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Abstract

Pre-trained diffusion models are commonly used to generate clean data (e.g.,
images) from random noises, effectively forming pairs of noises and corresponding
clean images. Distillation on these pre-trained models can be viewed as the process
of constructing advanced trajectories within the pair to accelerate sampling. For
instance, consistency model distillation develops consistent projection functions
to regulate trajectories, although sampling efficiency remains a concern. Rectified
flow method enforces straight trajectories to enable faster sampling, yet relies
on numerical ODE solvers, which may introduce approximation errors. In this
work, we bridge the gap between the consistency model and the rectified flow
method by proposing a Straight-Consistent Trajectories (SCoT) model. SCoT
enjoys the benefits of both approaches for fast sampling, producing trajectories
with consistent and straight properties simultaneously. These dual properties
are strategically balanced by targeting two critical objectives: (1) regulating the
gradient of SCoT’s mapping function to a constant and (2) ensuring trajectory
consistency. Extensive experimental results demonstrate the effectiveness and
efficiency of SCoT.

1 Introduction

Pre-trained diffusion models Ho et al. (2020); Song et al. (2021b); Rombach et al. (2022); Poole
et al. (2023); Esser et al. (2024) have demonstrated impressive performance in real-world tasks such
as high-quality image synthesis and image editing. However, such practical models usually require
extensive computational resources to train, as well as a large number of model evaluations to generate
high-quality samples (e.g. images). Using these pre-trained teacher models to generate pairs of
random noises and their corresponding clean images, a popular choice for low-cost training and fast
sampling is to train a student distillation model with advanced “trajectories” within the pair Salimans
and Ho (2022); Wang et al. (2023, 2024); Yin et al. (2024b); Luo et al. (2024); Xie et al. (2024);
Nguyen and Tran (2024); Yin et al. (2024a); Sauer et al. (2024); Xu et al. (2024); Zhu et al. (2025);
Frans et al. (2025a); Sauer et al. (2025).

We can group these trajectory-based distillation methods into two categories: consistency model
distillation Song et al. (2023); Kim et al. (2024); Lu and Song (2025) and rectified flow distillation Liu

∗Corresponding author: xuhui.fan@mq.edu.au

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



(d) SCoT [Ours]

X

(c) Shor tCut [ICLR 2025]

X

(b) CTM [ICLR 2024]

X

(a) Reflow [ICLR 2023]

X
X

x

Figure 1: Comparison of trajectory distillation methods. The black line in each panel denotes the
teacher trajectory of pre-trained diffusion models, which are connected within the pair of a random
noise (left dot) and a clean image (right dot). The red solid line is the student trajectory of the
distillation model. Panel (a) Reflow Liu et al. (2023b) straightens its student trajectory by enforcing
its velocity be close to a constant. However, its trajectory maps different points to different values
due to the lack of consistency. Panel (b) CTM Kim et al. (2024) places consistency requirement for
the student trajectory. However, it might be difficult to track the student trajectory when it is of high
curvatures. In panel (c), the Shortcut model Frans et al. (2025b) focuses on velocity estimation, while
uses straight lines to approximate the trajectory and ensure the consistency. Our proposed SCoT model
in panel (d) enforces straightness for consistent student trajectory. By avoiding the approximating
errors of solving ODEs and by straightening the student trajectory, SCoT successfully bridges the
gap between rectified flows and CTM distillations and enjoys the benefits of both approaches.

et al. (2023c); Zhu et al. (2025). Consistency model distillation focuses on the trajectory itself,
requiring a “valid” consistent trajectory. That is, the student trajectory should map to the same point
regardless of different initial points. Rectified flow distillation seeks a straight student trajectory by
enforcing its velocities be close to the magnitude of point changes. While consistency distillation
directly models pointwise changes along the trajectory, the straight trajectory of rectified flow
distillation may reduce the number of steps required to generate high-quality images.

However, both categories have their own limitations. Consistency model distillation typically requires
multiple steps to generate high-quality samples Song et al. (2023); Kim et al. (2024). This is likely
due to the challenge of tracking the mapping function for trajectories with high curvatures. In the
case of rectified flow distillation, numerical ODE solvers are required for a learned velocities, which
introduce approximation errors that degrade the final output quality.

In order to address these issues and enjoy the benefits of both approaches, we bridge the gap between
consistency models and rectified flows by proposing the Straight-Consistent Trajectories (SCoT)
model in this paper. SCoT aims to produce trajectories that are consistent, which is a valid condition
for trajectories, and are straight, which simplifies the point changes in the trajectory. In detail, SCoT
regulates the trajectory through two aspects: (1) trajectory straightness by optimizing velocities
towards the amount of point changes in the pre-trained model, (2) trajectory consistency by ensuring
points from different time steps are projected to converge at the same value at future time steps.

In summary, the proposed SCoT is the first to produce consistent and straight trajectories between
random noise and clean images, which unifies the consistency models and rectified flows. Consis-
tency guarantees valid trajectories, while straightness facilitates the approximation of the trajectory
projection function and faster sample generation. With this design, SCoT achieves state-of-the-art
results, enabling compact models to generate high-quality data in N -steps, or even a single step.
Figure 1 highlights the key differences among consistency distillation, rectified flow distillation,
ShortCut model Frans et al. (2025b), and the proposed SCoT.

2 A trajectory perspective on Pre-trained diffusion model distillations

Notation We consider the trajectory to be working within the time interval [0, 1], with the time steps
specified as 1 = tN > tN−1 > . . . > t1 = 0. Since image synthesis is a common task for diffusion
models, we denote x0 as the clean image, xt as the noisy image at the time step t, and x1 ∼ N (0, I)
as the random noise sampled from a standard Gaussian distribution. Furthermore, we use θ and
ϕ to represent the parameters of the pre-trained teacher model and the student distillation model,
respectively. Detailed descriptions of the notation are provided in ?? and Table 7.

Diffusion models Diffusion models (DMs) Ho et al. (2020); Song et al. (2021a); Dhariwal and Nichol
(2021) generate data by learning the score function of noisy images at multiple noise scales. At each
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time step t, a clean image x0 is first diffused into a noisy image xt through a forward process xt :=
αtx0 + σtx1,x1 ∼ N (0, I), where αt and σ2

t are the diffusion coefficient and variance, respectively.
Using pt(xt) to denote the probability of diffusion in xt, DMs learn a neural network ϵθ(xt, t)
that matches the score of the corrupted image sreal(xt) := ∇xt log pt(xt) = −σ−1

t (xt − αtx0) by
minimizing the loss Et,xt

[
ω(t)∥ϵθ(xt, t)− sreal(xt)∥2

]
, where ω(t) is a weighting function.

Rectified flows Lipman et al. (2023); Liu et al. (2023b); Albergo et al. (2023) can be regarded as an
extension of diffusion models by defining a linear interpolation between random noise x1 and a clean
image x0 as xt = tx1 + (1− t)x0, 0 ≤ t ≤ 1. In details, they use the ODE dxt/dt = vθ(xt, t) to
transport between the noise distribution N (0, I) and data distribution π0(x0), whereas the velocity
vθ(xt, t) is learned by minimizing the loss Et

[
∥(x1 − x0)− vθ(xt, t)∥2

]
.

Given a random noise x1 ∼ N (0, I), a new clean image x̂0 can be generated either through
an iterative denoising process with a trained ϵθ(xt, t) (in DMs), or through an ODE solver as
x̂0 = x1 +

∫ 0

1
vθ(xt, t)dt (in rectified flows). In either case, a pair of random noise and its

corresponding clean image is formed as (x1, x̂0). Trajectory distillation focuses on the construction
of advanced trajectories to accelerate sampling without compromising image qualities.

Reflow distillation The teacher trajectory produced by the pre-trained velocity vθ(xt, t) may not be
straight, since their training set x1 ∼ N (0, I) and x0 ∼ π0(x0) are not paired. To address this issue,
reflow distillation Liu et al. (2023a,c); Zhu et al. (2025); Li et al. (2025) works on the pair (x1, x̂0) by
training a new velocity vϕ(xt, t) that approximates the direction x̂0 − x1 within the pair. With the
trained vϕ(xt, t) expected to approximate the straight direction from x1 to x̂0, reflow distillations
may use fewer steps to generate high-quality images. Other approaches uses one neural network to
approximate the magnitude of changes over the whole time period Liu et al. (2023c).

Consistency distillation Consistency model (CM) Song et al. (2023) can be regarded as one trajectory
distillation method. CM studies a consistent projection function fϕ(xt, t) that maps any noisy
image xt to the clean image x0: fϕ(xt, t) = x0, ∀t ∈ [0, 1]. Its distillation objective function
can be written as a weighted distance metric D(·, ·) between the mapped clean images from two
adjacent points LCM = Et

[
ω(t)D

(
fϕ(xt+∆t, t+∆t), fϕ−(x̂θ

t , t)
)]

, where ϕ− is the exponential

moving average of the past values ϕ, and x̂θ
t is obtained from the pre-trained model as x̂θ

t =
xt+∆t − t∆t∇xt+∆t log pt+∆t(xt+∆t). CM obtains a “valid” trajectory by mapping different points
to the same clean image.

Building on CM, Consistency Trajectory Model (CTM) Kim et al. (2024) introduces a multi-step
consistent mapping function defined as:

Gϕ(xt, t, s) = (s/t)x1 + (1− s/t)gϕ(xt, t, s), (1)

in which gϕ(xt, t, s) is left unconstrained, and is parameterized by a neural network gϕ(·). Equa-
tion (1) ensures Gϕ(xt, t, s) satisfies the boundary condition as Gϕ(x1, 1, 1) = x1.

Concurrent works MeanFlow Geng et al. (2025) is a concurrent work to SCoT that also unifies
consistency models and rectified flows via velocity integration. Its key distinction lies in introducing
a correction term derived from the gradient with respect to the starting step t, unlike SCoT’s use
of the gradient at the terminating step s. Although rectified flow is regarded as a special case of
MeanFlow under an infinitesimal integration range, it is not clear if MeanFlow itself can learn straight
trajectories in practice. Another concurrent work FlowMap Sabour et al. (2025); Boffi et al. (2025)
also shares the same target. By using the CTM as the backbone, it is unclear if such a setting can
achieve both straight and consistent trajectories in practice.

3 Straight-Consistent Trajectories (SCoT) model

Given a pre-trained noise-image pair (x1, x̂0), the proposed Straight-Consistent Trajectories (SCoT)
model aims to learn a trajectory-based projection function Gϕ(xt, t, s) that produces straight and
consistent trajectories within the pair. Similar to the CTM, the projection function Gϕ(xt, t, s) takes
the current time step t, the values xt at step t, as well as the future time step s as inputs, and outputs
the values at time step s as x̂s := Gϕ(xt, t, s).
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3.1 Main Components of SCoT

We introduce two regulators that refine the SCoT trajectory regarding its velocity and consistency.

Constant-valued velocity In order to ensure that SCoT produces a straight trajectory, we regularize
the gradient of its projection function Gϕ(xt, t, s). In detail, we encourage the partial derivative
of Gϕ(xt, t, s) with respect to s to approximate the magnitude of the change observed within the
pre-trained pair (x1, x̂0). In this way, the velocity loss function can be defined as:

Lvelocity = Ex1,t,s

[
∥∂Gϕ(xt, t, s)/∂s− (x̂0 − x1)∥2

]
, (2)

where t, s are sampled based on the step schedule.

Let µϕ(xs, s) denote the velocity of the student trajectory at time step s and let xt denote the value at
initial step t, Gϕ(xt, t, s) is equivalent to the solution of the ODE dx̂s/ds = µϕ(x̂s, s),∀s ∈ [t, 1].
That is:

x̂s = Gϕ(xt, t, s) = xt +

∫ s

t

µϕ(xr, r)dr ⇒ ∂Gϕ(xt, t, s)

∂s
= µϕ(xs, s) (3)

Equation (2) can be alternatively understood as enforcing the student trajectory’s velocity µϕ(xs, s)
close to the magnitude of changes in the pre-trained teacher model.

In fact, this alternative formulation of the velocity loss
∥∥µϕ(xs, s)− (x̂0 − x1)

∥∥2 is equivalent to
that of the reflow distillation. By minimizing Lvelocity, SCoT achieves the same straightening effect on
the student trajectory as reflow distillation. For reflow distillation, it learns the velocity of trajectory
and thus needs to numerically solve ODEs to obtain the trajectory. SCoT directly learns the student
trajectory through Gϕ(xt, t, s) and avoids such ODE approximation errors. More importantly, SCoT
can be regularized to satisfy the consistency requirement.

We compute the partial derivative ∂Gϕ(xt, t, s)/∂s using PyTorch’s torch.autograd.grad func-
tion, which enables automatic differentiation of Gϕ(xt, t, s) with respect to s.

Figure 2: From two different points xt1 ,xt2 ,
SCoT maps to the same point x̂s. The velocity
µϕ(x̂s, s) at time step s is independent from
previous time steps t1, t2.

Trajectory consistency SCoT also requires the tra-
jectory to be consistent Song et al. (2023); Kim
et al. (2024); Frans et al. (2025a). That is, the
projection function Gϕ(xt, t, s) maps the same fu-
ture value to all points along the trajectory, regard-
less of their current time step as Gϕ(xt1 , t1, s) =
Gϕ(xt2 , t2, s), where s < t1 < t2. xt1 is ob-
tained through teacher model’s ODE solver as xt1 =

Solver(xt2 , t2, t1;θ) = xt2 +
∫ t1
t2

vθ(xr, r)dr,
such that xt1 and xt2 are located on the same teacher
trajectory.

We adopt the soft-consistency loss Kim
et al. (2024) which is defined by comparing the mapped outputs Gϕ(xt2 , t2, s) ≈
Gsg(ϕ)(Solver(xt2 , t2, t1;θ), t1, s), where sg(·) is the exponential moving average stop-
gradient operator. Following CTM Kim et al. (2024), these two mapping values are further projected
to the clean image space to construct the consistency loss as:

Lconsistency = Et2∈[0,1],t1∈[t2,1],s∈[t1,1],xt2
[D(xtarget(xt2 , t2, t1, s),xest(xt2 , t2, s))] , (4)

where D(·, ·) is the distance metric, xest(xt2 , t2, s) = Gsg(ϕ) (Gϕ(xt2 , t2, s), s, 0) represents the
estimated clean image obtained by projecting the point xt2 forward to s using the student model
Gϕ, followed by decoding to time step 0 via the EMA model Gsg(ϕ), and xtarget(xt2 , t2, t1, s) =

Gsg(ϕ)

(
Gsg(ϕ)(Solver(xt2 , t2, t1;θ), t1, s), s, 0

)
serves as the target output, computed by first in-

tegrating xt2 to xt1 along the teacher trajectory via the ODE solver, and then applying the same
projection-decoding pipeline. This formulation ensures that both paths—although starting from
different intermediate states on the same trajectory—should yield consistent outputs at the final clean
image space.

This consistency ensures the “validity” of our projection function in the trajectory. Compared to the
consistency models and their variants, it is expected that this trajectory straightness makes it easier to
approximate the projection function than those with high curvatures.
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Objective function Summarizing the above targets, SCoT’s objective function may be written as:

LSCoT = λvelLvelocity + λconLconsistency, (5)

where λvel, λcon denote the weighting factors for Lvelocity,Lconsistency. Each individual component
addresses the straightness and consistency of trajectories, respectively. In this way, the proposed
SCoT successfully unifies the consistency models and rectified flows.

The two loss terms, Lvelocity and Lconsistency, have different dependencies on the pre-trained model.
Specifically, Lvelocity operates on a data-noise pair (x̂0,x1), while Lconsistency requires the model’s
parameters. To cope with their requirements, we propose generating the data point x̂0 dynamically
for each training step using the pre-trained model x̂0 = x1 +

∫ 0

1
vθ(xt, t)dt. This avoids the need

for pre-computed pairs. An additional potential improvement involves using a shared random noise
vector x1 for both losses, which may enhance training consistency when sampling intermediate
points. We leave a detailed study of this method to future work.

3.2 Training from scratch and Sampling

It is noted that SCoT may also be trained from scratch, by modifying consistency loss and randomly
choosing noise x1 and data x0. Such exploration was not conducted due to resource constraints.
Regarding sampling, Algorithm 1 outlines the SCoT sample generation process, which may be imple-
mented as a multi-step or single step procedure. Table 2 and Table 3 demonstrate the corresponding
experimental validation. Following the same setting as in Table 2 and Table 3, our model is trained
with the DSM loss adopted from CTM to enhance sample quality and training stability.

3.3 Connections to Other Distillation Methods

Methods Reflow Liu et al. (2023b) InstaFlow Liu et al. (2023c)

Objective function Ex1,t

[
∥vϕ(xt, t)− (x̂0 − x1))∥2

]
Ex1

[
∥vϕ(x1, 1)− (x̂0 − x1)∥2

]
Methods FlowDreamer Li et al. (2025) Lvelocity in SCoT (Ours)

Objective function Ext

[
∥vϕ(xt, t)− vθ(xt, t)∥2

]
Ex1,t,s

[
∥∂Gϕ(xt, t, s)/∂s− (x̂0 − x1)∥2

]
Table 1: Different objective functions in enforcing straight student trajectory. In addition to Reflow
and SCoT, InstaFlow enables one step sampling by learning the magnitude of changes based on
random noise x1, whereas FlowDreamer aims to approximate teacher model’s velocity vθ(xt, t).

Algorithm 1 Sampling Procedure of SCoT

Input: Trained SCoT projection Gϕ(xt, t, s);
steps tN = 1 > · · · > t1 = 0

Output: Generated image x̂0

1: Sample initial: x̂tN ∼ π1

2: for n = N,N−1, . . . , 1 do
3: x̂tn−1

= Gϕ(x̂tn , tn, tn−1)
4: end for
5: return x̂0

The proposed SCoT bridges the gap between
the consistency model and rectified flow distil-
lations. On one hand, SCoT adopts the format
of CTM Kim et al. (2024)’s project function
Gϕ(xt, t, s). SCoT’s consistency loss and out-
put reconstruction loss can be combined into
CTM’s integrated soft-consistency loss. While
there is no restriction on velocity, approximat-
ing Gϕ(xt, t, s) can be challenging when the
student trajectory exhibits high curvature. As
a result, multiple steps are usually required to
generate high-quality images in CTM Kim et al. (2024).

On the other hand, the velocity loss in SCoT shares the same target as Reflow Liu et al. (2023b).
By enforcing constant velocity in Equation (2), SCoT induces a straightening effect on the student
trajectory. Table 1 summarizes the different objective functions used to encourage straight student
trajectories.

The Shortcut model Frans et al. (2025a) shares the same targets of trajectory consistency and
straightness. While emphasizing learning trajectory velocities instead of the full trajectory, the
Shortcut model still relies on an ODE solver for image sampling. Also, its usage of a one-step
Euler solver to enforce trajectory consistency might not be optimal. Other concurrent works such
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as MeanFlow Geng et al. (2025) and FlowMap Boffi et al. (2025); Sabour et al. (2025) have been
discussed in Section 2.

Boot Gu et al. (2023) also considers the velocity alignment with the pre-trained model, by comparing
the gradient of function. InstaFlow Liu et al. (2023c) and SlimFlow Zhu et al. (2025) focus on output
reconstruction. As velocity and consistency are not regularized, the trajectory is not well defined.

4 Experiments

4.1 Experimental Setup

Teacher-Student Distillation Setup. To simulate the generation trajectory from t = 0 to t = 1, the
pre-trained models are used to generate paired data samples ⟨x0,x1⟩. Furthermore, to provide the
intermediate states required for computing the consistency term in Equation (4), we distill knowledge
from a teacher model θ into a student model ϕ. Following established practices in CM Song et al.
(2023), SlimFlow Zhu et al. (2025), and CTM Kim et al. (2024), we evaluate SCoT on both CIFAR-10
and ImageNet, using pre-trained diffusion checkpoints from EDM2 (for CIFAR-10) and CM3 (for
ImageNet) as teacher models. For the student model, we adopt EDM’s DDPM++ implementation on
CIFAR-10, and the Ablated Diffusion Model (ADM) architecture from Dhariwal and Nichol (2021)
for ImageNet. To support the additional time conditioning s in Equation (5), we incorporate several
architectural modifications inspired by CTM. Specifically, we extend the temporal embedding by
adding auxiliary s-embedding information to the original t-embedding. We also adopt other training
heuristics from CTM (see Table 8), including: (1) using a larger value of µ in the stop-gradient
EMA to slow the teacher update rate and improve training stability; (2) setting the student EMA
rate to 0.999 to smooth parameter updates over time and reduce training noise; and (3) reusing skip
connections from the pre-trained diffusion model to facilitate gradient flow and preserve hierarchical
features.

Model Architectures. To support the additional time conditioning variable s in our generator
gϕ(x, t, s), we incorporate a conditional embedding module into the baseline model architectures,
following prior design choices in CM Song et al. (2023), SlimFlow Zhu et al. (2025), and CTM Kim
et al. (2024). For CIFAR-10, we adopt the DDPM++ implementation from EDM Karras et al. (2022),
extending its time embedding module to additionally encode s using a structure symmetric to the
original t embedding, and applying identical normalization strategies. For ImageNet, we use the
Ablated Diffusion Model (ADM) Dhariwal and Nichol (2021), where s is embedded jointly with the
class conditioning variable c, requiring no architectural change. A detailed comparison of DDPM++
and ADM in terms of their ResNet backbones, attention configurations, and noise conditioning
strategies is presented in Table 9. To improve the attention module, we address compatibility issues in
QKVFlashAttention by modifying the dimension operations in QKVAttentionLegacy to match
expected checkpoint formats. Additionally, we integrate xformers’ ScaledDotProduct attention
as an alternative backend. These improvements ensure correct weight loading while enhancing
efficiency and flexibility of the attention mechanism.

Training and Sampling Hyperparameters. To ensure stable convergence and fair comparison
during the training of SCoT, we adopt a higher learning rate for smaller datasets (e.g., CIFAR-10) and
scale the batch size appropriately for larger datasets (e.g., ImageNet). We use the Adam optimizer
for both settings, and enable mixed-precision training (FP16) to improve memory efficiency and
computational speed. For CIFAR-10, we train the model for 130k iterations with a batch size of 512,
while for ImageNet we use a larger batch size of 2048 and train for 40k iterations to accommodate the
increased data complexity and training cost. We adopt an exponential moving average (EMA) of the
student model with a decay rate of 0.9999 and employ a stop-gradient variant with EMA coefficient
µ = 0.9999 to stabilize the training objective. A complete list of hyperparameter settings is provided
in Table 8.

2https://github.com/NVlabs/edm
3https://github.com/openai/consistency_models
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NFE↓ Methods Model Size Generation Quality
FLOPs (G) MACs (G) Params (MB) FID↓

50 DDIM Song et al. (2021a) 12.2 6.1 35.7 4.67
20 DDIM Song et al. (2021a) 12.2 6.1 35.7 6.84
10 DDIM Song et al. (2021a) 12.2 6.1 35.7 8.23
10 DPM-solver-2 Lu et al. (2022) 12.2 6.1 35.7 5.94
10 DPM-solver-fast Lu et al. (2022) 12.2 6.1 35.7 4.70
10 3-DEIS Zhang and Chen (2022) 20.6 10.3 61.8 4.17

2 PD Salimans and Ho (2022) 41.2 20.6 55.7 5.58
2 CD Song et al. (2023) 41.2 20.6 55.7 2.93
2 CT Song et al. (2023) 41.2 20.6 55.7 5.83
2 CTM∗ Kim et al. (2024) 41.2 20.6 55.7 1.87
2 SCoT 41.2 20.6 55.7 2.30

1 1-Rectified Flow (+Distill) Liu et al. (2023a) 20.6 10.3 61.8 378
1 2-Rectified Flow (+Distill) Liu et al. (2023a) 20.6 10.3 61.8 12.21
1 3-Rectified Flow (+Distill) Liu et al. (2023a) 20.6 10.3 61.8 8.15
1 CTM∗ Kim et al. (2024) 41.2 20.6 55.7 1.90
1 SCoT 41.2 20.6 55.7 2.40

Table 2: Comparison of N -step (NFE) generation performance across diffusion models on CIFAR-10
at comparable model scales. We report sample quality metrics—FID (↓)-for N ∈ {1, 2, 10, 20, 50}.
Entries highlighted in bold denote our proposed method. CTM∗ indicates the inclusion of GAN
loss. Baseline results are sourced from Song et al. (2023); Zhu et al. (2025); Frans et al. (2025b). “–”
indicates that the result is not available.

Datasets. For evaluation, we adopt two large-scale real-world datasets with different image resolu-
tions: CIFAR-10 (32× 32) and ImageNet (64× 64), following standard protocol. Dataset statistics,
including resolution, total size, and sample count, are summarized in Table 10.

Evaluation Metrics. We assess SCoT on unconditioned image generation using standard eval-
uation metrics, including Fréchet Inception Distance (FID) Heusel et al. (2017), Inception Score
(IS) Salimans et al. (2016), and Recall (Rec.) Sajjadi et al. (2018). To evaluate model efficiency, we
also report parameter count, floating-point operations (FLOPs), and multiply–accumulate operations
(MACs). See Section C.2 for further details.

Time Efficiency. We measure the training throughput of the trajectory generator gϕ(·) under
different combinations of loss functions to evaluate time efficiency. Throughput results, reported in
images per second per GPU, are summarized in Table 11.

4.2 Distillation Results

CIFAR-10. On CIFAR-10, SCoT achieves an FID of 2.30 with only 2 NFEs, outperforming
baselines such as CD (FID 2.93) and CT (FID 5.83) while requiring fewer function evaluations. CTM
attains a lower FID of 1.87 with just 2 NFE, but its results incorporate a GAN loss, which significantly
improves sample fidelity by providing a strong adversarial signal during training. In contrast, we do
not adopt the GAN loss due to its instability under our training configuration and resource constraints.
Despite this, SCoT delivers competitive performance without adversarial training, demonstrating a
favorable balance between generation quality and computational efficiency.

ImageNet. On ImageNet, SCoT achieves an FID of 2.60 with just 2 NFEs, outperforming baselines
such as CD (FID 6.20) and PD (FID 15.39), and closely approaching the performance of EDM
(FID 2.44). While CTM achieves the best FID of 1.92, this result benefits from the integration of a
GAN loss, which enhances visual fidelity by introducing adversarial supervision during training. In
contrast, our method does not incorporate GAN loss due to its instability under our training regime,
yet still attains competitive sample quality. SCoT also demonstrates strong diversity, with a recall of
0.61 and an Inception Score of 68.20, highlighting its effectiveness in balancing quality, diversity,
and computational cost.
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NFE↓ Methods Model Size Generation Quality
FLOPs MACs Params FID↓ Rec.↑ IS↑

250 ADM Karras et al. (2022) — — — 2.07 0.63 —
79 EDM Dhariwal and Nichol (2021) 219.4 103.4 295.9 2.44 0.67 48.88

2 PD Salimans and Ho (2022) 219.4 103.4 295.9 15.39 0.62 —
2 CD Song et al. (2023) 219.4 103.4 295.9 6.20 0.63 40.08
2 CTM∗ Kim et al. (2024) 219.4 103.4 295.9 1.70 0.57 64.29
2 SCoT 219.4 103.4 295.9 2.60 0.61 68.20

1 CD Song et al. (2023) 219.4 103.4 295.9 6.20 0.63 –
1 CT Song et al. (2023) 219.4 103.4 295.9 13.00 0.47 –
1 SlimFlow Zhu et al. (2025) 67.8 31.0 80.7 12.34 — —
1 Shortcut(unconditional) Frans et al. (2025b) 219.4 103.4 295.9 20.50 — —
1 Shortcut(conditional) Frans et al. (2025b) 219.4 103.4 295.9 40.30 — —
1 CTM∗ Kim et al. (2024) 219.4 103.4 295.9 1.92 0.57 64.29
1 SCoT 219.4 103.4 295.9 4.80 0.57 67.60

Table 3: Comparison of N -step generation performance by different DMs on ImageNet across
corresponding model scales. Bold red numbers indicate the number of parameters for each distilled
model. We report sample quality metrics—FID (↓), Rec. (↑), and IS (↑)—for N ∈ {1, 2, 10, 79, 250}.
Entries highlighted in bold denote our proposed method. CTM∗ indicates the use of an additional
GAN loss. Baseline results are taken from Song et al. (2023); Zhu et al. (2025); Frans et al. (2025b).
“–” indicates that the result is not available.

4.3 Trajectory Analysis

We use CTM’s soft consistency which proves to outperform local consistency and perform comparable
to global consistency. Specifically, local consistency distills only 1-step teacher, so the teacher of
time interval [0, T −∆t] is not used to train the neural jump starting from xT . Rather, teacher on
[t −∆t, t] with t ∈ [0, T −∆t] is distilled to student from neural jump starting from xt, not xT .
The student, thus, has to extrapolate the learnt but scattered teacher across time intervals to estimate
the jump from xT , which could potentially lead to imprecise estimation. In contrast, the amount
of teacher to be distilled in soft consistency is determined by a random u, where µ = 0 represents
distilling teacher on the entire interval [0, T ]. Hence, soft matching serves as a computationally
efficient and high-performing loss.

4.4 Consistency Guarantee

The results in Table 4 highlight the benefits of consistency. By adding this loss, SCoT is encouraged
to focus on improving output reconstruction and consistency, which is reflected in the consistent
reduction of FID from 15.7 to 5.6 in NFE = 1 and from 16.4 to 3.9 in NFE = 2. This optimization
drives the model to generate samples closer to the target distribution. As a result, the IS increases
from 30.4 to 63.1 in NFE = 1 and from 29.8 to 61.4 in NFE = 2, indicating notable improvements
in both fidelity and diversity. Additionally, Precision and Recall show substantial gains rising from
0.49 to 0.72 and 0.45 to 0.57 in NFE = 1, respectively, demonstrating that the model captures more
accurate and diverse samples.

4.5 Velocity Guarantee

The incorporation of the velocity guarantee loss, as shown in Table 5, further improves the generative
trajectory by encouraging temporal smoothness. This constraint ensures that the trajectories are
straightened, making the sampling process more stable and efficient. The benefits are evident in the
substantial reduction of FID, dropping from 14.7 to 4.8 in NFE = 1 and from 15.2 to 3.6 in NFE = 2.
The IS improves accordingly, reaching 67.6 and 68.2 in NFE = 1 and NFE = 2, respectively. The
model also achieves stronger coverage and accuracy, with Precision improving from 0.56 to 0.71 and
Recall from 0.54 to 0.58 in NFE = 1. Similar trends are observed in NFE = 2. These confirm that
velocity regularization helps refine the generative path, enabling the model to produce high-quality
samples with better alignment to the underlying data manifold, especially under reduced NFE.
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Metric NFE = 1 NFE = 2

5k 10k 15k 20k 5k 10k 15k 20k

FID (↓) 15.7 15.2 11.4 5.6 16.4 14.7 10.2 3.9
sFID (↓) 33.8 32.8 31.7 16.2 36.5 34.9 29.7 13.6
IS (↑) 30.4 34.2 43.6 63.1 29.8 33.7 42.2 61.4
Precision (↑) 0.49 0.55 0.64 0.72 0.47 0.53 0.65 0.73
Recall (↑) 0.45 0.49 0.57 0.54 0.44 0.47 0.58 0.56

Table 4: Comparison of training results for NFE = 1 and NFE = 2 for loss from Equation (4). All
models are trained on ImageNet and tested on 6k samples. Bold values indicate the best performance
per metric.

Metric NFE = 1 NFE = 2

5k 10k 15k 20k 5k 10k 15k 20k

FID (↓) 14.7 14.1 10.4 4.8 15.2 13.8 9.1 2.6
sFID (↓) 32.0 31.0 29.9 14.6 35.4 33.7 28.3 12.4
IS (↑) 33.4 37.8 48.6 67.6 34.1 38.5 50.0 68.2
Precision (↑) 0.56 0.61 0.67 0.71 0.55 0.60 0.68 0.73
Recall (↑) 0.54 0.56 0.58 0.57 0.55 0.57 0.59 0.58

Table 5: Training Equation (5) Results for NFE = 1 and NFE = 2. For metrics with ↓, lower values
are better; for metrics with ↑, higher values are better. Bold values represent the best performance in
each metric.

4.6 Loss Weighting

In this section, we explore the impact of loss weighting parameters in our training objective defined
by Equation (5), focusing specifically on λcon for the consistency loss and λvel for the velocity loss.

Weighting on λcon in Equation (5) We implemented an adaptive weighting strategy for λcon to
effectively balance the contributions between consistency and denoising losses during training. The
primary motivation behind this adaptive mechanism is to dynamically adjust the weighting based on
the relative importance and magnitude of each loss component. Specifically, this adjustment is made
through gradient magnitude comparisons, ensuring that no single loss dominates excessively, thereby
stabilizing training and improving convergence.

Weighting on λvel in Equation (5) To address the instability associated with the velocity loss defined
in Equation (2), we explored several loss weighting strategies. The primary source of instability
stems from the computation of second-order derivatives using automatic differentiation tools such
as PyTorch’s torch.autograd.grad(). These second-order computations require repeated differ-
entiation, which can amplify small numerical inaccuracies through successive applications of the
chain rule. As a result, accumulated numerical errors may lead to unstable gradient magnitudes,
manifesting as gradient explosion or vanishing gradients, and ultimately impairing training stability.
Motivated by these challenges, we investigated alternative weighting approaches to mitigate such
instabilities.

The first strategy, Adaptive Weighting, dynamically adjusts the weight of the velocity loss based on
the scale of individual loss elements. As shown in Table 6, this method performs relatively well in
the early stages of training, but FID increases notably in later iterations. This indicates that while
adaptive scaling can help stabilize early training, it may overemphasize certain loss components later
on, leading to degraded generative quality.
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5k 10k 15k 20k

Adaptive Weighting 15.3 14.5 11.2 6.2
Without Scaling 16.1 15.4 12.5 7.0
Normalization 15.2 13.8 9.1 3.6

Table 6: FID (↓) comparison across different velocity loss
weighting strategies at various training iterations (5k, 10k,
15k, 20k), using a global batch size of 2048. Adaptive
Weighting dynamically adjusts weights based on the relative
scale of loss components; Without Scaling removes adaptive
weighting entirely; and Normalization stabilizes training by
bounding the magnitude of the velocity loss.

The second strategy, Without Scal-
ing, removes all adaptive scaling fac-
tors. This approach is motivated by
the observation that unstable second-
order gradients may produce extreme
weight values, which can disrupt train-
ing. As evidenced in Table 6, this
method leads to slightly worse perfor-
mance at early iterations but achieves
improved stability and better FID
scores in later stages.

The final strategy, Normalized Veloc-
ity Loss, clips the adaptive weight
within a predefined range [0.01, 10]
to prevent extreme values from dom-
inating the loss. This normalization consistently achieves the best FID scores across all iterations,
suggesting it provides a stable and balanced contribution of the velocity loss during optimization.
Notably, after 20k iterations, this strategy yields the lowest FID, demonstrating its effectiveness in
maintaining training stability and improving overall model performance.

5 Conclusion

In this paper, we propose the SCoT model that successfully bridges the gap between consistency
model and rectified flows distillation. SCoT performs pre-trained diffusion model distillations, and
produces straight and consistent trajectories for fast sampling. By aligning the output, velocity, and
consistency with the teacher model, SCoT achieves high-quality generation with fewer sampling steps.
Experimental results on CIFAR-10 and ImageNet show that SCoT outperforms existing distillation
methods in both efficiency and generation quality. Ablation studies confirm the effectiveness of our
design, highlighting the importance of trajectory consistency and velocity approximation. In the
future, we aim to extend SCoT to high-resolution image synthesis and explore its integration with
conditional generation tasks. We believe SCoT provides a strong foundation for efficient generative
modeling and paves the way for real-time high-fidelity image synthesis.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Abstract and introduction accurately describe SCoT’s dual objectives (consis-
tency and straightness) and summarize experimental results on CIFAR-10 and ImageNet
(Abstract; Sec. 1).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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Justification: Conclude in Conclusion.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We contribute to the theory in distillation.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All hyperparameters, model architectures, data splits, and training details are
fully specified in Sec. 5 and Appendix A.2–A.4.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Public data and code is in anonymous repo.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Data splits, optimizer settings, learning rates, batch sizes, and evaluation
metrics are detailed in Sec. 5.1 and App. A.2–A.4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Each group of experiments was repeated multiple times to eliminate the
randomness.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: GPU type, throughput measurements, and total training iterations are specified
in Sec. 5.1 and App. A.5.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Research conforms to NeurIPS Ethics Guidelines; no human or sensitive data
used.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: No discussion of potential societal impacts included.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
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Justification: No high-risk models or data releases involved.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: Third-party model checkpoints and datasets are cited but licenses not explicitly
stated.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new datasets or code assets are released.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No human subjects research conducted.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [No]
Justification: LLMs not used in core methodology.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [No]
Justification: LLMs not used in core methodology.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Theoretical Motivation for Loss Design

To better understand the design of our loss function, we provide a brief explanation of why combining
velocity and consistency objectives helps the model perform better.

The trajectory projection function is defined as

x̂s = Gϕ(xt, t, s) =
s

t
xt +

(
1− s

t

)
gϕ(xt, t, s), (6)

where gϕ is a neural network that learns a residual correction. The first term encourages a straight
path from xt to the target, while the second term provides flexibility.

The velocity loss encourages the trajectory to follow a constant direction:

Lvelocity = Ex1,t,s

[∥∥∥∥∂Gϕ

∂s
− (x̂0 − x1)

∥∥∥∥2
]
. (7)

The consistency loss encourages points from different timesteps to align at the same target point:

Lconsistency = Et1,t2,s

[
∥Gϕ(xt1 , t1, s)−Gϕ(xt2 , t2, s)∥

2
]
. (8)

These two losses serve different purposes. The velocity loss reduces trajectory curvature, making it
easier to approximate with fewer steps. The consistency loss ensures that the mapping is valid across
time. Together, they help improve both the quality and efficiency of generation, especially in low-step
settings like 1-step or 2-step sampling.

B Related Work

Pre-trained diffusion distillation methods have emerged as a powerful strategy to alleviate the
significant computational burden inherent in diffusion models, which traditionally require a large
number of function evaluations to produce high-quality samples. By compressing the iterative
denoising process into far fewer steps, these techniques not only expedite sample generation but also
make it feasible to deploy such models in low-resource environments. In this work, we systematically
categorize these distillation approaches into three major groups based on their underlying objectives
and operational paradigms.

Output reconstruction based methods: These aim to minimize the discrepancy between the outputs
of the teacher (i.e., the pre-trained diffusion model) and the student model by directly reconstructing
image outputs. Some approaches, such as Progressive Distillation Salimans and Ho (2022), focus
on aligning output values by enforcing a close correspondence between the denoising steps of the
teacher and the student. Other methods, for instance SDS and its variants Poole et al. (2023); Wang
et al. (2024); Yin et al. (2024b,a), concentrate on matching output distributions to preserve the
statistical characteristics of generated images. Additionally, certain studies operate in a one-step
denoising image space Lukoianov et al. (2024); Karras et al. (2022), allowing for the direct generation
of high-quality images from a single function evaluation, while others employ Fisher divergence
objectives Zhou et al. (2024, 2025) to more rigorously align the gradients of score functions. Together,
these techniques effectively reduce the number of sampling steps required while maintaining the
fidelity of generated outputs.

Trajectory distillation based methods: Instead of concentrating solely on the final output, trajectory-
based methods focus on the entire denoising path—from the initial random noise to the eventual clean
image. By distilling the full trajectory, these approaches ensure that the student model replicates not
only the final result but also the dynamic behavior of the teacher model throughout the diffusion
process. Consistency distillation techniques Song et al. (2023); Kim et al. (2024); Lu and Song (2025)
emphasize the self-consistency of the denoising trajectory, ensuring stable and accurate progression
across different time steps. In contrast, rectified flow distillation methods such as InstaFlow and
SlimFlow Liu et al. (2023c); Zhu et al. (2025) focus on producing a straighter, more direct trajectory,
thereby mitigating the accumulation of approximation errors that typically arise from curved paths.
Moreover, recent studies have demonstrated that integrating consistency modeling directly into
rectified flows Frans et al. (2025a) can further enhance the fidelity of generated trajectories, effectively
combining the strengths of both approaches.
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Adversarial distillation based methods: This category of distillation methods leverages adversarial
learning to refine the student model’s output distribution. By incorporating an adversarial loss—often
implemented via a pre-trained classifier or discriminator, these methods drive the student model
to more closely approximate the target distribution provided by the teacher. Notably, studies such
as Sauer et al. (2024, 2025) have successfully employed this strategy to achieve competitive perfor-
mance with significantly fewer sampling steps. The adversarial framework not only enhances the
perceptual quality of generated images but also provides a flexible plug-and-play mechanism that can
complement other distillation strategies.

Notation Description
ϕ Parameters of the generator/student model
θ Parameters of the velocity/teacher model
t Current time step (t ∈ [0, 1])
s Target time step for state projection
N Number of discretized steps/evaluations
π0 Data distribution at initial state (t = 0)
π1 Noise distribution at terminal state (t = 1)
g(·) Integration approximation function
v(·) Velocity prediction function
G(·) Distilled generator function

Table 7: Notations and corresponding descriptions used in training SCoT.

Hyperparameters CIFAR-10 ImageNet

Optimization

Learning rate 0.0004 0.000008
Batch 512 2048

Student’s stop-grad EMA parameter µ 0.9999 0.9999
Optimizer Adam Adam

N 18 40
Training iterations 130K 40K

Mixed-Precision (FP16) Enabled Enabled

Score
ODE Solver Heun Heun

EMA decay rate 0.999 0.999

Table 8: Training configuration of SCoT in different model sizes on CIFAR-10 and ImageNet.

C Technical Details

C.1 Datasets

CIFAR-10 4: This dataset contains 60,000 32×32 color images evenly distributed over 10 distinct
classes (6,000 images per class). It is split into a training set of 50,000 images and a test set of 10,000
images, making it a standard benchmark in machine learning and computer vision.

ImageNet 5: ImageNet is one of the most influential benchmarks in computer vision. It comprises
over 1.2 million training images and around 50,000 validation images, categorized into 1,000 diverse
classes. The dataset’s vast scale and rich annotations have made it an essential resource for developing
and evaluating deep learning models.

C.2 Metrics

Fréchet Inception Distance (FID). FID evaluates the similarity between real and generated samples
by modeling their feature distributions as multivariate Gaussians in a pre-trained InceptionV3 feature

4https://www.cs.toronto.edu/~kriz/cifar.html
5http://www.image-net.org/
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Component Functionality DDPM++ (CIFAR-10) ADM (ImageNet)

ResNet Block

Downsampling method Resize + Conv Strided Conv
Upsampling method Resize + Conv Transposed Conv

Time embedding type Fourier Positional
Normalization type GroupNorm LayerNorm

Residual blocks per resolution 2 3

Attention Module

Applied resolutions 16 32, 16, 8
Attention heads 1 1–8–12

Attention blocks (Down) 2 9
Attention blocks (Up) 1 13

Attention implementation Vanilla Multi-head self-attention

Conditioning

Label embedding None Learned class embedding
Extra temporal input (s) Additive embedding Additive embedding

Positional encoding added No Yes
Skip connections Present Present

Output Head
Output scaling Yes Yes

Activation Identity Identity

Table 9: Comparison of U-Net architectural components used in DDPM++ (CIFAR-10) and ADM
(ImageNet) within our distillation framework. Differences include normalization strategies, attention
configuration, conditioning, and up/downsampling methods.

Data Shape Dataset Samples Data Size
(3× 32× 32) CIFAR-10 60K 160M

(3× 64× 64) FFHQ-64 70K 5 GB
ImageNet 1.2M 100 GB

Table 10: Experimental details of datasets.

space and computing the Fréchet distance. This metric jointly captures fidelity and diversity. We
adopt clean-fid 6 for FID computation, which standardizes image preprocessing and Inception
activations, thereby improving reproducibility across experiments.

Sliced Fréchet Inception Distance (sFID). sFID is a computationally efficient variant of FID that
approximates the Fréchet distance using one-dimensional projections of feature embeddings. Instead
of computing the full covariance matrix, sFID calculates the Wasserstein distance between sliced
marginal distributions in the InceptionV3 feature space, offering a lightweight and scalable measure
of generation quality. We follow the same evaluation protocol as clean-fid 7, ensuring consistency
in feature extraction and preprocessing.

Precision and Recall8. We adopt the manifold-based metrics introduced in Kynkäänniemi et al.
(2019) to assess sample fidelity and diversity. Precision quantifies the fraction of generated samples
that fall within the manifold of real data, while Recall measures how much of the real data distribution
is covered by generated samples. The manifolds are approximated via k-nearest neighbors in the
InceptionV3 feature space. Our implementation follows the version in the ADM repository 9.

6https://github.com/GaParmar/clean-fid
7https://github.com/GaParmar/clean-fid
8https://github.com/kynkaat/improved-precision-and-recall-metric
9https://github.com/openai/guided-diffusion
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Inception Score (IS)10. IS reflects both sample quality and class diversity by computing the KL
divergence between the conditional class distribution and the marginal class distribution over all
samples. It is calculated using logits from an InceptionV3 model Szegedy et al. (2016) trained on
ImageNet Russakovsky et al. (2015). Higher scores suggest high-confidence predictions and class
diversity. However, when evaluating datasets with limited categorical variation (e.g., CelebA or
FFHQ), IS primarily reflects fidelity. We follow the ADM implementation 3 and evaluate IS using
10k generated images.

Parameter Counts (MB). We report the total number of learnable parameters in the model, measured
in megabytes. This includes weights and biases from all trainable layers, such as convolutional
filters and dense layer matrices. Higher parameter counts may indicate stronger representational
capacity, while smaller models are better suited for deployment under resource constraints. For
transformer-based architectures, we include attention and feed-forward components.

Floating Point Operations (FLOPs). FLOPs measure the total number of floating-point operations
(additions and multiplications) required during a forward pass, serving as a proxy for computational
cost. For a convolutional layer of kernel size k × k over a feature map of spatial size H ×W , the
FLOPs are computed as:

FLOPs = 2×H ×W × k2 × Cin × Cout.

We compute FLOPs using the calflops utility 11, providing an estimate of overall model complexity.

Multiply–Accumulate Operations (MACs). MACs count the number of fused multiply-add compu-
tations, which are often optimized as single hardware instructions on modern accelerators. For the
same convolutional layer, MACs are given by:

MACs = H ×W × k2 × Cin × Cout.

We report MACs using the same tool 2, as they offer a hardware-aware indicator of inference cost,
especially relevant for edge deployment.

D Additional Experiments

D.1 Time Efficiency

Table 11 concludes the throughput in training different loss function of our SCoT.

Dataset Equation (2) Equation (4)

CIFAR-10 282.3 71.5
ImageNet 131.7 31.7

Table 11: Time efficiency comparison (imgs/sec. on H100 GPU) of SCoT under different loss
functions across datasets.

D.2 Sample Comparisons

Figure 3, Figure 4, and Figure 5 present the qualitative results of 1-step image generation on ImageNet
using the SCoT sampler described in Algorithm 1. These samples are taken at different stages of
training to illustrate the progressive refinement of the model. Figure 3 shows samples generated at
the initial stage of training, where the model produces blurry images with limited semantic structure.
As training progresses to 10k steps (Figure 4), the generated images become more coherent, with
clearer object boundaries and texture. At 30k steps (Figure 5), the model generates high-quality,
semantically consistent images, demonstrating the effectiveness of the training process. To ensure
efficient evaluation and maintain consistent comparison across stages, we generate 6,000 samples at
each step. Following the same setting as in Table 2 and Table 3, our model is trained with the DSM
loss adopted from CTM Kim et al. (2024) to enhance sample quality and training stability.

10https://github.com/openai/improved-gan
11https://github.com/MrYxJ/calculate-flops.pytorch
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Figure 3: 1-Step generation on the initial training stage for ImageNet by SCoT Algorithm 1 sampler.
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Figure 4: 1-Step generation on the 10k training stage for ImageNet by SCoT Algorithm 1 sampler.
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Figure 5: 1-Step generation on the 30k training stage for ImageNet by SCoT Algorithm 1 sampler.
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