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ABSTRACT

Disentangled representation learning aims to identify and organize the underlying
sources of variation in observed data. However, learning disentangled representa-
tions without any additional supervision necessitates inductive biases to solve the
fundamental identifiability problem of uniquely recovering the true latent struc-
ture and parameters of the data-generating process from observational data alone.
Existing methods address this by imposing heuristic inductive biases that typically
lack theoretical identifiability guarantees. They also rely on strong regularization
to impose these inductive biases, creating an inherent trade-off in which stronger
regularization improves disentanglement but limits the latent capacity to represent
underlying variations. To address both challenges, we propose a principled gen-
erative model with a Bayesian nonparametric hierarchical mixture prior that em-
beds inductive biases within a provably identifiable framework for unsupervised
disentanglement. Specifically, the hierarchical mixture prior imposes the struc-
tural constraints necessary for identifiability guarantees, while the nonparametric
formulation enables inference of sufficient latent capacity to represent the under-
lying variations without violating these constraints. To enable tractable inference
under this nonparametric hierarchical prior, we develop a structured variational
inference framework with a nested variational family that both preserves the hi-
erarchical structure of the identifiable generative model and approximates the ex-
pressiveness of the nonparametric prior. We evaluate our proposed probabilistic
model on standard disentanglement benchmarks, 3DShapes and MPI3D datasets
characterized by diverse source variation distributions, to demonstrate that our
method consistently outperforms strong baseline models through structural biases
and a unified objective function, obviating the need for auxiliary regularization
constraints or careful hyperparameter tuning.

1 INTRODUCTION

A primary objective of representation learning is not merely to perform density estimation or gen-
erate realistic samples, but to discover and characterize the latent structure inherent in observational
data. This notion is formalized by disentangled representations that aim to separate the distinct,
independent, and informative generative factors of variation in the data such that each latent variable
is sensitive to changes in exactly one underlying factor while being relatively invariant to changes
in others Bengio (2013). Disentangled representations have been shown to improve robustness and
out-of-distribution generalization (Träuble et al., 2021; Li et al., 2024), sample efficiency in few-
shot learning (Van Steenkiste et al., 2019; Cheng et al., 2024), domain adaptation via separation
of transferable and domain-specific features (Tran & Huang, 2019; Cai et al., 2019), controllable
and interpretable generation (Zhu et al., 2021; Wang et al., 2023; Zhou et al., 2025), and causal in-
ference and fairness through explicit separation of sensitive and task-relevant factors (Cheng et al.,
2024; Locatello et al., 2019a).

However, unsupervised learning of disentangled representations is fundamentally challenged with
identifiability which refers to whether the true generative factors and their structure can be uniquely
inferred from observed data alone. Without identifiability, different parameterizations of the gener-
ative model can produce identical distributions over observed data, making it theoretically impossi-
ble to recover the true generative factors. Prior work in nonlinear independent component analysis
(Hyvärinen & Pajunen, 1999; Hyvärinen et al., 2019; Khemakhem et al., 2020), deep generative
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modeling (Wang et al., 2021; D’Amour et al., 2022), and unsupervised disentanglement (Locatello
et al., 2019b) has shown that enforcing the commonly used simple isotropic Gaussian prior in com-
bination with a nonlinear generative function is generally insufficient to recover the true sources
of variation. Without additional inductive biases, the model can learn infinitely many, potentially
entangled representations that satisfy the marginal prior distribution yet fail to align with the true
data-generating factors.

Moreover, prior works primarily impose heuristic inductive biases and typically rely on strong reg-
ularization to enforce them inducing an inherent trade-off whereby stronger regularization enhances
disentanglement but simultaneously restricts the representation capacity. Consequently, this mis-
specification of the latent capacity either under-represents all relevant modes of variation or forces
encoding of the data in a manner that conflicts with the natural structure, leading to systematic
violation of the disentanglement-inducing constraints.

To address both these limitations we build upon the theoretical framework of Kivva et al. (2022),
who prove that mixture priors provide sufficient inductive bias for identifiability in deep generative
models with piece-wise affine data-generating functions. We propose a Bayesian nonparametric hi-
erarchical mixture prior that inherits these identifiability guarantees lacking in simple Gaussian pri-
ors while simultaneously addressing the representation capacity mis-specification problem through
its nonparametric formulation. To specifically learn disentangled representations, we define a fac-
torized prior structure under which a nonparametric hierarchical mixture prior is placed over the
space of each generative factor independently, such that mixture components correspond to discrete
variations of the respective factor. Consistent with the principles of classical factor analysis, this
factorized structure entails that observations are generated through the combinatorial composition
of factor-specific mixture components, with each observation determined by a unique combination
of components across all generative factors Hsu et al. (2024a). Critically, the factorized prior struc-
ture facilitates the orthogonal encoding of factor-specific variations. The nonparametric formulation
allows the complexity of factor-specific mixtures to remain unspecified a priori—a characteristic
analogous to species discovery in unexplored ecosystems, where the number and types of species
present cannot be predicted in advance. This formulation endows our model with universal approx-
imation capabilities, ensuring that the identifiable architecture is, in principle, expressive enough to
recover the natural underlying structure of the data.

For tractable inference under this nonparametric hierarchical prior, we develop a structured varia-
tional inference framework with a nested variational family. The structured inference framework
preserves the hierarchical structure of the identifiable generative model thereby enabling joint op-
timization of the prior and deep generative model parameters within a unified objective function.
The nested formulation enables the variational distribution to approximate the expressiveness of the
nonparametric prior while maintaining computational tractability.

Empirically, we show that this hierarchical mixture prior provides substantially stronger inductive
biases enabling the learning of modular and compact disentangled representations that enhance in-
terpretability. Our results on two image datasets with distinct factor distributions further demon-
strate that the nonparametric hierarchical mixture prior and the corresponding inference framework
provide sufficient inductive bias without additional computationally expensive auxiliary inductive
biases or careful manual tuning of regularization hyperparameters

2 NONPARAMETRIC BAYESIAN QUANTIZATION FOR AUTOENCODERS

Prior work (Hsu et al., 2024a;b) introduce inductive biases that encourage disentangled representa-
tion learning by structuring the latent space as a factorized Cartesian product of discrete sets, where
each latent dimension is independently quantized through separate learnable codebooks. This latent
quantization architecture restricts the encoder to constructing representations through combinato-
rial selection from small finite codebooks of scalar embeddings. This, consequently, constrains the
decoder to assign consistent semantic meanings to the embeddings, such that each codebook en-
codes a single factor of variation with the embeddings representing specific variations within the
factor. For this architectural design to serve as an effective inductive bias for learning disentangled
representations, the size of each codebook Ci, and thus the support of the corresponding discrete
latent variable zi, used to index the codebook embeddings, is fixed and kept small. While this de-
sign choice encourages parsimonious representations, factors with variations larger than the size of
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a single codebook must necessarily be distributed across multiple codebooks, reducing the inter-
pretability of the learned factors.

To address this limitation and ensure that each generative factor, with potentially unbounded number
of variations, can be encoded in a single codebook, we propose a principled probabilistic formula-
tion in which each codebook possesses theoretically infinite number of embeddings. Specifically,
we place a nonparametric Dirichlet Process (DP) (Ferguson, 1973; Sethuraman, 1994) over each dis-
crete codebook and use the stick-breaking construction to define a valid probability mass function
with countably infinite support for the discrete latent variables z. To enable principled uncertainty
quantification within this nonparametric framework, each scalar embedding is instead a stochastic
variable governed by a probability distribution rather than a fixed point estimate. To realize this, we
use the base distribution of the DP to generate the countably infinite set of parameters that define
the distributions from which these stochastic embeddings are sampled. This formulation naturally
induces a Dirichlet Process Mixture Model (DPMM) prior (A.1.1) over the embedding space, where
each codebook’s embeddings are modeled as samples drawn from an infinite-component mixture
distribution.

To preserve the inductive biases, that makes latent quantization effective, within our nonparamet-
ric framework, we propose nested variational family-based inference for posterior approximation.
During inference with this nested family, each codebook is initialized with a single component or
embedding parameter. When the model encounters data requiring greater representational capacity,
new components are greedily added to the codebook. This greedy expansion allows the model to
gradually adapt its capacity to the complexity of the generative factor represented by the codebook,
thereby providing a stronger inductive bias.

In the following sections, we first formalize the hierarchical Bayesian nonparametric prior govern-
ing the embedding space and derive the corresponding generative model. We next formalize the
structured variational family, specifically designed to accurately approximate the posterior distribu-
tion with hierarchical structured priors. Finally, we present the nested extension of this structured
variational family which enables principled incremental expansion of the representational capacity
while preserving inductive biases of latent quantization.

2.1 NONPARAMETRIC PRIOR

We adopt the inductive bias of latent quantization (For a prior on vector-quantized and latent-
quantized autoencoder please refer to Section A.1.2) by decomposing each datapoint’s d-
dimensional encoder output vector into component scalars, where each scalar is independently
quantized using a separate codebook Ci. The discrete latent variable z is defined as an element
of the Cartesian product of component discrete sets z ∈ Z1 × · · · ×Zd where each discrete variable
zi ∈ Zi = {1, . . . , | Ci |},∀i ∈ {1, . . . , d} indexes the embeddings of codebook Ci. Formally, we
define a nonparametric prior over the parameter space Θ of the mixture components for each code-
book Ci using the Dirichlet Process DP(α,G0). For each codebook Ci, we use the stick-breaking
construction to generate an infinite sequence of stick-breaking proportions βi = {βi,k}∞k=1 , with
each βi,k is independently drawn from a Beta distribution with concentration parameter α control-
ling the expected number of active mixture components. Concurrently, the embeddings parameters
θi = {θi,k}∞k=1 are independently sampled from a continuous base distribution G0(λ), defined over
the parameter space Θ:

βi,k | α ∼ p(β | α) = Beta (1, α) , θi,k | λ ∼ p(θ | λ) = G0(λ), ∀i ∈ {1, . . . d}, ∀k ∈ N
The stick-breaking proportions βi are then used to define the countably infinite set of mixture
weights that specify a valid probability mass function over the discrete latent variables zi, replacing
the fixed uniform prior of VQVAE and its variants. Conditional on the discrete variable zi = k, the
corresponding embedding ei is sampled from the k-th mixture component distribution p(e | θi,k).
This generative process for the discrete latent variable zi and the corresponding embedding ei asso-
ciated with codebook Ci is formalized as follows:

zi = k | βi ∼ p(zi = k | βi) = βi,k

k−1∏
j=1

(1− βi,j), ei ∼ p(e | zi,θi) =
∞∏
k=1

(p(e | θi,k))1[zi=k]

We choose the Gaussian distribution with unknown mean and precision parameters θk = {µk, sk},
where µk denotes the mean and sk the precision (inverse variance), to sample the embedding vec-
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tors. Following conjugacy structure, we choose the base distribution G0 for sampling these pa-
rameters θ to be a Normal–Gamma distribution G0(λ) = NG(m0, κ0, ν0, w0) which serves as a
conjugate prior to the Gaussian likelihood with unknown mean and precision. Importantly, the Nor-
mal–Gamma prior simultaneously captures uncertainty over both the mean and precision parame-
ters, facilitating efficient joint sampling, and simplifies Bayesian inference by enabling closed-form
posterior updates. We define the data-generating distribution as pθg (x | e) ∼ N

(
gθg (e), σ

2I
)

where
gθg : E → X is a nonlinear mapping parameterized by θg that transforms the embedding vectors
e ∈ E into the observation space X . The joint distribution over the observed data x, latent em-
beddings e, discrete latent variables z, stick-breaking proportions β and embedding distribution
parameters θ factorizes according to the hierarchical generative model as follows:

p (x, e, z,β,θ | α, λ) = pθg (x | e)
d∏

i=1

p (ei | zi,θi) p (zi | βi)

∞∏
k=1

p (βi,k | α) p (θi,k | λ) (1)

This hierarchical structure induces a natural partitioning of the embedding space into clusters cor-
responding to the mixture components and provides a principled probabilistic framework to model
the underlying discrete latent structure.

2.2 VARIATIONAL INFERENCE

To enable a computationally efficient posterior approximation for nonparametric priors (for a prior
on variational inference for DPMMs please refer to the Preliminary section A.1), Blei & Jordan
(2006); Hoffman et al. (2013) approximate the infinite-dimensional stick-breaking process using a
truncated stick-breaking variational family. This formulation introduces an explicit truncation level
T by fixing the stick-breaking proportion at position T to one qνβ

(βT = 1) = 1, which implicitly
forces all subsequent stick lengths {βk}k>T and the corresponding mixture weights to zero, thus
limiting the mixture components to T . Further, this approach renders inference tractable with the use
of fully factorized variational distributions; which impose strong independence constraints among
latent variables, including those with hierarchical dependencies. The approach of Hoffman & Blei
(2015) relaxes this mean-field assumption to allow dependencies between hierarchical latent vari-
ables, yielding more accurate posterior approximations and reducing bias; while lowering sensitivity
to initialization and hyperparameters. We adapt this structured variational inference framework to
preserve the hierarchical dependencies in our formulation, specifically between the stick-breaking
proportions β and the discrete latent variables z as well as between the discrete variable z, the
components parameters θ and the embeddings e as detailed below:

qν(e, z,β,θ) = q(e | z,θ)q(z | β)
T−1∏
k=1

qνβ,k
(βk)

T∏
k=1

qνθ,k
(θk) (2)

Truncated variational families make inference in infinite-mixture models tractable by restricting the
variational distribution to a fixed number T of mixture components. The intuition that increasing
the truncation level monotonically increases the ELBO, with more mixture components allowing
q to better approximate the true nonparametric posterior, motivates practitioners to choose high
truncation levels. However, this intuition fails when an optimal truncation level exists, particularly
for data generated by a finite mixture. Moreover, the truncated variational families are not nested;
the variational family with truncation level T is not a subset of the family with truncation level T+1.
Therefore, increasing T beyond the optimal level does not necessarily yield a better approximation
and undermines the inductive bias of quantizing with a small set of latent embeddings, critical for
learning disentangled representations.

Therefore, we employ the nested variational family framework of Kurihara et al. (2006), which de-
fines an infinite-dimensional variational parameter space {νβ,k, νθ,k}∞k=1, to support an unbounded
number of mixture components using parameter tying.

qν(β) =

T∏
k=1

qνβ,k
(βk)

∞∏
k=T

p(βk | α), qν(θ) =

T∏
k=1

qνθ,k
(θk)

∞∏
k=T

p(θk | λ) (3)

When data are associated only with the first T components, the variational parameters for all com-
ponents k > T are tied to their corresponding prior values, such that qνβ,k

(βk) = p(β | α) and
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qνθ,k
(θk) = p(θ | λ). This parameter tying effectively constrains the variational distributions be-

yond the implicit truncation level T to the prior distribution. This constraint ensures that although
the variational distribution theoretically includes an unbounded number of mixture components, we
only need to represent and optimize parameters up to the implicit truncation level T . Crucially, data
belonging to components beyond the truncation level T , can be assigned to the infinite components,
with their parameters tied to the prior. This enables our inference algorithm to proceed greedily,
starting with T = 1 and incrementally adding components only when they yield a significant im-
provement in the empirical ELBO. This process of incrementally adding components is continued
until all data is assigned to components within truncation level T and no data is assigned to the
prior. Notably, under this nested formulation, codebook components that fail to encode meaningful
variations collapse back to their prior distribution during training.

For a single data point, the ELBO, estimated using Monte Carlo samples, under this hierarchical,
structured, nested variational family qν , given the generative model in Equation equation 1, can be
expressed as:

L =
1

N
Eqνβ

[
log

p(β | α)
qνβ

(β)

]
+

1

N
Eqνθ

[
log

p(θ | λ)
qνθ

(θ)

]
+ Eqν

[
log

pθg (x | e) p(e | z,θ) p(z | β)
q(e | z,θ) q(z | β)

]
2.3 THE ALGORITHM

Efficient inference algorithms for hierarchical models rely on the use of conjugate exponential fam-
ily data likelihoods, which preserve tractable structure. Specifically, hierarchical models where the
latent variables follow distributions from the exponential family and the generative model is conju-
gate to the prior, the resulting conditional posterior distributions remain within the same exponential
family as the prior, thereby facilitating such efficient inference. However, for general neural network
observation likelihoods, such as pθg , the absence of such conjugacy structure significantly increases
the computational complexity of inferring the latent variables requiring multiple passes through the
generative model. To ensure computational tractability while using general non-conjugate observa-
tion likelihoods with structured latent variable priors, we use deep amortized recognition networks
h(x;ϕ) of Johnson et al. (2016). For each datapoint, these networks output local conjugate likeli-
hood potentials p̂ϕ, as defined in Equation 4 unlike standard variational autoencoder encoders that
directly output variational distribution parameters. These conjugate potentials replace the original
non-conjugate observation likelihoods during inference, and are combined with the structured la-
tent variable prior using efficient message-passing algorithms, thereby preserving the tractability of
conjugate graphical model inference.

p̂ϕ(e | x) =
d∏

i=1

p̂ϕ(ei | x) =
d∏

i=1

exp{⟨hi(x;ϕ), te(ei)⟩} (4)

This independence structure of the recognition network, enables the inference of local latent vari-
ables {ei, zi} associated with each codebook Ci independently of the other codebooks. With this
structural constraint, the data-likelihood third term of the ELBO (2.2) with local latent variables
decomposes into a sum over individual dimensions:

Li = Eqνβ (β)q(zi|β)

[
log

p(zi | β)
q(zi | β)

+ Eqνθ (θ)q(ei|zi,θ)

[
log

p(ei | zi,θ)
q(ei | zi,θ)

+ log p̂ϕ(ei | x)
]]

(5)

Similar to the work of Hoffman & Blei (2015), we observe that, with the global latent variables β
and θ and the local latent variable zi held fixed, the second term—dependent on the latent variable
ei—can be expressed as a variational lower bound on the conditional marginal likelihood associated
with the conjugate potential of that dimension.

Eq(ei|zi,θ)

[
log

p(ei | zi,θ)
q(ei | zi,θ)

+ p̂ϕ(ei | x)
]

= −DKL (q(ei | zi,θ)∥p̂ϕ(ei | xi, zi,θ)) + log p̂ϕ(xi, | zi,θ) ≤ log p̂ϕ(xi, | zi,θ) (6)

with the local posterior distribution of ei conditioned on the data and the latent variables, defined as

p̂ϕ(ei | xi, zi,θ) =
p̂ϕ(ei | xi)p(ei | zi,θ)

p̂ϕ(xi | zi,θ)
(7)
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Here, the marginal likelihood of the conjugate potential defined as p̂ϕ(xi | zi,θ) =
∫
p̂ϕ(ei |

xi) p(ei | zi,θ)dei to ensure that the posterior p̂ϕ(ei | xi, zi,θ) is a valid probability distribution.
Since the Kullback-Leibler (KL) divergence is non-negative, choosing the variational distribution
q(ei | zi,θ) to be exactly equal to the local posterior p̂ϕ(ei | xi, zi,θ) minimizes the KL divergence
to zero and yields the tightest possible lower bound on the local ELBO.

q(ei | zi,θ) = p̂ϕ(ei | xi, zi,θ)

= exp {⟨ηe(zi, ηθ(θ), ϕ), te(e)⟩ −Ae(ηe(zi, ηθ(θ), ϕ))}
(8)

where the natural parameters ηe(zi, ηθ(θ), ϕ), defined as

ηe(ηθ(θ), ϕ) =

T∑
k=1

1[zi=k] ηθ(θk) + hi(xi;ϕ)

This formulation explicitly expresses the variational distribution q(ei | zi,θ) as an exponential
family distribution resulting from combining the conjugate observation likelihood with the struc-
tured latent prior distribution. It is worth noting that for effective partitioning of the data through
quantization, instead of propagating embeddings to the decoder which are sampled from the vari-
ational distribution q(ei | zi,θ), we propagate embeddings sampled from their prior distribution
p(ei | zi,θ). This forces the representations to cluster around the prior and encoding variations
common to all data belonging to the same cluster.

It is worth noting that for effective data partitioning through representation quantization, we propa-
gate embeddings sampled from the prior distribution p(ei | zi,θ) to the decoder, rather than from the
variational distribution q(ei | zi,θ). This approach forces the representations to encode variations
common to all data belonging to the same cluster, rather than datapoint-specific information. With
this choice of variational distribution for ei, it is crucial to note that the local ELBO can be further
expressed as a variational lower bound on the marginal likelihood of the data, conditioned on the
global variable β with respect to the latent variable zi.

Li = Eqνβ (β)q(zi|β)

[
log

p(zi | β)
q(zi | β)

+ Eqνθ (θ)
[log p̂ϕ(x | zi,θ)]

]
= −DKL(q(zi | β)∥p̂ϕ(zi | xi,β)) + log p̂ϕ(xi | β) ≤ log p̂ϕ(xi | β)

(9)

Therefore, similar to the variational distribution of ei, the variational distribution of zi can be set to
the local optimal value given by

log q(zi = k) ∝ Eqνθ (θ)
log p̂ϕ(xi | zi = k,θ)

= Ae (ηθ(θk) + hi(xi;ϕ))−Ae (ηθ(θk))
(10)

The use of structured variational inference with deep amortized recognition networks enables the
variational distributions over local latent variables to be set to their locally optimal values, thereby
ensuring tractable and efficient inference. At each iteration, we first sample the global parameters
β and θ from their variational distributions qν(β) and qν(θ) respectively and use the samples to
compute the local variational distributions.

However, in the context of structured variational inference, as noted by Hoffman & Blei (2015) exact
inference over the global variables is generally intractable due to the restored dependencies between
global and local variables. Moreover, the use of recognition networks in place of the non-conjugate
likelihood generative functions necessitates gradient-based estimation of global parameters. As a
result, we use low-variance Monte Carlo estimators to approximate the required expectations and
efficiently implement this using the reparameterization trick, which enables gradient-based opti-
mization of the variational parameters. For approximate posterior inference of the global variables,
we use stochastic gradient-based optimization methods equipped with adaptive preconditioning ma-
trices, such as RMSProp (Graves, 2013) and Adam Adam et al. (2014). These optimizers facilitate
efficient updates by scaling the gradients according to the geometry of the parameter space. To
further enhance convergence and stability, we select the step-size following the recommendations
of Mandt et al. (2017), which provide principled guidance for optimal learning rates for posterior
inference.

6
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3 EXPERIMENTS

In this section, we present experiments designed to empirically assess whether the hierarchical
Bayesian nonparametric approach to latent quantization provides effective inductive biases for
learning interpretable disentangled representations. Specifically, we evaluate whether our approach
achieves comparable performance relative to prior work which impose equivalent inductive biases
through multiple, distinct regularization terms.

Datasets. Our experimental framework systematically addresses these questions through compre-
hensive quantitative evaluations conducted on two benchmark datasets labeled with ground-truth
source information. Each dataset is constructed from mutually independent sources through a deter-
ministic data generation process. In particular, we use the 3DShapes (Burgess & Kim, 2018) dataset
of 3D shapes generated from six ground-truth independent latent factors with approximately uni-
form and small number of variations. Additionally, we use the MPI3D dataset (Gondal et al., 2019),
collected from a real-world robotic environment, which exhibits a power-law distribution across the
number of variations of different factors. Specifically, a few factors contain extensive variations
(e.g., 40 discrete values for each rotational degrees of freedom), while the majority possess substan-
tially fewer variations (e.g., 2-6 values for object properties).

Prior Methods. We evaluate our proposed approach against several state-of-the-art methods that
incorporate distinct inductive biases for unsupervised disentanglement. Specifically, we compare
to β-VAE Higgins et al. (2017) and β-TCVAE Chen et al. (2018) which enforces disentanglement
through information-theoretic regularization encouraging independence across latent dimensions.
We further consider BioAE Whittington et al. (2022), which introduces biologically inspired con-
straints—namely nonnegativity and energy efficiency—to promote compact representations enforc-
ing neurons to become selective for single factors of task variation, together with a grid-like struc-
tural constraint as an architectural inductive bias. In addition, we examine QLAE Hsu et al. (2024a),
which introduces an architectural bias based on latent quantization, and subsequently Tripod Hsu
et al. (2024a), which combines latent quantization with additional inductive biases enforcing inde-
pendence among latent variables as well as constraining the functional mapping from latent repre-
sentations to the data space. For a concise prior on the disentanglement metrics and the different
properties measured please refer to Section A.3.

Quantitative Comparison with Prior Methods. The experimental evaluation demonstrates that
the proposed Bayes-QLAE consistently outperforms most baseline methods across both datasets
in terms of modularity metrics (InfoM and D), with the notable exception of achieving competi-
tive performance relative to QLAE and Tripod (Table 1 and Table 2). The observed improvements
in compactness (InfoC) are particularly pronounced when compared to the baseline QLAE, demon-
strating the effectiveness of the nonparametric prior in adapting to the complexity of underlying gen-
erative factors while maintaining consistency in modularity. Contrary to the position advanced by
the authors of QLAE, who prioritize modularity/disentanglement over compactness/completeness
through specific architectural design choices, we argue that achieving interpretable representations
that faithfully capture mutually independent generative factors requires balanced weighting of both
modularity and compactness metrics. With competitive explicitness and informativeness measures,
Bayes-QLAE demonstrates performance consistent with QLAE and Tripod while substantially out-
performing alternative approaches, reinforcing the efficacy of latent quantization for disentangled
representation learning.

It is worth noting that Tripod achieves its superior modularity and compactness performance through
the application of a Normalized Hessian Penalty, which necessitates multiple forward passes through
the generative network, thereby incurring additional computational overhead. In contrast, Bayes-
QLAE achieves competitive performance through architectural inductive biases alone, without re-
quiring additional regularization terms. Furthermore, Tripod’s disentanglement performance, par-
ticularly in modularity and compactness dimensions, exhibits sensitivity to quantization level hy-
perparameters, which must be specified a priori. Conversely, Bayes-QLAE demonstrates adaptive
behavior that automatically learns quantization levels from the data while maintaining robustness
across evaluation metrics.

We observe that the performance improvement of Bayes-QLAE is notably more pronounced on
the 3DShapes dataset compared to the MPI3D dataset, where factor variations are characterized
by a power-law distribution. This differential performance suggests that the underlying distribu-
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tional properties of the generative factors significantly influence the efficacy of the nonparametric
prior. We hypothesize that replacing the Dirichlet Process prior with a more flexible, generalized
prior such as the Pitman–Yor process—which allows for a richer clustering structure and can model
power-law behaviors—may yield further performance gains. We perform detailed ablation studies
to systematically isolate and quantify the inductive biases contributed by each component of our
hierarchical Bayesian nonparametric framework in Section A.2. 1

model InfoM InfoC InfoE D C I

β-VAE 0.62 ± .02 0.44 ± .03 0.93 ± .02 0.58 ± .02 0.42 ± .02 0.97 ± .02
β-TCVAE 0.65 ± .03 0.56 ± .02 0.91 ± .02 0.56 ± .02 0.46 ± .02 0.95 ± .02
BioAE 0.58 ± .02 0.42 ± .02 0.90 ± .01 0.48 ± .01 0.39 ± .02 0.91 ± .02
QLAE 0.84 ± .02 0.49 ± .01 0.97 ± .01 0.79 ± .01 0.56 ± .01 0.97 ± .01
Tripod 0.91 ± .03 0.58 ± .03 0.96 ± .02 0.80 ± .03 0.63 ± .03 0.97 ± .02
Bayes-QLAE 0.91 ± .03 0.61 ± .02 0.95 ± .02 0.84 ± .03 0.65 ± .03 0.97 ± .02

Table 1: Disentanglement metrics measured in InfoMEC and DCI for 3Dshapes dataset. For each
metric a higher score is better. The scores for all the models were averaged across 5 runs with differ-
ent random seeds with intervals denoting 95% confidence intervals of the mean estimated assuming
a t-distribution. The results for the VQE-based and QLAE-based models are obtained using the hy-
perparameter settings and experimental conditions as described in Locatello et al. (2019b) and Hsu
et al. (2024a;b) respectively.

model InfoM InfoC InfoE D C I

β-VAE 0.41 ± .03 0.40± .03 0.68 ± .03 0.24 ± .03 0.19 ± .03 0.80 ± .03
β-TCVAE 0.48 ± .03 0.46 ± .03 0.62 ± .03 0.27 ± .03 0.24 ± .03 0.79 ± .03
BioAE 0.44 ± .03 0.38 ± .02 0.61 ± .03 0.26 ± .02 0.14 ± .02 0.77 ± .02
QLAE 0.52 ± .02 0.43 ± .02 0.68 ± .04 0.38 ± .04 0.34 ± .04 0.81 ± .04
Tripod 0.59 ± .05 0.54 ± .05 0.74 ± .06 0.47 ± .04 0.45 ± .05 0.84 ± .05
Bayes-QLAE 0.60 ± .03 0.56 ± .03 0.71 ± .04 0.48 ± .03 0.47 ± .03 0.81 ± .03

Table 2: Disentanglement metrics measured in InfoMEC and DCI for MPI3D dataset. For each
metric a higher score is better. The scores for all the models were averaged across 5 runs with
different random seeds with intervals denoting 95% confidence intervals of the mean estimated
assuming a t-distribution.

4 RELATED WORKS

The challenge of separating mutually independent sources in data traces back to the classical statis-
tical problem of Independent Component Analysis (ICA) Comon (1994); Hyvärinen & Oja (2000).
This core problem was later reinterpreted in the context of modern machine learning as disentangle-
ment, formally articulated by Bengio Bengio (2013) and formalized by Higgins et al. (2018). When
the data generating process is governed by nonlinear transformations Hyvärinen & Pajunen (1999),
the task of learning disentangled representations becomes theoretically unidentifiable Hyvärinen &
Oja (2000); Khemakhem et al. (2020); Locatello et al. (2019b). Consequently, the incorporation of
auxiliary data Hyvärinen & Pajunen (1999); Hyvärinen et al. (2019); Khemakhem et al. (2020) or
weak supervision Shu et al. (2019); Locatello et al. (2020) is necessary to achieve identifiability in
disentanglement. A distinct line of research focuses on the incorporation of inductive biases either
in the model, training objective, or the data (Locatello et al., 2019b) for identifiability.

Information-theoretic Regularization Biases. Many early and influential works leverage
information-theoretic constraints on the latent space to encourage factorization. The β-VAE vari-
ants Higgins et al. (2017); Burgess et al. (2018) introduces a scalar multiplicative factor on the KL
divergence penalty with isotropic Gaussian priors, forming an information bottleneck, limiting the
amount of information each latent can capture. Extensions like FactorVAE Kim & Mnih (2018) and

1The code can be found here
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β-TCVAE Chen et al. (2018) further refine these constraints by explicitly penalizing total correlation
to enforce statistical independence between dimensions. BioAE (Whittington et al., 2022) demon-
strates that biologically inspired constraints, specifically, minimizing latent activity and weight en-
ergy while promoting latent non-negativity encourage more factorized representations. In a similar
vein, temporal sparsity is used to encourage the learning of factors varying independently across
sequences (Sprekeler et al., 2014; Klindt et al., 2020).

Architectural and Structural Biases. Structural inductive biases embedded directly into model
architectures have proved powerful. Vector quantization in models like QLAE (Hsu et al., 2024a)
and the recent Tripod framework (Hsu et al., 2024b) induce grid-like latent spaces that simplify
factor separation. FactorQLAE (Baykal et al., 2024) combine scalar quantization of the latent vari-
ables with a total correlation term in the optimization as an inductive bias. On the theoretical front,
Barin-Pacela et al. (2024) establish identifiability for quantized factors under nonlinear mappings.
Further, Leeb et al. (2020) demonstrate that restricting different latents to enter the decoding com-
putation graph at different points can enable disentanglement. Diffusion-based architectural biases
have emerged as particularly effective inductive structures. Yang et al. (2023) introduce the first un-
supervised framework for disentangling pre-trained diffusion models by automatically discovering
latent factors and decomposing gradient fields into factor-conditioned sub-gradients. Further, Yang
et al. (2024) show that diffusion models with cross-attention mechanisms serve as strong inductive
biases, relying on the inherent information bottlenecks in the diffusion process and cross-attention
mechanisms. Dynamic Gaussian Anchoring in Jun et al. (2025) bias towards a cluster structure in
the latent space of diffusion models with cross-attention mechanisms for better separability between
factor variations. Compositional constraints offer another structural approach, where maximizing
the validity of composite images generated through stochastic mixing operators between latent rep-
resentations enforces meaningful factor recombination without factor-specific architectural biases
(Jung et al., 2025).

Recent work emphasizes the incorporation of multiple, complementary inductive biases, for exam-
ple, Tripod integrates quantization, statistical independence, and inter-latent influence minimization
into a single framework Hsu et al. (2024b). Similarly, our work combines complementary inductive
biases derived from nonparametric priors, structured variational inference, and stochastic quanti-
zation, within a principled Bayesian framework with a unified objective that provides theoretical
grounding for their integration.

5 CONCLUSION

In this paper, we introduce a novel approach that incorporates Bayesian nonparametric priors into
the embedding space of latent quantizing autoencoders. By leveraging the flexibility of nonpara-
metric Bayesian methods, our approach enables the model to adaptively partition the latent space in
accordance with the underlying data complexity, promoting more interpretable and structured latent
encodings. This prior biases the learned representations toward capturing the underlying structure
inherent in the data, thereby facilitating the learning of disentangled representations.

To enable accurate posterior inference under this flexible and hierarchical prior, we introduce a tai-
lored nested and structured variational family. This variational family is specifically designed to
preserve both the hierarchical structure of the prior and the inductive bias imposed by latent quanti-
zation, ensuring that the inference procedure remains expressive enough to capture complex depen-
dencies while maintaining the structural properties essential for effective representation learning.

Our ablation studies systematically isolate and quantify the inductive biases contributed by each
component of our hierarchical Bayesian nonparametric framework—namely, the nested variational
family, structured variational inference, and stochastic quantization. Bayes-QLAE consistently out-
performs all ablated variants across disentanglement metrics, demonstrating that each component
provides complementary inductive biases that, when combined, enhance distinct aspects of disen-
tanglement. Our empirical results demonstrate the effectiveness and generalizability of the pro-
posed approach across image datasets characterized by diverse factor variation distributions. Bayes-
QLAE consistently achieves superior or competitive performance relative to baseline methods on
both 3DShapes and MPI3D, particularly in terms of both modularity and compactness-based disen-
tanglement metrics. Importantly, this performance is attained solely through architectural inductive
biases, without reliance on additional computationally expensive regularization.
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The differential in performance on the two datasets suggests that the underlying distributional prop-
erties of generative factors significantly influence the efficacy of the nonparametric prior. We hy-
pothesize that replacing the Dirichlet Process prior with a more flexible prior such as the Pitman–Yor
process—which allows for richer clustering structure and can model power-law behaviors—may
yield further performance improvements. These findings highlight the potential of our framework
for interpretable and structured representation learning in varied settings.
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A APPENDIX

A.1 PRELIMINARIES

For a theoretical foundation for our proposed approach, we first review the Dirichlet Process and
its role as a nonparametric prior in mixture models, with particular emphasis on the natural cluster-
ing structure that emerges from this formulation. Subsequently, we discuss the quantization-based
generative model, the VQ-VAE, which utilizes discrete latent representation spaces and review prior
work leveraging this quantization-structure for learning disentangled representations.

A.1.1 DIRICHLET PROCESS MIXTURE MODELS

We begin by considering nonparametric models, defined by an infinite-dimensional parameter space
that fundamentally allows the model’s complexity to adapt and grow with the data. These models
are typically used as priors over distributions with broad support that encompasses the entire space
of all possible distributions. The Dirichlet Process (DP), in particular, is a stochastic process whose
realizations are discrete probability distributions, thereby defining a valid nonparametric prior prob-
ability distribution over the space of discrete probability measures. Sethuraman (1994) constructive
definition of the DP represents each discrete distribution drawn from the DP as a weighted sum of
countably infinite atomic measures sampled from a continuous base distribution. This definition
uses the stick-breaking construction, where the infinite sequence of weights for the atomic measures
of the discrete distribution is generated by iteratively partitioning a unit-length stick. In the first
step, a segment of length β1 is broken off the stick, where β1 is drawn from a Beta distribution,
β1 ∼ Beta(1, α), parameterized by α, ensuring β1 ∈ (0, 1). This segment is assigned as the weight
of the first atomic measure θ1, which is independently sampled from a base distribution G0(λ) with
parameters λ. The remaining portion of the stick, with length 1− β1, is then recursively partitioned
in the same manner: at each step, a segment of length βi ∼ Beta(1, α), scaled to the length of the re-
maining stick given by

∏i−1
j=1(1−βj), is broken off and assigned as the weight of an atomic measure

θi, drawn independently from the base distribution. This explicit stick-breaking construction gen-
erates a random discrete distribution G ∼ DP(α,G0) over the countably infinite atomic measures
θ drawn from the base distribution G0. Building on this, the DP serves as the nonparametric prior
over the mixture components in the Dirichlet Process Mixture Models (DPMMs) Antoniak (1974).
DPMMs generate data by first sampling a discrete distribution G from the prior DP(α,G0) using
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the stick-breaking construction and then using the set of atomic measures θ sampled from the base
distribution G0 to parameterize a data-generating distribution F . To generate each data point, we
first sample a latent variable z from the discrete distribution defined by the stick-breaking weights,
then use the corresponding atomic measure θz to parameterize the data-generating distribution F ,
which is further used to draw the observation x:

βk | α ∼ p(βk | α) = Beta (1, α) , θk | λ ∼ p(θk | λ) = G0(λ), ∀k ∈ N (11)

z = k | β ∼ p(z = k | β) = βk

k−1∏
j=1

(1− βj), x | {z, θ} ∼ p(x | z, θ) = F (θz) (12)

Because each realization G drawn from the DP is a discrete distribution over the atomic measures
θ, the above data-generating process results in repeated parameter values for the data-generating
function F . This effectively induces a partitioning of the data, where each partition or component
corresponds to the data points generated with identical parameter values, allowing the generative
process to be interpreted as a mixture model. Consequently, this results in a hierarchical Bayesian
framework, where the parameters of the data-generating distribution F are sampled from a discrete
probability distribution drawn from the DP. The joint distribution of the data {x1, . . . , xN} and the
latent variables: stick-breaking lengths β = {β1, β2, . . . }, component parameters θ = {θ1, θ2, . . . }
and assignment variables {z1, . . . , zN}, factorizes hierarchically as follows:

p (x, z, β, θ | α, λ) = p (β | α) p (θ | λ) p (z | β) p (x | z, θ) (13)

The primary objective of the learning process is to infer the posterior distribution of the latent vari-
ables β, θ and z conditioned on the observed data x and the hyperparameters α, λ, denoted by
p(β, θ, z | x, α, λ).
Computing the exact posterior over the latent variables given the observed data introduces dependen-
cies among the variables. As a consequence evaluating the marginal likelihood of the data requires
integrating over every possible latent configuration, making it intractable. In the nonparametric set-
ting, such as under a Dirichlet Process (DP) prior, the posterior cannot be computed exactly and
must be approximated.Wainwright et al. (2008) introduce a deterministic approach to approximate
the intractable posterior with a simpler, tractable family of distributions by breaking certain depen-
dencies among latent variables.They define a variational family qν , parameterized by free parameters
ν, and optimize ν to minimize the Kullback–Leibler divergence between qν and the true posterior.
Equivalently, this corresponds to maximizing the evidence lower bound (ELBO) on the log marginal
likelihood of the data, as defined below:

log p(x | α, λ) ≥ Eqν [log p(x, e, z,β,θ | α, λ)− log qν(e, z,β,θ)] (14)

A.1.2 VECTOR QUANTIZATION FOR DISENTANGLEMENT

Next, we discuss the Vector Quantized-Variational AutoEncoder (VQ-VAE) Van Den Oord et al.
(2017), a generative model which learns a discrete latent representation via vector quantisation (VQ).
The VQ-VAE model discretizes the continuous encoder outputs ze(x) by mapping them to a discrete
latent space consisting of a codebook with a finite set of K embedding vectors {ek}Kk=1. The
posterior distribution q(z | x) of the latent variable z is categorical over the embedding space, with
probabilities determined by the Euclidean distances between the encoder output and the embedding
vectors in the codebook. Samples drawn from this distribution index the set of embedding vectors,
which are then passed as input to the decoder zq as follows:

q(z = k | x) =
{
1 for k = argminj ∥ze(x)− ej∥2,
0 otherwise,

(15)

z ∼ q(z | x), zq(x) = ez = ek (16)

To enable gradient propagation through the non-differentiable quantization step, a straight-through
estimator is used, wherein gradients from the decoder are directly propagated back to the encoder
output ze(x). The loss function used to train the VQ-VAE, defined in equation 17, consists of the re-
construction loss, jointly optimizing the encoder and decoder to maximize the evidence lower bound
(ELBO) on the data log-likelihood. Assuming a uniform prior p(z) and a deterministic posterior as
in equation 15, the KL divergence of the ELBO simplifies to the constant logK and is ignored. The
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second term corresponds to the vector quantization loss, which updates the embedding vectors by
moving them toward the encoder outputs. The third term is the commitment loss, encouraging the
encoder outputs to remain close to the selected embeddings and thereby ensuring alignment between
the encoder space and the embedding space.

L = − log p(x | zq(x)) + ∥sg[ze(x)]− e∥22 + β∥ze(x)− sg[e]∥22, (17)
where sg stands for the stop-gradient operator which blocks the gradient from propagating through
the computational branch of the operand, treating it as a constant. While standard VQ-VAE ap-
proaches discretize the latent representations using a single codebook of high-dimensional em-
bedding vector and optimize primarily for reconstruction fidelity, learning disentangled represen-
tations necessitates strong inductive biases Locatello et al. (2019b). To structure the latent space
such that distinct dimensions capture independent generative factors, the approach of Hsu et al.
(2024a) instead propose latent quantization, which enforces structural regularity in the latent space
by quantizing each latent dimension using separate learnable scalar codebooks. Specifically, the pro-
posed quantized latent autoencoder (QLAE) parameterizes the latent space as the Cartesian product
Z = C1 × · · · × Cd, where each codebook Cj contains scalar embeddings. This element-wise
quantization enforces a combinatorial factorized encoding, allowing the decoder to learn consistent
interpretations for each latent dimension. Furthermore, a higher weight decay is used to regular-
ize the model to encourage reliance on the discrete codebook structure. Collectively, these design
choices promote disentangled representations through explicit architectural and regularization bi-
ases.

A.2 ABLATION STUDIES

Model Info M Info C Info E

Bayes-QLAE 0.58± .04 0.51± .03 0.71± .04
T-QLAE (k=10) 0.54± .04 0.40± .03 0.68± .04
T-QLAE (k=50) 0.51± .06 0.48± .05 0.62± .06
MF-QLAE 0.49± .04 0.49± .04 0.76± .04
DQ-QLAE 0.52± .02 0.43± .02 0.71± .02

Table 3: Model performance comparison across different information metrics

We structure the experiments in this section to isolate and quantify the specific inductive biases
derived from each component of our hierarchical Bayesian nonparametric framework: the nested
variational family, structured variational inference, and stochastic quantization. Specifically, we
perform an ablation by replacing the nested variational family with a truncated one (T-QLAE) with
different truncation levels K. Similarly, to evaluate the role of the structured variational family, we
substitute it with a mean-field variational family (MF-QLAE), as detailed in (Johnson et al., 2016).
Finally, to isolate the effect of stochastic quantization, we replace with a deterministic nearest-
neighbor quantization, with the straight-through estimator used to propagate gradients through the
quantization step.

From our experiments (as detailed in Table 3) Bayes-QLAE consistently outperforms its ablated
variants across all disentanglement metrics, confirming that each component contributes an induc-
tive bias which, when combined, enhances performance. For models based on truncated variational
families, we observe a negative correlation between modularity and truncation level, while a positive
correlation with compactness. This aligns with the intuition that representations obtained with fewer
quantized values are biased toward modularity. Notably, the truncated model with k = 10 surpasses
QLAE in modularity due to the benefits of stochastic quantization and structured variational infer-
ence, though with a slight reduction in compactness as a consequence of stochasticity. Removing
structured variational inference and defaulting to deterministic quantization degrades both modular-
ity and compactness, with the mean-field family exhibiting a more severe decline in modularity, sug-
gesting a bias towards representation which minimize the reconstruction cost over representations
adhering to structured prior distribution. Finally, deterministic quantization exacerbates posterior
collapse, leading to representations with a lower compactness metric.

We empirically demonstrate that a small codebook is not a prerequisite for disentanglement and
therefore need not be constrained. Critically, across all three axes of disentanglement assess-
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ment—informativeness (reconstruction fidelity), modularity (independence), and compactness (one-
to-one factor-dimension correspondence)—we observe that disentanglement quality remains stable
or improves as the codebook size expands adaptively in response to data complexity. These findings
directly challenge the common assumption that small, fixed codebooks are necessary for learning
disentangled representations.

Rather, the critical factors enabling disentanglement are two structural properties: (1) the implicit
regularization effect induced by discrete latent encodings, and (2) the combinatorial composition of
factor-specific codes to encode representations. During early training stages, when the codebook size
is small, the encoder operates under a representational bottleneck that necessitates the construction
of latent representations through combinatorial composition of the restricted set of available codes.
This bottleneck implicitly regularizes the learning process, strongly biasing the encoder toward al-
locating disjoint, factor-specific codes to each factor-specific codebook. Consequently, the learned
compositional structure mirrors the underlying generative process of the dataset, wherein the set of
observations arise from the cartesian product of discrete factor instantiations. This early-stage regu-
larization effect establishes a foundation for disentanglement by enforcing a modular, compositional
encoding scheme that respects the factorial structure of the data-generating distribution.

In our approach we initialize the nonparametric prior with a single code per codebook. The nested
variational family provides a principled mechanism to increase the number of codes: new codes
are instantiated if and only if their inclusion yields an improvement in the variational lower bound.
This criterion ensures that capacity expansion occurs only when statistically justified by the data.
Consequently, the model inherits the inductive bias of sparse codebooks while avoiding any explicit
hard constraint on the upper bound of the cardinality of the codebooks. This adaptive regularization
mechanism resolves the tension between early-stage structural learning and asymptotic expressive-
ness.

We validate this hypothesis through ablation studies comparing our nested variational inference
framework against a truncated variant. In the truncated approach, we fix the number of mixture
components at a predetermined upper bound for each factor, effectively eliminating the adaptive
capacity of the nonparametric formulation. This modification results in measurable degradation
across all disentanglement metrics relative to the nested variational inference approach. These re-
sults demonstrate that the adaptive, data-driven discovery of codebook size—rather than absolute
codebook cardinality—is the essential mechanism underlying successful disentanglement.

Moreover, the tendency toward cluster expansion is explicitly governed by the concentration param-
eter α of the nonparametric prior, which is itself assigned a Gamma hyperprior. This hierarchical
Bayesian formulation provides regularization of the cluster proliferation rate, enabling the model
to infer from data the appropriate balance between model parsimony and representational capacity
without manual specification.

A.3 DISENTANGLEMENT METRICS

For quantitative evaluation, we compute two complementary disentanglement metrics which com-
prehensively measure disentanglement properties using different computational approaches. The
InfoMEC metric (Hsu et al., 2024a) relies on information-theoretic mutual information estimation
computed from the empirical joint distribution between latent representations and ground-truth fac-
tors. In contrast, the DCI metric (Eastwood & Williams, 2018) trains predictive models to map the
learned representations to the underlying factors of variation. Both metrics evaluate disentangle-
ment quality across three fundamental dimensions, though with different terminology: InfoMEC
measures InfoModularity (InfoM) while DCI measures Disentanglement (D) to quantify the extent
to which sources are encoded in mutually disjoint subsets of representations, InfoExplicitness (In-
foE) and Informativeness (I) measure the degree to which the relationship between the sources and
representations can be characterized by a simple functional or statistical dependency, and InfoCom-
pactness (InfoC) and Completeness (C) quantifies the degree to which latent variables encode infor-
mation exclusively about mutually disjoint subsets of the sources. We train our proposed approach in
a completely unsupervised manner on the entire dataset and evaluate the learned representations on a
subset of samples, using the open-source implementations of disentanglement metrics by Locatello
et al. (2019b); Hsu et al. (2024a).
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A.4 QUALITATIVE EVALUATION

We conduct qualitative assessments of our proposed method on each dataset to evaluate both sam-
ple reconstructions and latent traversals. For latent traversals, we encode a single image into the
latent space and systematically visualize the effects of intervening on individual latent dimensions.
Specifically, for each latent variable we vary its value across the range of values encoded in the
representations (sample with replacement) while holding all other latent dimensions fixed, then de-
code the resulting latent vectors to observe their effects in the data space. In the visualization, each
row corresponds to interventions on a single latent variable, while columns represent different val-
ues sampled from the empirical distribution of that dimension. Well-disentangled representations
should exhibit smooth, semantically meaningful changes along individual latent dimensions, with
each dimension controlling a distinct generative factor independently of others.

Reconstruction Fidelity. We assess the informativeness of learned representations by examining
reconstruction quality. High-fidelity reconstructions that faithfully preserve visual details of the
original images indicate that the latent representations are sufficiently informative to capture the full
range of variations present in the data. Conversely, poor reconstructions suggest that certain factors
of variation have been inadequately encoded or lost during the encoding process.

Modularity. We evaluate the modularity, or disentanglement, properties of learned representations
through latent traversal analysis. A representation exhibits modularity when each latent dimension
independently controls a single underlying generative factor while remaining invariant to variations
in other factors. Operationally, this is assessed by examining whether each row in the traversal
visualization demonstrates isolated semantic changes corresponding to a single factor of variation
without coupling to other factors. Such independence in the latent space reflects successful recovery
of the true compositional structure of the underlying independent generative factors.

Compactness. We further assess the compactness, or completeness, of the learned representations
by determining whether all variations of a single generative factor are captured within a single latent
dimension. Compact representations, wherein each factor is encoded by exactly one latent variable,
are crucial for interpretability as they establish a one-to-one correspondence between latent dimen-
sions and semantically meaningful generative factors. This property enables intuitive understanding
and manipulation of specific attributes in the generated outputs.
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(a) Sample reconstructions: Original images (top row) and corresponding reconstructions (bottom row)

(b) Latent traversals: Each row shows the effect of systematically varying a single latent dimension while
holding all other dimensions fixed. Columns represent different values sampled from the distribution of that
dimension. The model successfully disentangles six ground-truth factors of variation: object orientation (row
1), floor hue (row 3), wall hue (row 4), object shape (row 6), object hue (row 9), and object scale (row 12).
Rows 2, 5, 7, 8, 10, and 11 correspond to inactive latent dimensions that do not encode interpretable factors.

Figure 1: Reconstructions and Latent traversals for the 3DShapes dataset: Reconstructions demon-
strate high fidelity in capturing visual details demonstrating the model’s ability to faithfully encode
and decode the full range of variations in the data. Latent traversals illustrate that individual latent
variables control distinct, interpretable factors of variation in the generated images. Moreover, the
presence of inactive latent variables and the encoding of each factor in a single latent variables indi-
cates that the model has learned a compact representation recovering the true generative structure
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(a)

(b)

(c)

Figure 2: Evolution of Latent Traversals for 3DShapes dataset: The figure illustrates the evolution
of the number of clusters associated with each generative factor demonstrating the adaptive capacity
of the nonparametric formulation. Each column in each row corresponds to a factor-specific mix-
ture component, and the distinct components within a row denote the clusters capturing the encoded
variations of that factor. The vertical axis indicates cluster multiplicity, revealing how the model pro-
gressively discovers and encodes additional variations for each factor. This dynamic cluster growth
exemplifies the nonparametric property of the hierarchical mixture prior, which enables data-driven
inference of latent capacity without manual specification. Notably, factors with higher contribution
to the reconstruction objective—such as floor hue, object hue, and wall hue—exhibit earlier cluster
proliferation during training, suggesting the model prioritizes encoding variations that most signif-
icantly impact reconstruction fidelity. In contrast, geometric factors such as object orientation and
shape undergo refinement in later training stages, indicating a hierarchical learning strategy wherein
the model first captures high-variance attributes before refining lower-variance structural properties.
This demonstrates that the nonparametric prior successfully balances model capacity across factors
according to their respective complexities and contributions to data likelihood
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(a) Sample reconstructions: Original images (top row) and corresponding reconstructions (bottom row)

(b) Latent traversals: Each row shows the effect of systematically varying a single latent dimension while
holding all other dimensions fixed. Columns represent different values sampled from the distribution of that
dimension. The model successfully disentangles the following ground-truth factors of variation: vertical axis
(row 1), object color (row 3), object shape (row 4), background color (row 6), object size (row 9), horizontal
axis (row 11) and camera height (row 12). Rows 2, 5, 7, 8, 10 correspond to inactive latent dimensions that do
not encode interpretable factors.

Figure 3: Reconstructions and Latent traversals for the MPI3D real dataset: Reconstructions demon-
strate high fidelity in capturing visual details demonstrating the model’s ability to faithfully encode
and decode the an extensive range of variations in the data. Latent traversals illustrate that individual
latent variables control distinct, interpretable factors of variation in the generated images. It is worth
noting that, although the representations do not capture the full set of underlying variations, they
remain both modular and compact, closely reflecting the true underlying structure of the generative
process.
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