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Abstract
This work aims to build a text embedder that001
can capture characteristics of texts specified002
by user instructions. Despite its tremendous003
potential to deploy user-oriented embeddings,004
none of previous approaches provides a con-005
crete solution for it. This paper offers a new006
viewpoint, which treats the instruction as a007
question about the input text and encodes008
the expected answers to obtain the represen-009
tation accordingly. Intuitively, texts with the010
same (implicit) semantics would share similar011
answers following the instruction, thus lead-012
ing to more similar embeddings. Specifically,013
we propose INBEDDER that instantiates this014
embed-via-answering idea by only fine-tuning015
language models on abstractive question an-016
swering tasks. INBEDDER demonstrates sig-017
nificantly improved instruction-following ca-018
pabilities according to our proposed instruc-019
tion awareness tests and instruction robustness020
tests, when applied to both large language mod-021
els (LLMs) (e.g., llama-2-7b) and smaller022
encoder-based LMs (e.g., roberta-large).023
Additionally, our qualitative analysis of cluster-024
ing outcomes, achieved by applying different025
instructions to the same corpus, demonstrates a026
high degree of interpretability.027

1 Introduction028

Text embedders play a crucial role in large-scale029

textual data analysis and management. While ex-030

isting models (Reimers and Gurevych, 2019a; Gao031

et al., 2021; Ni et al., 2022a,b; Wang et al., 2022;032

Xiao et al., 2023) demonstrate strong effectiveness033

in representing texts in general, they lack the ability034

to address user-specific objectives. This limitation035

hinders their application in more intricate scenarios036

where the embedding task requires the model to rep-037

resent particular characteristics of the texts (Wang038

et al., 2023; Zhang et al., 2023b). Consider Fig-039

ure 1, where a single set of reviews is required to be040

clustered in three distinct manners to derive mean-041

ingful insights. In response, we attempt to equip042

the text embedders with instruction-following ca- 043

pability in this paper. 044

One straightforward solution is to embed the 045

concatenated instruction and input. Nonetheless, 046

generic textual embeddings represent the texts in 047

a form that can be used in textual similarity tasks, 048

search and clustering, etc, rather than following 049

instructions. Even for those that are trained with 050

a multi-task contrastive objective (Su et al., 2023), 051

there are no guarantees to generalize to new in- 052

structions due to the inevitably restricted diversity 053

of training instructions written by humans. 054

We offer a novel viewpoint, which treats the in- 055

struction as a question about the input text and 056

encodes the expected answers. Specifically, using 057

the instructed input as the prompt to generative lan- 058

guage models, we argue that the generated answers 059

can be natively utilized to model semantic similar- 060

ity under different instructions. For instance, given 061

the sentences “I love cats” and “I love dogs”, the 062

instruction “Do they love animals?” will lead to a 063

uniform response of “Yes/Certainly/...”; Conversely, 064

distinct answers would be generated in response 065

to “What animals do they love?”. Therefore, we 066

believe that the expectation of answer representa- 067

tions given the prompt can serve as an instruction- 068

following embedding. We support this hypothesis 069

by our empirical observations in Section 4.2 on ex- 070

isting instruction-tuned LLMs (Ouyang et al., 2022; 071

Chung et al., 2022; Zhang et al., 2023a; Touvron 072

et al., 2023a,b) 1 which have demonstrated that hid- 073

den states corresponding to the generated answers 074

show considerably better instruction-awareness 075

compared to those derived from the prompt. 076

Our observations indicate that function words 077

and phrases in the answers do not contribute to bet- 078

ter embedding quality. For instance, the introduc- 079

tory phrase “Sure! Based on the input provided...” 080

is irrelevant to the answers and is commonly found 081

1For simplicity, we use LLMs to refer to instruction-tuned
LLMs for the rest of the paper.
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Figure 1: An example workflow of INBEDDER. INBEDDER takes in both user-provided dataset and user-specified
instructions to produce personalized clusterings from which the user can extract insights about the dataset.

across various inputs. This redundancy can lead to082

inefficiency due to an increased decoding length,083

emphasizing the importance of answer brevity.084

To effectively instantiate the embed-via-085

answering idea, we propose an Instruction-086

following Embedder framework (INBEDDER),087

which is compatible with both large language088

models (LLMs) and smaller encoder-based LMs089

such as RoBERTa. Specifically, INBEDDER090

fine-tunes the LM on a union of 11 abstractive091

question answering (QA) datasets with ∼ 200, 000092

paragraph-question-answer triplets where the093

answers are usually short and informative. To094

facilitate the model to learn (implicit) semantics,095

we choose abstractive QA in particular, as the096

answers cannot be directly extracted. We further097

simplify the answers by removing the stopwords,098

resulting in an average answer length of 2.89.099

Due to the scarcity of evaluations focusing on100

instruction-following capabilities in the literature,101

we introduce a suite of tasks aimed at testing the102

ability of embedders to be instruction-aware, in-103

cluding (1) a triplet task that selects the closer sen-104

tence to the anchor sentence based on two different105

instructions, (2) an instruction-following sentence106

similarity task, and (3) a task for clustering the107

same corpus under various instructions. Further-108

more, we evaluate INBEDDER s’ robustness to the109

instructions by testing it on clustering datasets with110

either correct, implicit, or incorrect instructions.111

Our model is compared with both traditional text112

embedders as well as LLM-based embedders. The113

results demonstrate that our model can effectively114

process user instructions while generating high-115

quality embeddings. Moreover, we empirically116

observe that the hidden states corresponding to the117

first generated token can already effectively follow118

instructions, which makes it as efficient as tradi-119

tional embedder methods by only requiring one120

forward pass of the LM. Finally, we propose to in-121

terpret the embedding clusters via post-processing 122

on the generations of INBEDDER, and we observe 123

that the clusters can reflect instruction-following 124

capability when applying multiple instructions to 125

the same corpus. 126

Our contributions are the following: 127

• We address a novel and challenging problem: 128

instruction following of text embeddings and pro- 129

pose a framework, INBEDDER, to handle it by 130

learning to answer user questions given inputs. 131

• We provide a comprehensive assessment for 132

instruction-following text embedders, including 133

instruction awareness tests and instruction robust- 134

ness tests, which intuitively reflect the models’ 135

instruction-following capability. 136

• We propose an approach for extracting expla- 137

nations from embedding clusters. We show 138

that these explanations further reflect instruction- 139

following capability. 140

2 Related Works 141

Text Embedder Text embedders empower modern 142

natural language processing systems with a wide 143

variety of abilities like clustering (Aggarwal and 144

Zhai, 2012) and information retrieval (Karpukhin 145

et al., 2020). In the representation space of text 146

embedders, similar texts are embedded close to 147

each other. Thus, Siamese networks (Reimers and 148

Gurevych, 2019b) and contrastive learning (Gao 149

et al., 2021) are proposed to learn the relative po- 150

sition of texts in the latent embedding space. Text 151

embedders are further strengthened by incorporat- 152

ing more weakly supervised text similarity annota- 153

tions (Wang et al., 2022; Xiao et al., 2023), model 154

structure variants (Ni et al., 2022b) and multi-task 155

learning (Su et al., 2023). However, these main- 156

stream text embedders only process general textual 157

similarity, ignoring the changing view on textual 158

similarity based on user demands. Our INBEDDER 159

shows a strong instruction-following text embedder 160
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in instruction following by using expected answer161

distributions.162

Instruction Tuning Instruction-following (Zhang163

et al., 2023a) of LLMs is one of the core abili-164

ties for them to capture the user intents, which165

makes LLMs popular among users. Instruct-166

GPT (Ouyang et al., 2022) is one of the first167

trials on instruction-following LLMs, which un-168

earths the potential of LLMs to complete tasks169

under instructions from users. With an out-170

standing instruction-following ability from rein-171

forcement learning with human feedback (RLHF),172

ChatGPT (OpenAI, 2023) achieves great success.173

The open-source instruction-following LLMs, like174

LLaMA chat (Touvron et al., 2023a,b), also pro-175

vide valuable resources for researcher. Our work176

instead studies instruction-following abilities of177

text embeddings. Previously, it has been discov-178

ered that LLM can explore and manipulate vari-179

ous attributes of texts (Peng et al., 2023). More-180

over, LLM hidden states can effectively represent181

space and time (Gurnee and Tegmark, 2023), an182

aspect of texts (Zou et al., 2023) or a task defined183

by input-output pairs (Todd et al., 2023). Despite184

the potential, it is still unknown how to produce185

instruction-following embeddings from LLMs.186

Goal-Driven Clustering With the recent advance-187

ments of instruction-following LLMs, goal-driven188

clustering has been proposed to group text cor-189

pora according to a personalized goal (Wang et al.,190

2023). In order to address such a challenging yet191

novel problem, Goal-EX (Wang et al., 2023) ap-192

plies a two-step pipeline that first proposes clus-193

ter explanations according to a user-oriented goal194

with GPT-4 and then selects clustering assignments195

with another LLM. Zhang et al. (2023b) proposes196

another method that can incorporate user instruc-197

tions to first determine sentence relationships via198

a triplet selection task and then produce clusters199

via fine-tuning. These produced clusters can then200

benefit personalized multi-document summariza-201

tion (Coavoux et al., 2019; Fabbri et al., 2019; Lu202

et al., 2020). Our paper instead directly produces203

embeddings that are shaped by different instruc-204

tions which does not require calling APIs of LLMs205

and potentially saves costs.206

3 Problem Formulation207

3.1 Instruction-following Embedder208

We introduce the definition of instruction-following209

embedder in this section. A vanilla text em-210

bedder (denoted Emb(·) : X → Z) (Reimers 211

and Gurevych, 2019a; Gao et al., 2021; Ni et al., 212

2022a,b; Wang et al., 2022; Xiao et al., 2023) em- 213

beds texts from token sequence space X into a 214

D-dimensional vector space Z ⊆ RD, where sim- 215

ilarities between two pieces of texts can be mea- 216

sured by a certain metric Sim(·, ·) : Z × Z 7→ R. 217

These embeddings are usually designed to gener- 218

ically represent texts, i.e., they aim to capture the 219

overall meaning. Such an approach, while versa- 220

tile, often fails to align with a specific downstream 221

application, e.g., grouping a corpus according to a 222

particular interest or customizing a search engine 223

with a targeted aspect. In this paper, we assume 224

these goals can be specified by a user instruction I 225

and then used to shape the embedding space with- 226

out any fine-tuning to the text embedder. Under this 227

circumstance, the similarity scores are conditional, 228

i.e., Sim(·, ·|I). 229

The most straightforward approach is to just em- 230

bed the concatenated instruction and input, which 231

we will hereafter refer to as prompt, 232

Sim(X,X ′|I) = Sim(Emb(I ⊕X),Emb(I ⊕X ′)) 233

where X,X ′ ∈ X and ⊕ is concatenation. In order 234

to assess the instruction-following ability, we will 235

present a series of tasks in Section 5.3 that require 236

the model to understand the instructions. 237

Instructor (Su et al., 2023), a previous work, uti- 238

lized a contrastive objective alongside multi-task 239

learning to develop a more general text embedder. 240

Our experiments in Section 5.3 demonstrate that 241

their model does not adequately comprehend in- 242

structions. This is not surprising given the limited 243

instruction diversity and the lack of encouragement 244

to follow instructions during training. 245

Our hypothesis. We hypothesize the responses 246

of LLMs (Touvron et al., 2023a,b; OpenAI, 2023; 247

Chung et al., 2022) can be embedded to produce 248

instruction-following embedding. Specifically, the 249

LLMs are prompted to generate a response Y , 250

Y = LLM(I ⊕X) 251

where both X,Y ∈ X are from token sequence 252

space. LLM(·) : X → X is a function that maps 253

prompts to responses. Usually, there could be mul- 254

tiple valid Y for a given prompt. In order to accom- 255

modate instruction-following embedding, we offer 256

a novel viewpoint, which treats the instruction I as 257

a question about the input text X and encodes the 258
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expected answers (i.e. the responses to the ques-259

tion). In this paper, we study how to effectively260

embed expected answers.261

3.2 Instruction Awareness Tests262

Traditional generic embedding evaluation bench-263

marks, such as MTEB (Muennighoff et al., 2023)264

and SentEval (Conneau and Kiela, 2018), lack the265

ability to assess instruction awareness. In this work,266

we propose a set of new tasks specifically designed267

to comprehensively evaluate the capabilities of em-268

bedding models in this regard. We discuss the task269

formulations below and leave the detailed dataset270

creation procedures in Appendix A.271

IntentEmotion. Inspired by previous272

works (Zhang et al., 2023b), we employ273

triplet tasks with two contrasting criteria, i.e. the274

intent and emotion of an utterance. A triplet task is275

composed of three different utterances {u1, u2, u3}276

where u1, u2 have the same intent but different277

emotions while u1, u3 have the same emotion but278

different intents, or vice versa. A success is defined279

under criterion Iint if d(zint1 , zint2 ) < d(zint1 , zint3 ).280

On the other hand, it is said to be a success for281

criterion Iemo if d(zemo
1 , zemo

2 ) > d(zemo
1 , zemo

3 ).282

Notice that the ranking is reverted under the two283

criteria. We use the harmonic mean of two success284

rates as our metric.285

InstructSTSB. Traditional Semantic Textual Sim-286

ilarity (STS) Benchmark (Cer et al., 2017) lacks287

a definitive criterion for annotators to rely on, re-288

sulting in the subjectivity of the ratings. Hence, we289

create another instruction-based STS task where290

the two sentences are similar or dissimilar based on291

different instructions. We measure the Spearman292

correlation from cosine similarities. Notice that293

a similar dataset was first proposed in Deshpande294

et al. (2023). The main differences are that (1) our295

dataset is created directly from the original test set296

of STSB 2 via brainstorming instructions; (2) our297

dataset only involves two ratings 0 and 1 indicating298

same or different, unlike the 1 ∼ 5 rating scale in299

their case, reducing subjectivity in the evaluation.300

NYTClustering. We present the clustering results301

for the New York Times (NYT) dataset (Sandhaus,302

2008), which is categorized according to two an-303

notations: topic and location of the news articles.304

The results are reported using the harmonic mean305

of the V-measure for both clustering types.306

2https://huggingface.co/datasets/mteb/
stsbenchmark-sts/viewer/default/test

3.3 Instruction Robustness Tests 307

We further introduce an evaluation task specifically 308

designed to assess the robustness of embedding 309

models to various instructions. We employ clus- 310

tering to evaluate model performance in response 311

to correct, implicit, and incorrect instructions. For 312

each clustering task, a set of 10 correct instructions 313

is generated by instructing GPT-4 to paraphrase 314

the original task instructions. Similarly, a set of 10 315

implicit instructions is produced by GPT-4 through 316

the rephrasing of the instructions to convey them 317

implicitly. Moreover, 10 incorrect instructions are 318

created by prompting GPT-4 to formulate instruc- 319

tions that diverge from the original task objective. 320

Examples of these instructions are illustrated in 321

Figure 9. The difference in average performance 322

between correct and incorrect instructions is de- 323

noted as ∆ci, and the difference in average perfor- 324

mance between implicit and incorrect instructions 325

is denoted as ∆ii. See Appendix B for details. 326

4 Methodology 327

In this section, we introduce INBEDDER that is 328

derived from observations on LLMs. We first de- 329

fine ways to acquire sentence embeddings from 330

LLMs in Section 4.1. Subsequently, we illustrate 331

early observations in Section 4.2. Finally, we in- 332

troduce INBEDDER that fine-tunes an LLM to an 333

instruction-following embedder, in Section 4.4. 334

4.1 Encoding Methods 335

Contemporary LLMs are usually composed of one 336

(encoder-/decoder-only) or two (encoder-decoder) 337

transformer architectures with L layers. The input 338

of the transformer is a sequence of embeddings 339

[h10, · · · , hN0 ] where N is the length of prompt 340

(I ⊕ X). Each layer will then produce an inter- 341

mediate hidden state hl until the last layer which 342

is used to predict the (N + 1)th output token. We 343

first introduce two strategies to acquire a single 344

aggregated embedding from an off-the-shelf LLM. 345

Direct Encoding directly utilizes LLM hidden 346

states. Since it is not obvious which hidden states 347

contain the most relevant information to the prompt, 348

we explore 5 aggregation methods for each layer: 349

1) The average of generation Y ’s hidden states with 350

generation length Ng, 351

Embavg-gen
l =

1

Ng + 1

Ng∑
j=0

h
(N+j)
l , 352
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2) The average of prompt hidden states. This will353

serve as a direct comparison to “avg-gen”.354

Embavg-ppt
l =

1

N − 1

N−1∑
i=1

hi
l,355

3) The hidden states used to predict the first token356

in generations,357

Emb1st-gen
l = hN

l ,358

4) The last generation hidden states,359

Emblast-gen
l = h

N+Ng

l ,360

5) The average of all hidden states,361

Embavg-all
l =

1

N +Ng
(

N∑
i=1

hi
l +

Ng∑
j=1

hN+j
l ),362

In practice, we adjust the aggregation methods with363

regard to the uniqueness of each architecture. See364

details in Appendix C.365

While direct encoding is commonly applied for366

conventional encoders (Wang et al., 2022; Su et al.,367

2023), using only the input information might not368

reveal the implicit features that can be inducted369

by answering the prompt. Thus, we propose Re-370

encoding, which is a two-step approach that first371

produces the responses Y based on the prompts372

and then re-encode them using another embedder373

EmbR. Mathematically,374

Embre-enc = EP (Y |I⊕X)[EmbR(Y )]375

We then re-write the above with an empirical esti-376

mation,377

Embre-enc =
1

|SY |
∑

Y ∼SY

EmbR(Y )378

where SY is sampled from response distribution379

P (Y |I⊕X). We choose EmbR to be a (relatively)380

light-weight sentence transformer, thus the effi-381

ciency of re-encoding is similar to that of avg-gen.382

And when Ng = 1, all the aggregation methods383

possess the same efficiency.384

4.2 Answer Speaks Louder385

In this section, we show some early observations386

that guide us towards the design of INBEDDER.387

With the definitions in the previous section, we388

show the performance comparison among various389

aggregation methods on an existing LLM in Fig-390

ure 2 left. To assess performance, we devised three391
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Figure 2: Instruction awareness tests performance (av-
eraged over 3 datasets) for different encoding methods
from last layer. T is the decoding temperature while
SY is the sample size. Observations: (1) The genera-
tion/answer side (i.e., the checkerboard pattern) is more
informative than the prompt side (i.e., the dark blue
with dotted pattern); and (2) In llama-2-7b-InBedder,
1st-gen seems to significantly outperform others.

flan-t5-xl llama-2-7b-chat llama-2-13b-chat30.0
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35.0
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40.0

34.7

37.8

34.7635.13

39.37
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not filtered
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Figure 3: Filtered vs. not filtered (i.e., avg-gen on
the last layer of each LLM). Observations: filtering
hidden states associated with uninformative contents
can marginally improve performance.

distinct tasks that require the embedders to compre- 392

hend not only the raw texts but also the instructions, 393

which will be further elaborated in Section 5.3. It 394

is evident that hidden states derived from gener- 395

ations (avg-gen) consistently surpass those from 396

prompts (avg-ppt). Additionally, averaging all 397

hidden states, denoted as avg-all, does not en- 398

hance performance. Finally, an examination of 399

three distinct models in Figure 2 reveals that re- 400

encoding consistently outperforms all direct en- 401

coding methods, while increasing the sample size 402

|SY | will further boost performance. These obser- 403

vations manifest our hypothesis that answers are 404

more important for instruction-following embed- 405

der, in other words “answers speak louder”. See 406

analysis of model depth in Figure 6. 407

4.3 Answer Brevity Matters 408

One notable issue for using LLMs as embedders 409

is their propensity to produce content that, while 410

enhancing readability for humans, may not be di- 411
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rectly relevant to the task at hand. For instance,412

llama-2-7b-chat frequently initiates responses413

with introductory phrases such as “Based on the414

input provided...” or “The topic of the news article415

is...” which are common across various requests. It416

is thus plausible to conjecture that the hidden states417

responsible for generating these superfluous con-418

tents contribute no useful information to the embed-419

ding task. Following this intuition, we conducted a420

simple experiment to validate the impact of filter-421

ing out hidden states associated with such content.422

Specifically, we compiled a list of candidate tokens423

for exclusion, which includes tokens present in the424

instruction, stopwords, and common phrases like425

“Based on”. While calculating “avg-gen”, we disre-426

gard hidden states linked to the generation of tokens427

from this list. The outcomes, depicted as green bars428

in Figure 3, indicate a marginal improvement in the429

performance of the three evaluated models upon430

the removal of non-informative content, thereby431

validating the assumption that these hidden states432

are indeed redundant.433

4.4 Our INBEDDER434

In order to effectively instantiate the embed-435

via-answering, we propose a novel fine-tuning436

framework leveraging existing curated question-437

answering (QA) datasets. Specifically, we collect a438

set of 11 abstractive QA datasets 3, which sum up439

to ∼ 200, 000 paragraph-question-answer triplets.440

As discussed in Section 3.3, we treat the paragraph441

as the input, the question as the instruction, and442

generate the answers. Note that, we pre-process443

the answers so that all the stopwords are removed,444

which results in an average response length of 2.89.445

As will be demonstrated in the experiments, such446

a pre-processing step significantly contributes to447

our method. We then fine-tune the LM with an448

autoregressive objective.449

We emphasize three inherent advantages of450

INBEDDER: (1) QA datasets usually have concise451

outputs that will promote the LLMs to respond452

eagerly without considering too much about read-453

ability. Refer to Figure 8 for an example. (2) Com-454

pared to multi-task datasets introduced in Su et al.455

(2023), our dataset offers significantly greater diver-456

sity in instructions, attributed to the variety of ques-457

tions associated with each input paragraph, uncon-458

strained by question format. And most importantly,459

3We also include several multiple-choice QA datasets but
remove all the wrong choices.

the questions are publicly available without any ex- 460

tra costs. (3) The auto-regressive objective induces 461

better interpretability of generated embeddings via 462

mining explanations from its generations. 463

5 Experiments 464

We explain our experimental setup in Sections 5.1 465

and 5.2. Next, we share outcomes from our tests 466

on instruction awareness and robustness in Sec- 467

tions 5.3 and 5.4. Lastly, we compare results for 468

general embedding tasks in Section 5.5. 469

5.1 Implementations 470

We fine-tune INBEDDER from various language 471

models such as (1) roberta-large, (2) opt-1.3b, 472

(3) opt-2.7b, and (4) llama-2-7b 4. For masked 473

language modeling-based roberta-large, we adapt 474

our framework by appending mask tokens behind 475

prompts with the same length as target tokens and 476

then training with mask token prediction loss. Dur- 477

ing testing, we append 3 mask tokens to represent 478

the answer. We consistently train for 1 epoch with 479

a learning rate of 2 × 10−5. For INBEDDER, we 480

always employ the same pattern to feed the inputs 481

to the models, i.e. “### Input:\n{input}\n\n### 482

Instruction:\n{instruction}\n\n### Response:”. For 483

llama-2 chat models, we provide an extra prefix 484

to induce shorter answers: “Your task is to give 485

an answer according to the instruction and input. 486

Please keep your answer short.”. At test time, we 487

allow the maximum generation length to be 40 for 488

llama-2 chat models and 3 for our INBEDDER. 489

We exclude hidden states corresponding to special 490

tokens. We consistently use e5-large-v2 (Wang 491

et al., 2022) as our re-encoder. Lastly, we set 492

the maximum prompt length to be 512 (including 493

instruction, input, and the words in the pattern). 494

We train and evaluate these models with at most 495

4×A100 (PCIe). Training can be finished in about 496

10 hours for llama-2-7b-InBedder. 497

5.2 Compared Methods 498

We compare with generic sentence embedding mod- 499

els: E5 (Wang et al., 2022) and Instructor (Su 500

et al., 2023) 5. We also compare with instruction- 501

tuned models: llama-2 chat models (Touvron 502

4huggingface ids: “roberta-large”, “facebook/opt-1.3b”,
“facebook/opt-2.7b”, “meta-llama/Llama-2-7b-hf”.

5huggingface ids: “intfloat/e5-large-v2”,
“hkunlp/instructor-large”
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Model I.STSB IntEmo NYT Avg

e5-large-v2(w/o instruction) 0.00 30.24 50.07 26.77
instructor-large -15.02 47.96 49.96 27.63

roberta-large-alpaca(avg-gen) 8.43 90.34 21.60 40.12
roberta-large-INBEDDER (avg-gen) 14.81 91.07 51.18 52.35

opt-1.3b-alpaca(avg-gen) -1.81 71.51 12.88 27.53
opt-1.3b-INBEDDER (1st-gen) 7.47 89.96 53.13 50.19

opt-2.7b-alpaca(avg-gen) 3.95 75.09 13.32 30.79
opt-2.7b-INBEDDER (1st-gen) 10.45 84.54 59.43 51.47

llama-2-7b-chat(re-enc) 16.56 79.32 29.41 41.76
llama-2-13b-chat(re-enc) 19.76 73.60 32.74 42.03
llama-2-7b-w/o-process(1st-gen) 21.10 83.64 52.72 52.49
llama-2-7b-INBEDDER (1st-gen) 22.07 89.68 64.65 58.80

Table 1: Instruction awareness tests results. The best
encoding methods are shown in parentheses for each
non-sentence-transformer model. We only consider the
last layer in this table. I.STSB is short for InstructSTSB.

Model AskU. SciD. StackO. 20news Avg

e5-large-v2(w/o instruction) 59.01 83.84 50.60 47.94 60.35
instructor-large 63.48 81.83 50.50 53.51 62.33

roberta-large-alpaca(avg-gen) 56.29 73.02 41.66 40.61 52.90
roberta-large-INBEDDER (avg-gen) 55.50 73.80 41.00 41.93 53.06

opt-1.3b-alpaca(avg-gen) 55.89 69.68 42.43 38.49 51.62
opt-1.3b-INBEDDER (1st-gen) 59.09 71.33 43.08 46.45 54.99

opt-2.7b-alpaca(avg-gen) 55.65 76.26 42.45 32.11 51.62
opt-2.7b-INBEDDER (1st-gen) 59.94 75.33 41.93 49.07 56.57

llama-2-7b-chat(re-enc) 55.26 75.81 41.43 25.34 49.46
llama-2-13b-chat(re-enc) 53.69 77.64 38.84 30.77 50.24
llama-2-7b-w/o-process(1st-gen) 61.25 83.13 44.39 50.68 59.86
llama-2-7b-INBEDDER (1st-gen) 60.32 80.61 44.77 52.33 59.51

Table 2: Generic sentence embedding task performance.
The best encoding methods are shown in parentheses
for each non-sentence-transformer models. We only
consider the last layer in this table.

et al., 2023b) that are fine-tuned with RLHF 6. For503

roberta-large and opt models we compare with504

those checkpoints tuned on Alpaca (Taori et al.,505

2023). For Alpaca fine-tuning, we follow the origi-506

nal dataset and hyperparameters. 7507

5.3 Instruction Awareness Tests Results508

In Figure 2 right, quite unexpectedly, we observe509

that using 1st-gen in INBEDDER achieves the best510

performance and it outperforms the other encoding511

methods by a significant amount. We hypothe-512

size that although 1st-gen is utilized solely for513

decoding the first token in the generations, it may514

contain the most relevant information due to the515

model being trained on concise outputs. Further516

qualitative analysis in Table 4 shows that the first517

generated tokens usually correspond to the answer.518

We then present comparisons across various mod-519

6huggingface id: “meta-llama/Llama-2-7b-chat-hf” and
“meta-llama/Llama-2-13b-chat-hf”

7https://github.com/tatsu-lab/stanford_alpaca/
tree/main

els in Table 1. Fine-tuning INBEDDER appears to 520

be effective across a range of model sizes, from 521

the 355M model roberta-large to the 1.3/2.7b 522

OPT and the 7b llama-2. We can also observe that 523

without pre-processing, the performance will be 524

significantly degraded on instruction-awareness ac- 525

cording to llama-2-w/o-process, which further 526

validates that conciseness of outputs is important. 527

5.4 Instruction Robustness Tests Results 528

Figure 4 presents the results obtained across three 529

models. Compared to instructor-large and 530

llama-2-7b-chat, our model demonstrates larger 531

values of ∆ci and ∆ii, as well as superior average 532

performance when applying correct instructions. 533

This indicates that INBEDDER exhibits a better un- 534

derstanding of correct or implicit instructions and 535

possesses greater robustness against incorrect ones. 536

5.5 Generic Sentence Embedding Tasks 537

Finally, we also compare performances on generic 538

sentence embedding tasks. We choose a sub- 539

set of tasks from the MTEB (Muennighoff et al., 540

2023) benchmark, including: “TwentyNewsgroup- 541

sClustering”, “AskUbuntuDupQuestions”, “Sci- 542

DocsReranking” and “StackOverflowDupQues- 543

tions”. The first task is a clustering task with V- 544

measure as its metric. The others are reranking 545

tasks that require the model to correctly identify 546

the sentences that are close to the query semanti- 547

cally. We follow MTEB to use the “mean average 548

precision (MAP)” as our metric. For each task, we 549

design a task-level prompt that describes the re- 550

quirements. We observe in Table 2 that INBEDDER 551

has a closer performance to state-of-the-art em- 552

bedders E5 (Wang et al., 2022) and Instructor (Su 553

et al., 2023) than other LLM-based embedders, 554

even though it was not trained with a contrastive 555

objective as most sentence transformers do. 556

6 Embedder Clustering Interpretation 557

Interpreting neural embeddings has long been an as- 558

piration in numerous research endeavors (Panigrahi 559

et al., 2019; Trifonov et al., 2018). We show in this 560

section that INBEDDER naturally possesses inter- 561

pretability due to its instruction-following training 562

objective. In this section, we propose a method to 563

“extract answers” from produced semantic clusters 564

of INBEDDER. 565

Specifically, we directly post-process the gener- 566

ated sequences of INBEDDER to collect identifi- 567
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(a) instructor-large
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(b) llama-2-7b-chat (re-enc)

correct implicit incorrect0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 ci = 0.21, ii = 0.18

(c) llama-2-7b-INBEDDER (1st-gen)

Figure 4: Instruction robustness tests results. Three set of instructions are tested: correct, implicit and incorrect.
∆ci denotes the separation between mean of correct and incorrect. ∆ii denotes the separation between mean of
implicit and incorrect. INBEDDER shows better robustness and performance overall. See more datasets in Figure 7

Instruction A: How does the 
customer like the product overall?

Instruction C: Is the review detailed 
with many evidences and supports?

Instruction B: What is the customer 
reviewing about?

Top words:
"good", "likes”, 
“great”…

Example:
Monta is definitely 
the best Ramen 
shop in Las 
Vegas…

Top words:
”bad", ”poor”, 
“used”…

Example:
Don't bother 
making an 
appointment...I 
did, 24 hours…

Top words:
" enough ", " 
average”, “ok”…

Example:
The pizza was 
good but I couldn’t 
tell the difference 
between this…

Top words:
"food", "quality", 
”price”, “menu” 
…

Example:
The food here is 
very delicious! I 
got camarones …

Top words:
”store", ”salon", 
"car”, “nails” …

Example:
Would not 
recommend this 
salon to minorities 
because…

Top words:
” hotel", ”room", 
”staying”…

Example:
This used to be a 
stunning hotel. 
Unfortunately, it 
hasn’t changed…

Top words:
"incorrect", 
”without”, “no”…

Example:
Chaos service. 
Pricey food. Not 
worth it.

Average 
Length: 
101.2

Top words:
”yes", ”many”, 
“detailed”, “lot…

Example:
I had been to The 
Improv about 20 
years ago when it 
was at The Riv…

Average 
Length: 
225.2

Top words:
”good”, “yes”…

Example:
This review is 
for the outside 
seating area 
since it was too 
nice a day…

Average 
Length: 
205.0

Figure 5: Instruction-following clustering with llama-2-7b-InBedder on Yelp reviews. The results are produced
by simply instructing the model. 3 clusters along with top words and examples are shown for each instruction where
we can observe clear accountability to the instructions.

able information about a cluster. To differentiate568

clusters, we initially collect outputs from each clus-569

ter following K-means clustering and concatenate570

these outputs into a single document per cluster.571

Subsequently, we employ Tf-idf to vectorize these572

K documents, resulting in K feature vectors. The573

dimensions of each vector denote the relative fre-574

quency of a word’s occurrence in one document575

compared to its occurrence in others. Hence, we576

rank feature words according to the correspond-577

ing value in the feature vector, which will then be578

designated as cluster keywords.579

Table 3 in Appendix presents explanations de-580

rived from llama-2-7b-InBedder. When com-581

pared to the label components of each cluster,582

the top words collected effectively capture the583

characteristics of each cluster. To showcase the584

instruction-following capability of INBEDDER,585

cluster explanations are further illustrated with586

three distinct instructions in Figure 5 using the587

Yelp review dataset (Zhang et al., 2015) (originally588

designed for sentiment analysis). The top words589

distinctly delineate the differences between clus-590

ters, in accordance with the provided instructions.591

For example, under “Instruction B” various prod- 592

ucts that are being reviewing are revealed from 593

clusters. On the other hand, under “Instruction C”, 594

variations in average sentence length are observed, 595

indicating the degree of detail present in the review. 596

7 Conclusions and Future Work 597

Our work addresses a novel problem, text em- 598

bedding with instruction-following. We propose 599

INBEDDER to produce desirable embeddings from 600

LLMs via generating expected answers. The 601

method is inspired by observations on existing 602

LLMs. Our text embedder model llama-2-7b- 603

INBEDDER outperforms both traditional sentence 604

transformers and aggregated embeddings from 605

LLMs on instruction-awareness tests, and instruc- 606

tion robustness tests and achieves close perfor- 607

mance on traditional generic tasks. We also show 608

that INBEDDER is inherently applicable for em- 609

bedding cluster explanation which will facilitate 610

user-oriented dataset analysis. We encourage fu- 611

ture works to investigate more efficient solutions 612

which is important in large-scale retrieval systems. 613
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Limitations614

Efficiency. Our model is not sufficiently efficient615

for large-scale retrieval tasks. In retrieval, corpus is616

usually encoded as vector embeddings beforehand,617

the only operation conducted is to encode the query618

and to compute the cosine similarities between the619

query and corpus. However, INBEDDER requires620

encoding the entire corpus w.r.t. each user query621

which results in significant latency. However, one622

possible solution is to first select the most similar623

candidates and then use INBEDDER as a query-624

dependent reranker.625

Effectiveness on generic tasks. The results in Ta-626

ble 2 show that INBEDDER does not surpass tradi-627

tional sentence transformers on especially generic628

reranking tasks. (1) Our ambition is to provide an629

instruction following embedder that could poten-630

tially facilitate user-oriented tasks rather than op-631

timizing for high-performing sentence embedding632

and we leave the exploration on that dimension in633

future works. (2) INBEDDER might benefit from634

better prompt design or task description which we635

have discussed in Section 5.4.636

Ethical Considerations637

Our work focuses on the instruction-following abil-638

ities of text embedders. Note that the proposed639

framework does not guarantee the model to gen-640

erate safe contents for embedding interpretability.641

Nonetheless the produced embeddings do not con-642

tain (understandable) harmful contents by them-643

selves. Furthermore, we will release our code,644

datasets and checkpoints upon acceptance in or-645

der to facilitate reproducibility.646
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A Instruction Awareness Tests Creation879

The datasets employed in this section have proper880

license for further modification. Note that our cre-881

ated datasets are intended for research purpose only.882

IntentEmotion We use BANKING77 (Casanueva883

et al., 2020) test set as our base dataset to create884

triplets. We prompt gpt-4-0613 to create utter-885

ances that have the same intent but two different886

emotions “optimistic” and “frustrating”, denoted887

as u1opt and u1fru, with the following prompt.888

Could you modify the emotion (one op-889

timistic and one frustrating) of follow-890

ing utterance without changing the intent891

("[INTENT]")?892

"[TEXT]"893

Please output a JSON object containing894

keys "optimistic" and "frustrating", and895

no other things.896

For each generated utterance, we then prompt the897

same LLM again to modify the intent of the utter-898

ance, denoted as u2opt and u2fru with the following899

prompt.900

Modify the intent of the above utterances901

(i.e. from "[INTENT]" to another one902

that you brainstormed. Usually by mod-903

ifying the objects or actions) without904

changing the emotions. Same as before,905

output a JSON object containing keys906

"optimistic" and "frustrating", and no907

other things.908

This will result in 4 generated utterances (disre-909

garding the original utterance), then we group these910

utterances into 4 triplets according to two criteria:911

{u1opt, u2opt, u1fru}, {u1fru, u2fru, u1opt},912

{u1opt, u1fru, u2opt}, {u1fru, u1opt, u2fru}913

In each triplet, the first one is the anchor, the second914

is the positive and the last is the negative. Thus the915

first two triplets follow emotion criterion while the916

last two follow intent criterion. As a result, there917

are 12, 320 triplets in total, half for emotion and918

half for intent. We calculate the triplet success rates919

for both criteria separately, and then calculate the920

harmonic mean.921

InstructSTSB We use STSb (Cer et al., 2017) test922

set as out base dataset to generate sentence pairs.923

We generate two instructions, one that can discrim-924

inate the sentence pair and the other that can not.925

To achieve that, we prompt gpt-4-1106-preview 926

sequentially with the following two instructions. 927

The following two sentences have 928

similar surface forms: 929

930

1. [SENTENCE1] 931

2. [SENTENCE2] 932

933

In order to discriminate the two sen- 934

tences, what question would you ask? 935

(e.g. what is the subject of the sentence?) 936

Please output a JSON object that con- 937

tains the key "question". 938

Similar to the above, in order to make the 939

answers to the two sentences immune to 940

discrimination, what question would you 941

ask? (e.g. what is the subject of the 942

sentence?) Please output a JSON object 943

that contains the key "question". 944

As a result, there are 2758 sentence pairs in total. 945

We then set the ratings for discriminative pairs to 0 946

and 1 for non-discriminative pairs. Following previ- 947

ous implementation (Muennighoff et al., 2023), we 948

use spearman correlation as our metric and cosine 949

similarity as similarity measurement. 950

NYTClustering There are no further modifications 951

to this dataset since it already contains two sets of 952

annotations, one for location and one for topic. 953

B Instruction Robustness Tests Creation 954

The datasets employed in this section have proper 955

license for further modification. Note that our cre- 956

ated datasets are intended for research purpose only. 957

We adopt clustering datasets FewNerd, FewRel 958

and FewEvent from Zhang et al. (2023b). We 959

adapt clustering datasets RateMyProf and Feed- 960

backs from Wang et al. (2023). All these datasets 961

are clustered under a complex task instruction such 962

as entity type or the aspect of the review or the 963

reason to (dis)like. Since the original paper (Wang 964

et al., 2023) does not provide the annotations, we 965

use gpt-4-1106-preview to select annotations for 966

them and then we post-process the dataset so that 967

the clusters are equal in size. As a result, Feed- 968

backs contains 3 clusters and 756 human feedbacks 969

to machine generated data. RateMyProf contains 970

4 clusters and 2, 296 reviews from RateMyProfes- 971

sor. Lastly, we provide various instructions that are 972

correct, implicit or incorrect by prompting GPT-4 973
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(webpage) to generate similar, implicit, or dissimi-974

lar instructions.975

C Details on Direct Encoding976

The direct encoding proposed in Section 4.1 are977

all compatible with decoder-only transformers.978

For encoder-decoder models such as flan-t5, be-979

cause of the two separated models, we remove980

avg-all since the hidden states are not in the981

same space. Besides, we extract avg-ppt from982

encoder and avg-gen&1st-gen&last-gen from983

decoder respectively. Notice that for 1st-gen,984

we use the hidden states for the BOS token in985

the decoder side. For encoder-only models, we986

remove 1st-gen and last-gen. We implement987

the sentence embedding function by generating to-988

kens first 8 and then cache the intermediate hidden989

states for further compute. Considering the effi-990

ciency, avg-ppt&1st-gen only require single for-991

ward pass while the others require iterative genera-992

tions and thus depending on the generation length.993

Input: Did you know that vegetables can grow in the climates 
they are not used to? … What these engineers have been 
using is very simply cold sea water. How did they use it? …

Instruction: What is the report mainly about?

Output: use sea water

Figure 8: An example from our training data.

8Notice that, in huggingface (Wolf et al., 2019), both
decoder-only and encoder-decoder model can use “generation”
function: https://huggingface.co/docs/transformers/
main_classes/text_generation. For encoder-only, we
simply concatenate the “[MASK]” tokens after the prompts
for generation.
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Figure 6: Instruction awareness tests results vs. model depth.
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RateMyProf

cluster 1 (lowest entropy) 2 3 4 (highest entropy)

label
components

personal qualities:327
ease or difficulty:31
assessment-related:15
amount of work:10

amount of work:331
assessment-related:215
ease or difficulty:128
personal qualities:12

assessment-related:173
personal qualities:99
ease or difficulty:77
amount of work:62

ease or difficulty:338
amount of work:171
assessment-related:171
personal qualities:136

top words

teaching,personality,
classroom,quality,
good,teacher,
skills,student...

assignments,homework,
workload,expectations,
tests,difficulty,
professor,exams...

teaching,quality,
grade, ability,
style,grading,
lectures,enough...

difficulty,professor
level,coursework
lectures,tests
class,course...

Feedbacks

cluster 1 (lowest entropy) 2 3 (highest entropy)

label
components

Structure, Coherence:229
Inclusion of Main Points:9
Content Accuracy:7

Content Accuracy:148
Inclusion of Main Points:134
Structure, Coherence:10

Inclusion of Main Points:109
Content Accuracy:97
Structure, Coherence:13

top words

sentence,better,
structure,written,
improved,flow,
unclear,read...

dislike,accurate,
author,generated,
mention,machine,
accuracy,inaccurate...

like,feedback,
post,likes,
good,human,
advice,relationship...

FewRel

cluster 1 (lowest entropy) 2 3 63 64 (highest entropy)

label
components

taxon rank:24
heritage designation:70
located in the administrative...:1
location:1

taxon rank:46
instance of:1
said to be the same as:1
country of citizenship:1

movement:9
religion:6
work location:6
said to be the same as:5

language of work or name:23
said to be the same as:16
followed by: =10
applies to jurisdiction:7

top words

family,species,
gastropod,marine,
sea,urothoidae,
psolidae,feed...

historic,registe,
places,listed,
national,historical,
house,significance...

family,subfamily,
order,genus,
families,tribe,
sent,orders...

friends,beowulf∗,
personalities,jewish,
slave,personality,
independence,owner...

language,minor,
wikipedia,candela,
french,translation,
flag,major...

FewNerd

cluster 1 (lowest entropy) 2 3 56 57 58 (highest entropy)

label
components

Geo-Political:139
film:1
car:1
education: 1

Geo-Political:92
company:1
government:1
sports team:1

award:35
living thing:1
broadcast program:1

language:33
Geo-Political:8
written art:4
software:4

artist, author:47
scholar:25
actor:9
Geo-Political:9
...

film:25
broadcast program:12
Geo-Political:9
written art:6
...

top words

city,america,
europe,continent
usa,state,
north,county...

country,europe,
jordan,ireland,
india,america,
uk,germany...

award,prize,
awards,best,
given,show,
film,category...

language,spoken
dialect,sentence
languages,skerry,
dialects,french...

person,artist
dan,name
paris,well,
professor, etc...

film,movie
comedy,actor
series,tv,
directed,play...

FewEvent

cluster 1 (lowest entropy) 2 3 33 34 (highest entropy)

label
components

Military Service:150
Marry:162
Leadership:2
Place Lived:1

Olympic Medal Honor:189
Education:3
Olympic Athlete Affiliation:3

Leadership:19
Employment Tenure:9
Education:8
Place Lived:6

Sentence:14
Transfer Money:13
Charge Indict:13
Transport person:9

top words

soldier,medal,
war,honor,
received,sailor,
vietnam,killed...

wife,birth,
died,maria,
child,king,
marriage,queen...

olympics,medal,
gold,summer,
winner,relay,
competition,race...

event,speech,
triggered,words,
talk,rallies,
raise,appended...

sentence,trigger,
charged,penalty,
crime,event,
prison,guilty...

Table 3: Cluster explanation results using generations from llama-2-7b-InBedder. Notice that we simplify some
label names for presentation. Clusters are ordered by increasing entropy which is determined by the distribution of
labels within each cluster.
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Figure 7: Instruction robustness more results.
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Prompt top-10 first decoding GPT-4 answer

### Input:
The Justice Department filed suit Thursday against the state of Mississippi
for failing to end what federal officials call "disturbing" abuse of juveniles
and "unconscionable" conditions at two state-run facilities.

### Instruction:
What specific language or descriptors does the first sentence use to describe
the abuse and conditions at the juvenile facilities?

### Response:

[’Dist’, ’dist’, ’des’, ’D’, ’Des’, ’un’, ’Un’, ’use’, ’uses’, ’specific’] "disturbing," "unconscionable"

### Input:
"Further testing is still under way, but at this stage, given the early detection,
the outlook in such instances would be positive," the specialist said yesterday.

### Instruction:
What additional information is provided in the first sentence that is not
present in the second sentence?

### Response:

[’fur’, ’ear’, ’testing’, ’out’, ’stage’, ’first’, ’F’, ’d’, ’special’, ’information’] Further testing, early detection

### Input:
Frank Quattrone, the former Credit Suisse First Boston technology
investment-banking guru, reportedly pleaded not guilty Tuesday to charges of
obstruction of justice and witness tampering.

### Instruction:
Who pleaded not guilty to charges of obstruction of justice and witness
tampering?

### Response:

[’Fran’, ’former’, ’Form’, ’F’, ’Cred’, ’f’, ’Qu’, ’Mr’, ’cred’, ’ex’] Frank Quattrone

Table 4: Qualitative analysis on the top-10 tokens decoded at the first position. We also present the answers from
GPT-4 (webpage) by prompting it to “answer this question within 5 words”.
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Original: What is the topic of news?

Correct: Could you summarize the key topic of the article?

Implicit: What's making the headlines in today's paper?

Incorrect: Are there any significant data or statistics 
mentioned in the article?

Figure 9: An example from our prompt robustness tests.
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