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Abstract

Code-switching is a linguistic phenomenon in which differ-
ent languages are used interactively during conversation. It
poses significant performance challenges to natural language
processing (NLP) tasks due to the often monolingual nature
of the underlying system. We focus on sentence-level seman-
tic associations between the different code-switching expres-
sions. And we propose an innovative task-free semantic learn-
ing method based on the semantic property. Specifically, there
are many different ways of languages switching for a sentence
with the same meaning. We refine this into a semantic com-
putational method by designing the loss of semantic invariant
constraint during the model optimization. In this work, we
conduct thorough experiments on speech recognition, speech
translation, and language modeling tasks. The experimen-
tal results fully demonstrate that the proposed method can
widely improve the performance of code-switching related
tasks.

Introduction

Code-switching is a common linguistic phenomenon in
which several languages are used interactively during con-
versation (Poplack 1981). The number of multilingual
speakers far outnumbers monolingual speakers in the world-
wide population (Tucker 2003; Winata et al. 2021). Code-
switching expressions are widely used in a variety of scenar-
i0s, including and not limited to daily conversations, class-
room teaching, conferences, social media, etc. It is a strong
incentive to develop technologies that can handle code-
switching efficiently. However, progress in this area has been
limited, primarily since code-switching typically occurs dur-
ing informal expressions, such as spoken language, where
real-time data collection is difficult (Sitaram et al. 2019; Jose
et al. 2020; Doruz et al. 2021). The significant increase of
smart speech devices has alleviated this problem, while new
technologies are developed to fulfill users’ needs for multi-
lingual interaction.

Code-switching computation research focuses on two
main areas: speech processing and text processing. Auto-
matic speech recognition (ASR) and speech synthesis are the
most widely researched tasks in speech processing (Graves
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(a) code-switching formal space  (b) sentence-level semantic space

Figure 1: Schematic illustration of the correspondence be-
tween code-switching expressions and semantics. (a) rep-
resents the code-switching formal space, where each point
represents a language mixing modality and similar expres-
sions are distributed in adjacent regions. (b) represents the
sentence-level semantic space, each dot denotes a sentence
semantic, with correspondences to the many different forms
of the left diagram.

et al. 2006; Graves, Mohamed, and Hinton 2013; Jia et al.
2019; Sperber et al. 2019; Bérard et al. 2016), and the most
interesting tasks for researchers in text processing are lan-
guage identification, sentiment analysis, and language mod-
eling, with some other research in text classification, ques-
tion answering, and sequence labeling (Solorio et al. 2014;
Molina et al. 2019; Patra, Das, and Das 2018; Qin et al.
2020; Zheng et al. 2021). This strong correlation between
task and venue shows that the speech-processing and text-
processing communities remain somewhat fragmented and
tend to work in isolation from each other. Such research
isolation limits the study of code-switching and hinders the
ability to draw more generalized task-independent insights
(Napoli et al. 2014).

This study aims to explore the semantic association across
code-switching expressions and develop a novel generalized
semantic learning method for various tasks. Specifically, the
process of code-switching occurs with a certain degree of
randomness, influenced by linguistic rules, social psychol-
ogy, and other factors (Poplack 1981). There are multiple
legitimate textual candidates for each position in a sentence,
leading to many different expression forms of the same



sentence-level semantic. As shown in Figure 1, each dot in
the left graph represents a code-switching formal, and mul-
tiple dots together correspond to the same semantic in the
right semantic space. We refine this into an explicit seman-
tic computational method by designing the loss of semantic
invariant metrics across sentences. To verify the effective-
ness and generalization of the proposed method, we conduct
experiments on typical research tasks in the fields of speech
and text processing, including ASR, automatic speech trans-
lation (AST), and language modeling. We also explore the
capability boundaries of the proposed method by examining
the generative capabilities of large language models (LLM)
for code-switching. The results indicate a significant im-
provement in performance for each task. Additionally, we
demonstrate the effectiveness of the proposed method in se-
mantic modeling through visual qualitative analysis of the
samples. This indicates that the methodology presented in
this paper can provide a novel perspectives on the study of
code-switching computational methods, which can benefit a
wide range of related research tasks.
Our main contributions are summarized as follows:

* We utilize the semantic properties of code-switching to
achieve a task-free approach to semantic learning, with
implications for related research in both speech and text
domains.

We use code-switching as a mediator to design task-
related prompts for efficient unified modeling of ASR
and AST tasks.

Detailed experimental results on a variety of different
tasks with careful analysis prove that our method signifi-
cantly outperforms the baseline model and some existing
methods in terms of performance and semantic modeling
ability.

Related Work

ASR refers to the transcription of code-switched speech into
corresponding text, and AST refers to the direct translation
of speech into another language. Recently, the end-to-end
model has attracted attention in the two fields for its ex-
tremely simplified architecture without complicated pipeline
systems (Graves et al. 2006; Graves, Mohamed, and Hin-
ton 2013; Jia et al. 2019; Sperber et al. 2019; Bérard et al.
2016). Some work applies multi-task learning to train AST
and ASR task jointly (Weiss et al. 2017; Anastasopoulos
and Chiang 2018; Berard et al. 2018; Vydana et al. 2021;
Nakayama et al. 2019). Some work uses semantic informa-
tion to improve the quality of AST (Dong et al. 2021a,b).
The semantic information usually comes from two aspects,
one is pre-trained models (Dong et al. 2021a), such as BERT
(Kenton and Toutanova 2019), and the other is from acous-
tic features (Dong et al. 2021a). However, these methods do
not establish semantic associations between ASR and AST,
making it difficult to achieve efficient unified modeling and
limiting further performance improvements.

Semantic Information for Code-switching

Most research on extracting semantic information for code-
switching involves transforming linguistic theories into
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computable forms to improve code-switching-related tasks
(Qin et al. 2020; Zheng et al. 2021; Li and Fung 2013, 2014).
Another approach is to use code-switching as a data aug-
mentation method to enhance the performance of the mul-
tilingual model (Qin et al. 2020). However, this approach
does not explicitly model the semantic relationships between
code-switching expressions. (Zheng et al. 2021) notes se-
mantic associations, however, it is still considered as a data
augmentation method to enhance text tasks that do not in-
volve cross-modal code-switching task. It lacks systematic
observation and validation of code-switching research.

Methodology
Semantic Invariance Constraint

We illustrate the principle of semantic invariance constraint
based on ASR and AST tasks. As shown in Figure 2,
for a code-switching speech input, three kinds of texts
are constructed, corresponding to English AST task, code-
switching ASR task, and Chinese AST task. Despite the dif-
ferent format, the three target text clearly express the same
semantic. This work extracts semantic representations and
implements semantic constraints by measuring the invari-
ance between semantic.

Two methods are employed to extract sentence-level se-
mantic vector, one is performing an average pooling opera-
tion on the decoder contextual vectors to obtain the corre-
sponding semantic representation. Another is to add a spe-
cial symbol [CLS] in the sentence and integrate the seman-
tic information of the whole sentence through the attention
mechanism. For example, <ENG> you are so cute [CLS].

After obtaining the sentence-level semantic representa-
tion of different tasks, we measure the semantic distance be-
tween tasks according to the semantic invariance. In order
not to lose generality, we describe our approach using the
case of CS and the two corresponding monolinguals. The
semantic invariance loss can be expressed as follows,

Lsil(ﬁ) = D(@; SA,SE)—F'D(Q; SA,Sc)+D(9; SC,SE) (D)

where L;; refers to the total semantic invariance loss, 6
refers to the model parameter, D refers to the distance cal-
culator between semantic representation, s 4,Sg,S¢ refer to
semantic vectors of ASR, English AST, Chinese AST re-
spectively.

Model Details

Problem Formulation The data used in this paper con-
tain speech-transcription-translations quadruples, denoted
as S = (x,z,e,c). Specially, x (x1,.,x1,), 2 =
(21, ..y 27.), € = (€1,...,er.), ¢ = (c1,...,cT,) represent
the acoustic features sequence, the corresponding transcrip-
tion, the translation of English and the translation of Chinese
respectively. And the T} is the frame number of the speech
sequence. The T, T,, T, are the lengths of the above three
target sequences. The goal is to model the all three target se-
quences simultaneously (z, e, c) based on the acoustic fea-
tures X.
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Figure 2: The model architecture of unified ASR and AST task learning. The left part is the acoustic encoder which takes
acoustic features as input. Its main component is a convolution enhanced transformer structure for efficient encoding of acoustic
feature. The right part is the multi-task decoder. It receives text input for the three tasks and extracts information from the

acoustic encoder while modeling ASR and AST.

Model Components In this section, we illustrate the
structure of our model and how it deal with three differ-
ent tasks simultaneously. As shown in Figure 2, the over-
all architecture of the model consists of two modules: a) an
acoustic encoder network that encodes the speech features
sequence into a high-level hidden representation; b) a multi-
mask decoder receives text input for the three tasks and ex-
tracts information from the acoustic encoder while modeling
ASR and AST. One can freely choose the structure of the en-
coder and decoder, such as transformer network, recurrent
neural network, convolution network, and so on. We adopt
transformer as the backbone network. It is now the state-of-
the-art model in the translation task, and it also shows excel-
lent performance in the ASR field. For details of the model,
please refer to (Gulati et al. 2020).

Acoustic Encoder. The acoustic encoder receives the
input of low-level acoustic features and outputs the high-
level hidden representation. It is based on the conformer,
a convolution-augmented transformer structure. Since the
number of acoustic feature frames is much larger than the
length of the corresponding text, the down-sampling tech-
nique is essential. We adopt the 2D CNN layer to produce
the down-sampled acoustic hidden representation. After a
linear layer, the positional encoding is used to attend rel-
ative positions. Then a stack of N, conformer blocks is
used to get the final encoded representation. Each conformer
module mainly includes three modules, which are multi-
head self-attention module, convolution module, and feed-
forward module in sequence. Compared with the classic
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transformer structure, it adds a convolution module to ex-
tract local information in acoustic encoding.

Multi-Task Decoder. For the decoder, a learnable word
embedding and positional encoding are applied to the tar-
get sequence. Then a stack of N; decoder blocks is sub-
sequent. The decoder mainly consists of three parts: multi-
head self-attention, multi-head cross-attention, and feed for-
ward network. The multi-head self-attention is used to en-
code multi-task input text to obtain high-dimensional en-
coding representation. The multi-head cross-attention takes
the high-dimensional representation as the query vectors and
performs cross-attention computation on the output vectors
of the acoustic encoder to get the contextual vectors. For the
self-attention, the query, key, and value are the target text
embedding. For the multi-head cross attention, the key and
value come from the encoder outputs and the query comes
from the previous sub-block outputs. The feed-forward net-
work performs further encoding on the context vectors, fol-
lowed by dimensional transformation and softmax to get the
final decoder output.

Loss Function

The loss function consists of three parts, including con-
nectionist temporal classification (CTC) loss (Graves et al.
2006), cross-entropy loss, and semantic invariance loss. The
cross-entropy loss is the sum of the losses for the three tasks.

Lee(0;x,2,e,¢) = Leo(0;%,2)+Lec(0;%,€)+Lee(65%, €)
)



In this paper, we use Kullback-Leibler divergence (KL)
and mean squared error (MSE) to measure the similarity be-
tween semantic vectors. Therefore, the overall loss function
for end-to-end multi-task training is the weighted sum for
the above three parts:

Eall(e) = aﬁce(e) + (1 - O4)A£:C'TC'((9) + /8£szl(9) (3)

where the « is hyper-parameters to balance the cross en-
tropy loss L.(#) and the CTC loss Lcorc(6). The hyper-
parameter [ is used to adjust the weight of the semantic in-
variance loss L;;(0) in the total loss.

CTC Auxiliary Module CTC is an alignment-free object
function for sequence-to-sequence modeling. It counts all
possible output sequence forms corresponding to the input
sequence based on the idea of dynamic programming. CTC
loss is often used as an auxiliary loss for speech translation
tasks.

The loss function directly maximizes the probabilities of
the correct label.

T
)=>_[[Pmx) @

T t=1

P(zlx) =

>

P(rn|x
reB~1(z)

where T is frame length of input sequence and B is a many-
to-one mapping B : Z U {blank} — Z. Z is the label unit
set. B indicates the label sequence y and its corresponding
set of CTC paths 7. The mapping is by inserting an blank
between each label unit in y. P(m;|x) is estimated from the
neural network taking the feature sequence x as the input.
With the conditional independent assumption, P(7|x) can
be decomposed into a product of posterior P(m;|x) in each
frame t. Finally, the CTC loss used in this work is defined
as

Lcore (032, 2) = —logP(z|x) ®)

A linear layer is used to transform the output of the acous-
tic encoder to the appropriate dimension, and then a softmax
layer is used for probability normalization. The computa-
tion of the CTC loss is performed using the transformed se-
quence. After training, the probability values of non-blank
units are concentrated in a few spikes, as shown in Figure 2.
In this work, we only compute the CTC loss for the task of
speech recognition.

Training and Inference

During the training process, the ASR and AST tasks are
carried out simultaneously. A batch of training data is ran-
domly sampled, consisting of acoustic features and their cor-
responding target texts. The forward calculation process is
completed for each target text in the batch, followed by uni-
form gradient back-propagation and parameter updates. To
differentiate between tasks, a task ID is added to the begin-
ning of each target text. As shown in Figure 2, the task IDs
<ASR>,<ENG>,<CHN> refer to the ASR task, En-
glish translation task, and Chinese translation task. These
IDs are essential for the unified training of different tasks, as
they can bias the same model for different tasks.
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data split  type hours language
Train CS 200
ASRU 2019 Dev  CS 20  Mandarin-English
Test CS 20
Train CS  13.28
Mono 157.3
Fisher Dev Mono 145 English-Spanish
Test CS 1.63

Table 1: Code-switching audio data distribution information
in each dataset. CS stands for code-switch and Mono for
monolingual.

In the inference process, only these three task IDs need
to be provided to decode the three target texts simultane-
ously. The decoding process is made via auto-regressive
forms which is same as ordinary end-to-end ASR.

Code-switching Capabilities for LLM The powerful
generative capabilities of LLM have recently been impres-
sive, and we utilize LLM to explore the boundaries of the
validity of our approach. Specifically, we fine-tune the LLM
using code-switching text data, adding semantic invariant
loss in the process. The fine-tune data passes through the text
corresponding to the speech data used in this work. Specif-
ically, the input is monolingual text and the output is code-
switching text. The quality of the code-switching data gen-
erated by the LLM was evaluated to judge the effectiveness
of our method.

Experiments
Data

We conduct our experiments on three popular publicly avail-
able datasets, including the ASRU 2019 Mandarin-English
code-switching challenge dataset (Shi, Feng, and Xie 2020),
Fisher dataset (Cieri, Miller, and Walker 2004) and TED
English-Chinese dataset (Liu et al. 2019). The ASRU 2019
dataset is designed for code-switching ASR task. Although
the Fisher dataset is not a code-switching focused dataset, it
contains a large amount of (annotated) code-switching ut-
terances. Fortunately, the dataset has a corresponding an-
notated English translation. The Fisher data consists of
three evaluation sets (Dev/Dev2/Test) that together con-
tain approximately a thousand instances of code-switching
with corresponding translations in monolingual English. We
therefore combined all the code-switching data from the
three evaluation sets as a test set. Statistical information on
the code-switching dataset is shown in Table 1. However the
first two datasets are designed for ASR task and are less of-
ten used for AST tasks. Therefore to better compare with
other methods on the AST, we conduct experiments on the
public TED English-Chinese speech translation dataset. It
contains 528 hours of English speech and corresponding an-
notated Chinese translations.



Data Preprocessing

In this paper, the input acoustic features of the encoder net-
work are a 40-dimensional filter bank with 25ms window-
ing and 10ms frameshift, which are extended with mean and
variance normalization. For all ASR transcription, we re-
move punctuation and lowercase all English words to keep
more consistent with the output of ASR. For the ASRU2019
code-switching challenge dataset, we first use Llama 3 70B
to get the corresponding Chinese translation text and then
perform a sample-by-sample manual check for corrections.
For the Chinese translation, we segment the sentence into
characters. We keep about 3500 characters as the modeling
units. For the Fisher data, the sentences are encoded using
the BPE method, with a shared vocabulary of 2000 sub-
words. For the TED English-Chinese dataset, the processing
method of ASR transcription and translation text is similar
to the previous method.

Experimental Results
Evaluation Metrics

For the code-switching ASR task, we use a mix error rate
(MER) to evaluate the experimental results of our methods.
The MER is defined as the word error rate (WER) for En-
glish and the character error rate (CER) for Mandarin. For
the English ASR task, the WER is used as the evaluation in-
dex. For the Chinese and English translation tasks, we report
case-insensitive BLEU (Papineni et al. 2002) scores BLEU.;
and character-level BLEU scores BLEU,; respectively.

Experimental Details

All of the models are implemented based on transformer ar-
chitecture. For the input acoustic features, two 33 2D CNN
down-sampling layers with stride 2 are used. The dimension
of the subsequent linear layer is 512. Relative position en-
coding is used to model position information. The attention
dimensions of the encoder and decoder are both 512 and the
number of the head is 4. The dimension of position-wise
feed-forward networks is 1024. The number of acoustic en-
coder blocks and decoder blocks are 12 and 6 respectively.
To avoid over-fitting, the unified label smoothing technique
is used, and the parameter is set to 0.1. SpecAugment with
frequency masking (F=30, mF=2) and time masking (T=40,
mT=2) is used to improve the performance of the models
(Park et al. 2019). Meanwhile, we set the residual dropout as
0.1, where the residual dropout is applied to each sub-block
before adding the residual information. We use Adam opti-
mizer with 31 = 0.9, 3 = 0.998,¢ = 1le~8 on 4 NVIDIA
A100 GPUs. The batch size is set to 128 during the training
process. The learning rate is set by a warm-up strategy. We
perform decoding using beam search with a beam size of 10.

Hyper-parameter Selection

There are two hyper-parameters in Equation (4), which are
used to balance the weights of the cross-entropy loss, the
CTC loss, and the semantic invariance loss. First, reason-
able hyper-parameters are determined based on the ASRU
2019 dataset for subsequent experiments. As shown in Ta-
ble 2, when « is set to 0.7 and (3 is set to 0.1, both ASR and
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o ASRU 2019 Dev
MER(}) BLEU.(1)

0.7 0.1 10.55 24.71
0.7 0.05 10.87 23.85
0.7 0.01 10.96 23.70
0.8 0.1 11.01 24.05
0.8 0.05 11.32 24.11
0.8 0.01 10.79 24.14

Table 2: Effects of hyper-parameters in loss.

model SEM SCM WER(]) BLEU(?)
Pretrained - - 30.21 25.31
Multi-task - - 30.57 25.83
(weller et al) - - 30.00 25.60
[CLS] KL 28.33 26.88
d [CLS] MSE 2872 27.02
propose ave_pool KL 28.51 26.85
ave_pool MSE  28.49 26.46

Table 3: Results of ASR and AST on Fisher test set. The se-
mantic extraction method and the similarity calculation met-
ric are abbreviated SEM and SCM, respectively.

AST tasks can achieve satisfactory results. All subsequent
experiments use these parameter settings.

Favorable Effects on Code-switching ASR

The method is first evaluated on the imbalanced code-
switching dataset. Two baselines are used: the first pretrains
the AST model using ASR data and then finetunes the model
on AST data. The second baseline is a multi-task learning
model where the ASR and AST models are jointly trained
with independent decoders and a shared acoustic encoder.
There are two methods for semantic extraction: the [C'LS]
method, which is similar to using the BERT model for clas-
sification, and the average pooling method ave_pooling. For
the semantic similarity calculation, we use KL and M SFE.
The results show that there is not much difference between
the different calculation methods. To be precise, the perfor-
mance is relatively better when using the [C'LS] and the
MSE at the same time. Based on these two methods, we
conduct the following ASR experiments.

Upon further analysis of the experimental results pre-
sented in Table 4, it can be observed that the ASR and
AST tasks mutually reinforce each other. This mutual pro-
motion can be attributed to the fact that both tasks share the
same semantic space and our unified modeling approach bet-
ter satisfies this condition than pre-training and multi-task
training. Subsequent ablation experiments demonstrate that
our method continues to outperform several baseline mod-
els even after removing the semantic invariance loss. This
shows that our implicit semantic modeling scheme can en-
hance the performance of both ASR and AST at the same
time.

To enhance the method’s credibility, we compare the per-



Dev Test

model SEM SCM
MER(]) BLEU.(1) MER({) BLEU(1)
Pretrained - - 11.53 76.39 11.25 77.11
Multi-task - - 11.31 78.73 11.01 78.98
(Lu et al. 2020) - - - - 11.84 -
(Zhang et al. 2021b) - - 11.21 - 10.51 -
(Zhang et al. 2021a) - - 12.67 - 11.94 -
(Yan et al. 2021) - - - - 11.1 -
[CLS] KL 10.76 81.72 10.53 82.31
d [CLS] MSE 10.55 81.42 10.37 82.61
Propose avepool KL 1091 81.21 10.61 82.43
ave_pool MSE  10.78 81.30 10.51 82.52

Table 4: Results of ASR and AST on ASRU2019 code-switching test and dev sets. Unless otherwise noted, Dev and Test in all
tables below belong to this dataset. The semantic extraction method and the similarity calculation metric are abbreviated SEM

and SCM, respectively.

model SEM SCM  Enc Pretrain Dec Pretrain  WER(]) BLEU.(1)
Transformer+pretrain (Liu et al. 2019) - - - 16.80
+ knowledge distillation (Liu et al. 2019) - - - 19.55
Multi-task+pretrain (Inaguma et al. 2019) - - X - 20.45
Interactive decoding(Liu et al. 2020) - - X X 13.38 21.68
COSTT without pretraining(Dong et al. 2021a) - - X X - 21.12
[CLS] KL X X 11.35 22.11
proposed methods [CLS] MSE X X 11.19 21.50
ave_pool KL X X 12.12 21.32
ave_pool MSE X X 12.05 21.36

Table 5: Results of ASR and AST on TED English-Chinese test set.

formance of code-switching ASR with other existing re-
search results. This comparison is conducted under the same
training data conditions, using only code-switching data
from the dataset. The results in Table 3 and Table 4 demon-
strate that our method outperforms others under the same
training data conditions. As shown in Table 5, we achieve the
state-of-the-art recognition performance on the TED dataset.

Favorable Effects on Code-switching AST

The semantic enhancement for speech translation is even
more obvious. As shown in Table 4, our method has a sig-
nificant improvement over the strong baseline. And the high
BLEU,; score for the Chinese translation task is due to the
dominance of Chinese data. This indicates that the task of
Chinese translation is easier, which is closely related to Chi-
nese speech recognition. The consistency improvement of
our approach can be seen in Table 3. The difference is that
the metrics are a bit lower compared to Table 4, which
is due to the more balanced language distribution of this
dataset, which enhances the difficulty of the speech trans-
lation task. Overall, our proposed method outperforms the
baseline model in all metrics.

As the above two code-switching datasets are intended for
ASR, it is not possible to compare the performance of AST

with other existing methods. Therefore, we conducted ex-
periments on the TED English-Chinese dataset, which is de-
signed for AST. Table 5 presents a comparison with existing
studies. Only a few research works provide error rate metrics
for ASR, and we achieve a relative performance improve-
ment of 16.37%. Our method achieves better performance
than other methods on the AST and the experimental results
demonstrate its effectiveness.

Code-switching Generation of LLM

We evaluate the proposed method using two LLM at dif-
ferent scales, llama2-7b and llama2-13b (Touvron and et al
2023). The LLM is fine-tuned using code-switching text
data, with the addition of semantic invariant loss. One hun-
dred pieces of code-switching data were generated based on
the one hundred monolingual data prompts provided. The
validity of the data was determined through manual evalua-
tion. Table 7 demonstrates that the LLM’s ability to gener-
ate legitimate code-switching data is weak. However, fine-
tuning the code-switching data can effectively improve this
ability. Our method is equally effective on the LLM.
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(a) pretrained model

(b) Multi-task model

(c) Our model

(d) No code-switching

Figure 3: Sample visualizations of different methods. From left to right the pretrained model, the multi-task model, and our
model. No code-switching refers to samples from TED English-Chinese dataset.

Metrics Dev of ASRU2019 Test of ASRU2019 Test of Fisher Test set of TED

MER(/) 10.55/10.91 10.37/10.77 28.72/29.33  11.19/12.32
BLEU,;(1) —/—- —/— 27.02/25.56 —/—
BLEU (1) 81.42/80.37 82.61/80.81 —/- 21.50/21.07

Table 6: Ablation experimental results of semantic invariance loss. (with/without)

model llama2-7B 1lama2-13B
No finetune 23% 44%
supervised finetune 28% 53%
proposed 33% 59%

Table 7: Qualification rate (%) of the code-switching data
generated by LLM.

Effect of Semantic Invariance Loss

To assess the impact of semantic invariance loss in our ap-
proach, we conducted ablation experiments to analyze the
results. Table 6 presents the experimental outcomes with
and without semantic invariance loss. Overall, the inclusion
of semantic invariance loss is beneficial for both ASR and
AST tasks. Notably, this loss has a greater impact on AST
than ASR, possibly due to the greater importance of seman-
tic information in AST tasks. Furthermore, our proposed
unified modeling approach achieves superior performance
compared to baseline methods, even without the semantic
invariance loss. The results obtained from the TED English-
Chinese dataset also demonstrate highly competitive perfor-
mance when compared to other existing methods.

Semantic Visualization

To demonstrate more intuitively the semantic modeling ca-
pabilities of our method, we visualize word embedding rep-
resentations in different languages. We use the t-SNE toolkit
(Van der Maaten and Hinton 2008) to realize the dimension
reduction operation of word embedding. Obviously, it can be
seen that the semantic distribution of the pre-trained model
is very chaotic due to the lack of semantic modeling con-
straints. The semantic distribution of the multitask model
is relatively regular, but most of the word pairs are still far
apart. In Figure 3(c), we can intuitively observe that the dis-
tance between the synonym pairs is closer. Our method can
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effectively learn semantic information by sharing the seman-
tic space and losing the semantic invariance of multi-tasks.

To explore the role of Chinese-English code-switching
data in semantic modeling, we select word pairs from the
TED English-Chinese dataset, which does not contain code-
switching data, and visualize them in Figure 3(d). It can be
observed that their semantic distribution is relatively reg-
ular, but the distribution between synonym pairs is more
scattered compared to Figure 3(c). This suggests that code-
switching data plays a facilitating role in semantic modeling.
This may be due to the co-occurrence of Chinese and En-
glish in the same sentence in the code-switching data. This
co-occurrence makes the code-switching data closer to the
Chinese and English monolingual data and acts as an inter-
mediate bridge connecting the monolingual data.

Conclusion

In this paper, we focus on exploring the sentence-level se-
mantic associations between different code-switching ex-
pressions. We propose a task-free semantic learning method
based on this analysis. The model can learn the common
semantic information from different tasks by sharing se-
mantic space. We refine this into a semantic computational
method by designing the loss of semantic invariant met-
rics across sentences. Experiments are conducted on tasks
such as language modeling, ASR, and AST. The results indi-
cate a significant improvement in performance for each task.
This suggests that semantic constraint is a widely applicable
method in the context of code-switching.
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