

@

Mohit Shridhar, Lucas Manuelli, and Dieter Fox. Cliport: What and where pathways for robotic
manipulation. In Proceedings of the 5th Conference on Robot Learning (CoRL), 2021.

Linda Smith and Michael Gasser. The development of embodied cognition: Six lessons from babies.
Artificial life, 11(1-2):13-29, 2005.

Peter Stone and Manuela Veloso. Multiagent systems: A survey from a machine learning perspective.
Autonomous Robots, 8:345-383, 2000.

Joseph Suarez, Yilun Du, Clare Zhu, Igor Mordatch, and Phillip Isola. The neural MMO platform for
massively multiagent research. In J. Vanschoren and S. Yeung (eds.), Proceedings of the Neural
Information Processing Systems Track on Datasets and Benchmarks, volume 1, 2021.

Joseph Sudrez, David Bloomin, Kyoung Whan Choe, Hao Xiang Li, Ryan Sullivan, Nishaanth Kanna,
Daniel Scott, Rose Shuman, Herbie Bradley, Louis Castricato, et al. Neural mmo 2.0: a massively
multi-task addition to massively multi-agent learning. Advances in Neural Information Processing

Systems, 36, 2024.

Andrew Szot, Alexander Clegg, Eric Undersander, Erik Wijmans, Yili Zhao, John Turner, Noah
Maestre, Mustafa Mukadam, Devendra Singh Chaplot, Oleksandr Maksymets, et al. Habitat 2.0:
Training home assistants to rearrange their habitat. Advances in neural information processing
systems, 34:251-266, 2021.

Sinan Tan, Weilai Xiang, Huaping Liu, Di Guo, and Fuchun Sun. Multi-agent embodied question an-
swering in interactive environments. In Computer Vision—-ECCV 2020: 16th European Conference,
Glasgow, UK, August 23-28, 2020, Proceedings, Part XIII 16, pp. 663—-678. Springer, 2020.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaél Mathieu, Andrew Dudzik, Junyoung
Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level in
starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350-354, 2019.

Yanming Wan, Jiayuan Mao, and Josh Tenenbaum. Handmethat: Human-robot communication
in physical and social environments. Advances in Neural Information Processing Systems, 35:
12014-12026, 2022.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. Voyager: An open-ended embodied agent with large language models, 2023a.

Zihao Wang, Shaofei Cai, Anji Liu, Yonggang Jin, Jinbing Hou, Bowei Zhang, Haowei Lin, Zhaofeng
He, Zilong Zheng, Yaodong Yang, et al. Jarvis-1: Open-world multi-task agents with memory-
augmented multimodal language models. arXiv preprint arXiv:2311.05997, 2023b.

Zihao Wang, Shaofei Cai, Anji Liu, Xiaojian Ma, and Yitao Liang. Describe, explain, plan and select:
Interactive planning with large language models enables open-world multi-task agents, 2023c.

Sarah A Wu, Rose E Wang, James A Evans, Joshua B Tenenbaum, David C Parkes, and Max
Kleiman-Weiner. Too many cooks: Bayesian inference for coordinating multi-agent collaboration.
Topics in Cognitive Science, 13(2):414-432, 2021.

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The
surprising effectiveness of PPO in cooperative multi-agent games, 2021.

Xianhao Yu, Jiaqi Fu, Renjia Deng, and Wenjuan Han. MineLand: Simulating large-scale multi-agent
interactions with limited multimodal senses and physical needs, 2024.

Andy Zeng, Pete Florence, Jonathan Tompson, Stefan Welker, Jonathan Chien, Maria Attarian, Travis
Armstrong, Ivan Krasin, Dan Duong, Vikas Sindhwani, and Johnny Lee. Transporter networks:
Rearranging the visual world for robotic manipulation. Conference on Robot Learning (CoRL),
2020.

Ceyao Zhang, Kaijie Yang, Siyi Hu, Zihao Wang, Guanghe Li, Yihang Sun, Cheng Zhang, Zhaowei
Zhang, Anji Liu, Song-Chun Zhu, et al. Proagent: building proactive cooperative agents with large
language models. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp.
17591-17599, 2024a.

13

532 Hongxin Zhang, Weihua Du, Jiaming Shan, Qinhong Zhou, Yilun Du, Joshua B. Tenenbaum, Tianmin
533 Shu, and Chuang Gan. Building cooperative embodied agents modularly with large language
534 models. In The Twelfth International Conference on Learning Representations, 2024b.

535 Hongxin Zhang, Zeyuan Wang, Qiushi Lyu, Zheyuan Zhang, Sunli Chen, Tianmin Shu, Yilun Du,
536 and Chuang Gan. Combo: Compositional world models for embodied multi-agent cooperation.
537 arXiv preprint arXiv:2404.10775, 2024c.

s3s Kaizhi Zheng, Xiaotong Chen, Odest Chadwicke Jenkins, and Xin Wang. Vlmbench: A compositional
539 benchmark for vision-and-language manipulation. Advances in Neural Information Processing
540 Systems, 35:665-678, 2022.

14

541

542

543
544

545

547
548
549
550

552

553
554

555

556

557

558

559

560

561

562

563

564

565
566
567
568
569
570
571
572
573
574
575
576
577

579

580
581

582
583

585
586
587

588

589
590

591

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: See section 1.
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: See subsection 5.1.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA] .

15

592

593

594
595
596

598
599
600
601
602
603

604

605
606
607

608

609
610

611

612

614
615
616
617
618
619
620
621
622
623
624
625
626
627

629
630
631
632
633
634
635
636
637
638
639
640
641
642

643

644
645
646

Justification: No theoretical results included.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Code and dataset are available at https://teamcraft-bench.github.io/.
Detailed reproduction information in the supplemental material.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

16

https://teamcraft-bench.github.io/

647

648
649

650

651

652
653

654
655
656
657

658
659

661
662

663
664
665

666
667

668
669
670

671
672
673

674

675

676

677

678
679

680
681
682

683
684

685

686

687

688
689
690
691
692
693
694
695
696

697

Answer: [Yes]

Justification: See https://github.com/teamcraft-bench/teamcraft for full set of
code and see README.md for detailed instruction to reproduce the main experiment results.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: In the supplemental material.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Results are reported with mean performance across multiple evaluations.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

17

https://github.com/teamcraft-bench/teamcraft
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

698
699

700
701
702

703
704
705

706
707
708

709
710
71

712

713

714

715

716
717

718
719

720
721
722

723

724
725

726

727
728

729

730

731
732

733
734

736
737

739

740

741

742
743

744
745
746
747

8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: In the supplemental material.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This research conducted in the paper conform with the NeurIPS Code of
Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: See section 5.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

18

https://neurips.cc/public/EthicsGuidelines

748
749
750
751
752
753
754

756
757
758
759
760
761
762

763

764
765
766

767

768

770
771
772
773
774
775
776
777
778
779

780

781
782
783

784

787

788
789

790
791
792
793
794
795
796
797
798
799
800

11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the creators and code sources are credited and licensed, and terms of use
explicitly mentioned and properly respected.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

19

paperswithcode.com/datasets

801
802

803

804
805

806

807
808

809

810

811
812

814
815
816
817

818

819
820
821

822

823

824

825

826

827
828
829
830
831
832

833
834

835
836
837
838

839

840

841

842

843
844
845
846
847
848
849
850
851

13.

14.

15.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: See https://github.com/teamcraft-bench/teamcraft for our new
assets.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

20

https://github.com/teamcraft-bench/teamcraft

852 16. Declaration of LLLM usage

853 Question: Does the paper describe the usage of LLMs if it is an important, original, or
854 non-standard component of the core methods in this research? Note that if the LLM is used
855 only for writing, editing, or formatting purposes and does not impact the core methodology,
856 scientific rigorousness, or originality of the research, declaration is not required.

857 Answer: [NA]

858 Justification: The core method development in this research does not involve LLMs as any
859 important, original, or non-standard components

860 Guidelines:

861 * The answer NA means that the core method development in this research does not
862 involve LLMs as any important, original, or non-standard components.

863 ¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
864 for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM

8l

(o2}

5

866

867
868
869

871
872
873
874
875
876
877
878
879
880

881

883
884
885

886
887
888
889
890

892

893
894
895
896
897
898

899

900

901
902

Appendix

A Additional Related Work

Platforms for Multi-Agent Systems: The recent success of multi-agent reinforcement learning
(MARL) methods (Lowe et al., 2020; Yu et al., 2021; Long et al., 2020, 2024b) has attracted attention,
as these methods explore cooperation and competence behaviors among agents. However, many of
the methods are evaluated in simplified 2D environments (Leibo et al., 2021; Suarez et al., 2021;
Mordatch & Abbeel, 2017; Vinyals et al., 2019; Carroll et al., 2020). Recent work on embodied
multi-agent benchmarks has considered more realistic tasks and environments (Liu et al., 2022a,b;
Gong et al., 2023a; Park et al., 2023; Chang et al., 2024), but it often relies on certain privileged
sensor information of the environment (Zhang et al., 2024b; Puig et al., 2021, 2023). Additionally,
subject to environmental constraints, these works often have limited set of tasks (Jain et al., 2019;
Tan et al., 2020) related to navigation and simple interactions such as object rearrangement (Szot
et al., 2021). By comparison, TeamCraft is based on Minecraft, a three-dimensional, visually rich
open-world realm characterized by procedurally generated landscapes and versatile game mechanics
supporting an extensive spectrum of object interactions, providing rich activities ripe for intricate
collaborations.

B High Level Skills

The action space of agents mainly involves high-level self-explanatory skills such as obtainBlock and
JarmWork. We provided 8 such skills. Most skills take three input parameters, including 1) agent
name such as bot1, as the action executing entity, 2) item name such as dirt, which strongly associated
with task goal or agent’s inventory, 3) a vector indicating the position of the target on the test field.

For example, obtainBlock(botl, new Vec3(1, 0, 1)) takes the agent name bot1 and a 3D
vector (1, 0, 1) as its arguments. It directs bot1 to perform multiple actions in Minecraft via
APIs provided by Mineflayer. First, it controls bot1 to goto a diggable position for block (1, 0,
1), then has bot1’s vision ray cast to the block at (1, 0, 1) using the lookAt action. Next, it
commands bot1 to equip a proper tool that can dig the block at (1, 0, 1) most efficiently, and
then instructs bot1 to dig the target block. Once the target block has been mined, bot1 will goto
the position where the block item dropped and collect it.

Similarly, farmWork (bot2, "sow", "potato", new Vec3(2, 0, 4)) takes the agent name
bot2, action type "sow" (as opposed to "harvest"), crop seed item "potato", and a 3D vector
(2, 0, 4) asits arguments. It directs bot2 to goto a placeable position for farmland at (2, 0,
4), then check if the seed is a valid item—that is, a crop seed available within bot2’s inventory.
It then checks if the farmland at (2, 0, 4) is plantable. Finally, it instructs bot2 to 1ookAt the
farmland and sow it with the seed "potato".

Table 2 documents all the skills, which are implemented in JavaScript code with Mineflayer APIs.

Type Arguments Description

placeltem BotID, ItemType, Location BotID places an item of ItemType at the specified 3D Location.

mineBlock BotID, Location BotID mines a block at the specified 3D Location.

farmWork BotID, Location, Action, ItemType BotID performs an Action (sow or harvest) on ItemType at the specified 3D Location.
obtainBlock BotID, Location BotID obtains a block from the specified 3D Location.

putFuelFurnace BotID, ItemType, Location BotID places an ItemType as fuel into a furnace at the specified 3D Location.
putltemFurnace BotID, ItemType, Location BotID inserts an ItemType into a furnace at the specified 3D Location.
takeOutFurnace BotID, ItemType, Location BotID removes an ItemType from a furnace at the specified 3D Location.

killMob BotID, Location BotID engages and eliminates a mob at the specified 3D Location.

Table 2: Action space within the TeamCraft.

C Low Level Atomic Actions

High level skills are processed through multiple stages before reaching the final execution APIs. At
each time step, TeamCraft accepts a list of skills as input, with a maximum length equal to the number

22

903
904
905
906
907
908
909
910
911

912

913
914
915
916
917
918

919

920

921
922
923

924

925
926
927
928
929

930
931
932
933
934
935
936

937

938
939

of agents involved in the current task and a minimum length of zero. Each agent can perform at
most one skill per time step. The updated list of skills is then passed into the JavaScript environment
along with the predefined atomic actions. Each atomic action is processed simultaneously, meaning
that agents’ actions are executed concurrently rather than sequentially. This avoid the dependency
issue that might occur in sequential execution. For example, if one agent’s action is executed ahead
of another’s, the first agent may block the location where the next agent intends to place a block.
The agent whose atomic action is executed first will have a higher chance of success, potentially
altering the dynamics of the multi-agent setting. Executing actions concurrently ensures fairness
among agents and maintains the equivalence of the multi-agent environment.

D Simulator Efficiency, Scalability and Flexibility

TeamCraft offers dedicated simulation architecture and optimized infrastructure components achieve
highly efficient and scalable simulation. Other Minecraft simulation platforms, suffer either depre-
cated support for multi-agent (MineRL) or architectural inefficiencies in agent scaling (MindAgent).
Shown in Table 3, our codebase achieves a 13.6% performance improvement over MindAgent, a
multi-agent extension of Voyager. Overall, our system supports over 10 agents, 800 additional block
types, 1,500 extra items, and 50 additional biomes, enabling researchers to design millions of new
tasks.

Average/Var 2 Agents & 2 Actions 3 Agents & 2 Actions 4 Agents & 2 Actions

TeamCraft 38.67 /0.259 40.7 /1 0.058 42.99 /0.094
MindAgent 44.19/0.230 46.25/0.066 48.22/0.090
Average/Var 2 Agents & 10 Actions 3 Agents & 10 Actions 4 Agents & 10 Actions
TeamCraft 40.95/0.456 42.33/0.102 44.43 /0.055
MindAgent 45.41/0.061 47.77/0.160 49.33/0.076

Table 3: Simulation Speed comparison. Units in seconds. Naive movement action. Ubuntu 22.04
with 1x Intel i9-14900KF

E Visual Diversity

TeamCraft uses a set of visual variate to provide a visual rich environment. Each task is constructed
from a random number of agents, in a randomly selected scene, achieving different goal on playground
built by different base block.

E.1 Shared Elements

Each task begins with a basic setting involving multiple agents on a playground. Each agent has a
unique skin, as illustrated in Figure 17, and is rendered as a two-block-high character. The playground
combines a base platform spawned within a Minecraft biome. The base block is also randomly
selected from a pool,shown in Figure 17. Each biome offers variations in special surrounding blocks,
designs, and environments.

For example, the seaside village biome is a village near the sea with houses made of oak wood
and cobblestone, decorated with flowers and cow sheds, as shown in Figure 22. It also features a
nearby farm surrounded by oak logs (Figure 23). Another variation of village is the desert village
biome, built from acacia planks, acacia logs, and sandstone, blending seamlessly with the desert’s
arid terrain, shown in Figure 24. Figure 25 illustrates a biome that is located on half of the mountains,
where a small flat land protruding from a cliff. Additional examples of biomes used are shown in
Figure 26, Figure 27, and Figure 28.

E.2 Task Specific Diversity

Clearing task uses a random set of blocks as its targets, illustrated in Figure 18. Building task also
uses a random set of blocks as its target, with some blocks shared with clearing task, as illustrated

23

940
941
942
943
944
945
946

947

948
949
950
951
952
953
954

955
956
957

958
959

960
961

962
963

964

965
966

967

968

969
970
971
972

973
974
975

977
978
979

980
981
982
983

in Figure 19. Unlike other tasks, the Farming task does not use a regular base. The playground is
constructed from a combination of farmland for planting crops, water blocks, and randomly selected
unfarmable blockers from the base that replace some of the farmland. An example is shown in
Figure 33. Each corps used in farming task has its own grown stage with different appearances, shown
in Figure 20. Smelting task requires a wide varieties of resources to achieve its goal. Resources
could be either entity, block, or item. Shown in Figure 21. Detailed statistics of each task is presented
in Table 14, Table 15, Table 16 and Table 17.

F Planner for Expert Demonstration

TeamCraft employed a planner to assign actions to each agent at every time step, utilizing perfect
knowledge of the task including goal object positions, agents’ inventories, and each agent’s efficiency
in performing actions. The planner optimizes actions using a cost function designed to minimize the
total time to complete the task, reduce idle times for agents, minimize action dependencies to prevent
agents from waiting on others, maximize parallelism of actions, assign tasks to the most efficient
agents, and eliminate redundant or unnecessary actions. The cost function considers the following
components:

Minimize Total Task Completion Time 7": Denoted by min 7’, our primary objective is to reduce
the overall time required to complete the task, measured in time steps until the last agent finishes
their final action.

Minimize Idle Actions for Each Agent F: Denoted by min Ef\il FE;, we minimize the total empty
actions, the sum of empty action E; preformed by agent i.

Minimize Action Dependencies Across Agents D: Denoted by min D, we minimize dependencies
cause agents to wait for others to complete certain actions.

Minimize Redundant or Useless Actions U: Denoted by min U, we minimize the total number of
redundant or unnecessary actions performed by all agents.

Maximize Action Efficiency: Denoted by min Zf\il > jea, Cij» We assign actions to agents with
higher capabilities to reduce the overall cost, where ¢;; be the cost (inverse of efficiency) for agent ¢
to perform action j.

We assign each component a weight:

N N

C:w1T+w2ZE¢+w3D+w4Z Zcij—i—wr)U

i=1 i=1jeA;

where w1, ws, w3, wy, ws are weighting coefficients, and adjusted for each tasks.

Building: In the building task, where dependencies are moderate and parallelization is preferred, we
place greater emphasis on minimizing idle actions by setting wy = 1.4 and assign a weight of 0.9
to the other components. This encourages agents to remain active and reduces idle time, enhancing
overall efficiency.

Clearing: In the clearing task, using the correct tools can significantly speed up block removal (up to
a threefold increase). Therefore, we assign a higher weight of w4 = 1.8 to maximize action efficiency
by assigning tasks to the most capable agents. The other weights are set to 0.8 to maintain overall
performance while focusing on efficient tool usage.

Farming: Farming task is not heavily constrained by action dependencies, we assign equal weights
of 1 to all components, ensuring a balanced consideration of time minimization, idle actions, action
dependencies, action efficiency, and redundancy elimination.

Smelting: In the smelting task, which involves comparatively long and highly dependent action
sequences, we prioritize minimizing action dependencies by setting w3 = 1.8. The other weights are
assigned a value of 0.8 to support this focus, facilitating smoother coordination among agents and
reducing waiting times.

24

984

985
986
987
988
989

990
991
992
993

994
995
996
997
998

999
1000
1001
1002

1003
1004
1005
1006
1007

1008

1009
1010
1011

1012
1013
1014

1015
1016
1017

1018
1019
1020

1021
1022
1023

1024

1025
1026
1027
1028
1029
1030
1031
1032

F.1 Example Expert Demonstrations

TeamCraft will provide a multi-modal prompt alone with a three orthographical view for each
variant, each task. A prompt contains information of the task goal, inventory of each agent, and
necessary information to complete the task. For each time step, only textual inventory information,
first perspective view image for each bot, and a three orthographical view will be provided. Sky view
image shown in each step is just for clarity and will not be provided to any of the tested models.

Figure 29 and Figure 30 show a classic example of the building task, which involves three agents
building a 2x3 building on the mountain half. Each of the agents has some of the needed blocks in
their inventory to build the building. For every time step after step 0, each of the three agents build
one block, from bottom level to the second level.

Figure 31 shows an example of the clearing task. Two agents are assigned to clean the blocks on a
6x6 platform. Each of them has a stone pickaxe in their inventory, which is the efficient tool to break
"stone-like" blocks. In this case, they are able to break brick and sandstone in just one time step with
pickaxe but requires two time step to break "wood-made" blocks like bookshelf and crafting table.
This resulted time step 2 and 3 has exactly same visual observation, shown in Figure 32.

Figure 33 and Figure 34 shows an example of two agents farming on a snow mountain for two extra
carrots. In step 1, agentl and agent2 both sow the carrots on the open ground. In step 2 they saw that
the carrots are ready to collect and they both collect one carrot in step 3 and eventually they collected
two carrots.

Figure 35 and Figure 36 shows an example of smelting task where two agents need to get two cooked
porkchops. In step 1, one agent is in charge of adding the fuel to the furnace and the other agent tries
to kill the pork to get the raw porkchop. Since bot2 already has one porkchop, it only requires one
additional porkchop. In step 2, both agents put the porkchop to the furnace and in step 3, they got 2
cooked porkcops.

G Grid-World Settings

Under the grid-world setting, we replace the three orthographic view images and first person view
images with text descriptions of the task goal and current environment states, and provide them as
input to the model. Here we show one example of the prompt construction in each task.

Building: As shown in Figure 13, the system prompt consists of both task description and the target
building coordination of each block. The user prompt consists of the built blocks and the inventories
of the agents.

Clearing: As shown in Figure 14, the system prompt consists of both task description and the blocks
that appeared on the platform initially. The user prompt consists of the blocks that appeared on the
platform at current time step and the inventories of the agents.

Farming: As shown in Figure 15, the system prompt consists of both task description and the blocks
in the farmland. The user prompt consists of the blocks in the farmland and crops information at
current time step and the inventories of the agents.

Smelting: As shown in Figure 16, the system prompt consists of both task description, instructions to
craft different items and the blocks in the field. The user prompt consists of the blocks locations at
current time step and the inventories of the agents.

H TeamCraft-VLA Implementation Details

We use Vicuna-v1.5 as the LLM backbone. For the visual encoder, we employ CLIP ViT-L/14 to
process all input images, including three orthogonal views and the first-person view of the agents.
The image embeddings are then projected into the LLM space with a linear projection layer and
concatenated with the text embeddings. The combined embeddings are fed into the LLM, which
outputs the final action. During training, we froze the visual encoder and projector and only finetune
the LLM. All image embeddings are positioned before the text embeddings, separated by "image
start" and "image end" tokens. In centralized settings, where the number of images varies depending
on the number of agents, we pad a dummy image at the end for training stability if the task involves

25

1033
1034

1035
1036
1037
1038
1039

1040

1041
1042
1043
1044

1045

1046

1047

1048
1049
1050

1051

1052

1053
1054
1055

1056

1057
1058
1059

Top View

Side View

Figure 7: Combining three orthogonal view images into a single composite image as model input.

only two agents. In decentralized settings, the number of image inputs remains unaffected, as the
model processes only the first-person view of the current agent, excluding views from others.

We train each model for 3 epochs using the training split, leveraging 8 A100 GPUs with a global
batch size of 16. In the centralized setting, training the 7B model takes 36 hours, while the 13B
model requires 72 hours. In the decentralized setting, the training duration doubles, with the 7B
model requiring 72 hours and the 13B model taking 144 hours. In the grid-world setting, training the
7B model takes 20 hours.

H.1 Arrangement of Three Orthogonal Views

For training and evaluation, we combine the three orthogonal view images into a single composite
image by arranging them to the upper-left top-left corner, top-right corner, and the lower-left corner
of the composite image. An example of this arrangement is shown below Figure 7. This process is to
reduce the number of images provided to the model to conform with the 4096 context length limit.

H.2 Hyperparameters

We present the hyperparameters for VLA training in Table 4.

Ir model max length vision tower patch size resolution language model optimizer Ir scheduler type warmup ratio

2e-5 4096 openai-clip-vit-large 14 336*336 Vicuna-v1.5 AdamW constant_with_warmup 0.03

Table 4: Hyperparameters for TeamCraft-VLA

H.3 Model Output Parsing

The output of the model is a string which will be parsed into the pre-defined high level skills. The
string will be first processed by removing special sentence begin token, <s>, and ending token </s>.
It will then be split into a list, where each item is parsed as the skill of one agent.

I Additional Results of TeamCraft-VLA

I.1 Task Success Rate and Subgoal Success Rate

We show task success rate and subgoal success rate of centralized and decentralized 7B models with
different data scales in Table 10, and those of 13B models in Table 11. We compare among different
centralized models in Table 12.

I.2 Redundancy Rate
This metric assesses whether multiple agents are performing the same action at the same time, which

would lead to conflicts. Assume p,, is the total number of actions for test case m and ¢, the number
of conflicts between agents, the redundancy rate RR is defined as:

26

1060
1061

1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073

1074

1075
1076
1077
1078

1079

1080
1081
1082
1083
1084

1085

1086

1087
1088
1089
1090

Test Goal Scene Agents Average

TeamCraft-VLA-7B-Cen 0.01 0.02 0.01 0.01 0.01
TeamCraft-VLA-13B-Cen 0.01 0.00 0.01 0.01 0.01
TeamCraft-VLA-7B-Dec 0.13 0.12 0.13 0.24 0.15
TeamCraft-VLA-13B-Dec 0.11 0.11 0.12 0.22 0.14

Table 5: Comparison of TeamCraft-VLA redundancy rates.

Test Goal Scene Agents Average

TeamCraft-VLA-7B-Cen 6.62 7.63 5.93 6.35 6.63
TeamCraft-VLA-13B-Cen 6.25 7.44 6.46 6.47 6.65
TeamCraft-VLA-7B-Dec 842 8.53 8.06 7.38 8.1

TeamCraft-VLA-13B-Dec 8.62 8.46 841 6.71 8.04

Table 6: Comparison of TeamCraft-VLA action sequence length.

A lower redundancy rate indicates better task allocation among agents and a higher level of cooperative
efficiency.

Table 5 compares redundancy rates between centralized and decentralized settings. Our results
show that decentralized agents exhibit significantly higher redundancy rates than centralized agents,
indicating reduced efficiency in task planning and allocation. This inefficiency becomes even more
pronounced as the number of agents increases, creating greater challenges for effective task allocation.
In decentralized settings, the absence of centralized control complicates the avoidance of redundant
work, as each agent must independently infer the intentions of others to prevent duplication. By
contrast, a centralized controller can efficiently assign distinct tasks to each agent, minimizing
overlap and enhancing overall efficiency. Both the 7B and 13B models exhibit redundancy issues in
decentralized settings. Increasing model size alone does not resolve the redundancy problem in such
scenarios. These findings suggest that VLA models lack explicit mechanisms to understand or infer
the actions of other agents, highlighting a critical need for improved inter-agent communication and
awareness within decentralized systems.

1.3 Action Sequence Length

We compared the average action lengths across different splits between the 7B and 13B models
under both centralized and decentralized settings, as shown in Table 6. In general, decentralized
settings require longer action sequences to complete tasks. Among the splits, the Goal split is the
most challenging, as it demands more actions to accomplish the tasks.

I.4 Multi-Agent Effectiveness

Table 7 comparing success rates and average steps under centralized and decentralized settings.
Overall, efficiency improves with more agents, which result a fewer steps to complete the task. In
the centralized setting, 3 agents exhibited better task completion. In the decentralized one, 2 agents
achieved a higher success rate, indicating the growing difficulty and complexity of coordination in
decentralized settings with more agents.

L5 Case Study

We present a detailed failure cases analysis by categories.

Object Mismatching: As an example (Figure 8), in the farming tasks two agents need to get
10 beetroot. In step 0, the actions involve a mismatch in the objects; the agents mistakenly sow
"beet_seeds" instead of "beetroot_seeds." Consequently, in step 1, due to the object mismatch, no
crops grow on the farmland. As another example, two agents need to get 2 dried kelp in the smelting

27

1091
1092

1093
1094
1095
1096

1097
1098
1099
1100

1101

1102
1103
1104

1105

1106
1107

1108
1109
1110
1111
1112
1113
1114

1115
1116
1117
1118
1119
1120
1121
1122

Agent# Task Success Rate Subgoal Success Rate Average Steps

TeamCraft-VLA-7B-Cen 2 Agents 0.506 0.722 7.487
TeamCraft-VLA-7B-Cen 3 Agents 0.540 0.755 5.744
TeamCraft-VLA-7B-Dec 2 Agents 0.075 0.427 9.764
TeamCraft-VLA-7B-Dec 3 Agents 0.074 0.403 7.536

Table 7: Comparison on the number of agents.

task (Figure 9). The task requires one bot to put the kelp and the other put the fuel. However, in this
example botl mistake the object "kelt" to "cobbl1".

Task Allocation Failure: This occurs when a task requires four agents. As two examples, four agents
must break everything on the platform in the clearing task (Figure 10), and construct on the platform
in the building task (Figure 11). Only three agents are assigned distinct actions, leaving the fourth
agent idle.

Object State Recognition Failure: As an example (Figure 12), a farming task requires two agents
to collect four additional carrots. In step 0, botl and bot2 both sow carrots and attempt to harvest
them in step 2. However, at that time, the carrots are still immature and not ready for collection. The
mature state of the carrot is shown in Figure 20.

Company Model Name

OpenAl GPT-40 gpt-40-2024-08-06

OpenAl 04-mini 04-mini-2025-04-16
Anthropic Claude 3.7 claude-3-7-sonnet-20250219

Google Gemini 2.5 Pro gemini-2.5-pro-preview-05-06

Table 8: Proprietary VLA Models

J Proprietary VLA Model Implementations

We use GPT-40, 04-mini, Claude 3.7, and Gemini 2.5 Pro as the proprietary VLA models. Details are
shown in Table 8. We test proprietary VLA models in two prompting settings: basic setting and grid
setting. Table 13 shows the detailed results.

J.1 Vanilla Setting

The Vanilla setting uses similar prompt structures as the centralized finetuned TeamCraft-VLA model,
with additional information in the initial system prompt to supply sufficient task context.

Specifically, all proprietary models share the same system prompt that (i) specifies the task objective,
(i1) enumerates observation inputs, (iii) stipulates the action and response syntax, (iv) lists all possible
blocks/items names that will be used in current task, but may not being used for a task variance, (v)
details workspace constraints together with coordinate-axis and orientation conventions, and (vi)
provides a fully worked roll-out for a closely related task. Figure 37 shows the system prompts for the
building task; Figure 40 shows the system prompts for the clearing task; Figure 42 shows the system
prompts for the farming task; Figure 45 and Figure 46 show the system prompts for the smelting task.

Based on the system prompts and user prompts, the model predicts the actions. As the interaction
progresses with subsequent prompts, the context is maintained and expanded with the addition of
prior responses and updated visual data. In the first step, we additionally provide the first user prompt,
where the model is given a specific multi-modal task specification accompanied by initial visual
observations and inventory details of the agents. Based on the system prompts and user prompts, the
model predicts the actions. As the interaction progresses with subsequent prompts, the context is
maintained and expanded with the addition of prior responses and updated visual data, as shown in
Figure 38 and Figure 39.

28

1128
1124
1125
1126

1127

1128
1129
1130
1131

1132

1133
1134
1135
1136
1137

1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150

1151

1152
1153
1154
1155
1156
1157

1158
1159
1160
1161
1162
1163
1164
1165

1166
1167
1168

1169

1170
171
1172

Under the Vanilla setting, results from GPT-40 (as shown in Table 13), along with case studies on
GPT-40, Claude 3.7, and ol, as well as block recognition tests involving GPT-40, GPT-4.1, ol,
03, and o4-mini, collectively indicate that the proprietary VLA models suffer a lack of 3D spatial
reasoning necessary for accurate task execution.

J.1.1 GPT-40 Error Analysis

Some failure cases are visualized in Figure 38, Figure 39, Figure 41, Figure 43, and Figure 44. In
general, GPT4-o fails to understand spatial relations and often chooses the incorrect coordinates
as the locations for placing and mining actions. In addition, the model sometimes fails to follow
instructions and does not harvest the crop in the farming task, as shown in Figure 43 and Figure 44.

J.1.2 ol Error Analysis

We evaluated a subset of our test cases using 01-2024-12-17, a reasoning model that produces a
chain-of-thought at inference time. To accommodate its extended context length allowance, we
provided ol with a more comprehensive system prompt, as illustrated in Figure 47. We also included
a one-shot example of a question and answer sequence, which is placed between the system prompt
and the actual test tasks, to clarify our specialized coordinate system (Figure 48).

Despite its ability to identify blocks accurately from the goal image, as is shown by Figure 49), ol
exhibits significant deficiencies in adhering to task-specific constraints and performing reliable 3D
spatial reasoning. Notably, it even violates the system-level instruction to generate exactly one action
per agent, instead producing two actions, which leads to partial or unintended command execution.
Additionally, ol’s misinterpretation of absolute coordinates results in incorrect placements; for
example, positioning a sea_lantern at (0,0, 0) rather than one block below the origin. Figure 49
and Figure 50 further demonstrate o1’s struggle to reconcile multiple orthographic views to infer
vertical stacking, causing it to consistently place blocks at ground level instead of at the correct
elevated layer. Although ol occasionally succeeds at recognizing lateral orientation from a first-
person viewpoint (e.g., determining the “right side” of a reference point), its broader challenge in
synthesizing 2D and 3D cues compromises the precise placement of blocks. Consequently, these
spatial miscalculations substantially diminish o1’s efficacy in tasks demanding fine-grained alignment,
thus revealing the model’s limitations in translating visual information into spatially coherent actions.

J.1.3 Claude 3.7 Error Analysis

We evaluated claude-3-7-sonnet-20250219 under the same conditions as the ol model, employing a
comparable prompt configuration and environment constraints, as shown in Figure 51 and Figure 52.
As depicted in Figure 55 and Figure 56, Claude 3.7 accurately identifies blocks from the goal image
and associates them with their corresponding names. Moreover, it adheres to the system prompt’s
requirements by generating exactly one well-formed action per agent, thus meeting all specified
directives.

In Figure 53 and Figure 54, Claude 3.7 further demonstrates an ability to parse multiple orthographic
views, correctly placing blocks on the first layer prior to stacking additional blocks on top. However,
Figure 53 shows that the model’s spatial reasoning weakens when interpreting first-person orientation
cues: rather than arranging blocks horizontally, it produces a vertical configuration. This shortfall
becomes more evident in Figure 54, where Claude 3.7 consistently positions a sea_lantern on the
right side of the existing blocks instead of at the top. Similarly, when more blocks are placed, Claude
3.7 starts to struggle in tracking the special relationship of the blocks on the playground, and begins
placing block at ground level instead of in the intended second layer.

As illustrated by Figure 55, Figure 56, and Figure 57, Claude 3.7 eventually begins to place surplus
blocks from its inventory in a random manner, ultimately filling a substantial portion of the play area
with extraneous structures.

J.1.4 Block Recognition Test

We designed a dedicated test to evaluate proprietary VLA models on their 3D spatial reasoning
abilities. The models are provided with orthographic projection images and are asked to identify
all visible blocks along with their coordinates. As in the Vanilla setting, we provide detailed task

29

1173
1174

1175

1176
1177

1178
1179

1180
1181

1182
1183
1184

1185
1186

1187

1188
1189
1190
1191

1192

1193
1194
1195
1196
1197
1198
1199

Model Avg. Accuracy (1) Block Type Accuracy (1) False Positive Rate ({)
GPT-40 0.0507 £+ 0.0121 0.4315 £+ 0.0551 0.2363 £+ 0.0764
GPT-4.1 0.1175+0.0618 0.6519 £ 0.0423 0.2734 £ 0.0653
ol 0.0220 £ 0.0156 0.1296 + 0.0805 0.0523 £ 0.0336
03 0.0703 £ 0.0018 0.6659 £ 0.0896 0.1788 £ 0.0180
04-mini 0.0124 + 0.0098 0.1350 £ 0.0689 0.4893 £+ 0.1169

Table 9: Overall comparison of model performance. Higher values are better for Accuracy and Block
Recognition Accuracy, while lower values are better for False Positive Rate.

instructions, including the list of all possible block/item types, the coordinate system and axis
orientation, and a sample input-output pair to enable single-shot learning.

‘We define three evaluation metrics:

Average Accuracy (Apos): Measures the fraction of blocks correctly identified by both name and
position:

A o N, correct_name_and_position
pos)
N total

where Neorrect_name_and_position 18 the number of blocks correctly predicted in both type and 3D location,
and Ny is the total number of blocks in the image.

Block Type Accuracy (Agype): Evaluates how well the model identifies block types and their counts,
regardless of position:
N correct_types

)
N, total

where Neorrect_types 18 the number of block types correctly identified with the correct count. Over-
reporting a block type (e.g., reporting two gold blocks when only one exists) results in only the first
being counted as correct.

Atype =

False Positive Rate (F"PR): Measures the proportion of reported blocks that do not exist in the
scene, based on type:
N false_positives
FPR = —F—F—,
N, total

where Nijee_positives 15 the number of reported blocks of types not present in the image.

As shown in Table 9, all models achieve an average accuracy Apos < 0.1, revealing poor performance
in 3D spatial reasoning and localization. However, their low false positive rate (F'PR), attributed to
texture-based type identification, suggests that the models can still recognize block types with high
visual fidelity due to their training on Minecraft data.

J.2 Grid Setting

The Grid setting retains the same structures as the basic setting but supplies extra grid information
that translates the orthographic projection images to text, by describing the voxel coordinate of each
block; e.g., "brick is at (2,3,0)". The grid information text is similar to the user prompt in Figure 16,
but only appears once at the very first user prompt to describe orthographic projection images. This
additional grounding compensates for the models’ extremely limited 3D spatial reasoning abilities,
enabling them to skip orthographic projection images and generate plans consistent with the true
scene context.

30

Centralized Decentralized
10% 50% 100% 10% 50% 100%

Test 0.00 (0.12) 0.38(0.76) 0.42 (0.81) 0.00 (0.18) 0.00 (0.28) 0.00 (0.38)
Shape 0.00 (0.12) 0.20 (0.67) 0.30 (0.75) 0.00 (0.15) 0.00 (0.25) 0.00 (0.40)
Building Material ~ 0.00 (0.13) 0.18 (0.64) 0.30(0.74) 0.00 (0.13) 0.00 (0.20) 0.0 (0.34)
Scene 0.00 (0.15) 0.36(0.73) 0.40(0.83) 0.00 (0.16) 0.00 (0.21) 0.00 (0.36)
Agents 0.00 (0.18) 0.02(0.50) 0.02(0.57) 0.00(0.12) 0.00 (0.20) 0.00 (0.14)

Test 0.00 (0.13) 0.08 (0.43) 0.64(0.91) 0.00(0.45) 0.02(0.35) 0.20 (0.68)
Shape 0.00 (0.09) 0.08 (0.34) 0.56(0.91) 0.00(0.47) 0.02(0.27) 0.16 (0.74)
Clearing Material ~ 0.00 (0.10) 0.12(0.45) 0.56 (0.90) 0.00 (0.48) 0.00(0.22) 0.16 (0.67)

Tasks Condition

Scene 0.00 (0.11) 0.10(0.44) 0.58(0.92) 0.00 (0.41) 0.04 (0.37) 0.10 (0.64)
Agents 0.00 (0.16) 0.14 (0.64) 0.36(0.81) 0.02(0.50) 0.02(0.54) 0.12 (0.60)
Test 0.14 (0.43) 0.34(0.60) 0.36(0.63) 0.02(0.07) 0.02(0.14) 0.00 (0.09)
Crop 0.00 (0.00) 0.00 (0.00) 0.00(0.00) 0.00 (0.00) 0.00(0.00) 0.00 (0.00)
Farming Scene 0.16 (0.39) 0.34 (0.65) 0.38(0.67) 0.00(0.05) 0.00(0.11) 0.02 (0.07)
Agents 0.02 (0.18) 0.18 (0.61) 0.38(0.68) 0.00(0.08) 0.00(0.11) 0.04 (0.27)
Test 0.06 (0.17) 0.20(0.36) 0.24(0.28) 0.08 (0.13) 0.08 (0.09) 0.16 (0.29)
Goal 0.08 (0.21) 0.04 (0.07) 0.00 (0.00) 0.08 (0.17) 0.00 (0.00) 0.00 (0.00)
Smelting Furnace 0.10(0.28) 0.10(0.20) 0.18 (0.20) 0.06 (0.07) 0.06 (0.06) 0.06 (0.16)
Scene 0.08 (0.19) 0.14(0.28) 0.18(0.23) 0.08 (0.19) 0.14(0.19) 0.12 (0.28)

Agents 0.00 (0.15) 0.02(0.24) 0.06 (0.13) 0.04 (0.05) 0.00(0.02) 0.02 (0.28)

Table 10: Task success rates and subgoal success rates of the TeamCraft-VLA-7B-Cen and TeamCraft-
VLA-7B-Dec models. Subgoal success rates are given in parentheses.

Centralized Decentralized
Tasks Condition 4 50% 100% 10% 50% 100%
Test 0.00 (0.18) 0.46 (0.80) 048 (0.79) 0.00(0.13) 0.00 (0.18) 0.00 (0.31)

Shape 0.00 (0.16) 0.30(0.73) 0.26 (0.69) 0.00 (0.15) 0.00 (0.15) 0.00 (0.32)
Building Material ~ 0.00 (0.15) 0.24 (0.65) 0.08 (0.63) 0.00 (0.14) 0.00 (0.14) 0.00 (0.31)

Scene 0.00 (0.16) 0.38(0.75) 0.48 (0.83) 0.00 (0.17) 0.00 (0.17) 0.00 (0.28)
Agents 0.00 (0.16) 0.00 (0.49) 0.04 (0.59) 0.00 (0.14) 0.00 (0.16) 0.00 (0.23)
Test 0.04 (0.37) 0.42(0.83) 0.64(0.94) 0.00(0.46) 0.02(0.62) 0.02 (0.60)

Shape 0.00 (0.26) 0.42(0.85) 0.78 (0.96) 0.00 (0.47) 0.00 (0.57) 0.04 (0.58)
Clearing Material 0.04 (0.36) 0.36 (0.83) 0.56 (0.92) 0.02(0.53) 0.00 (0.60) 0.02 (0.58)
Scene 0.06 (0.35) 0.44 (0.88) 0.48 (0.90) 0.00 (0.55) 0.02(0.59) 0.08 (0.64)
Agents 0.02 (0.55) 0.16 (0.65) 0.16(0.77) 0.02(0.50) 0.02(0.52) 0.02 (0.50)

Test 0.4(0.72) 0.62(0.79) 0.46(0.73) 0.08 (0.39) 0.04 (0.23) 0.02 (0.33)
Crop 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Farming Scene 0.30 (0.69) 0.52(0.76) 0.44(0.75) 0.04 (0.32) 0.06(0.29) 0.10 (0.33)
Agents 0.12 (0.54) 0.44 (0.79) 0.36(0.72) 0.02(0.22) 0.00(0.19) 0.02 (0.23)
Test 0.06 (0.08) 0.22(0.44) 0.32(0.59) 0.10(0.25) 0.06 (0.09) 0.10 (0.19)
Goal 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.10) 0.00 (0.00) 0.00 (0.00)
Smelting Furnace 0.06 (0.08) 0.20 (0.40) 0.18 (0.38) 0.06 (0.12) 0.04 (0.08) 0.04 (0.07)
Scene 0.04 (0.08) 0.16 (0.43) 0.24 (0.56) 0.12(0.28) 0.04 (0.09) 0.08 (0.18)

Agents 0.00 (0.03) 0.00(0.26) 0.04 (0.37) 0.00 (0.02) 0.00(0.01) 0.00 (0.00)

Table 11: Task success rates and subgoal success rates of the TeamCraft-VLA-13B-Cen and
TeamCraft-VLA-13B-Dec models. Subgoal success rates are given in parentheses.

31

Tasks Condition TeamCraft-VLA-7B TeamCraft-VLA-13B GPT-40 TeamCraft-7B-GridWorld

Test 0.42 (0.81) 0.48 (0.79) 0.00 (0.07) 0.42 (0.88)
Shape 0.30 (0.75) 0.26 (0.69) 0.00 (0.08) 0.50 (0.90)
Building Material 0.30 (0.74) 0.08 (0.63) 0.00 (0.07) 0.26 (0.82)
Scene 0.40 (0.83) 0.48 (0.83) 0.00 (0.07) 0.48 (0.89)
Agents 0.02 (0.57) 0.04 (0.59) 0.00 (0.00) 0.12 (0.71)
Test 0.64 (0.91) 0.64 (0.94) 0.00 (0.03) 1.00 (1.00)
Shape 0.56 (0.91) 0.78 (0.96) 0.00 (0.04) 1.00 (1.00)
Clearing Material 0.56 (0.91) 0.56 (0.92) 0.00 (0.12) 1.00 (1.00)
Scene 0.58 (0.92) 0.48 (0.90) 0.00 (0.06) 1.00 (1.00)
Agents 0.36 (0.81) 0.16 (0.77) 0.00 (0.00) 0.84 (0.97)
Test 0.36 (0.64) 0.46 (0.73) 0.00 (0.00) 0.78 (0.86)
Crop 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Farming ~ Scene 0.38 (0.67) 0.44 (0.75) 0.00 (0.00) 0.90 (0.96)
Agents 0.38 (0.68) 0.36 (0.72) 0.00 (0.00) 0.40 (0.73)
Test 0.24 (0.28) 0.32 (0.59) 0.02 (0.02) 0.24 (0.51)
Goal 0.00 (0.00) 0.00 (0.00) 0.08 (0.08) 0.00 (0.00)
Smelting Furnace 0.18 (0.20) 0.18 (0.38) 0.00 (0.00) 0.24 (0.39)
Scene 0.18 (0.23) 0.24 (0.56) 0.00 (0.00) 0.36 (0.58)
Agents 0.06 (0.13) 0.04 (0.37) 0.00 (0.00) 0.00 (0.31)

Table 12: Task success rates and subgoal success rates of various centralized models. Subgoal success
rates are given in parentheses. All models are trained with the full training data except GPT-4o0.

Tasks Condition TeamCraft-VLA-7B GPT—4o0 w/o Grid GPT—4o 04-mini Claude-3.7 Gemini-2.5-Pro

Test 0.42 (0.81) 0.07 (0.00) 0.68 (0.16) 0.80 (0.48) 0.66(0.16) 0.89 (0.58)
Shape 0.30 (0.75) 0.08 (0.00) 0.64 (0.10) 0.81(0.48) 0.54(0.10) 0.88 (0.58)
Building Material 0.30 (0.74) 0.07 (0.00) 0.66 (0.12) 0.85(0.54) 0.59(0.12) 0.91 (0.72)
Scene 0.40 (0.83) 0.07 (0.00) 0.60 (0.10) 0.70 (0.10) 0.62(0.00) 0.91 (0.66)
Agents 0.02 (0.57) 0.00 (0.00) 0.57 (0.08) 0.80(0.38) 0.64(0.13) 0.87 (0.66)
Test 0.64 (0.91) 0.04 (0.00) 0.87 (0.82) 0.90(0.84) 0.94(0.84) 0.98 (0.98)
Shape 0.56 (0.91) 0.03 (0.00) 0.85(0.70) 0.83(0.76) 0.95(0.92) 0.98 (0.96)
Clearing Material 0.56 (0.91) 0.12 (0.00) 0.88(0.70) 0.85(0.78) 0.91(0.88) 0.94 (0.94)
Scene 0.58 (0.92) 0.06 (0.00) 0.85(0.64) 0.86(0.72) 0.93(0.90) 0.92(0.92)
Agents 0.36 (0.81) 0.00 (0.00) 0.85(0.68) 0.91(0.85) 0.93(0.92) 0.98(0.92)
Test 0.36 (0.64) 0.00 (0.00) 0.43(0.28) 0.28(0.24) 0.33(0.28) 0.66 (0.50)
Farming P 0.00 (0.00) 0.00 (0.00) 0.76 (0.48) 0.73(0.64) 0.31(0.24) 0.86 (0.82)
Scene 0.38 (0.67) 0.00 (0.00) 0.35(0.16) 0.31(0.24) 0.34(0.30) 0.65(0.52)
Agents 0.38 (0.68) 0.00 (0.00) 0.40(0.17) 0.34(0.24) 0.31(0.18) 0.44 (0.39)
Test 0.24 (0.28) 0.02 (0.02) 043 (0.24) 025(0.10) 0.64(0.38) 0.91 (0.80)
Goal 0.00 (0.00) 0.08 (0.08) 0.34(0.20) 0.35(0.24) 0.63(0.46) 0.88 (0.70)
Smelting Furnace 0.18 (0.20) 0.00 (0.00) 0.31(0.16) 0.15(0.10) 0.62(0.42) 0.90 (0.84)
Scene 0.18 (0.23) 0.00 (0.00) 0.51 (0.24) 0.31(0.20) 0.64(0.40) 0.83 (0.68)
Agents 0.06 (0.13) 0.00 (0.00) 0.35(0.20) 0.39(0.21) 0.69(0.43) 0.88 (0.72)

Table 13: Task success rates and subgoal success rates of various centralized models. Subgoal success
rates are given in parentheses. TeamCraft-VLA-7B is trained with the full training data. GPT-40 w/o
Grid is tested under Vanilla setting with no grid information provided. GPT-40, 04-mini, Claude-3.7
and Gemini-2.5-Pro are tested under Grid setting with grid information provided.

32

System Prompt

Two bots need to grow on the platform. The goal is to get 10 beetroot. Write the actions for

botl, bot2 based on this given observation."

(a) orthographic views
of the task

Step 0:

User Prompt

botl has 7 beetroot_seeds. botl has 1 carrot. botl has 3 potato. bot2 has 5 beet-
root_seeds. bot2 has 2 wheat_seeds. Write the actions for bot1, bot2 based on this
given observation.

(b) Agentl observa-(c) Agent2 observa-
tion tion

Actions
["farm_work(bot1, new Vec3(-1,-1,2), ’sow’, ’beat_seeds’)",
"farm_work(bot2, new Vec3(-2,-1,-2), , ’sow’, "beat_seeds’)"]

Step 1:

User Prompt

botl has 7 beetroot_seeds. botl has 1 carrot. botl has 3 potato. bot2 has 5 beet-
root_seeds. bot2 has 2 wheat_seeds. Write the actions for bot1, bot2 based on this
given observation.

(d) Agentl observa-(e) Agent2 observa-
tion tion

Actions
["farm_work(bot1, new Vec3(3,-1,-1), ’sow’, ’beat_seeds’)",
"farm_work(bot2, new Vec3(0,-1,-1), ’sow’, ’beat_seeds’)"]

Figure 8: Object mismatching example 1.

33

System Prompt
"Two bots need to craft 2 dried_kelp. here are the instructions: ... To cook a ’dried_kelp’, I
need a ’kelp’. ... ",

(a) orthographic views
of the task

Step 0:

User Prompt
botl has 1 iron_pickaxe. botl has 1 iron_axe. bot2 has 2 charcoal. bot2 has 1
iron_shovel. bot2 has 1 iron_sword. Write the actions for botl, bot2 based on this
given observation.

(b) Agentl observa-(c) Agent2 observa-
tion tion

Actions
[putltemFurnace(bot1, ’cobbl1’, new Vec3(0,0,-1)),
putFuelFurnace(bot2, *charcoal’, new Vec3(0,0,-1))]

Step 1:

User Prompt
botl has 2 kelp. botl has 1 iron_pickaxe. botl has 1 iron_axe. bot2 has 1 charcoal.
bot2 has 1 iron_shovel. bot2 has 1 iron_sword. Write the actions for bot1, bot2 based
on this given observation.

| Vi A 4 A\

(d) Agentl observa-(e) Agent2 observa-
tion tion

Actions
[putltemFurnace(bot1, *cobbll’, new Vec3(0,0,-1)),
putFuelFurnace(bot2, *charcoal’, new Vec3(0,0,-1))]

Figure 9: Object mismatching example 2.

34

System Prompt
"Four bots need to break everything on the platform." ",

(a) orthographic views
of the task

Step 0:

User Prompt

bot0 has 1 stone_axe. botl has 1 stone_shovel. bot2 has 1 stone_pickaxe. bot3
has 1 stone_sword. Write the actions for bot0, bot1, bot2, bot3 based on this given
observation.

m M

-

g

(b) AgentO observa-(c) Agentl observa-(d) Agent2 observa-(e) Agent3 observa-
tion tion tion tion

Actions

[" mineBlock(bot1, new Vec3(-2,0,1)),
mineBlock(bot2, new Vec3(-1,0,0)),
mineBlock(bot3, new Vec3(1,0,1))",]

Step 1:

~

User Prompt
Write the actions for bot0, bot1, bot2, bot3 based on this given observation."

(f) AgentO observa-(g) Agentl observa-(h) Agent2 observa-(i) Agent3 observa-
tion tion tion tion

Actions

[" mineBlock(bot1, new Vec3(1,0,0)),
mineBlock(bot2, new Vec3(-2,0,-2)),

mineBlock(bot3, new Vec3(1,0,1))",]

Figure 10: Task allocation failure example 3.

35

System Prompt
"Four bots need to build a building on the platform. "

(a) orthographic views
of the task

Step 0:

User Prompt

bot0 has 4 bricks. bot0 has 5 sponge. bot0 has 2 oak_planks...botl has 1 pumpkin...
bot2 has 3 bricks... bot3 has 1 clay... Write the actions for bot0, bot1, bot2, bot3
based on this given observation.

; Wl
—~a- — -
§ 77—

(b) AgentO observa-(c) Agentl observa-(d) Agent2 observa-(e) Agent3 observa-
tion tion tion tion

Actions

[" placeltem(botl, *bricks’, new Vec3(0,0,-1)),
placeltem(bot2, ’clay’, new Vec3(-1,0,-1)),
placeltem(bot3, ’clay’, new Vec3(1,0,-1))"]

Step 1:

User Prompt
Write the actions for bot0, bot1, bot2, bot3 based on this given observation.

(f) AgentO observa-(g) Agentl observa-(h) Agent2 observa-(i) Agent3 observa-
tion tion tion tion

Actions

["placeltem(botl, ’sponge’, new Vec3(-1,1,-1)),
placeltem(bot2, bricks’, new Vec3(1,1,-1)),
placeltem(bot3, ’sponge’, new Vec3(0,1,-1))",]

Figure 11: Task allocation failure example 4.

36

System Prompt
Two bots need to grow on the platform. The goal is to get 4 carrot.

(a) orthographic views
of the task

Step 0:

User Prompt
"botl has 4 carrot. botl has 1 potato. botl has 1 beetroot. bot2 has 5 carrot. bot2
has 2 beetroot. bot2 has 3 wheat_seeds. bot2 has 2 potato. Write the actions for botl,

bot2 based on this given observation."
o p % [3 :

(b) Agentl observa-(c) Agent2 observa-
tion tion

Actions
[" farm_work(bot1l, new Vec3(1,-1,-2), ’sow’, ’carrot’),
farm_work(bot2, new Vec3(2,-1,-2), ’sow’, ’carrot’)",]

Step 2:

7~

User Prompt
"botl has 3 carrot. botl has 1 potato. botl has 1 beetroot. bot2 has 5 carrot. bot2
has 2 beetroot. bot2 has 3 wheat_seeds. bot2 has 2 potato. Write the actions for botl,
bot2 based on this given observation."

(d) Agentl observa-(e) Agent2 observa-
tion tion

Actions
[" farm_work(bot1, new Vec3(-2,-1,-2), ’sow’, ’carrot’),
farm_work(bot2, new Vec3(-1,-1,1), ’sow’, ’carrot’)",]

Figure 12: Object state recognition failure example 5.

37

System Prompt Three bots need to build a building on the platform. Target building is:
Put sea_lantern on [0 ,1 ,0]. Put oak_fence on [-1 ,1 ,0]. Put sponge on [0 ,1 ,-1]. Put
emerald_block on [-1,1 ,-1]. Put dirt on [0 ,0 ,0]. Put bricks on [-1 ,0 ,0]. Put emerald_block
on [0,0 ,-1]. Putclay on [-1 ,0 ,-1]. .

User Prompt

botl has 4 dirt. botl has 3 clay. botl has 7 emerald_block. botl has 1 oak_fence. botl has 3
sponge. botl has 1 bricks. botl has 3 sea_lantern. bot2 has 4 bricks. bot2 has 2 sponge. bot2
has 6 sea_lantern. bot2 has 2 oak_fence. bot2 has 4 emerald_block. bot2 has 1 dirt. bot2 has
3 clay. bot3 has 6 emerald_block. bot3 has 4 oak_fence. bot3 has 2 dirt. bot3 has 2 sponge.
bot3 has 3 clay. bot3 has 2 sea_lantern. bricks is on [-1,0 ,0]. dirt is on [0 ,0 ,0]. Write the
actions for botl, bot2 and bot3 based on this given observation.

Figure 13: Prompt example for Building task under the grid-world setting.

System Prompt Three bots need to break everything on the platform. clay is on [-2 ,0 ,-2].
birch_log is on [-2 ,0 ,0]. dirt is on [-1 ,0 ,-2]. crafting_table is on [-1 ,0,1]. anvil is on [-1 ,1
,1]. anvil is on [0 ,0 ,-2]. iron_ore is on [0 ,0 ,1]. cobweb is on [1,0,1].

User Prompt botl has 1 stone_pickaxe. botl has 1 anvil. bot2 has 1 stone_axe. bot2 has 1
crafting_table. bot3 has 1 stone_pickaxe. bot3 has 1 dirt. clay is on [-2 ,0 ,-2]. birch_log is
on [-2,0,0]. iron_ore is on [0 ,0 ,1]. cobweb is on [1 ,0,1]. Write the actions for bot1, bot2
and bot3 based on this given observation.

Figure 14: Prompt example for Clearing task under the grid-world setting.

38

System Prompt Two bots need to grow on the platform. The goal is to get 5 carrot. farmland
is on [-3 ,-1 ,-2] with value of 7. cyan_concrete is on [-3 ,-1 ,-1]. water is on [-3 ,-1 ,0].
cyan_concrete is on [-3 ,-1 ,1]. cyan_concrete is on [-3 ,-1 ,2]. farmland is on [-2 ,-1 ,-2]
with value of 7. cyan_concrete is on [-2 ,-1 ,-1]. water is on [-2 ,-1 ,0]. farmland is on
[-2 ,-1,1] with value of 7. cyan_concrete is on [-2 ,-1 ,2]. cyan_concrete is on [-1 ,-1 ,-2].
cyan_concrete is on [-1 ,-1 ,-1]. water is on [-1 ,-1 ,0]. farmland is on [-1 ,-1 ,1] with value of
7. farmland is on [-1 ,-1,2] with value of 7. cyan_concrete is on [0 ,-1 ,-2]. farmland is on [0
,-1 ,-1] with value of 7. water is on [0 ,-1 ,0]. cyan_concrete is on [0 ,-1 ,1]. cyan_concrete is
on [0 ,-1,2]. cyan_concrete is on [1 ,-1 ,-2]. cyan_concrete is on [1 ,-1 ,-1]. water is on [1 ,-1
,0]. farmland is on [1 ,-1,1] with value of 7. cyan_concrete is on [1 ,-1 ,2]. cyan_concrete is
on [2 ,-1 ,-2]. cyan_concrete is on [2 ,-1 ,-1]. water is on [2 ,-1 ,0]. cyan_concrete is on [2 ,-1
,1]. farmland is on [2 ,-1 ,2] with value of 7. cyan_concrete is on [3 ,-1 ,-2]. farmland is on [3
,-1 ,-1] with value of 7. water is on [3 ,-1 ,0]. cyan_concrete is on [3 ,-1,1]. farmland is on [3
,-1,2] with value of 7.

User Prompt

botl has 5 carrot. botl has 2 beetroot. botl has 3 potato. bot2 has 2 carrot. bot2 has 2
beetroot. bot2 has 2 wheat_seeds. farmland is on [-3 ,-1 ,-2] with value of 7. cyan_concrete
ison [-3 ,-1 ,-1]. water is on [-3 ,-1 ,0]. cyan_concrete is on [-3 ,-1 ,1]. cyan_concrete is
on [-3 ,-1,2]. farmland is on [-2 ,-1 ,-2] with value of 7. cyan_concrete is on [-2 ,-1 ,-1].
water is on [-2 ,-1 ,0]. farmland is on [-2 ,-1 ,1] with value of 7. cyan_concrete is on [-2
,-1,2]. cyan_concrete is on [-1 ,-1 ,-2]. cyan_concrete is on [-1 ,-1 ,-1]. water is on [-1 ,-1
,0]. farmland is on [-1 ,-1 ,1] with value of 7. farmland is on [-1 ,-1 ,2] with value of 7.
cyan_concrete is on [0 ,-1 ,-2]. farmland is on [0 ,-1 ,-1] with value of 7. water is on [0 ,-1 ,0].
cyan_concrete is on [0 ,-1 ,1]. cyan_concrete is on [0 ,-1 ,2]. cyan_concrete is on [1 ,-1 ,-2].
cyan_concrete is on [1 ,-1 ,-1]. water is on [1 ,-1 ,0]. farmland is on [1 ,-1,1] with value of 7.
cyan_concrete is on [1 ,-1,2]. cyan_concrete is on [2 ,-1 ,-2]. cyan_concrete is on [2 ,-1 ,-1].
water is on [2 ,-1 ,0]. cyan_concrete is on [2 ,-1,1]. farmland is on [2 ,-1 ,2] with value of 7.
cyan_concrete is on [3 ,-1 ,-2]. farmland is on [3 ,-1 ,-1] with value of 7. water is on [3 ,-1 ,0].
cyan_concrete is on [3 ,-1,1]. farmland is on [3 ,-1 ,2] with value of 7. carrots is on [3,0 ,-1]
with value of 0. carrots is on [3 ,0,2] with value of 0. Write the actions for botl, bot2 based
on this given observation.

Figure 15: Prompt example for Farming task under the grid-world setting.

System Prompt Two bots need to craft 2 stone. here are the instructions: Cooking Food: 1.
To cook a ’cooked_beef’... cobblestone is on [-2,0 ,2]. furnace is on [0 ,0 ,1]. spruce_planks
is on [2,0 ,-3]. cobblestone is on [2 ,0 ,-1].

User Prompt

botl has 1 iron_sword. botl has 1 iron_shovel. botl has 1 iron_pickaxe. botl has 1
cobblestone. botl has 1 spruce_planks. bot2 has 1 spruce_planks. bot2 has 1 iron_shovel.
bot2 has 2 iron_pickaxe. cobblestone is on [-2 ,0 ,2]. furnace is on [0 ,0,1]. spruce_planks is
on [2,0 ,-3]. cobblestone is on [2 ,0 ,-1]. Write the actions for botl, bot2 based on this given
observation.

Figure 16: Prompt example for Smelting task under the grid-world setting.

39

Base Blocks

Bot Skins

Clearing
Targets

Clearing
Tools

Cyan Concrete Smooth Quartz Stone Gold Block Glass Hay Block Pink Wool

3 @

Oak Wood Obsidian Podzol Glowstone Grass Block

Bot0 Bot1 Bot2 Bot3

Figure 17: A close-up view of the shared visual diversity in every tasks.

PRYHY s

Orange Concrete Gold Ore Pumpkin Crafting Table Bookshelf Sandstone Bricks
-~ s
.\ - | >
‘. "
Anvil Grass Block Birch Log Cobweb Clay Coal Ore Dirt
%, Acacia Fence Oak Fence Stone Oak Log Iron Ore

i, Stone Axe Stone Shovel Stone Sword Stone Pickaxe

Figure 18: A close-up view of the visual diversity in clearing tasks.

40

Building

Targets
(shared w/ Clearing)

Building
Targets

Orange Concrete Gold Ore

Iron Ore

T

%, Acacia Fence Oak Log

Pumpkin

Birch Log

Coal Ore

Grass Block

Clay

T

Oak Fence

Sandstone

Stone

Bricks

Bookshelf

Farming
Crops

End Stone

Sponge

Purple Wool

Oak Planks

Sea Lantern

Emerald Block

Figure 19: A close-up view of the visual diversity in building tasks.

Al
A 4
63 L !ﬁ!ﬂ i% m
Age 0 Age 2 Age 3 Age 4 Age 5
Age 6 Age7
Age 0-1 Age 2-3 Age 4-6 Age 7
I
FENR . T 19 @
Age 0-1 Age 2-3 Age 4-6 Age 7
g3
:..’,.gi:n Y D
Age 0 Age 1 Age 2 Age 3

Wheat #

Potato ¢

Beetroot ﬁ

Figure 20: A close-up view of crops appearances across various growing stages in farming tasks.

41

Mooshroom Chicken Rabbit Salmon
Smelting
Resources
Gold Ore Iron Ore Sandstone Cobblestone Red Sand Cod Potato
Lot
Wet Sponge Quartz Block Kelp
Smelting Acacia Planks Spruce Planks Birch Planks Oak Planks Coal Block Coal Ore Coal
Resources .
Fueh) ‘ ‘ ‘
Acacia Log Spruce Log Birch Log Oak Log Lava Bucket Charcoal
Cooked Porkchop Cooked Beef Cooked Chicken Stake Cooked Mutton Cooked Rabbit Cooked Salmon
Smelting ‘l :: o
Goal :'
Gold Ingot Iron Ingot Smooth Sandstone Stone Glass Cooked Cod Baked Potato
S
Sponge Smooth Quartz Dried Kelp
Smelting
Tools
P Iron Axe Iron Shovel Iron Sword Iron Pickaxe Furnace

Figure 21: A close-up view of the visual diversity in smelting tasks.

42

Figure 22: One example scene in the seaside village biome.

Figure 23: One example scene in the grass village biome.

43

Figure 24: One example scene in the dessert village biome.

Figure 25: One example scene in the half mountain biome.

44

Figure 26: One example scene in the swamp biome.

Figure 27: One example scene in the iceberg biome.

45

Figure 28: One example scene in the snow mountain biome.

46

Building 01:

' ' ' build a building on the playground base halfway up the mountain, following the blueprint given
Bot1 Bot2 Bot3 Hay Block
below. ' has 5 ‘,2 8,1 ‘ 'has3 ‘,2 ‘,2 ‘ ‘hasS

Bot1 Pumpkin Sea Lantern Coa Ore Bot2 Coa Ore Orange Concrete Oak Planks Bot3 Bricks

. The blueprint looks like:

Oak Planks

Step 0:

Actions: None

Reward: 0

Bot1 Bot2 Bot3 Sky View

Step 1:

Actions: placeltem(bot1, 'pumpkin’, new Vec3(-1,0,-1)), placeltem(bot2, 'coal_ore', new Vec3(1,0,-1)),
placeltem(bot3, 'bricks', new Vec3(0,0,-1))

Reward: 0.5

Bot1 Bot2 Bot3 Sky View

Figure 29: An example demonstration in the building task, part I.

Step 2:

Actions: placeltem(bot1, 'sea_lantern’, new Vec3(1,1,-1)), placeltem(bot2, 'orange_concrete’, new Vec3(-1,1,-1)),
placeltem(bot3, 'oak_planks', new Vec3(0,1,-1))

Reward: 1.0

Bot1 Bot2 Bot3 Sky View

Figure 30: An example demonstration in the building task, part II.

47

Clearing 01:

' ' remove ‘ ‘ ~ ‘ blocks on the playground base “ in a dissert village.

Bot1 Bot2 Crafting Table Bookshelf ~Sandstone Bricks, Gold Block Bot1
has 1 ﬁ) i has 1 ﬁ . ﬁ requires only one timestep to break ~ , but two timesteps
Stone Pickaxe ~ Bot2 Stone Pickaxe Stone Pickaxe Sandstone Bricks
to break ‘ or ‘ . The initial playground looks like:
Bookshelf Crafting Table

Step 0:

Actions: None

Reward: 0

Bot1 Bot2 Sky View

Figure 31: An example demonstration in the clearing task, part I.

Step 1:

Actions: mineBlock(bot1, new Vec3(1,0,0)), mineBlock(bot2, new Vec3(0,0,-1))
Reward: 0.5

Bot1 Bot2 Sky View

Step 2:

Actions: mineBlock(bot1, new Vec3(-1,0,1)), mineBlock(bot2, new Vec3(-2,0,1))
Reward: 0.5

Same visual observation as it requires two timesteps to break.

Step 3:

Actions: mineBlock(bot1, new Vec3(-1,0,1)), mineBlock(bot2, new Vec3(-2,0,1))
Reward: 1.0

Bot1 Bot2 Sky View

Figure 32: An example demonstration in the clearing task, part II.

48

Farming 01:

i ' sow and harvest for 2 more ﬁ on ‘ on aniceberg. Some ‘ are blocked by

Carrot Farmland

:’y to * to be harvestable. Each * gives 2 # .
E

Botl Bot2

Crops take up to three timesteps to grow from

Farmland

Smooth Quartz

Age0 Age7 Carrot
i has 2#,3 # . 'has1# 1 ﬂ . Theinitial playground looks like:
Bot1 Carrot Beetroots Bot2 Carrot Potato
>
=
=% .
| e
| . w
\ A
Top Front Side
Figure 33: An example demonstration in the farming task, part I.
Step 0:
Actions: None
Reward: 0
a

Bot1 Bot2 Sky View

Step 1:
Actions: farm_work(bot1, new Vec3(-2,-1,-1), 'sow, 'carrot’), farm_work(bot2, new Vec3(-1,-1,1), 'sow', 'carrot’)
Reward: 0

t fl ‘

il ——— 5 e d ‘
%@ 5o el pa——— e,
Setpeselen T whie o
S 1
~ ,)
® _
X
Bot1 Bot2 Sky View

Step 2:
Actions: None
Reward: 0.5

L

@ _
x
Sky View

Step 3:
Actions: farm_work(bot1, new Vec3(-2,0,-1), 'harvest’), farm_work(bot2, new Vec3(-1,0,1), 'harvest')
Reward: 1.0
Ba————— | Zoma - ———gy &

/\-

Bot1

-
——,
AR

Bot2

Sky View

Figure 34: An example demonstration in the farming task, part II.

49

Smelting 01:

' ' cook for 2 ﬁ in a dissert village. To get @ , smelt ﬂ with as fuelin

Bot1 Bot2 Cooked Porkchop Cooked Porkchop Porkchop Birch Log Furnace

Resources are on base orin inventory. To get @ , kill ‘ with ﬁ .To get , collect with
Hay Block Porkchop Pig Iron Sword Birch Log

ﬁl . ' has 1 ﬁ . ' has 1 ﬁ' 1 @,and @ . The initial playground looks like:

Iron Axe Bot1 Iron Sword Bot2 Iron Axe Porkchop Birch Log

Top Front Side

Step 0:

Actions: None

Reward: 0

Sky View

Step 1:

Actions: killMob(bot1, new Vec3(2,0,-3)), putFuelFurnace(bot2, 'birch_log', new Vec3(0,0,0))

Reward: 0

Bot1 Bot2 Sky View

Figure 35: An example demonstration in the smelting task, part L.

50

Step 2:

Actions: putltemFurnace(bot1, 'porkchop, new Vec3(0,0,0)), putltemFurnace(bot2, 'porkchop', new Vec3(0,0,0))

Reward: 0.5

Step 3:

Actions: obtainBlock(bot1, new Vec3(-3,0,-3))

Reward: 1.0

Bot1 Bot2 Sky View

Step 4:

Actions: putFuelFurnace(bot1, 'birch_log) new Vec3(0,0,0))

Reward: 1.0

Sky View

Bot1

Step 5:

Actions: takeOutFurnace(bot1, new Vec3(0,0,0))

Reward: 1.0

Same visual observation as step 4.

Figure 36: An example demonstration in the smelting task, part II.

51

System Prompt

You are controlling up to 4 bots in a Minecraft world. Your mission is to build a specific
structure on a platform by coordinating the bots’ actions across multiple timesteps with
observation feedback.

**QObservations: ** - **Images: ** - Up to 4 first-person perspective images (one from each
bot), all agent’s view will reset to look at the middle of the platform for each timestep -
The goal structure (last image): Contains three orthographic views of the target structure. *
Top-left: Top view (looking down from above, shows x-z plane, x increasing to the right, z
increasing to the top) Note if the structure has two layers, the top view will show the top
layer. * Top-right: Front view (looking from front, shows x-y plane, x increasing to the right,
y increasing to the top) * Bottom-left: Right side view (looking from right side, shows z-y
plane, z increasing to the right, y increasing to the top) * Bottom-right: Pure black image (no
information) - **Current State:** - A text description of inventory information for each bot
Action Format: - Use the placeltem() function with these parameters: - botID: *bot1’,
’bot2’, *bot3’ (for agent number 1, 2, 3, depending on number of bots available); *bot0’,
’botl’, "bot2’, *bot3’ (if 4 bots are available) - block: The type of block to place (must be
in bot’s inventory) - position: new Vec3(x,y,z) where (based on the top view image): * x:
vertical axis (-2 to 2) * y: height axis (0 to 1) * z: horizontal axis (-2 to 2) - No space in
coordinates x,y,z **Available Blocks:**

’oak_fence’, ’birch_log’, ’coal_ore’, ’bricks’, ’sandstone’, ’stone’,
’iron_ore’, ’gold_ore’, ’sponge’, ’sea_lantern’, ’dirt’, ’grass_block’,
’clay’, ’oak_planks’, ’emerald_block’, ’pumpkin’, ’orange_concrete’,
’purple_wool’, ’end_stone’, ’bookshelf’, ’acacia_fence’, ’oak_log’

Constraints: - Each bot can only place blocks from its own inventory - Inventory may
contain unneeded blocks - No overlapping blocks at the same position - No floating blocks
(must build on existing structures) - Each bot can place at most one block per timestep
Workspace Coordinates: - Center: (0,0,0) - Platform size: 5x5 units (x and z axes) -
Platform corners (**based on the top view image**): * Top-left: (2,0,-2) * Top-right: (2,0,2)
* Bottom-right: (-2,0,2) * Bottom-left: (-2,0,-2) - Height: * 0: Ground level (one block above
the workspace platform, lowest height to place blocks) * 1: Above ground level
Qrientation Strategy: - Bot positions and orientations vary at each timestep, meaning
bot’s left might not be the same as the previous timestep, or the same as the other bots, or the
same as the goal image - Recommended approach: First place blocks at known coordinates
(like center 0,0,0 and one-block-to-the-left 0,0,-1) to establish reference points in bot’s view -
Use placed blocks and its positions in your action output to confirm your understanding of
the coordinate system

Response Format: - Provide only action commands, each on a new line using new line as
separator - Do not include explanations, markdown, or code blocks - A bot can be idle (no
action) for a timestep, simply not output such bot’s action - Use "NULL" if all bots are idle
Example Response:

placeltem(botl, ’pumpkin’, new Vec3(-1,0,-1))

placeltem(bot2, ’purple_wool’, new Vec3(1,0,-1))
placeltem(bot3, ’coal_ore’, new Vec3(0,0,-1))

Figure 37: Sample rollouts of GPT-40 in a building task, part I.

52

User Prompt

Here are the observations at the current time step for each agent. The final image is the goal
image. botl has 5 dirt. botl has 3 clay. botl has 7 emerald block. botl has 1 oak fence. botl
has 3 sponge. botl has 1 bricks. botl has 3 sea lantern. bot2 has 5 bricks. bot2 has 2 sponge.
bot2 has 6 sea lantern. bot2 has 2 oak fence. bot2 has 4 emerald block. bot2 has 1 dirt. bot2
has 3 clay. bot3 has 6 emerald block. bot3 has 4 oak fence. bot3 has 2 dirt. bot3 has 2 sponge.
bot3 has 3 clay. bot3 has 2 sea lantern.

(d) orthographic views
(a) Agentl observation (b) Agent2 observation (c) Agent3 observation of the goal

Assistant

[placeltem(botl, emerald block, new Vec3(-1,0,-1)), placeltem(bot2, bricks, new
Vec3(0,0,0)),

placeltem(bot3, sea lantern, new Vec3(-1,0,0))]

Figure 38: Sample rollouts of GPT-40 in a building task, part II.

53

User Prompt
Here are the observations at the current time step for each agent. The final image is the goal
image. botl has ...

(d) orthographic views
(a) Agentl observation (b) Agent2 observation (c) Agent3 observation of the goal

Assistant
[placeltem(bot1, sponge, new Vec3(1,0,-1)), placeltem(bot2, oak fence, new Vec3(0,0,1))]

User Prompt
Here are the observations at the current time step for each agent. The final image is the goal
image. botl has ...

(h) orthographic views
(e) Agentl observation (f) Agent2 observation (g) Agent3 observation of the goal

Assistant
[placeltem(bot3, sea lantern , new Vec3(0,0,-1))]

Comment

GPT-4o failed to place the blocks in the correct location. The agents placed an additional
fence that is not required by the goal. The sponge (yellow) block should be placed next to a
sea lattern (white) block.

Figure 39: Sample rollouts of GPT-40 in a building task, part III.

54

System Prompt

You are controlling up to 4 bots in a Minecraft world. Your mission is to clear all the blocks
on the platform, by coordinating the bots’ actions across multiple timesteps with observation
feedback.

**QObservations: ** - **Images: ** - Up to 4 first-person perspective images (one from each
bot), all agent’s view will reset to look at the middle of the platform for each timestep -
The goal structure (last image): Contains three orthographic views of the target structure. *
Top-left: Top view (looking down from above, shows x-z plane, x increasing to the right, z
increasing to the top) Note if the structure has two layers, the top view will show the top
layer. * Top-right: Front view (looking from front, shows x-y plane, x increasing to the right,
y increasing to the top) * Bottom-left: Right side view (looking from right side, shows z-y
plane, z increasing to the right, y increasing to the top) * Bottom-right: Pure black image (no
information) - **Current State:** - A text description of inventory information for each bot
Action Format: - Use the mineBlock() function with these parameters: - botID: ’bot1’,
’bot2’, *bot3’ (for agent number 1, 2, 3, depending on number of bots available); *bot0’,
"botl’, *bot2’, "bot3’ (if 4 bots are available) - position: new Vec3(x,y,z) where (based on the
top view image): * x: vertical axis (-3 to 2) * y: height axis (0 to 1) * z: horizontal axis (-3 to
2) - No space in coordinates X,y,z

Available Blocks:

’oak_fence’, ’birch_log’, ’coal_ore’, ’bricks’, ’sandstone’, ’stone’,
’iron_ore’,’dirt’, ’grass_block’, ’clay’, ’bookshelf’, ’acacia_fence’,
’oak_log’, ’crafting_table’, ’anvil’, ’cobweb’, ’pumpkin’,
’orange_concrete’, ’gold_ore’

Constraints: - Each bot can only mine one block per timestep - Each bot has tools in their
inventory to break blocks. Plan the mining sequence based on the tools in the inventory - You
must mine blocks that is exposed to the air, you cannot mine blocks that are inside the block
Workspace Coordinates: - Center: (0,0,0) - Platform size: 6x6 units (x and z axes) -
Platform corners (**based on the top view image**): * Top-left: (2,0,-3) * Top-right: (2,0,2)
* Bottom-right: (-3,0,2) * Bottom-left: (-3,0,-3) - Height: * 0: Ground level (one block above
the workspace platform, lowest height to place blocks) * 1: Above ground level
Qrientation Strategy: - Bot positions and orientations vary at each timestep, meaing bot’s
left might not be the same as the previous timestep, or the same as the other bots, or the same
as the goal image - Recommended approach: First place blocks at known coordinates (like
center 0,0,0 and one-block-to-the-left 0,0,-1) to establish reference points in bot’s view - Use
placed blocks and its positions in your action output to confirm your understanding of the
coordinate system

Response Format: - Provide only action commands, each on a new line using new line as
separator - Do not include explanations, markdown, or code blocks - A bot can be idle (no
action) for a timestep, simply not output such bot’s action - Use "NULL" if all bots are idle
Example Response:

mineBlock(botl, new Vec3(-1,0,-1))

mineBlock(bot2, new Vec3(1,0,-1))
mineBlock(bot3, new Vec3(0,0,-1))

Figure 40: Sample rollouts of GPT-40 in a clearing task, part I.

55

User Prompt
Here are the observations at the current time step for each agent.

o Ty B ==

SR

(a) Agentl observation (b) Agent2 observation (c) Agent3 observation (d) orthographic views

Assistant
[mineBlock(bot1, new Vec3(3,0,2)), mineBlock(bot2, new Vec3(2,0,1))]

User Prompt
Here are the observations at the current time step for each agent. The final image is the goal
image. botl has ...

(e) Agentl observation (f) Agent2 observation (g) Agent3 observation (h) orthographic views

Assistant
[mineBlock(bot1, new Vec3(3,0,2)), mineBlock(bot2, new Vec3(2,0,1))]

User Prompt
Here are the observations at the current time step for each agent. The final image is the goal
image. botl has ...

(1) Agentl observation (j) Agent2 observation (k) Agent3 observation (1) orthographic views

Assistant
[mineBlock(bot1, new Vec3(1,0,2)), mineBlock(bot2, new Vec3(2,0,1))]

Comment
The model did not predict correct block locations and failed to mine any blocks.

Figure 41: Sample rollouts of GPT-40 in a clearing task, part II.

56

System Prompt

You are controlling up to 4 bots in a Minecraft world. Your mission is control bots to sow
seeds, wait until crops grow, and harvest them, in a designated farming area. The goal is
to get a certain number of crops to any bots’ inventory. Coordinate the bots’ actions across
multiple timesteps with observation feedback.

QObservations: - **Images:** - Up to 4 first-person perspective images (one from each
bot), all agent’s view will reset to look at the middle of the platform for each timestep -
The goal structure (last image): Contains three orthographic views of the target structure. *
Top-left: Top view (looking down from above, shows x-z plane, x increasing to the right, z
increasing to the top) Note if the structure has two layers, the top view will show the top
layer. * Top-right: Front view (looking from front, shows x-y plane, x increasing to the right,
y increasing to the top) * Bottom-left: Right side view (looking from right side, shows z-y
plane, z increasing to the right, y increasing to the top) * Bottom-right: Pure black image (no
information) - **Current State:** - A text description of inventory information for each bot
Action Format: - Use the farm_work() function with these parameters: - botID: bot1’,
’bot2’, *bot3’ (for agent number 1, 2, 3, depending on number of bots available); *bot0’,
’botl’, "bot2’, *bot3’ (if 4 bots are available) - position: new Vec3(x,y,z) where (based on
the top view image): * x: vertical axis (-3 to 3) * y: height axis (-1 to 0) * z: horizontal axis
(-3 to 3) - action: ’sow’, "harvest’ - crop: (optional for harvest action) A string, surround by
single quote, the type of crop to sow (must be in bot’s inventory) - No space in coordinates
X,y,Z - one action per bot per timestep

** Available Blocks:**

’water’, ’farmland’, ’cyan_concrete’, ’stone’, ’oak_wood’,
’hay_block’, ’glass’,’dirt’, ’pink_wool’, ’obsidian’,
’smooth_quartz’

** Available Seeds**

’wheat_seeds’, ’carrot’, ’potato’, ’beetroot_seeds’

Constraints: - Each bot can only act one action per timestep, either sow or harvest one
crop. If you have two bots, you can only output two actions per timestep. - Observe the crop
growth, a crop may take up to 3 timesteps to grow, you can only harvest when crops is full
grown. You can only harvest what you sow. - You can only sow seeds on empty farmland, not
on other crops - A good strategy is to sow seeds a farmland for the first three timesteps, and
then harvest the crop sown on the first timestep, then harvest the crop sown on the second
timestep, and sow seeds on the third timestep. - Ensure action bot has the necessary items
(seeds) in their inventory - Do not assign multiple bots to perform the same action on the
same crop plot simultaneously - Inventory may contain unneeded seeds or tools
**Workspace Coordinates: ** - Center: (0,0,0) - Platform size: could be random size, surround
by a single type of block, could be a oak, or dirt, ice, etc. - Platform corners (based on the top
view image): * Top-left: (-3,0,-3) * Top-right: (3,0,3) * Bottom-right: (-3,0,3) * Bottom-left:
(-3,0,-3) - Height: * -1: Farmland level (where the sow action can be performed) * 0: Crop
level (where the harvest action can be performed)

QOrientation Strategy: - Bot positions and orientations vary at each timestep, meaing bot’s
left might not be the same as the previous timestep, or the same as the other bots, or the same
as the goal image - Recommended approach: First place blocks at known coordinates (like
center 0,0,0 and one-block-to-the-left 0,0,-1) to establish reference points in bot’s view - Use
placed blocks and its positions in your action output to confirm your understanding of the
coordinate system

Response Format: - Provide only action commands, each on a new line using new line
separator - Do not include explanations, markdown, or code blocks - A bot can be idle (no
action) for a timestep, simply not output such bot’s action - Use "NULL" if all bots are idle
Example Response:

farm_work(botl, new Vec3(0,-1,1), ’sow’, ’wheat_seeds’)
farm_work(bot2, new Vec3(1,0,0), ’harvest’)

Figure 42: Sample rollouts of GPT-40 in a farming task, part I.

57

User Prompt

Here are the observations at the current time step for each agent. Please harvest the crops
when they are ready! You can only harvest what you sow. You can only sow seeds on empty
plots, and you can only sow what you have in your inventory. When harvesting, do not specify
the crop type. Here is the inventory status for each bot: botl has 7 xxx

(a) Agentl observation (b) Agent2 observation (c) Agent3 observation (d) orthographic views

Assistant

farmwork(bot1, new Vec3(0, 0, -1), ’sow’, ’potato’)
farmwork(bot2, new Vec3(1, 0, 0), ’sow’, ’potato’)
farmwork(bot3, new Vec3(-1, 0, 1), ’sow’, ’potato’)

Figure 43: Sample rollouts of GPT-40 in a farming task, part II.

58

User Prompt
Here are the observations at the current time step for each agent botl has ..

p e Mo
—

‘ —— .

(a) Agentl observation (b) Agent2 observation (c) Agent3 observation (d) orthographic views

Assistant

farmwork(bot1, new Vec3(0, 0, 1), ’sow’, ’potato’),
farmwork(bot2, new Vec3(0, 0, -1), ’sow’, ’potato’),
farmwork(bot3, new Vec3(1, 0, 0), ’sow’, ’potato’)

User Prompt
Here are the observations at the current time step for each agent. botl has ...

(e) Agentl observation (f) Agent2 observation (g) Agent3 observation (h) orthographic views

Assistant

farmwork(bot1, new Vec3(-1, 0, 0), ’sow’, *potato’),
farmwork(bot2, new Vec3(1, 0, 0), ’sow’, ’potato’),
farmwork(bot3, new Vec3(0, 0, 1), ’sow’, ’potato’)

Comment
The model does not follow instruction, and keeps predicting the sowing actions without
harvesting.

Figure 44: Sample rollouts of GPT-40 in a farming task, part III.

59

System Prompt

You are controlling up to 4 bots in a Minecraft world. Your mission is to control bots to smelt
for specific goal items for a specific amount, by coordinating the bots’ actions across multiple
timesteps with observation feedback. To get final goal items, you need to obtain resouces like
fuel, kill mobs or collect item to be smelted, put items and fuels in furnace, and take out the
smelted item so that it is in any bot’s inventory.

QObservations: - **Images:** - Up to 4 first-person perspective images (one from each
bot), all agent’s view will reset to look at the middle of the platform for each timestep -
The goal structure (last image): Contains three orthographic views of the target structure. *
Top-left: Top view (looking down from above, shows x-z plane, x increasing to the right, z
increasing to the top) Note if the structure has two layers, the top view will show the top
layer. * Top-right: Front view (looking from front, shows x-y plane, x increasing to the right,
y increasing to the top) * Bottom-left: Right side view (looking from right side, shows z-y
plane, z increasing to the right, y increasing to the top) * Bottom-right: Pure black image (no
information) - **Grid Information:** - The grid information that describes the blocks on the
platform, as shown in the last image, is a 2D grid of blocks, with the center of the grid being
(0,0,0). - **Current State:** - A text description of inventory information for each bot
Action Format: - "obtainBlock(botID, position)" - "putFuelFurnace(botID, ’item’, po-
sition)" - "putltemFurnace(botID, ’item’, position)" - "takeOutFurnace(botID, position)" -
"killMob(botID, position)" with these parameters: - botID: *botl’, bot2’, bot3’ (for agent
number 1, 2, 3, depending on number of bots available); "bot0’, ’bot1’, ’bot2’, *bot3’ (if 4
bots are available) - item: A string, surround by single quote, the type of item to place (must
be in bot’s inventory) - position: new Vec3(x,y,z) where (based on the top view image): *
X: vertical axis (-2 to 2) * y: height axis (0 to 1) * z: horizontal axis (-2 to 2) - No space in
coordinates X,y,z - one action per bot per timestep

**Available Blocks: **

’acacia_log’, ’acacia_planks’, ’birch_log’, ’birch_planks’,
’chicken’, ’coal_ore’,’cobblestone’, ’cow’, ’furnace’,
’gold_ore’, ’iron_ore’, ’mooshroom’, ’oak_log’,
’oak_planks’, ’pig’, ’quartz_block’, ’rabbit’,

’red_sand’, ’sandstone’, ’sheep’,’spruce_log’,
’spruce_planks’, ’wet_sponge’

Constraints: - Each bot can only act one action per timestep. If you have two bots, you
can only output two actions per timestep. — Bots must take out the item from the furnace to
count as a successful smelting target acquired - Only one type of fuel can be used for one
furnace - Bot can only place items from its own inventory - Bot can also obtain blocks needed
for smelting. - Bot do not need to get those resources if they already in inventory. - Inventory
may contain unneeded items - No overlapping items at the same position

Workspace Coordinates: - Center: (0,0,0) - Platform size: 5x5 units (x and z axes) -
Platform corners (**based on the top view image**): * Top-left: (2,0,-2) * Top-right: (2,0,2)
* Bottom-right: (-2,0,2) * Bottom-left: (-2,0,-2) - Height: * 0: Ground level (one block above
the workspace platform, lowest height to place blocks) * 1: Above ground level
Qrientation Strategy: - Bot positions and orientations vary at each timestep, meaing bot’s
left might not be the same as the previous timestep, or the same as the other bots, or the same
as the goal image - Recommended approach: First place blocks at known coordinates (like
center 0,0,0 and one-block-to-the-left 0,0,-1) to establish reference points in bot’s view - Use
placed blocks and its positions in your action output to confirm your understanding of the
coordinate system

Response Format: - Provide only action commands, each on a new line using new line
separator - Do not include explanations, markdown, or code blocks - A bot can be idle (no
action) for a timestep, simply not output such bot’s action - Use "NULL" if all bots are idle
Example Response:

killMob(botl, new Vec3(1,0,1))
putFuelFurnace(bot2, ’oak_log’, new Vec3(0,0,0))
putItemFurnace(bot3, ’porkchop’, new Vec3(2,0,2))

Figure 45: Sample system prompt of GPT-40 in a smelt task, part L.
60

System Prompt

**Recepit: **

Cooking Food:

1. To cook a ’cooked_beef’, I need ’beef’. To get ’beef’, I need to kill a ’cow’ or a
’mushroom’.

. To cook a ’cooked_porkchop’, I need *porkchop’. To get *porkchop’, I need to kill a ’pig’.
. To cook a ’cooked_mutton’, I need *mutton’. To get *mutton’, I need to kill a ’sheep’.

. To cook a ’cooked_chicken’, I need ’chicken’. To get ’chicken’, I need to kill a "chicken’.
. To cook a ’cooked_rabbit’, I need ’rabbit’. To get 'rabbit’, I need to kill a ’rabbit’.

. To cook a ’cooked_cod’, I need ’cod’.

. To cook a ’cooked_salmon’, I need ’salmon’.

. To cook a ’baked_potato’, I need a ’potato’.

Crafting Items:

1. To craft a *gold_ingot’, I need *gold_ore’. To get "gold_ore’, I need to obtain *gold_ore
blocks with a pickaxe.

2. To craft an ’iron_ingot’, I need ’iron_ore’. To get ’iron_ore’, I need to obtain ’iron_ore
blocks with a pickaxe.

3. To craft "glass’, I need 'red_sand’. To get 'red_sand’, I need to obtain 'red_sand’.

4. To craft ’smooth_sandstone’, I need ’sandstone’. To get ’sandstone’, I need to obtain
’sandstone’ with a pickaxe.

5. To craft ’stone’, I need ’cobblestone’. To get *cobblestone’, I need to obtain ’cobblestone’
with a pickaxe.

Fuel Sources:

1. To fuel the furnace, I can use ’coal’. To get "coal’, I need to obtain ’coal_ore’.

2. To fuel the furnace, I can use ’lava_bucket’, ’coal_block’, ’charcoal’, .

3. To fuel the furnace, I can use ’oak_log’, ’birch_log’, ’acacia_log’, ’spruce_log’,
"oak_planks’, “birch_planks’, *acacia_planks’, or spruce_planks’.

0NN AW

Figure 46: Sample system prompt of GPT-40 in a smelt task, part II.

61

System Prompt

You are controlling up to 4 bots in a Minecraft world. Your mission is to build a specific
structure on a platform by coordinating the bots’ actions across multiple timesteps with
observation feedback.

**QObservations: ** - **Images: ** - Up to 4 first-person perspective images (one from each
bot), all agent’s view will reset to look at the middle of the platform for each timestep -
The goal structure (last image): Contains three orthographic views of the target structure. *
Top-left: Top view (looking down from above, shows x-z plane, x increasing to the right, z
increasing to the top) Note if the structure has two layers, the top view will show the top
layer. * Top-right: Front view (looking from front, shows x-y plane, x increasing to the right,
y increasing to the top) * Bottom-left: Right side view (looking from right side, shows z-y
plane, z increasing to the right, y increasing to the top) * Bottom-right: Pure black image (no
information) - **Current State:** - A text description of inventory information for each bot
Action Format: - Use the placeltem() function with these parameters: - botID: *bot1’,
’bot2’, *bot3’ (for agent number 1, 2, 3, depending on number of bots available); *bot0’,
’botl’, "bot2’, *bot3’ (if 4 bots are available) - block: The type of block to place (must be
in bot’s inventory) - position: new Vec3(x,y,z) where (based on the top view image): * x:
vertical axis (-2 to 2) * y: height axis (0 to 1) * z: horizontal axis (-2 to 2) - No space in
coordinates x,y,z **Available Blocks:**

’oak_fence’, ’birch_log’, ’coal_ore’, ’bricks’, ’sandstone’, ’stone’,
’iron_ore’, ’gold_ore’, ’sponge’, ’sea_lantern’, ’dirt’, ’grass_block’,
’clay’, ’oak_planks’, ’emerald_block’, ’pumpkin’, ’orange_concrete’,
’purple_wool’, ’end_stone’, ’bookshelf’, ’acacia_fence’, ’oak_log’

Constraints: - Each bot can only place blocks from its own inventory - Inventory may
contain unneeded blocks - No overlapping blocks at the same position - No floating blocks
(must build on existing structures) - Each bot can place at most one block per timestep
Workspace Coordinates: - Center: (0,0,0) - Platform size: 5x5 units (x and z axes) -
Platform corners (**based on the top view image**): * Top-left: (2,0,-2) * Top-right: (2,0,2)
* Bottom-right: (-2,0,2) * Bottom-left: (-2,0,-2) - Height: * 0: Ground level (one block above
the workspace platform, lowest height to place blocks) * 1: Above ground level
Qrientation Strategy: - Bot positions and orientations vary at each timestep, meaning
bot’s left might not be the same as the previous timestep, or the same as the other bots, or the
same as the goal image - Recommended approach: First place blocks at known coordinates
(like center 0,0,0 and one-block-to-the-left 0,0,-1) to establish reference points in bot’s view -
Use placed blocks and its positions in your action output to confirm your understanding of
the coordinate system

Response Format: - Provide only action commands, each on a new line using new line as
separator - Do not include explanations, markdown, or code blocks - A bot can be idle (no
action) for a timestep, simply not output such bot’s action - Use "NULL" if all bots are idle
Example Response:

placeltem(botl, ’pumpkin’, new Vec3(-1,0,-1))

placeltem(bot2, ’purple_wool’, new Vec3(1,0,-1))
placeltem(bot3, ’coal_ore’, new Vec3(0,0,-1))

Figure 47: Sample system (developer) prompt of ol in a building task, ol part I.

62

User Prompt
what is the block and its position in the image?

(a) orthographic views

\.

Assistant

’oak_planks’ at new Vec3(0,0,0)
’bricks’ at new Vec3(0,0,-1)
’sponge’ at new Vec3(-1,0,0)
’pumpkin’ at new Vec3(-1,0,-1)
’bricks’ at new Vec3(0,1,0)

J

Figure 48: Sample one shot prompt and answer example for special coordinate system, ol part II.

63

User Prompt
Here are the observations at the current time step for each agent. bot1 has ...

(a) Agentl observation (b) Agent2 observation (c) Agent3 observation (d) orthographic views

Assistant

placeltem(botl, ’stone’, new Vec3(-1,0,0))
placeltem(bot2, ’gold_ore’, new Vec3(1,0,0))
placeltem(bot3, ’sea_lantern’, new Vec3(0,0,0))
placeltem(botl, ’gold_ore’, new Vec3(0,0,-1))
placeltem(bot2, ’emerald_block’, new Vec3(0,1,0))
placeltem(bot3, ’stone’, new Vec3(0,1,-1))

Comment
The model is able to recognize the blocks in the goal image and associate blocks with their
name.

The model does not follow instruction, generating two actions per agent, instead of the
required one action per agent as specified in the system prompt. This result only random one
out of two actions for each bot is being executed.

The model confused the spacial absolute space, miss placing the sea_lantern at (0,0,0), where
it should be one block below the origin.

The model confused the spacial relative position, and fail to eductive from three orthographic
views that the gold_ore is on the second layer (above another block), not the first layer
(directly on ground).

"“i

T R
L e
.'I..I. i Ls -

(e) sky view at step 0 (f) orthographic views (goal)

Figure 49: Step 1 of the sample building task, ol part III.

64

User Prompt
Here are the observations at the current time step for each agent. botl has

(a) Agentl observation (b) Agent2 observation (c) Agent3 observation (d) orthographic views

Assistant

placeltem(botl, ’sponge’, new Vec3(0,0,1))
placeltem(bot2, ’gold_ore’, new Vec3(1,0,1))
placeltem(bot3, ’emerald_block’, new Vec3(0,1,0))

Comment
The model is able to figure the special orientation from agent’s first perspective view. i.e. put
sponge on the right side of the center point.

The model is still confused with the spacial relative position, and fail to eductive from three
orthographic views that the sponge should be on the second layer (above another block), not
the first layer (directly on ground).

&

..........

(e) sky view at step 0 (f) orthographic views (goal)

Figure 50: Step 2 of the sample building task, ol part I'V.

65

System Prompt

You are controlling up to 4 bots in a Minecraft world. Your mission is to build a specific
structure on a platform by coordinating the bots’ actions across multiple timesteps with
observation feedback.

**QObservations: ** - **Images: ** - Up to 4 first-person perspective images (one from each
bot), all agent’s view will reset to look at the middle of the platform for each timestep -
The goal structure (last image): Contains three orthographic views of the target structure. *
Top-left: Top view (looking down from above, shows x-z plane, x increasing to the right, z
increasing to the top) Note if the structure has two layers, the top view will show the top
layer. * Top-right: Front view (looking from front, shows x-y plane, x increasing to the right,
y increasing to the top) * Bottom-left: Right side view (looking from right side, shows z-y
plane, z increasing to the right, y increasing to the top) * Bottom-right: Pure black image (no
information) - **Current State:** - A text description of inventory information for each bot
Action Format: - Use the placeltem() function with these parameters: - botID: *bot1’,
’bot2’, *bot3’ (for agent number 1, 2, 3, depending on number of bots available); *bot0’,
’botl’, "bot2’, *bot3’ (if 4 bots are available) - block: The type of block to place (must be
in bot’s inventory) - position: new Vec3(x,y,z) where (based on the top view image): * x:
vertical axis (-2 to 2) * y: height axis (0 to 1) * z: horizontal axis (-2 to 2) - No space in
coordinates x,y,z **Available Blocks:**

’oak_fence’, ’birch_log’, ’coal_ore’, ’bricks’, ’sandstone’, ’stone’,
’iron_ore’, ’gold_ore’, ’sponge’, ’sea_lantern’, ’dirt’, ’grass_block’,
’clay’, ’oak_planks’, ’emerald_block’, ’pumpkin’, ’orange_concrete’,
’purple_wool’, ’end_stone’, ’bookshelf’, ’acacia_fence’, ’oak_log’

Constraints: - Each bot can only place blocks from its own inventory - Inventory may
contain unneeded blocks - No overlapping blocks at the same position - No floating blocks
(must build on existing structures) - Each bot can place at most one block per timestep
Workspace Coordinates: - Center: (0,0,0) - Platform size: 5x5 units (x and z axes) -
Platform corners (**based on the top view image**): * Top-left: (2,0,-2) * Top-right: (2,0,2)
* Bottom-right: (-2,0,2) * Bottom-left: (-2,0,-2) - Height: * 0: Ground level (one block above
the workspace platform, lowest height to place blocks) * 1: Above ground level
Qrientation Strategy: - Bot positions and orientations vary at each timestep, meaning
bot’s left might not be the same as the previous timestep, or the same as the other bots, or the
same as the goal image - Recommended approach: First place blocks at known coordinates
(like center 0,0,0 and one-block-to-the-left 0,0,-1) to establish reference points in bot’s view -
Use placed blocks and its positions in your action output to confirm your understanding of
the coordinate system

Response Format: - Provide only action commands, each on a new line using new line as
separator - Do not include explanations, markdown, or code blocks - A bot can be idle (no
action) for a timestep, simply not output such bot’s action - Use "NULL" if all bots are idle
Example Response:

placeltem(botl, ’pumpkin’, new Vec3(-1,0,-1))

placeltem(bot2, ’purple_wool’, new Vec3(1,0,-1))
placeltem(bot3, ’coal_ore’, new Vec3(0,0,-1))

\. J

Figure 51: Sample system (developer) prompt of Claude 3.7 Sonnet in a building task, Claude part L.

66

User Prompt
what is the block and its position in the image?

(a) orthographic views

Assistant

’oak_planks’ at new Vec3(0,0,0)
’bricks’ at new Vec3(0,0,-1)
’sponge’ at new Vec3(-1,0,0)
’pumpkin’ at new Vec3(-1,0,-1)
’bricks’ at new Vec3(0,1,0)

Figure 52: Sample one shot prompt and answer example for special coordinate system, Claude part
II.

67

User Prompt
Here are the observations at the current time step for each agent. bot1 has ...

(a) Agentl observation (b) Agent2 observation (c) Agent3 observation (d) orthographic views

Assistant

placeltem(botl, ’sandstone’, new Vec3(0,0,0))
placeltem(bot2, ’coal_ore’, new Vec3(1,0,0))
placeltem(bot3, ’end_stone’, new Vec3(-1,0,0))

Comment
The model is able to recognize the blocks in the goal image and associate blocks with their
name.

The model can follow the instruction to generate required format for actions. Generated
actions satisfy all requirements given in the system prompt.

The model can understand the spacial relative position, and able to deductive from three
orthographic views that it needs to place blocks that on the first layer first.

The model is not able to figure the special orientation from agent’s first perspective view. i.e.
the first three blocks should be form a horizontal line but actually formed a vertical line.

%

(e) sky view at step 0 (f) orthographic views (goal)

Figure 53: Step 1 of the sample building task, Claude part III.

68

User Prompt
Here are the observations at the current time step for each agent. botl has ...

(a) Agentl observation (b) Agent2 observation (c) Agent3 observation (d) orthographic views

Assistant

placeltem(botl, ’sea_lantern’, new Vec3(-1,0,1))
placeltem(bot2, ’sandstone’, new Vec3(0,0,1))
placeltem(bot3, ’emerald_block’, new Vec3(-1,0,-1))

Comment

The model starts to be confused with the spacial relative position, and fail to eductive from
three orthographic views that the sea_lantern should be on the second layer (above another
block), not the first layer (directly on ground).

'

(e) sky view at step 0 (f) orthographic views (goal)

Figure 54: Step 2 of the sample building task, Claude part I'V.

69

User Prompt
Here are the observations at the current time step for each agent. botl has ...

(a) Agentl observation (b) Agent2 observation (c) Agent3 observation (d) orthographic views

Assistant

placeltem(botl, ’sea_lantern’, new Vec3(-1,0,1))
placeltem(bot2, ’sandstone’, new Vec3(0,0,1))
placeltem(bot3, ’emerald_block’, new Vec3(-1,0,-1))

Comment
The model begins to randomly place disturbing blocks (those not on the goal image but in
agents’ inventories) on the ground.

(e) sky view at step 0 (f) orthographic views (goal)

Figure 55: Step 3 of the sample building task, Claude part IV.

70

User Prompt
Here are the observations at the current time step for each agent. botl has ...

(a) Agentl observation (b) Agent2 observation (c) Agent3 observation (d) orthographic views

Assistant

placeltem(botl, ’bricks’, new Vec3(0,0,-1))
placeltem(bot2, ’coal_ore’, new Vec3(1,0,-1))
placeltem(bot3, ’emerald_block’, new Vec3(0,1,-1))

Comment

(e) sky view at step 0 (f) orthographic views (goal)

Figure 56: Step 4 of the sample building task, Claude part V.

71

User Prompt
Here are the observations at the current time step for each agent. bot1 has ...

(a) Agentl observation (b) Agent2 observation (c) Agent3 observation (d) orthographic views

Assistant

placeltem(botl, ’emerald_block’, new Vec3(-1,1,0))
placeItem(bot2, ’sea_lantern’, new Vec3(1,0,1))
placeltem(bot3, ’end_stone’, new Vec3(1,1,0))

Comment

(e) sky view at step 0 (f) orthographic views (goal)

Figure 57: Step 5 of the sample building task, Claude part VI.

72

User Prompt

Here are the observations at the current time step for each agent. bot1 has ...
v = =

(a) Agentl observation (b) Agent2 observation (c) Agent3 observation (d) orthographic views

Assistant

placeltem(botl, ’bricks’, new Vec3(0,1,0))
placeltem(bot2, ’sea_lantern’, new Vec3(0,1,1))
placeltem(bot3, ’end_stone’, new Vec3(1,0,-1))

Comment

(e) sky view at step 0 (f) orthographic views (goal)

Figure 58: Step 6 of the sample building task, Claude part VIIL.

73

User Prompt
Here are the observations at the current time step for each agent. bot1 has ...
T :

h

(a) Agentl observation (b) Agent2 observation (c) Agent3 observation (d) orthographic views

Assistant

placeltem(botl, ’sponge’, new Vec3(0,0,-1))
placeltem(bot2, ’bricks’, new Vec3(-1,1,-1))
placeltem(bot3, ’end_stone’, new Vec3(-1,1,1))

Comment
The model uses all available blocks in agents’ inventories, and almost fill the entire playground
by generating place action every time step.

(e) sky view at step 0 (f) orthographic views (goal)

Figure 59: Step 7 of the sample building task, Claude part VIII.

74

1200 K Dataset Statistics Tables

Table 15: Clearing Task Diversity Statistics
Diversity Type Count Percentage

Table 14: Building Task Diversity Statistics

Diversity Type Count Percentage Action Sequences
Action Sequences 4 4,027 27.51%
3 7,777 51.85% 5 3,751 25.61%
2 3207 21.38% 6 3.270 22.32%
4 3,091 20.61% 3 1,561 10.66%
5 483 3.22% 7 1,396 9.53%
6 440 2.93% 8 424 2.89%
9 133 0.91%
Agents 2 79 0.54%
3 7,505 50.03%
2 7,493 49.97% Agents
2 7,358 50.28%
Scenes 3 7,283 49.72%
ice_on_water 2,555 17.04%
mountain_half 2,553 17.03% Scenes
village 2,482 16.55% desert_village 3,012 20.56%
desert_village 2,480 16.53% snow_mountain 2,948 20.13%
Snow_mountain 2,478 16.52% swamp 2,929 20.00%
swamp 2,450 16.34% ice_on_water 2,894 19.76%
village 2,858 19.54%
Background Types
stone 1,530 10.20% Background Types
pink_wool 1,527 10.19% smooth_quartz 1,405 9.59%
glowstone 1,522 10.15% pink_wool 1,357 9.27%
obsidian 1,511 10.08% gold_block 1,353 9.24%
glass 1,509 10.07% oak_wood 1,334 9.10%
smooth_quartz 1,499 10.00% hay_block 1,332 9.09%
hay_block 1,494 9.96% cyan_concrete 1,332 9.09%
gold_block 1,473 9.82% grass_block 1,328 9.06%
oak_wood 1,471 9.81% glass 1,325 9.04%
cyan_concrete 1,462 9.75% glowstone 1,309 8.93%
stone 1,302 8.89%
Target Types obsidian 1,264 8.63%
bricks 10,391 9.92%
sponge 5,438 5.19% Target Counts
coal_ore 5,370 5.13% 6 4,310 29.43%
grass_block 5,327 5.09% 5 2,499 17.07%
clay 5,318 5.08% 4 2,436 16.64%
sea_lantern 5,296 5.06% 8 1,843 12.58%
orange_concrete 5,287 5.05% 7 1,803 12.31%
pumpkin 5,269 5.03% 9 1,750 11.95%
purple_wool 5,257 5.02% Target Types
gold_ore 3247 301% oak_fence 5,879 6.45%
oak_fence 3:234 3.00% grass_block 5.836 6.40%
oak_planks 5,216 4.98% clay 5816 6.38%
birch_log 5,184 4.95% ! 5’772 6.33%
stone 5,182 4.95% oat 08 ’ B
sandstone 5.176 4.94% sandstone 3,748 6.30%
emerald_block 5164 4.93% f)‘i:r"‘ccliaifznce B P
: . _ s .28%
iron_ore 3,160 4.93% bookshelf 5.726 6.28%
dirt 3124 4.89% stone 5.709 6.26%
end_stone 5,119 4.89% bricks 5.695 6.25%
Target Counts crafting_table 5,684 6.23%
6 5,653 37.69% dirt 5,671 6.22%
7 2,625 17.50% cobweb 5,605 6.15%
8 2,573 17.15% iron_ore 5,603 6.14%
5 2,122 14.15% coal_ore 5,555 6.09%
10 526 3.51% anvil 5,439 5.96%
12 315 3.43% Dimensional Shapes
? 496 3.31% 3 7,346 50.15%
11 488 3.25% 5 7295 49.84%
Dimensional Shapes Tools
[3,1,2] 3,859 25.73% stone_pickaxe 9,329 25.51%
[4.1.2] 3770 25.14% stone_sword 9,180 25.10%
.32 o o stone_axe 9,150 24.99%
2.2.2] : o stone_shovel 8,906 24.36%

75

Table 16: Farming Task Diversity Statistics Background Types

gold_block 1,014 9.22%
Diversity Type Count Percentage smooth_quartz 1,010 9.19%
; cyan_concrete 995 9.02%
Action Sequences glowstone 981 8.92%
4 7,458 50.33% pink_wool 990 8.99%
5 3,731 25.17% glass 978 8.89%
3 3,204 22.02% oak_wood 987 8.98%
6 270 1.82% grass_block 977 8.88%
2 81 0.55% hay_block 968 8.80%
7 11 0.07% stone 964 8.76%
Agents obsidian 939 8.54%
2 7,465 50.37% Furnace
3 7,350 49.63% : 5772 53.45%
Scenes 2 5,031 46.55%
snow_mountain 3,732 25.18% Fuel Types
swamp 3722 25.11% coal_block 999 9.58%
1ce_on_water 3,707 25.01% charcoal 962 922%
village 3,054 24.69% lava_bucket 940 9.01%
Background Types coal 921 8.84%
stone 2,892 19.51% spruce_planks 910 8.73%
obsidian 1,549 10.46% acacia_planks 906 8.69%
hay_block 1,527 10.30% oak_planks 861 8.26%
oak_wood 1,524 10.28% g::;ccl;;kl)(g) gg; 32(7);7;
cyan_concrete 1,492 10.06% 108 Deds
glass 1,465 9.88% spruce_log 845 8.10%
smooth_quartz 1,462 9.86% oak_log 840 8.05%
pink_wool 1455 9.81% birch_planks 839 8.04%
dirt 1,449 9.77% Goal Types
Target Types food 5,412 50.09%
potato 4972 33.56% item 3P 9IN%
carrot 4,955 33.45% Target Types
wheat 4,888 32.99% glass 1,144 10.26%
Target Counts gold_ingot 1,094 9.81%
4 2,873 19.39% stone 1,077 9.66%
3 2,269 1531% smooth_sandstone 1,040 9.32%
5 2.256 15.22% iron_ingot 1,036 9.29%
6 2,151 14.51% cooked_salmon 712 6.38%
2 1,240 8.37% cooked_cod 708 6.35%
3 1112 7.50% baked_potato 758 6.80%
10 1,062 7.17% cooked_mutton 664 5.95%
7 933 6.29% cooked_rabbit 648 5.81%
12 512 3.45% cooked_porkchop 668 5.99%
14 407 2.75% cooked_beef 627 5.62%
cooked_chicken 627 5.62%
Target Counts
2 3,999 37.01%
3 3,363 31.13%
1 1,909 17.68%
4 1,532 14.18%
Tools
iron_pickaxe 18,633 29.69%
iron_shovel 13,676 21.78%
Table 17: Smelting Task Diversity Statistics wonaxe :gﬁg %}-gz’/"
K . 0
Diversity Type Count Percentage
Resource Types
Action Sequences red_sand 2,032 10.37%
5 3,261 30.20% gold_ore 1,999 10.20%
4 3,072 28.45% cobblestone 1,915 9.77%
6 2,041 18.89% sandstone 1,818 9.28%
3 1,824 16.88% iron_ore 1,780 9.08%
2 358 3.31% coal_ore 1,714 8.75%
7 239 2.21% acacia_planks 1,564 7.98%
8 8 0.07% oak_planks 1,503 7.67%
birch_log 1,486 7.58%
Agents spruce_log 1477 7.54%
3 5,480 50.75% oak_log 1456 7.44%
2 5323 49.25% spruce_planks 1471 751%
Scenes birch_planks 1,344 6.86%
SNOW_mountain 2,272 21.04% sheep 1,119 5.71%
desert_villege 2,257 20.92% pig 1,104 5.63%
swamp 2,171 20.08% rabbit 1097 5.60%
ice_on_water 2,059 19.09% chicken 1081 5.52%
villege 2,044 18.87% OV oo 2(7’(5) g-izgﬂ
S B 0

76

1201

L Datasheet

Motivation

For what purpose was the dataset created?
Was there a specific task in mind? Was
there a specific gap that needed to be filled?
Please provide a description.

The TeamCraft dataset was created to support
development and evaluation for multi-modal
multi-agent systems in MineCraft.

Who created the dataset (e.g., which team,
research group) and on behalf of which entity
(e.g., company, institution, organization)?

The dataset was created by the TeamCraft team.

Who funded the creation of the dataset? If
there is an associated grant, please provide
the name of the grantor and the grant name
and number.

The dataset was funded by the TeamCraft team.

Any other comments?

None.

Composition

What do the instances that comprise the
dataset represent (e.g., documents, photos,
people, countries)? Are there multiple types
of instances (e.g., movies, users, and rat-
ings; people and interactions between them;
nodes and edges)? Please provide a descrip-
tion.

Each instance contains a ground-truth expert
demonstration of a multi-agent team finishing a
task in Minecraft, and the corresponding multi-
modal prompts specifying the task.

How many instances are there in total (of
each type, if appropriate)?

There are in total 57,207 instances.

Does the dataset contain all possible in-
stances or is it a sample (not necessarily
random) of instances from a larger set? If
the dataset is a sample, then what is the
larger set? |Is the sample representative of
the larger set (e.g., geographic coverage)?
If so, please describe how this representa-

tiveness was validated/verified. If it is not
representative of the larger set, please de-
scribe why not (e.g., to cover a more diverse
range of instances, because instances were
withheld or unavailable).

The dataset contain all possible instances.

What data does each instance consist of?
“Raw” data (e.g., unprocessed text or images)
or features? In either case, please provide a
description.

Each instance consists of a multi-modal task
specification, agents observations and expert tra-
jectories. Each task specification contains one
raw language instruction and three orthographic
views images. Agents observations contain the
first-person view RGB images and the inventory
information.

Is there a label or target associated with each
instance? If so, please provide a description.

N/A.

Is any information missing from individual in-
stances? If so, please provide a description,
explaining why this information is missing
(e.g., because it was unavailable). This does
not include intentionally removed information,
but might include, e.g., redacted text.

We intentionally removed the expert demonstra-
tion in the test set to prevent over-fitting.

Are relationships between individual in-
stances made explicit (e.g., users’ movie rat-
ings, social network links)? If so, please de-
scribe how these relationships are made ex-
plicit.

Each instance in the dataset corresponds to an
individual task variant that belongs to one of the
four task types (i.e. building, clearing, farming,
smelting). The task type is explicitly specified in
the file name.

Are there recommended data splits (e.g.,
training, development/validation, testing)? If
so, please provide a description of these
splits, explaining the rationale behind them.

The dataset has been split into a training set
(55,257 instances), a validation set (1,000 in-
stances) and a test set (950 instances). The
training set is designed for model training while

77

the validation set is for hyperparameter tuning
and checkpoint selection. The test set is designed
to evaluate the model’s generalization capabilities
across novel scenes, novel goal states and novel
agent numbers.

Are there any errors, sources of noise, or
redundancies in the dataset? If so, please
provide a description.

None as we know.

Is the dataset self-contained, or does it link
to or otherwise rely on external resources
(e.g., websites, tweets, other datasets)? If
it links to or relies on external resources, a)
are there guarantees that they will exist, and
remain constant, over time; b) are there offi-
cial archival versions of the complete dataset
(i.e., including the external resources as they
existed at the time the dataset was created);
c) are there any restrictions (e.g., licenses,
fees) associated with any of the external re-
sources that might apply to a dataset con-
sumer? Please provide descriptions of all
external resources and any restrictions as-
sociated with them, as well as links or other
access points, as appropriate.

The dataset is entirely self-contained.

Does the dataset contain data that might be
considered confidential (e.g., data that is pro-
tected by legal privilege or by doctor— patient
confidentiality, data that includes the content
of individuals’ non-public communications)?
If so, please provide a description.

None as we know.

Does the dataset contain data that, if viewed
directly, might be offensive, insulting, threat-
ening, or might otherwise cause anxiety? If
so, please describe why.

None as we know.

Does the dataset identify any subpopulations
(e.g., by age, gender)? If so, please describe
how these subpopulations are identified and
provide a description of their respective dis-
tributions within the dataset.

No.

Is it possible to identify individuals (i.e., one
or more natural persons), either directly or

indirectly (i.e., in combination with other data)
from the dataset? If so, please describe how.

No.

Does the dataset contain data that might be
considered sensitive in any way (e.g., data
that reveals race or ethnic origins, sexual ori-
entations, religious beliefs, political opinions
or union memberships, or locations; finan-
cial or health data; biometric or genetic data;
forms of government identification, such as
social security numbers; criminal history)? If
so, please provide a description.

None as we know.

Any other comments?

None.

| Collection Process |

How was the data associated with each in-
stance acquired? Was the data directly ob-
servable (e.g., raw text, movie ratings), re-
ported by subjects (e.g., survey responses),
or indirectly inferred/derived from other data
(e.g., part-of-speech tags, model-based
guesses for age or language)? If the data
was reported by subjects or indirectly in-
ferred/derived from other data, was the data
validated/verified? If so, please describe
how.

In each data instance, the expert trajectory was
generated programmatically via a planning al-
gorithm. The language instruction was created
by language templates. The orthographic views
images and agent observations were collected in
MineCraft.

What mechanisms or procedures were used
to collect the data (e.g., hardware appara-
tuses or sensors, manual human curation,
software programs, software APIs)? How
were these mechanisms or procedures vali-
dated?

The data is automatically generated by running
the data collection scripts. The procedure is fur-
ther verified by the team via manual inspection.

If the dataset is a sample from a larger set,
what was the sampling strategy (e.g., deter-
ministic, probabilistic with specific sampling
probabilities)?

78

N/A.

Who was involved in the data collection pro-
cess (e.g., students, crowdworkers, contrac-
tors) and how were they compensated (e.g.,
how much were crowdworkers paid)?

Only the TeamCraft team members are voluntar-
ily involved in the data collection process.

Over what timeframe was the data collected?
Does this timeframe match the creation time-
frame of the data associated with the in-
stances (e.g., recent crawl of old news ar-
ticles)? If not, please describe the time-
frame in which the data associated with the
instances was created.

The data were collected between February 2024
and September 2024.

Were any ethical review processes con-
ducted (e.g., by an institutional review
board)? If so, please provide a description
of these review processes, including the out-
comes, as well as a link or other access point
to any supporting documentation.

No.

Did you collect the data from the individu-
als in question directly, or obtain it via third
parties or other sources (e.g., websites)?

N/A.

Were the individuals in question notified
about the data collection? If so, please de-
scribe (or show with screenshots or other
information) how notice was provided, and
provide a link or other access point to, or oth-
erwise reproduce, the exact language of the
notification itself.

N/A.

Did the individuals in question consent to the
collection and use of their data? If so, please
describe (or show with screenshots or other
information) how consent was requested and
provided, and provide a link or other access
point to, or otherwise reproduce, the exact
language to which the individuals consented.

N/A.

If consent was obtained, were the consent-
ing individuals provided with a mechanism to

revoke their consent in the future or for cer-
tain uses? If so, please provide a description,
as well as a link or other access point to the
mechanism (if appropriate).

N/A.

Has an analysis of the potential impact of the
dataset and its use on data subjects (e.g., a
data protection impact analysis) been con-
ducted? If so, please provide a description
of this analysis, including the outcomes, as
well as a link or other access point to any
supporting documentation.

No.

Any other comments?

None.

Preprocessing/cleaning/labeling

Was any preprocessing/cleaning/labeling of
the data done (e.g., discretization or buck-
eting, tokenization, part-of-speech tagging,
SIFT feature extraction, removal of instances,
processing of missing values)? If so, please
provide a description. If not, you may skip
the remaining questions in this section.

Yes. In each data instance, the three orthographic
views images rendered by MineCraft are manu-
ally concatenated as one image.

Was the “raw” data saved in addition to the
preprocessed/cleaned/labeled data (e.g., to
support unanticipated future uses)? If so,
please provide a link or other access point to
the “raw” data.

No.

Is the software that was used to preprocess/-
clean/label the data available? If so, please
provide a link or other access point.

N/A.

Any other comments?

None.

Uses

Has the dataset been used for any tasks al-
ready? If so, please provide a description.

79

The dataset is used to develop the TeamCraft-
VLA model, as described in this paper.

Is there a repository that links to any or all pa-
pers or systems that use the dataset? If so,
please provide a link or other access point.

No.

What (other) tasks could the dataset be used
for?

This dataset can be used for the development and
evaluation of multi-modal multi-agent systems in
MineCraft.

Is there anything about the composition of
the dataset or the way it was collected and
preprocessed/cleaned/labeled that might im-
pact future uses? For example, is there any-
thing that a dataset consumer might need to
know to avoid uses that could result in un-
fair treatment of individuals or groups (e.g.,
stereotyping, quality of service issues) or
other risks or harms (e.g., legal risks, finan-
cial harms)? If so, please provide a descrip-
tion. Is there anything a dataset consumer
could do to mitigate these risks or harms?

Unknown to the authors of the datasheet.

Are there tasks for which the dataset should
not be used? If so, please provide a descrip-
tion.

Unknown to the authors of the datasheet.

Any other comments?

None.

Distribution \

Will the dataset be distributed to third par-
ties outside of the entity (e.g., company, insti-
tution, organization) on behalf of which the
dataset was created? If so, please provide a
description.

Yes, the dataset is available on the Internet.

How will the dataset will be distributed (e.g.,
tarball on website, API, GitHub)? Does the
dataset have a digital object identifier (DOI)?

The dataset will be available on Huggingface. It
does not have a DOI.

When will the dataset be distributed?

The dataset will be available online by
12/01/2024.

Will the dataset be distributed under a copy-
right or other intellectual property (IP) license,
and/or under applicable terms of use (ToU)?
If so, please describe this license and/or ToU,
and provide a link or other access point to, or
otherwise reproduce, any relevant licensing
terms or ToU, as well as any fees associated
with these restrictions.

The dataset is under Apache 2.0 license.

Have any third parties imposed IP-based or
other restrictions on the data associated with
the instances? If so, please describe these
restrictions, and provide a link or other ac-
cess point to, or otherwise reproduce, any
relevant licensing terms, as well as any fees
associated with these restrictions.

None as we know.

Do any export controls or other regulatory
restrictions apply to the dataset or to individ-
ual instances? If so, please describe these
restrictions, and provide a link or other ac-
cess point to, or otherwise reproduce, any
supporting documentation.

Unknown to authors of the datasheet.

Any other comments?

None.

| Maintenance

Who will be supporting/hosting/maintaining
the dataset?

The TeamCraft team will be maintaining the
dataset.

How can the owner/curator/manager of the
dataset be contacted (e.g., email address)?

Email: teamcraftbench@gmail.com

Is there an erratum? If so, please provide a
link or other access point.

No.

80

https://huggingface.co/datasets/teamcraft/teamcraft_data

Will the dataset be updated (e.g., to correct
labeling errors, add new instances, delete
instances)? If so, please describe how often,
by whom, and how updates will be commu-
nicated to dataset consumers (e.g., mailing
list, GitHub)?

No planned updates at the time of preparing this
datasheet.

If the dataset relates to people, are there ap-
plicable limits on the retention of the data
associated with the instances (e.g., were the
individuals in question told that their data
would be retained for a fixed period of time
and then deleted)? If so, please describe
these limits and explain how they will be en-
forced.

Unknown to authors of the datasheet.

Will older versions of the dataset continue
to be supported/hosted/maintained? If so,

please describe how. If not, please describe
how its obsolescence will be communicated
to dataset consumers.

N/A.

If others want to extend/augment/build on/-
contribute to the dataset, is there a mecha-
nism for them to do so? If so, please provide
a description. Will these contributions be val-
idated/verified? If so, please describe how.
If not, why not? |s there a process for com-
municating/distributing these contributions to
dataset consumers? If so, please provide a
description.

Others may do so and should contact the original
authors about incorporating fixes/extensions.

Any other comments?

None.

81

	Introduction
	Related Work
	TeamCraft Benchmark
	Problem Formulation
	Simulation Environment
	Task Design
	Centralized and Decentralized Agents
	Diversity
	Tasks and Expert Demonstrations Generation
	Test Set and Generalization Set

	Experiments
	Baselines and Ablations
	Evaluation Metrics
	Evaluation Results
	Qualitative Analysis

	Conclusions
	Limitations and Future Work

	Additional Related Work
	High Level Skills
	Low Level Atomic Actions
	Simulator Efficiency, Scalability and Flexibility
	Visual Diversity
	Shared Elements
	Task Specific Diversity

	Planner for Expert Demonstration
	Example Expert Demonstrations

	Grid-World Settings
	TeamCraft-VLA Implementation Details
	Arrangement of Three Orthogonal Views
	Hyperparameters
	Model Output Parsing

	Additional Results of TeamCraft-VLA
	Task Success Rate and Subgoal Success Rate
	Redundancy Rate
	Action Sequence Length
	Multi-Agent Effectiveness
	Case Study

	Proprietary VLA Model Implementations
	Vanilla Setting
	GPT-4o Error Analysis
	o1 Error Analysis
	Claude 3.7 Error Analysis
	Block Recognition Test

	Grid Setting

	Dataset Statistics Tables
	Datasheet

