
Under review as a conference paper at ICLR 2021

MULTI-AGENT COLLABORATION VIA REWARD ATTRI-
BUTION DECOMPOSITION

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in multi-agent reinforcement learning (MARL) have achieved
super-human performance in games like Quake 3 and Dota 2. Unfortunately, these
techniques require orders-of-magnitude more training rounds than humans and may
not generalize to slightly altered environments or new agent configurations (i.e.,
ad hoc team play). In this work, we propose Collaborative Q-learning (CollaQ)
that achieves state-of-the-art performance in the StarCraft multi-agent challenge
and supports ad hoc team play. We first formulate multi-agent collaboration as a
joint optimization on reward assignment and show that under certain conditions,
each agent has a decentralized Q-function that is approximately optimal and can be
decomposed into two terms: the self-term that only relies on the agent’s own state,
and the interactive term that is related to states of nearby agents, often observed by
the current agent. The two terms are jointly trained using regular DQN, regulated
with a Multi-Agent Reward Attribution (MARA) loss that ensures both terms retain
their semantics. CollaQ is evaluated on various StarCraft maps, outperforming
existing state-of-the-art techniques (i.e., QMIX, QTRAN, and VDN) by improving
the win rate by 40% with the same number of environment steps. In the more
challenging ad hoc team play setting (i.e., reweight/add/remove units without
re-training or finetuning), CollaQ outperforms previous SoTA by over 30%.

1 INTRODUCTION

In recent years, multi-agent deep reinforcement learning (MARL) has drawn increasing interest
from the research community. MARL algorithms have shown super-human level performance
in various games like Dota 2 (Berner et al., 2019), Quake 3 Arena (Jaderberg et al., 2019), and
StarCraft (Samvelyan et al., 2019). However, the algorithms (Schulman et al., 2017; Mnih et al.,
2013) are far less sample efficient than humans. For example, in Hide and Seek (Baker et al., 2019),
it takes agents 2.69− 8.62 million episodes to learn a simple strategy of door blocking, while it only
takes human several rounds to learn this behavior. One of the key reasons for the slow learning is that
the number of joint states grows exponentially with the number of agents.

Moreover, many real-world situations require agents to adapt to new configurations of teams. This
can be modeled as ad hoc multi-agent reinforcement learning (Stone et al., 2010) (Ad-hoc MARL)
settings, in which agents must adapt to different team sizes and configurations at test time. In contrast
to the MARL setting where agents can learn a fixed and team-dependent policy, in the Ad-hoc MARL
setting agents must assess and adapt to the capabilities of others to behave optimally. Existing work in
ad hoc team play either require sophisticated online learning at test time (Barrett et al., 2011) or prior
knowledge about teammate behaviors (Barrett and Stone, 2015). As a result, they do not generalize
to complex real-world scenarios. Most existing works either focus on improving generalization
towards different opponent strategies (Lanctot et al., 2017; Hu et al., 2020) or simple ad-hoc setting
like varying number of test-time teammates (Schwab et al., 2018; Long et al., 2020). We consider
a more general setting where test-time teammates may have different capabilities. The need to
reason about different team configurations in the Ad-hoc MARL results in an additional exponential
increase (Stone et al., 2010) in representational complexity comparing to the MARL setting.

In the situation of collaboration, one way to address the complexity of the ad hoc team play setting
is to explicitly model and address how agents collaborate. In this paper, one key observation is that
when collaborating with different agents, an agent changes their behavior because she realizes that
the team could function better if she focuses on some of the rewards while leaving other rewards
to other teammates. Inspired by this principle, we formulate multi-agent collaboration as a joint

1

Under review as a conference paper at ICLR 2021

optimization over an implicit reward assignment among agents. Because the rewards are assigned
differently for different team configurations, the behavior of an agent changes and adaptation follows.

While solving this optimization directly requires centralization at test time, we make an interesting
theoretical finding that each agent has a decentralized policy that is (1) approximately optimal for the
joint optimization, and (2) only depends on the local configuration of other agents. This enables us to
learn a direct mapping from states of nearby agents (or “observation” of agent i) to its Q-function
using deep neural network. Furthermore, this finding also suggests that the Q-function of agent i
should be decomposed into two terms: Qalone

i that only depends on agent i’s own state si, andQcollab
i

that depends on nearby agents but vanishes if no other agents nearby. To enforce this semantics, we
regularize Qcollab

i (si, ·) = 0 in training via a novel Multi-Agent Reward Attribution (MARA) loss.

The resulting algorithm, Collaborative Q-learning (CollaQ), achieves a 40% improvement in win
rates over state-of-the-art techniques for the StarCraft multi-agent challenge. We show that (1) the
MARA Loss is critical for strong performance and (2) both Qalone and Qcollab are interpretable
via visualization. Furthermore, CollaQ agents can achieve ad hoc team play without retraining or
fine-tuning. We propose three tasks to evaluate ad hoc team play performance: at test time, (a) assign
a new VIP unit whose survival matters, (b) swap different units in and out, and (c) add or remove
units. Results show that CollaQ outperforms baselines by an average of 30% in all these settings.

Related Works. The most straightforward way to train such a MARL task is to learn individual
agent’s value function Qi independently(IQL) (Tan, 1993). However, the environment becomes
non-stationary from the perspective of an individual agent thus this performs poorly in practice.
Recent works, e.g., VDN (Sunehag et al., 2017), QMIX (Rashid et al., 2018), QTRAN (Son et al.,
2019), adopt centralized training with decentralized execution to solve this problem. They propose to
write the joint value function as Qπ(s,a) = φ(s,Q1(o1, a1), ..., QK(oK , aK)) but the formulation
of φ differs in each method. These methods successfully utilize the centralized training technique to
alleviate the non-stationary issue. However, none of the above methods generalize well to ad-hoc
team play since learned Qi functions highly depend on the existence of other agents.

2 COLLABORATIVE MULTI-AGENT REWARD ASSIGNMENT

Basic Setting. A multi-agent extension of Markov Decision Process called collaborative partially
observable Markov Games (Littman, 1994), is defined by a set of states S describing the possible
configurations of allK agents, a set of possible actionsA1, . . . , AK , and a set of possible observations
O1, . . . , OK . At every step, each agent i chooses its action ai by a stochastic policy πi : Oi ×Ai →
[0, 1]. The joint action a produces the next state by a transition function P : S×A1×· · ·×AK → S.
All agents share the same reward r : S × A1 × · · · × AK → R and with a joint value function
Qπ = Est+1:∞,at+1:∞ [Rt|st,at] where Rt =

∑∞
j=0 γ

jrt+j is the discounted return.

In Sec. 2.1, we first model multi-agent collaboration as a joint optimization on reward assignment:
instead of acting based on the joint state s, each agent i is acting independently on its own state
si, following its own optimal value Vi, which is a function of the perceived reward assignment ri.
While the optimal perceived reward assignment r∗i (s) depends on the joint state of all agents and
requires centralization, in Sec. 2.2, we prove that there exists an approximate optimal solution r̂i that
only depends on the local observation slocali of agent i, and thus enabling decentralized execution.
Lastly in Sec. 2.3, we distill the theoretical insights into a practical algorithm CollaQ, by directly
learning the compositional mapping slocali 7→ r̂i 7→ Vi in an end-to-end fashion, while keeping the
decomposition structure of self state and local observations.

2.1 BASIC ASSUMPTION

A naive modeling of multi-agent collaboration is to estimate a joint value function Vjoint :=
Vjoint(s1, s2, . . . , sK), and find the best action for agent i to maximize Vjoint according to the
current joint state s = (s1, s2, . . . , sK). However, it has three fundamental drawbacks: (1) Vjoint
generally requires exponential number of samples to learn; (2) in order to evaluate this function, a
full observation of the states of all agents is required, which disallows decentralized execution, one
key preference of multi-agent RL; and (3) for any environment/team changes (e.g., teaming with
different agents), Vjoint needs to be relearned for all agents and renders ad hoc team play impossible.

Our CollaQ addresses the three issues with a novel theoretical framework that decouples the inter-
actions between agents. Instead of using Vjoint that bundles all the agent interactions together, we
consider the underlying mechanism how they interact: in a fully collaborative setting, the reason why

2

Under review as a conference paper at ICLR 2021

agent i takes actions towards a state, is not only because that state is rewarding to agent i, but also
because it is more rewarding to agent i than other agents in the team, from agent i’s point of view.
This is the concept of perceived reward of agent i. Then each agent acts independently following
its own value function Vi, which is the optimal solution to the Bellman equation conditioned on the
assigned perceived reward, and is a function of it. This naturally leads to collaboration.

We build a mathematical framework to model such behaviors. Specifically, we make the following
assumption on the behavior of each agent:

Assumption 1. Each agent i has a perceived reward assignment ri ∈ R|Si||Ai|
+ that may depend on

the joint state s = (s1, . . . , sK). Agent i acts according to its own state si and individual optimal
value Vi = Vi(si; ri) (and associated Qi(si, ai; ri)), which is a function of ri.

Note that the perceived reward assignment ri ∈ R|Si||Ai|
+ is a non-negative vector containing the

assignment of scalar reward at each state-action pair (hence its length is |Si||Ai|). We might also
equivalently write it as a function: ri(x, a) : Si × Ai 7→ R, where x ∈ Si and a ∈ Ai. Here x is a
dummy variable that runs through all states of agent i, while si refers to its current state.

Given the perceived rewards assignment {ri}, the values and actions of agents become decoupled.
Due to the fully collaborative nature, a natural choice of {ri} is the optimal solution of the following
objective J(r1, r2, . . . , rK). Here re is the external rewards of the environment, wi ≥ 0 is the
preference of agent i and � is the Hadamard (element-wise) product:

J(r1, . . . , rK) :=

K∑
i=1

Vi(si; ri) s.t.

K∑
i=1

wi � ri ≤ re (1)

Note that the constraint ensures that the objective has bounded solution. Without this constraints, we
could easily take each perceived reward ri to +∞, since each value function Vi(si; ri) monotonously
increases with respect to ri. Intuitively, Eqn. 1 means that we “assign” the external rewards re
optimally to K agents as perceived rewards, so that their overall values are the highest.

In the case of sparse reward, most of the state-action pair (x, a), re(x, a) = 0. By Eqn. 1, for all agent
i, their perceived reward ri(x, a) = 0. Then we only focus on nonzero entries for each ri. Define
M to be the number of state-action pairs with positive reward: M =

∑
ai∈Ai

1{ri(x, ai) > 0}.
Discarding zero-entries, we could regard all ri as M -dimensional vector. Finally, we define the
reward matrix R = [r1, . . . , rK] ∈ RM×K .

Clarification on Rewards. There are two kinds of rewards here: external reward re and perceived
reward for each agent ri. re is defined to be the environmental reward shared by all the agents:
re : S×A1×· · ·×Ak → R. Given this external reward, depending on a specific reward assignment,
each agent can receive a perceived reward ri that drives its behavior. If the reward assignment is
properly defined/optimized, then all the agents can act based on the perceived reward to jointly
optimize (maximize) the shared external reward.

2.2 LEARN TO PREDICT THE OPTIMAL ASSIGNED REWARD r∗i (s)

The optimal reward assignments R∗ of Eq. 1, as well as its i-th assignment r∗i , is a function of the
joint states s = {s1, s2, . . . , sK}. Once the optimization is done, each agent can get the best action
a∗i = argmaxai Qi(si, ai; r

∗
i (s)) independently from the reconstructed Q function.

The formulation Vi(si; ri) avoids learning the value function of statistically infeasible joint states
Vi(s). Since an agent acts solely based on ri, ad hoc team play becomes possible if the correct ri
is assigned. However, there are still issues. First, since each Vi is a convex function regarding ri,
maximizing Eqn. 1 is a summation of convex functions under linear constraints optimization, and is
hard computationally. Furthermore, to obtain actions for each agent, we need to solve Eqn. 1 at every
step, which still requires centralization at test time, preventing us from decentralized execution.

To overcome optimization complexity and enable decentralized execution, we consider learning a
direct mapping from the joint state s to optimally assigned reward r∗i (s). However, since s is a joint
state, learning such a mapping can be as hard as modeling Vi(s).

Fortunately, Vi(si; ri(s)) is not an arbitrary function, but the optimal value function that satisfies
Bellman equation. Due to the speciality of Vi, we could find an approximate assignment r̂i for each
agent i, so that r̂i only depends on a local observation slocali of the states of nearby other agents

3

Under review as a conference paper at ICLR 2021

observed by agent i: r̂i(s) = r̂i(s
local
i). At the same time, these approximate reward assignments

{r̂i} achieve approximate optimal for the joint optimization (Eqn. 1) with bounded error:
Theorem 1. For all i ∈ {1, . . . ,K}, all si ∈ Si, there exists a reward assignment r̂i that (1) only
depends on slocali and (2) r̂i is the i-th column of a feasible global reward assignment R̂ such that

J(R̂) ≥ J(R∗)− (γC + γD)RmaxMK, (2)

where C and D are constants related to distances between agents/rewards (details in Appendix).

Since r̂i only depends on the local observation of agent i (i.e., agent’s own state si as well as the
states of nearby agents), it enables decentralized execution: for each agent i, the local observation is
sufficient for an agent to act near optimally.

Limitation. One limitation of Theorem 1 is that the optimality gap of r̂i heavily depends on the
size of slocali . If the local observation of agent i covers more agents, then the gap is smaller but
the cost to learn such a mapping is higher, since the mapping has more input states and becomes
higher-dimensional. In practice, we found that the observation oi of agent i covers slocali works
sufficiently well, as shown in the experiments (Sec. 4).

2.3 COLLABORATIVE Q-LEARNING (COLLAQ)

While Theorem. 1 shows the existence of perceived reward r̂i = r̂i(s
local
i) with good properties,

learning r̂i(s
local
i) is not a trivial task. Learning it in a supervised manner requires (close to) optimal

assignments as the labels, which in turn requires solving Eqn. 1. Instead, we resort to an end-to-end
learning of Qi for each agent i with proper decomposition structure inspired by the theory above.

To see this, we expand the Q-function for agent i: Qi = Qi(si, ai; r̂i) with respect to its perceived
reward. We use a Taylor expansion at the ground-zero reward r0i = ri(si), which is the perceived
reward when only agent i is present in the environment:

Qi(si, ai; r̂i) = Qi(si, ai; r0i)︸ ︷︷ ︸
Qalone(si,ai)

+∇rQi(si, ai; r0i) · (r̂i − r0i) +O(‖r̂i − r0i‖2)︸ ︷︷ ︸
Qcollab(slocali ,ai)

(3)

Here Qi(si, ai; r0i) is the alone policy of an agent i. We name it Qalone since it operates as if other
agents do not exist. The second term is called Qcollab, which models the interaction among agents
via perceived reward r̂i. Both Qalone and Qcollab are neural networks. Thanks to Theorem 1, we
only need to feed local observation oi := slocali of agent i, which contains the observation of W < K
local agents (Fig. 1), for an approximate optimal Qi. Then the overall Qi is computed by a simple
addition (here oalonei := si is the individual state of agent i):

Qi(oi, ai) = Qalone
i (oalonei , ai) +Qcollab

i (oi, ai) (4)

Multi-Agent Reward Attribution (MARA) Loss. With a simple addition, the solution of Qalone
i

and Qcollab
i might not be unique: indeed, we might add any constant to Qalone and subtract that

constant from Qcollab to yield the same overall Qi. However, according to Eqn. 3, there is an
additional constraint: if oi = oalonei then r̂i = r0i and Qcollab(oalonei , ai) ≡ 0, which eliminates such
an ambiguity. For this, we add Multi-agent Reward Attribution (MARA) Loss.

Overall Training Paradigm. For agent i, we use standard DQN training with MARA loss. Define
y = Es′∼ε[r + γmaxa′ Qi(o

′, a′)|s, a] to be the target Q-value, the overall training objective is:

L = Esi,ai∼ρ(·)[(y −Qi(oi, ai))
2︸ ︷︷ ︸

DQN Objective

+α(Qcollab
i (oalonei , ai))

2︸ ︷︷ ︸
MARA Objective

] (5)

where the hyper-parameter α determines the relative importance of the MARA objective against
the DQN objective. We observe that with MARA loss, training is much stabilized. We use a soft
constraint version of MARA Loss. To train multiple agents together, we follow QMIX and feed the
output of {Qi} into a top network and train in an end-to-end centralized fashion.

CollaQ has advantages compared to normal Q-learning. Since Qalone
i only takes oalonei whose

dimension is independent of the number of agents, this term can be learned exponentially faster than
Qcollab
i . Thus, CollaQ enjoys a much faster learning speed as shown in Fig. 5, Fig. 6 and Fig. 7.

4

Under review as a conference paper at ICLR 2021

Attention

oi

FC

GRU

FC

o1 o2 oWoenv

Qcollaborative

oi

FC

GRU

FC

oenv

Qalone

Add

Qi

Agent iW Agents Visible

FC

oi

FC FC

o1 o2 oW

qi k1
v1

FCFC

k2
v2

FCFC

kW
vW

Scaled Dot Product Attention

FC

o1 o2 oW

Attention2

Attention1

oi o1 o2 oW

Concat

o1 o2 oW

oi

Figure 1: Architecture of the network. We use normal DRQN architecture for oalone
i with attention-based model

for Qcollab. The attention layers take the encoded inputs from all agents and output an attention embedding.

Attention-based Architecture. Fig. 1 illustrates the overall architecture. For agent i, the local
observation oi := slocali is separated into two parts, oalonei := si and oi = slocali . Here, oalonei is sent
to the left tower to obtainQalone, while oi is sent to the right tower to obtainQcollab. We use attention
architecture between oalonei and other agents’ states in the field of view of agent i. This is because
the observation oi can be spatially large and cover agents whose states do not contribute much to
agent i’s action, and effective slocali is smaller than oi. Our architecture is similar to EPC (Long et al.,
2020) except that we use a transformer architecture (stacking multiple layers of attention modules).
As shown in the experiments, this helps improve the performance in various StarCraft settings.

Intuition of CollaQ and Connection to the Theory. The intuitive explanation to CollaQ and MARA
Loss is that when the agent cannot see others (i.e., other agent has no influence on the particular
agent), the Q-value Qi should be equal to individual Q-value Qalone

i . This can be interpreted as some
equivalent statements: 1. The problem can be decomposed well into local sub-problems. 2. The
existence of other agents does not influence the Q-value of the particular agent. The inspired MARA
loss helps to eliminate the ambiguity. The semantic meaning of Qalone

i and Qi are shown in Fig. 3.

The intuition actually connects to the theory. Theorem 1. shows that under some mild assumptions,
the CollaQ objective can be viewed as a sub-optimal solution to an optimization problem on reward
assignment. Thus each component of CollaQ and MARA loss can be well-justified. Although the
problem defined in Eq. 1 is hard to optimize, the empirical success of CollaQ to some extent shows
the effectiveness. The theory here serves more as an inspiration to the practical algorithm. We leave
the analysis between exact optimization and CollaQ to future work.

3 EXPERIMENTS ON RESOURCE COLLECTION

In this section, we demonstrate the effectiveness of CollaQ in a toy gridworld environment where the
states are fully observable. We also visualize the trained policy Qi and Qalone

i .

Ad hoc Resource Collection. We demonstrate CollaQ in a toy example where mul-
tiple agents collaboratively collect resources from a grid world to maximize the aggre-
gated team reward. In this setup, the same type of resources can return different re-
wards depending on the type of agent that collects it. The reward setup is ran-
domly initialized at the beginning of each episode and can be seen by all the agents.

Figure 2: Results in resource collection. CollaQ (green)
produces much higher rewards in both training and ad
hoc team play than IQL (orange).

The game ends when all the resources are col-
lected. An agent is expert for a certain resource
if it gets the highest reward among the team col-
lecting that. As a consequence, to maximize the
shared team reward, the optimal strategy is to let
the expert collect the corresponding resource.

For testing, we devise the following reward
setup: We have apple and lemon as our resources
and N agents. For picking lemon, agent 1 re-
ceives the highest reward for the team, agent 2
gets the second highest, and so on. For apple,
the reward assignment is reversed (agent N gets
the highest reward, agent N − 1 gets the second

5

Under review as a conference paper at ICLR 2021

Qi
Qi

a) b) c)

4 9
10 7

alone

Figure 3: Visualization of Qalone
i and Qi in resource collection. The reward setup is shown in the leftmost

column. Interesting behaviors emerge: in b), Qcollab
i reinforces the behavior of Qalone

i since they are both the
expert for the nearest resources; in a) and c), Qcollab

i alters the decision of collecting lemon for red agent since it
has lower reward for lemon compared with the yellow agent and similar phenomena occurs for the yellow agent.

highest, ...). This specific reward setup is excluded from the environment setup for training. This is a
very hard ad hoc team play at test time since the agents need to demonstrate completely different
behaviors from training time to achieve a higher team reward.

The left figure in Fig. 2 shows the training reward and the right one shows the ad hoc team play. We
train on 5 agents in this setting. CollaQ outperforms IQL in both training and testing. In this example,
random actions work reasonably well. Any improvement over it is substantial.

Visualization of Qalone
i and Qi. In Fig. 3, we visualize the trained Qalone

i and Qi (the overall
policy for agent i) to show how Qcollab

i affects the behaviors of each agent. The policies Qalone
i and

Qi learned by CollaQ are both meaningful: Qalone
i is the simple strategy of collecting the nearest

resource (the optimal policy when the agent is the only one acting in the environment) and Qi is the
optimal policy described formerly.

The leftmost column in Fig. 3 shows the reward setup for different agents on collecting different
resources (e.g. the red agent gets 4 points collecting lemon and gets 10 points collecting apple). The
red agent specializes at collecting apple and the yellow specializes at collecting lemon. In a), Qalone

i
directs both agents to collect the nearest resource. However, neither agent is the expert on collecting
its nearest resource. Therefore, Qcollab

i alters the decision of Qalone
i , directing Qi towards resources

with the highest return. This behavior is also observed in c) with a different resource placement.
b) shows the scenario where both agents are the expert on collecting the nearest resource. Qcollab

i

reinforces the decision of Qalone
i , making Qi points to the same resource as Qalone

i .

4 EXPERIMENTS ON STARCRAFT MULTI-AGENT CHALLENGE

StarCraft multi-agent challenge (Samvelyan et al., 2019) is a widely-used benchmark for MARL
evaluation. The task in this environment is to manage a team of units (each unit is controlled
by an agent) to defeat the team controlled by build-in AIs. While this task has been extensively
studied in previous works, the performance of the agents trained by the SoTA methods (e.g., QMIX)
deteriorates with a slight modification to the environment setup where the agent IDs are changed. The
SoTA methods severely overfit to the precise environment and thus cannot generalize well to ad hoc
team play. In contrast, CollaQ has shown better performance in the presence of random agent IDs,
generalizes significantly better in more diverse test environments (e.g., adding/swapping/removing a
unit at test time), and is more robust in ad hoc team play.

4.1 ISSUES IN THE CURRENT BENCHMARK

In the default StarCraft multi-agent environment, the ID of each agent never changes. Thus, a trained
agent can memorize what to do based on its ID instead of figuring out the role of its units dynamically
during the play. As illustrated in Fig. 4, if we randomly shuffle the IDs of the agents at test time,
the performance of QMIX gets much worse. In some cases (e.g., 8m_vs_9m), the win rate drops
from 95% to 50%, deteriorating by more than 40%. The results show that QMIX relies on the extra
information (the order of agents) for generalization. As a consequence, the resulting agents overfit to
the exact setting, making it less robust in ad hoc team play. Introducing random shuffled agent IDs at
training time addresses this issue for QMIX as illustrated in Fig. 4.

6

Under review as a conference paper at ICLR 2021

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e6

0

20

40

60

80

100

Te
st

 W
in

 R
at

es
 (%

)

5m_vs_6m

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e6

0

20

40

60

80

100

Te
st

 W
in

 R
at

es
 (%

)

8m_vs_9m

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e6

0

20

40

60

80

100

Te
st

 W
in

 R
at

es
 (%

)

10m_vs_11m

Training performance of QMIX trained w.o. Rand ID Test performance of QMIX trained w.o. Rand ID Test performance of QMIX trained with Rand ID

Figure 4: QMIX overfits to agent IDs. Introducing random agent IDs at test time greatly affect the performance.

Figure 5: Results in standard StarCraft benchmarks with random agent IDs. CollaQ (without Attn and with Attn)
clearly surpasses the previous SoTAs. The attention-based model further improves the win rates for all maps
except 2c_vs_64zg, which only has 2 agents and attention may not bring up enough benefits.

4.2 STARCRAFT MULTI-AGENT CHALLENGE WITH RANDOM AGENT IDS

Since using random IDs facilitates the learning of different roles, we perform extensive empirical
study under this setting. We show that CollaQ on multiple maps in StarCraft outperforms existing
approaches. We use the hard scenarios (e.g., 27m_vs_30m, MMM2 and 2c_vs_64zg) since they
are largely unsolved by previous methods. Maps like 10m_vs_11m, 5m_vs_6m and 8m_vs_9m
are considered medium difficult. For completeness, we also provide performance comparison under
the regular setting in Appendix D Fig. 10. As shown in Fig. 5, CollaQ outperforms multiple baselines
(QMIX, QTRAN, VDN, and IQL) by around 30% in terms of win rate in multiple hard scenarios.
With attention model, the performance is even stronger.

Trained CollaQ agents demonstrate interesting behaviors. On MMM2: (1) Medivac dropship only heals
the unit under attack, (2) damaged units move backward to avoid focused fire from the opponent,
while healthy units move forward to undertake fire. In comparison, QMIX only learns (1) and it is
not obvious (2) was learned. On 2c_vs_64zg, CollaQ learns to focus fire on one side of the attack
to clear one of the corridors. It also demonstrates the behavior to retreat along that corridor while
attacking while agents trained by QMIX does not. See Appendix D for more video snapshots.

4.3 AD HOC TEAM WORK

Now we demonstrate that CollaQ is robust to change of agent configurations and/or priority during
test time, i.e., ad hoc team play, in addition to handling random IDs.

Different VIP agent. In this setting, the team would get an additional reward if the VIP agent is
alive after winning the battle. The VIP agent is randomly selected from agent 1 to N − 1 during
training. At test time, agent N becomes the VIP, which is a new setup that is not seen in training.
Fig. 6 shows the VIP agent survival rate at test time. We can see that CollaQ outperforms QMIX by
10%-32%. We also see that CollaQ learns the behavior of protecting VIP: when the team is about to
win, the VIP agent is covered by other agents to avoid being attacked. Such behavior is not clearly
shown in QMIX when the same objective is presented.

Swap / Add / Remove different units. We also test the ad hoc team play in three harder settings:
we swap the agent type, add and remove one agent at test time. From Fig. 7, we can see that CollaQ
can generalize better to the ad hoc test setting. Note that to deal with the changing number of agents
at test time, all of the methods (QMIX, QTRAN, VDN, IQL, and CollaQ) are augmented with

7

Under review as a conference paper at ICLR 2021

Figure 6: Results for StarCraft ad hoc team play using different VIP agent. At test time, the CollaQ has
substantially higher VIP survival rate than QMIX. Attention-based model also boosts up the survival rate.

Figure 7: Ad hoc team play on: a) swapping, b) adding, and c) removing a unit at test time. CollaQ outperforms
QMIX and other methods substantially on all these 3 settings.

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e6

0

20

40

60

80

100

Te
st

 W
in

 R
at

es
 (%

)

5m_vs_6m

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e6

0

20

40

60

80

100

Te
st

 W
in

 R
at

es
 (%

)

MMM2

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e6

0

20

40

60

80

100

Te
st

 W
in

 R
at

es
 (%

)

2c_vs_64zg

QMIX QMIX SumTwoNets CollaQ w.o. MARA Loss CollaQ

Figure 8: Ablation studies on the mixture of experts and the effect of MARA Loss. CollaQ outperforms QMIX
with a mixture of experts by a large margin and removing MARA Loss significantly degrades the performance.

attention-based neural architectures for a fair comparison. We can also see that CollaQ outperforms
QMIX, the second best, by 9.21% on swapping, 14.69% on removing, and 8.28% on adding agents.

4.4 ABLATION STUDY

We further verify CollaQ in the ablation study. First, we show that CollaQ outperforms a baseline
(SumTwoNets) that simply sums over two networks which takes the agent’s full observation as
the input. SumToNets does not distinguish between Qalone (which only takes si as the input) and
Qcollab (which respects the conditionQcollab(si, ·) = 0). Second, we show that MARA loss is indeed
critical for the performance of CollaQ.

We compare our method with SumTwoNets trained with QMIX in each agent. The baseline has a
similar parameter size compared to CollaQ. As shown in Fig. 8, comparing to SumTwoNets trained
with QMIX, CollaQ improves the win rates by 17%-47% on hard scenarios. We also study the
importance of MARA Loss by removing it from CollaQ. Using MARA Loss boosts the performance
by 14%-39% on hard scenarios, consistent with the decomposition proposed in Sec. 2.3.

5 RELATED WORK

Multi-agent reinforcement learning (MARL) has been studied since the 1990s (Tan, 1993; Littman,
1994; Bu et al., 2008). Recent progresses of deep reinforcement learning give rise to an increasing
effort of designing general-purpose deep MARL algorithms (including COMA (Foerster et al.,
2018), MADDPG (Lowe et al., 2017), MAPPO (Berner et al., 2019), PBT (Jaderberg et al., 2019),
MAAC (Iqbal and Sha, 2018), etc) for complex multi-agent games. We utilize the Q-learning
framework and consider the collaborative tasks in strategic games. Other works focus on different
aspects of collaborative MARL setting, such as learning to communicate (Foerster et al., 2016;
Sukhbaatar et al., 2016; Mordatch and Abbeel, 2018), robotics manipulation (Chitnis et al., 2019),
traffic control (Vinitsky et al., 2018), social dilemmas (Leibo et al., 2017), etc.

The problem of ad hoc team play in multiagent cooperative games was raised in the early 2000s (Bowl-
ing and McCracken, 2005; Stone et al., 2010) and is mostly studied in the robotic soccer do-
main (Hausknecht et al., 2016). Most works (Barrett and Stone, 2015; Barrett et al., 2012; Chakraborty

8

Under review as a conference paper at ICLR 2021

and Stone, 2013; Woodward et al., 2019) either require sophisticated online learning at test time or
require strong domain knowledge of possible teammates, which poses significant limitations when
applied to complex real-world situations. In contrast, our framework achieves zero-shot generalization
and requires little changes to the overall existing MARL training. There are also works considering a
much simplified ad-hoc teamwork setting by tackling a varying number of test-time homogeneous
agents (Schwab et al., 2018; Long et al., 2020) while our method can handle more general scenarios.

Previous work on the generalization/robustness in MARL typically considers a competitive setting and
aims to learn policies that can generalize to different test-time opponents. Popular techniques include
meta-learning for adaptation (Al-Shedivat et al., 2017), adversarial training (Li et al., 2019), Bayesian
inference (He et al., 2016; Shen and How, 2019; Serrino et al., 2019), symmetry breaking (Hu et al.,
2020), learning Nash equilibrium strategies (Lanctot et al., 2017; Brown and Sandholm, 2019) and
population-based training (Vinyals et al., 2019; Long et al., 2020; Canaan et al., 2020). Population-
based algorithms use ad hoc team play as a training component and the overall objective is to improve
opponent generalization. Whereas, we consider zero-shot generalization to different teammates at test
time. Our work is also related to the hierarchical approaches for multi-agent collaborative tasks (Shu
and Tian, 2019; Carion et al., 2019; Yang et al., 2020). They train a centralized manager to assign
subtasks to individual workers and it can generalize to new workers at test time. However, all these
works assume known worker types or policies, which is infeasible for complex tasks. Our method
does not make any of these assumptions and can be easily trained in an end-to-end fashion.

There have also been effort on decomposing the observation space through individual networks.
ASN (Wang et al., 2019) decomposes the observation space of each agent trying to capture semantic
meaning of actions, DyAN (Wang et al., 2020) adopts similar architecture in a curriculum domain.
EPC (Long et al., 2020) also proposes to use attention between individual agents to make the network
structure invariant to the size of agents. While the network structure of CollaQ to some extent
share some similarity with the works aforementioned, the semantic meaning of each component is
different. CollaQ models the interaction between agents using an alone network and an attention-
based collaborative network, one used to model self-interest solutions and the other one models the
influence of other agents on the particular agent.

Several papers also discuss social dilemma in a multi-agent setting (Leibo et al., 2017; Rapoport,
1974; Van Lange et al., 2013). Several works in reinforcement learning have been proposed to solve
problems such as prisoner’s delimma Sandholm and Crites (1996); de Cote et al. (2006); Wunder
et al. (2010). However, in our setting, all the agents share the same environmental reward. Thus, the
optimal solution for all the agents is to jointly optimize the shared reward. SSD Jaques et al. (2019)
gives the agent an extra intrinsic reward when its action has huge influence on others. CollaQ does
not use any intrinsic reward.

Lastly, our mathematical formulation is related to the credit assignment problem in RL (Sutton,
1985; Foerster et al., 2018; Nguyen et al., 2018). Some reward shaping literature also fall into this
category (Devlin et al., 2014; Devlin and Kudenko, 2012). But our approach does not calculate any
explicit reward assignment, we distill the theoretical insight and derive a simple yet effective learning
objective.

6 CONCLUSION

In this work, we propose CollaQ that models Multi-Agent RL as a dynamic reward assignment
problem. We show that under certain conditions, there exist decentralized policies for each agent
and these policies are approximately optimal from the point of view of a team goal. CollaQ then
learns these policies by resorting to an end-to-end training framework while using decomposition in
Q-function suggested by the theoretical analysis. CollaQ is tested in a complex practical StarCraft
MultiAgent Challenge and surpasses previous SoTA by 40% in terms of win rates on various maps
and 30% in several ad hoc team play settings. We believe the idea of multi-agent reward assignment
used in CollaQ can be an effective strategy for ad hoc MARL.

REFERENCES

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Dębiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large scale
deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

9

Under review as a conference paper at ICLR 2021

Max Jaderberg, Wojciech M Czarnecki, Iain Dunning, Luke Marris, Guy Lever, Antonio Garcia
Castaneda, Charles Beattie, Neil C Rabinowitz, Ari S Morcos, Avraham Ruderman, et al. Human-
level performance in 3d multiplayer games with population-based reinforcement learning. Science,
364(6443):859–865, 2019.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar, Nantas Nardelli,
Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson. The
starcraft multi-agent challenge. In Proceedings of the 18th International Conference on Autonomous
Agents and MultiAgent Systems, pages 2186–2188. International Foundation for Autonomous
Agents and Multiagent Systems, 2019.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Bowen Baker, Ingmar Kanitscheider, Todor Markov, Yi Wu, Glenn Powell, Bob McGrew, and Igor
Mordatch. Emergent tool use from multi-agent autocurricula. arXiv preprint arXiv:1909.07528,
2019.

Peter Stone, Gal A Kaminka, Sarit Kraus, and Jeffrey S Rosenschein. Ad hoc autonomous agent
teams: Collaboration without pre-coordination. In Twenty-Fourth AAAI Conference on Artificial
Intelligence, 2010.

Samuel Barrett, Peter Stone, and Sarit Kraus. Empirical evaluation of ad hoc teamwork in the pursuit
domain. In AAMAS, pages 567–574, 2011.

Samuel Barrett and Peter Stone. Cooperating with unknown teammates in complex domains: A robot
soccer case study of ad hoc teamwork. In Twenty-ninth AAAI conference on artificial intelligence,
2015.

Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Karl Tuyls, Julien Pérolat,
David Silver, and Thore Graepel. A unified game-theoretic approach to multiagent reinforcement
learning. In Advances in Neural Information Processing Systems, pages 4190–4203, 2017.

Hengyuan Hu, Adam Lerer, Alex Peysakhovich, and Jakob Foerster. " other-play" for zero-shot
coordination. arXiv preprint arXiv:2003.02979, 2020.

Devin Schwab, Yifeng Zhu, and Manuela Veloso. Zero shot transfer learning for robot soccer. In
Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems,
pages 2070–2072. International Foundation for Autonomous Agents and Multiagent Systems,
2018.

Qian Long, Zihan Zhou, Abhibav Gupta, Fei Fang, Yi Wu, and Xiaolong Wang. Evolutionary popula-
tion curriculum for scaling multi-agent reinforcement learning. arXiv preprint arXiv:2003.10423,
2020.

Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents. In Proceedings
of the tenth international conference on machine learning, pages 330–337, 1993.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max
Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-decomposition
networks for cooperative multi-agent learning. arXiv preprint arXiv:1706.05296, 2017.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. Qmix: monotonic value function factorisation for deep multi-agent
reinforcement learning. arXiv preprint arXiv:1803.11485, 2018.

Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi. Qtran: Learning
to factorize with transformation for cooperative multi-agent reinforcement learning. arXiv preprint
arXiv:1905.05408, 2019.

Michael L Littman. Markov games as a framework for multi-agent reinforcement learning. In
Machine learning proceedings 1994, pages 157–163. Elsevier, 1994.

10

Under review as a conference paper at ICLR 2021

Lucian Bu, Robert Babu, Bart De Schutter, et al. A comprehensive survey of multiagent reinforcement
learning. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews),
38(2):156–172, 2008.

Jakob N Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.
Counterfactual multi-agent policy gradients. In Thirty-second AAAI conference on artificial
intelligence, 2018.

Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-agent
actor-critic for mixed cooperative-competitive environments. In Advances in neural information
processing systems, pages 6379–6390, 2017.

Shariq Iqbal and Fei Sha. Actor-attention-critic for multi-agent reinforcement learning. arXiv preprint
arXiv:1810.02912, 2018.

Jakob Foerster, Ioannis Alexandros Assael, Nando De Freitas, and Shimon Whiteson. Learning to
communicate with deep multi-agent reinforcement learning. In Advances in neural information
processing systems, pages 2137–2145, 2016.

Sainbayar Sukhbaatar, Rob Fergus, et al. Learning multiagent communication with backpropagation.
In Advances in neural information processing systems, pages 2244–2252, 2016.

Igor Mordatch and Pieter Abbeel. Emergence of grounded compositional language in multi-agent
populations. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

Rohan Chitnis, Shubham Tulsiani, Saurabh Gupta, and Abhinav Gupta. Efficient bimanual manipula-
tion using learned task schemas. arXiv preprint arXiv:1909.13874, 2019.

Eugene Vinitsky, Aboudy Kreidieh, Luc Le Flem, Nishant Kheterpal, Kathy Jang, Cathy Wu, Fangyu
Wu, Richard Liaw, Eric Liang, and Alexandre M Bayen. Benchmarks for reinforcement learning
in mixed-autonomy traffic. In Conference on Robot Learning, pages 399–409, 2018.

Joel Z Leibo, Vinicius Zambaldi, Marc Lanctot, Janusz Marecki, and Thore Graepel. Multi-agent
reinforcement learning in sequential social dilemmas. In Proceedings of the 16th Conference on
Autonomous Agents and MultiAgent Systems, pages 464–473, 2017.

Michael Bowling and Peter McCracken. Coordination and adaptation in impromptu teams. In AAAI,
volume 5, pages 53–58, 2005.

Matthew Hausknecht, Prannoy Mupparaju, Sandeep Subramanian, Shivaram Kalyanakrishnan, and
Peter Stone. Half field offense: An environment for multiagent learning and ad hoc teamwork. In
AAMAS Adaptive Learning Agents (ALA) Workshop. sn, 2016.

Samuel Barrett, Peter Stone, Sarit Kraus, and Avi Rosenfeld. Learning teammate models for ad hoc
teamwork. In AAMAS Adaptive Learning Agents (ALA) Workshop, pages 57–63, 2012.

Doran Chakraborty and Peter Stone. Cooperating with a markovian ad hoc teammate. In Proceedings
of the 2013 international conference on Autonomous agents and multi-agent systems, pages
1085–1092. International Foundation for Autonomous Agents and Multiagent Systems, 2013.

Mark Woodward, Chelsea Finn, and Karol Hausman. Learning to interactively learn and assist. arXiv
preprint arXiv:1906.10187, 2019.

Maruan Al-Shedivat, Trapit Bansal, Yuri Burda, Ilya Sutskever, Igor Mordatch, and Pieter Abbeel.
Continuous adaptation via meta-learning in nonstationary and competitive environments. arXiv
preprint arXiv:1710.03641, 2017.

Shihui Li, Yi Wu, Xinyue Cui, Honghua Dong, Fei Fang, and Stuart Russell. Robust multi-agent
reinforcement learning via minimax deep deterministic policy gradient. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 33, pages 4213–4220, 2019.

He He, Jordan Boyd-Graber, Kevin Kwok, and Hal Daumé III. Opponent modeling in deep re-
inforcement learning. In International Conference on Machine Learning, pages 1804–1813,
2016.

11

Under review as a conference paper at ICLR 2021

Macheng Shen and Jonathan P How. Robust opponent modeling via adversarial ensemble reinforce-
ment learning in asymmetric imperfect-information games. arXiv preprint arXiv:1909.08735,
2019.

Jack Serrino, Max Kleiman-Weiner, David C Parkes, and Josh Tenenbaum. Finding friend and foe
in multi-agent games. In Advances in Neural Information Processing Systems, pages 1249–1259,
2019.

Noam Brown and Tuomas Sandholm. Superhuman ai for multiplayer poker. Science, 365(6456):
885–890, 2019.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung
Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level in
starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

Rodrigo Canaan, Xianbo Gao, Julian Togelius, Andy Nealen, and Stefan Menzel. Generating and
adapting to diverse ad-hoc cooperation agents in hanab. arXiv preprint arXiv:2004.13710, 2020.

Tianmin Shu and Yuandong Tian. M3RL: Mind-aware multi-agent management reinforcement
learning. In International Conference on Learning Representations, 2019.

Nicolas Carion, Nicolas Usunier, Gabriel Synnaeve, and Alessandro Lazaric. A structured prediction
approach for generalization in cooperative multi-agent reinforcement learning. In Advances in
Neural Information Processing Systems, pages 8128–8138, 2019.

Jiachen Yang, Alireza Nakhaei, David Isele, Kikuo Fujimura, and Hongyuan Zha. Cm3: Coopera-
tive multi-goal multi-stage multi-agent reinforcement learning. In International Conference on
Learning Representations, 2020.

Weixun Wang, Tianpei Yang Yong Liu, Jianye Hao, Xiaotian Hao, Yujing Hu, Yingfeng Chen,
Changjie Fan, and Yang Gao. Action semantics network: Considering the effects of actions in
multiagent systems. arXiv preprint arXiv:1907.11461, 2019.

Weixun Wang, Tianpei Yang, Yong Liu, Jianye Hao, Xiaotian Hao, Yujing Hu, Yingfeng Chen,
Changjie Fan, and Yang Gao. From few to more: Large-scale dynamic multiagent curriculum
learning. In AAAI, pages 7293–7300, 2020.

Anatol Rapoport. Prisoner’s dilemma—recollections and observations. In Game Theory as a Theory
of a Conflict Resolution, pages 17–34. Springer, 1974.

Paul AM Van Lange, Jeff Joireman, Craig D Parks, and Eric Van Dijk. The psychology of social
dilemmas: A review. Organizational Behavior and Human Decision Processes, 120(2):125–141,
2013.

Tuomas W Sandholm and Robert H Crites. Multiagent reinforcement learning in the iterated prisoner’s
dilemma. Biosystems, 37(1-2):147–166, 1996.

Enrique Munoz de Cote, Alessandro Lazaric, and Marcello Restelli. Learning to cooperate in multi-
agent social dilemmas. In Proceedings of the fifth international joint conference on Autonomous
agents and multiagent systems, pages 783–785, 2006.

Michael Wunder, Michael L Littman, and Monica Babes. Classes of multiagent q-learning dynamics
with epsilon-greedy exploration. In Proceedings of the 27th International Conference on Machine
Learning (ICML-10), pages 1167–1174. Citeseer, 2010.

Natasha Jaques, Angeliki Lazaridou, Edward Hughes, Caglar Gulcehre, Pedro Ortega, DJ Strouse,
Joel Z Leibo, and Nando De Freitas. Social influence as intrinsic motivation for multi-agent deep
reinforcement learning. In International Conference on Machine Learning, pages 3040–3049.
PMLR, 2019.

Richard S Sutton. Temporal credit assignment in reinforcement learning. 1985.

Duc Thien Nguyen, Akshat Kumar, and Hoong Chuin Lau. Credit assignment for collective multiagent
rl with global rewards. In Advances in Neural Information Processing Systems, pages 8102–8113,
2018.

12

Under review as a conference paper at ICLR 2021

Sam Devlin, Logan Yliniemi, Daniel Kudenko, and Kagan Tumer. Potential-based difference rewards
for multiagent reinforcement learning. In Proceedings of the 2014 international conference on
Autonomous agents and multi-agent systems, pages 165–172, 2014.

Sam Michael Devlin and Daniel Kudenko. Dynamic potential-based reward shaping. In Proceedings
of the 11th International Conference on Autonomous Agents and Multiagent Systems, pages
433–440. IFAAMAS, 2012.

13

Under review as a conference paper at ICLR 2021

A COLLABORATIVE Q DETAILS

We derive the gradient and provide the training details for Eq. 5.

Gradient for Training Objective. Taking derivative w.r.t θan and θcn in Eq. 5, we arrive at the
following gradient:

∇θanLn(θan, θ
c
n) = Esi,a∼ρ(·),ri;s′∼ε[(r + γmax

a′
Qi(s

′
, a
′
, ri; θ

a
n−1, θ

c
n−1)−Qi(oi, a, ri; θan, θcn))

∇θanQ
a
i (si, a, ri; θ

a
n)]

(6a)

∇θcnLn(θan, θ
c
n) = Esi,a∼ρ(·),ri;s′∼ε[(r + γmax

a′
Qi(s

′
, a
′
, ri; θ

a
n−1, θ

c
n−1)−Qi(oi, a, ri; θan, θcn))

∇θcnQ
c
i (oi, a, ri; θ

c
n)− αQci (si, a, ri; θcn)∇θcnQ

c
i (si, a, ri; θ

c
n)]

(6b)

Soft CollaQ. In the actual implementation, we use a soft-constraint version of CollaQ: we subtract
Qcollab(oalonei , ai) from Eq. 4. The Q-value Decomposition now becomes:

Qi(oi, ai) = Qalone
i (oalonei , ai) +Qcollab

i (oi, ai)−Qcollab(oalonei , ai) (7)
The optimization objective is kept the same as in Eq. 5. This helps reduce variances in all the
settings in resource collection and Starcraft multi-agent challenge. We sometimes also replace
Qcollab(oalonei , ai) in Eq. 7 by its target to further stabilize training.

B ENVIRONMENT SETUP AND TRAINING DETAILS

Resource Collection. We set the discount factor as 0.992 and use the RMSprop optimizer with a
learning rate of 4e-5. ε-greedy is used for exploration with ε annealed linearly from 1.0 to 0.01
in 100k steps. We use a batch size of 128 and update the target every 10k steps. For temperature
parameter α, we set it to 1. We run all the experiments for 3 times and plot the mean/std in all the
figures.

StarCraft Multi-Agent Challenge. We set the discount factor as 0.99 and use the RMSprop
optimizer with a learning rate of 5e-4. ε-greedy is used for exploration with ε annealed linearly from
1.0 to 0.05 in 50k steps. We use a batch size of 32 and update the target every 200 episodes. For
temperature parameter α, we set it to 0.1 for 27m_vs_30m and to 1 for all other maps.

All experiments on StarCraft II use the default reward and observation settings of the SMAC
benchmark. For ad hoc team play with different VIP, an additional 100 reward is added to the original
200 reward for winning the game if the VIP agent is alive after the episode.

For swapping agent types, we design the maps 3s1z_vs_16zg, 1s3z_vs_16zg and 2s2z_vs_16zg (s
stands for stalker, z stands for zealot and zg stands for zergling). We use the first two maps for training
and the third one for testing. For adding units, we use 27m_vs_30m for training and 28m_vs_30m for
testing (m stands for marine). For removing units, we use 29m_vs_30m for training and 28m_vs_30m
for testing.

We run all the experiments for 4 times and plot the mean/std in all the figures.

C DETAILED RESULTS FOR RESOURCE COLLECTION

We compare CollaQ with QMIX and CollaQ with attention-based model in resource collection setting.
As shown in Fig. 9, QMIX does not show great performance as it is even worse than random action.
Adding attention-based model introduces a larger variance, so the performance degrades by 10.66 in
training but boosts by 2.13 in ad ad hoc team play.

D DETAILED RESULTS FOR STARCRAFT MULTI-AGENT CHALLENGE

We provide the win rates for CollaQ and QMIX on the environments without random agent IDs on
three maps. Fig. 10 shows the results for both method.

14

Under review as a conference paper at ICLR 2021

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Environment Steps 1e6

100

150

200

250

300

Re
wa

rd
Training Reward

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Environment Steps 1e6

100

150

200

250

300

Re
wa

rd

Adhoc Testing Reward

Random Action IQL QMIX CollaQ CollaQ with Attn

Figure 9: Results for resource collection. Adding attention-based model to CollaQ introduces a larger variance
so the performance is a little worse. QMIX does not show good performance in this setting.

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e6

0

20

40

60

80

100

Te
st

 W
in

 R
at

es
 (%

)

MMM2

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e6

0

20

40

60

80

100

Te
st

 W
in

 R
at

es
 (%

)

8m_vs_9m

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e6

0

20

40

60

80

100

Te
st

 W
in

 R
at

es
 (%

)

2c_vs_64zg

QMIX w.o Rand ID CollaQ w.o. Rand ID

Figure 10: Results for StarCraft Multi-Agent Challenge without random agent IDs. CollaQ outperforms QMIX
on all three maps.

We show the exact win rates for all the maps and settings mentioned in StarCraft Multi-Agent
Challenge. From Tab. 1, we can clearly see that CollaQ improves the previous SoTA by a large
margin.

Table 1: Win rates for StarCraft Multi-Agent Challenge. CollaQ show superior performance over all baselines.

IQL VDN QTRAN QMIX CollaQ CollaQ
with Attn

5m_vs_6m 62.81% 69.37% 35.31% 66.25% 81.88% 80.00%
MMM2 4.22% 6.41% 0.32% 36.56% 79.69% 84.69%
2c_vs_64zg 33.75% 22.66% 8.13% 34.06% 87.03% 62.66%
27m_vs_30m 1.10% 6.88% 0.00% 19.06% 41.41% 50.63%
8m_vs_9m 71.09% 82.66% 28.75% 77.97% 92.19% 96.41%
10m_vs_11m 70.47% 86.56% 31.10% 81.10% 91.25% 97.50%

We also check the margin of winning scenarios, measured as how many units survive after winning
the battle. The experiments are repeated over 128 random seeds. CollaQ surpasses the QMIX by over
2 units on average (Tab. 2), which is a huge gain.

Table 2: Number of survived units on six StaCraft maps. We compute mean and standard deviation over 128
runs. CollaQ outperforms all baselines significantly by managing more units to survive.

5m_vs_6m MMM2 2c_vs_64zg 27m_vs_30m 8m_vs_9m 10m_vs_11m

IQL 0.91 ± 0.28 0.02 ±0.03 0.05 ± 0.04 0.00 ± 0.00 0.95 ± 0.36 0.6 ± 0.44
VDN 1.35 ± 0.13 0.28 ± 0.32 0.23 ± 0.12 0.55 ± 0.93 3.16 ± 0.61 3.39 ± 1.44
QTRAN 1.76 ± 0.53 0.31 ± 0.44 0.36 ± 0.35 0.00 ± 0.00 2.43 ± 0.53 3.06 ± 2.11
QMIX 1.72 ± 0.5 1.92 ± 1.02 0.47 ± 0.11 1.79 ± 0.72 2.75 ± 0.48 3.89 ± 1.74
CollaQ 1.95 ± 0.41 4.89 ± 1.32 1.48 ± 0.15 2.80 ± 0.94 3.98 ± 0.56 4.91 ± 1.48
CollaQ with Attn 2.77 ± 0.17 4.73 ± 1.08 1.00 ± 0.49 5.22 ± 1.79 3.68 ± 0.63 4.73 ± 0.41

15

Under review as a conference paper at ICLR 2021

In a simple ad hoc team play setting, we assign a new VIP agent whose survival matters at test time.
Results in Tab. 3 show that at test time, the VIP agent in CollaQ has substantial higher survival rate
than QMIX.

Table 3: VIP agents survival rates for StarCraft Multi-Agent Challenge. CollaQ with attention surpasses QMIX
by a large margin.

IQL VDN QTRAN QMIX CollaQ CollaQ
with Attn

5m_vs_6m 30.47% 46.72% 16.72% 38.13% 56.72% 61.72%
MMM2 0.31% 0.63% 0.16% 30.16% 62.34% 81.41%
8m_vs_9m 37.35% 47.34% 6.25% 48.91% 59.06% 78.13%

We also test CollaQ in a harder ad hoc team play setting: swapping/adding/removing agents at test
time. Tab 4 summarizes the results for ad hoc team play, CollaQ outperforms QMIX by a lot.

Table 4: Win rates for StarCraft Multi-Agent Challenge with swapping/adding/removing agents. CollaQ
improves QMIX substantially.

IQL VDN QTRAN QMIX CollaQ CollaQ
with Attn

Swapping 0.00% 18.91% 0.00% 37.03% 46.25% 46.41%
Adding∗ 13.44% 23.28% 0.16% 70.94% - 79.22%
Removing∗ 0.94% 16.41% 0.16% 58.44% - 73.12%

∗ IQL, VDN, QTRAN and QMIX here all use attention-based models.

E VIDEOS AND VISUALIZATIONS OF STARCRAFT MULTI-AGENT CHALLENGE

We extract several video frames from the replays of CollaQ’s agents for better visualization. In
addition to that, we provide the full replays of QMIX and CollaQ. CollaQ’s agents demonstrate
super interesting behaviors such as healing the agents under attack, dragging back the unhealthy
agents, and protecting the VIP agent (under the setting of ad hoc team play with different VIP agent
settings). The visualizations and videos are available at https://sites.google.com/view/
collaq-starcraft

F PROOF AND LEMMAS

Lemma 1. If a′1 ≥ a1, then 0 ≤ max(a′1, a2)−max(a1, a2) ≤ a′1 − a1.

Proof. Note that max(a1, a2) =
a1+a2

2 +
∣∣a1−a2

2

∣∣. So we have:

max(a′1, a2)−max(a1, a2) =
a′1 − a1

2
+

∣∣∣∣a′1 − a22

∣∣∣∣−∣∣∣∣a1 − a22

∣∣∣∣ ≤ a′1 − a1
2

+

∣∣∣∣a1 − a′12

∣∣∣∣ = a′1−a1
(8)

F.1 LEMMAS

Lemma 2. For a Markov Decision Process with finite horizon H and discount factor γ < 1. For all
i ∈ {1, . . . ,K}, all r1, r2 ∈ RM , all si ∈ Si, we have:

|Vi(si; r1)− Vi(si; r2)| ≤
∑
x,a

γ|si−x||r1(x, a)− r2(x, a)| (9)

where |si − x| is the number of steps needed to move from si to x.

Proof. By definition of optimal value function Vi for agent i, we know it satisfies the following
Bellman equation:

Vi(xh; ri) = max
ai

(
ri(xi, ai) + γExh+1|xh,ah [Vi(xh+1)]

)
(10)

16

https://sites.google.com/view/collaq-starcraft
https://sites.google.com/view/collaq-starcraft

Under review as a conference paper at ICLR 2021

Note that to avoid confusion between agents initial states s = {s1, . . . , sK} and reward at state-action
pair (s, a), we use (x, a) instead. For terminal node xH , which exists due to finite-horizon MDP with
horizon H , Vi(xH) = ri(xH). The current state si is at step 0 (i.e., x0 = si).

We first consider the case that r1 and r2 only differ at a single state-action pair (x0h, a
0
h) for h ≤ H .

Without loss of generality, we set r1(x0h, a
0
h) > r2(x

0
h, a

0
h).

By definition of finite horizon MDP, Vi(xh′ ; r1) = Vi(xh′ ; r2) for h′ > h. By the property of max
function (Lemma 1), we have:

0 ≤ Vi(x0h; r1)− Vi(x0h; r2) ≤ r1(x0h, a0h)− r2(x0h, a0h) (11)

Since p(x0h|xh−1, ah−1) ≤ 1, for any (xh−1, ah−1) at step h− 1, we have:

0 ≤ γ
[
Exh|xh−1,ah−1

[Vi(xh; r1)]− Exh|xh−1,ah−1
[Vi(xh; r2)]

]
(12)

≤ γ
[
r1(x

0
h, a

0
h)− r2(x0h, a0h)

]
(13)

Applying Lemma 1 and notice that all other rewards do not change, we have:

0 ≤ Vi(xh−1; r1)− Vi(xh−1; r2) ≤ γ
[
r1(x

0
h, a

0
h)− r2(x0h, a0h)

]
(14)

We do this iteratively, and finally we have:

0 ≤ Vi(si; r1)− Vi(si; r2) ≤ γh
[
r1(x

0
h, a

0
h)− r2(x0h, a0h)

]
(15)

We could show similar case when r1(x0h, a
0
h) < r2(x

0
h, a

0
h), therefore, we have:

|Vi(si; r1)− Vi(si; r2)| ≤ γh|r1(x0h, a0h)− r2(x0h, a0h)| (16)
where h = |x0h − si| is the distance between si and x0h.

Now we consider general r1 6= r2. We could design path {rt} from r1 to r2 so that each time we
only change one distinct reward entry. Therefore each (s, a) pairs happens only at most once and we
have:

|Vi(si; r1)− Vi(si; r2)| ≤
∑
t

|Vi(si; rt−1)− Vi(si; rt)| (17)

≤
∑
x,a

γ|x−si||r1(x, a)− r2(x, a)| (18)

F.2 THM. 1

First we prove the following lemma:
Lemma 3. For any reward assignments ri for agent i for the optimization problem (Eqn. 1) and a
local reward set M local

i ⊇ {x : |x− si| ≤ C}, if we construct r̃i as follows:

r̃i(x, a) =

{
ri(x, a) x ∈M local

i

0 x /∈M local
i

(19)

Then we have:
|Vi(si; ri)− Vi(si; r̃i)| ≤ γCRmaxM (20)

where M is the total number of sparse reward sites and Rmax is the maximal reward that could be
assigned at each reward site x while satisfying the constraint φ(r1(x, a), r2(x, a), . . . , rK(s, a)) ≤ 0.

Proof. By Lemma 2, we know that

|Vi(si; r∗i)− Vi(si; r̃i)| ≤
∑

x/∈Slocal
i

γ|x−si||r∗i (s, a)− r̃i(s, a)| (21)

≤ γC
∑

x/∈Slocal
i

|r∗i (s, a)| (22)

≤ γCRmaxM (23)

17

Under review as a conference paper at ICLR 2021

K

M

𝑀!
"#$%"

𝒔!"#$%"

𝑅∗ "𝑅∗

0

0

0
𝑅"#$%"
∗

A function of all agent states 𝒔 = {𝑠&, 𝑠', … , 𝑠(}

A function of 𝒔!"#$%"

"𝑅&∗

0

0

0
𝑅"#$%"(&)
∗

0

0
𝒔!)*+#,*

(a)

#𝑅

(b)

Figure 11: Different reward assignments.

Note that “sparse reward site” is important here, otherwise there could be exponential sites x /∈ Slocal
i

and Eqn. 23 becomes vacant.

Then we prove the theorem.

Proof. Given a constant C, for each agent i, we define the vicinity reward site Bi(C) := {x :
|x− si| ≤ C}.

Given agent i and its local “buddies” slocali (a subset of multiple agent indices), we construct the
corresponding reward site set M local

i :

M local
i =

⋃
sj∈slocali

Bj(C) (24)

Define the remote agents sremote
i = s\slocali as all agents that do not belong to slocali .

Define the distance D between the M local
i and sremote

i :

D = min
x∈M local

i

min
sj∈sremote

i

|x− sj | (25)

Intuitively, the larger D is, the larger distance between relevant rewards sites from remote agents and
the tighter the bound. There is a trade-off between C and D: the larger the vicinity, M local

i expands
and the smaller D is.

Given this setting, we then construct a few reward assignments (see Fig. 11), given the current agent
states s = {s1, s2, . . . , sK}. For brevity, we write R[M, s] to be the submatrix that relates to reward
site M and agents set s.

• The optimal solution R∗ for Eqn. 1.

• The perturbed optimal solution R̃∗ by pushing the reward assignment of [M local
i , sremote

i] in
R∗ to [M local

i , slocali].

• From R̃∗, we get R̃∗0 by setting the region [M remote
i , slocali] to be zero.

• The local optimal solution R∗local that only depends on slocali . This solution is obtained by
setting [:, sremote

i] to be zero and optimize Eqn. 1.

• From R∗local, we get R∗local(0) by setting [M remote
i , slocali] to be zero.

18

Under review as a conference paper at ICLR 2021

It is easy to show all these rewards assignment are feasible solutions to Eqn. 1. This is because if the
original solution is feasible, then setting some reward assignment to be zero also yields a feasible
solution, due to the property of the constraint φ.

For simplicity, we define Jlocal to be the partial objective that sums over sj ∈ slocali and similarly for
Jremote.

We could show the following relationship between these solutions:

Jremote(R̃
∗) ≥ Jremote(R

∗)− γDRmaxMK (26)

This is because each of this reward assignment move costs at most γDRmax by Lemma 2 and there
are at most MK such movement.

On the other hand, for each sj ∈ slocalj , since M local
i ⊇ Bj(C), from Lemma 3 we have:

Vj(R
∗
local(0)) ≥ Vj(R

∗
local)− γCRmaxM (27)

And similarly we have:
Vj(R̃

∗
0) ≥ Vj(R̃∗)− γCRmaxM (28)

Now we construct a new solution R̂i by combining R∗local(0)[:, s
local
i] with r̃∗0[:, s

remote
i]. This is still

a feasible solution since in both R∗local(0) and R̃∗0, their top-right and bottom-left sub-matrices are
zero, and its objective is still good:

J(R̂) = Jlocal(R
∗
local(0)) + Jremote(R̃

∗
0) (29)

1©
≥ Jlocal(R

∗
local)− γCRmaxMK + Jremote(R̃

∗
0) (30)

2©
≥ Jlocal(R̃

∗) + Jremote(R̃
∗
0)− γCRmaxMK (31)

3©
≥ Jlocal(R

∗) + Jremote(R̃
∗
0)− γCRmaxMK (32)

4©
= Jlocal(R

∗) + Jremote(R̃
∗)− γCRmaxMK (33)

5©
≥ Jlocal(R

∗) + Jremote(R
∗)−RmaxMK(γC + γD) (34)

6©
= J(R∗)−RmaxMK(γC + γD) (35)

Note that 1© is due to Eqn. 27, 2© is due to the optimality of R∗local (and looser constraints for R∗local),
3© is due to the fact that R̃∗ is obtained by adding rewards released from sremote

i to slocali . 4© is due
to the fact that R̃∗0 and R̃∗ has the same remote components. 5© is due to Eqn. 26. 6© is by definition
of Jlocal and Jremote.

Therefore we obtain r̂i = [R̂]i that only depends on slocali . On the other hand, the solution R̂ is close
to optimal R∗, with gap (γC + γD)RmaxMK.

19

	Introduction
	Collaborative Multi-Agent Reward Assignment
	Basic Assumption
	Learn to Predict the Optimal Assigned Reward r*i(s)
	Collaborative Q-Learning (CollaQ)

	Experiments on Resource Collection
	Experiments on StarCraft Multi-Agent Challenge
	Issues in the Current Benchmark
	StarCraft Multi-Agent Challenge with Random Agent IDs
	Ad Hoc Team Work
	Ablation Study

	Related Work
	Conclusion
	Collaborative Q details
	Environment Setup and Training Details
	Detailed Results for Resource Collection
	Detailed Results for StarCraft Multi-Agent Challenge
	Videos and Visualizations of StarCraft Multi-Agent Challenge
	Proof and Lemmas
	Lemmas
	Thm. 1

