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ABSTRACT

The remarkable performance gains realized by large pretrained models, e.g., GPT-3,
hinge on the massive amounts of data they are exposed to during training. Analo-
gously, distilling such large models to compact models for efficient deployment
also necessitates a large amount of (labeled or unlabeled) training data. In this
paper, we propose the teacher-guided training (TGT) framework for training a
high-quality compact model that leverages the knowledge acquired by pretrained
generative models, while obviating the need to go through a large volume of data.
TGT exploits the fact that the teacher has acquired a good representation of the
underlying data domain, which typically corresponds to a much lower dimensional
manifold than the input space. Furthermore, we can use the teacher to explore input
space more efficiently through sampling or gradient-based methods; thus, making
TGT especially attractive for limited data or long-tail settings. We formally capture
this benefit of proposed data-domain exploration in our generalization bounds. We
find that TGT can improve accuracy on several image classification benchmarks as
well as a range of text classification and retrieval tasks.

1 INTRODUCTION

Recent general purpose machine learning models (e.g., BERT (Devlin et al., 2019), DALL-E (Ramesh
et al., 2021), SimCLR (Chen et al., 2020a), Perceiver (Jaegle et al., 2021), GPT-3 (Brown et al., 2020)),
trained on broad data at scale, have demonstrated adaptability to a diverse range of downstream tasks.
Despite being trained in unsupervised (or so-called self-supervised) fashion, these models have been
shown to capture highly specialized information in their internal representations such as relations
between entities Heinzerling & Inui (2021) or object hierarchies from images (Weng et al., 2021).

Despite their impressive performance, the prohibitively high inference cost of such large models
prevents their widespread deployment. A standard approach to reducing the inference cost while
preserving performance is to train a compact (student) model via knowledge distillation (Bucilua
et al., 2006; Hinton et al., 2015) from a large (teacher) model. However, existing distillation methods
require a large amount of training data (labeled or unlabeled) for knowledge transfer. For each data
point, the teacher must be evaluated, making the process computationally expensive (Xie et al., 2020d;
He et al., 2021; Sanh et al., 2019a). This is compounded by the need to repeat the distillation process
separately for every downstream task, each with its own training set. Enabling efficient distillation
is thus an important challenge. Additionally, minimizing the number of distillation samples would
especially benefit low-data downstream tasks, e.g., those with long-tails.

Another inefficiency with standard distillation approaches is that within each evaluation of the
teacher, only the final layer output (aka logits) is utilized. This ignores potentially useful internal
representations which can also be levered for knowledge transfer. Various extensions have been
proposed in the literature along these lines (see, e.g., (Sun et al., 2020; Aguilar et al., 2020; Li et al.,
2019; Sun et al., 2019) and references therein). However, despite their success, such extensions mostly
use the teacher model in a black-box manner, and do not fully utilize the domain understanding
it contains (Cho & Hariharan, 2019; Stanton et al., 2021). In these approaches, the teacher is
used passively as the input sample distribution remains fixed and does not adapt to the student
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model performance. Consequently, these forms of distillation do not lead to faster training of a
high-performance student model.

In this work, we go beyond the passive application of large teacher models for training compact student
models, and leverage the domain understanding captured by the teacher to generate new informative
training instances that can help the compact model achieve higher accuracy with fewer samples
and thus enable reduced training time. In particular, we propose the teacher guided training (TGT)
framework for a more efficient transfer of knowledge from large models to a compact model. TGT
relies on the fact that teacher’s internal representation of data often lies in a much smaller dimensional
manifold than the input dimension. Furthermore, we can use teacher to help guide training by
identifying the directions where the student’s current decision boundary starts to diverge from that of
the teacher, e.g., via backpropagating through the teacher to identify regions of disagreement.
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Figure 1: An overview of the proposed teacher
guided training (TGT) framework. Given a
learning task, the framework leverages a large
teacher with a pretrained generator and la-
beler that exhibits high performance on the
task. In particular, we assume that the generator
consists of an encoder and a decoder. TGT
performs three key operations during student
model training: (1) Given an original training
instance, by using the teacher generator, identify
a novel task-relevant instance. We search for
informative instances in the lower dimensional
latent space, where we can propagate the gradi-
ent to. (2) Obtain (soft) labels for the original
and newly generated training instances from the
teacher labeler; and (3) Minimize the student
training objective that depends on the original
and newly generated instances along with their
labels produced by the teacher labeler.

We provide a theoretical justification for the TGT
algorithm, showing that leveraging the data repre-
sentation of large models ensures better general-
ization for the student. Given n instances in a D-
dimensional space the generalization gap for learn-
ing a Lipschitz decision boundary of a classification
task decays only as O

(
n− 1

D

)
(Györfi et al., 2002).

In contrast, provided that the large model learns a
good data representation in a d-dimensional latent
space, the TGT framework realizes a generalization
gap ofO

(
n− 1

d +W(D,Dt)
)
, whereW(D,Dt) de-

notes the Wasserstein distance between the data dis-
tribution D and the distribution Dt learned by the
generative teacher model. Typically d≪ D, thus
TGT ensures much faster convergence whenever
we use a high-quality generative teacher; making
TGT especially attractive for low-data or long-tail
regimes.

To realize TGT, we take advantage of the fact that
most of the unsupervised pretrained models like
Transformers, VAE, and GANs have two compo-
nents: (1) an encoder that maps data to a latent
representation, and (2) a decoder that transforms
the latent representation back to the original data
space. We utilize this latent space for the data
representations learned by the teacher model to effi-
ciently search for the regions of mismatch between
the teacher and student’s decision boundaries. This
search can take the form of either (i) a zero-order
approach involving random perturbation or (ii) a first-order method exploring along the direction of
the gradient of a suitably defined distance measure between the teacher and student models.

Many pretrained models, particularly in NLP such as T5 (Raffel et al., 2020), can also provide labels
for a downstream task and act as a sole teacher. However, our approach is sufficiently general to
utilize separate pretrained models for generative and discriminative (labeler) functions (cf. Fig. 1),
e.g., we employ a BiGAN as generator and an EfficientNet as labeler for an image classification task.

Our main contributions are summarized as follows:

1. We introduce the TGT framework, a conceptually simple and scalable approach to distilling
knowledge from a large teacher into a smaller student. TGT adaptively changes the distribution
of distillation examples, yielding higher performing student models with fewer training examples.

2. We provide theoretical justifications for utilizing the latent space of the teacher generator in the
TGT framework, which yields tighter generalization bounds.

3. We empirically show the superiority of TGT to existing state-of-the-art distillation methods on
both vision and NLP tasks, unlike most prior work which is specialized to one domain.
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2 RELATED WORK

Our proposed TGT framework can be considered a form of data augmentation where data is dynam-
ically added at points of current discrepancy between the teacher and student. Next, we provide a
brief overview of how data augmentation has been used in the context of distillation and distinguish
our work from these existing efforts.

Using pseudo labels. The earliest line of work involves using consistency regularization (Sajjadi
et al., 2016; Tarvainen & Valpola, 2017) to obtain pseudo labels for unlabelled data while a model
is expected to make consistent predictions on an unlabeled instance and its augmented versions,
cf. (Miyato et al., 2019; Xie et al., 2020a; Sohn et al., 2020; Zhu et al., 2021, inter alia). Another
approach is self-training (Xie et al., 2020d; Du et al., 2021) where one learn a smaller teacher model
on the labeled data which then generates pseudo labels for a large relevant unlabeled set. A large
student model is then trained on both labeled and pseudo labeled sets. Label propagation (Iscen et al.,
2019) is another direction where unlabeled instances receive pseudo labels based on neighboring
labeled instances in a suitably constructed similarity graph.

Furthermore, prior work on learning to teach (Fan et al., 2018; Raghu et al., 2021; Pham et al., 2021),
dynamically updates the teacher so as to provided more valuable pseudo labels based on the student
loss. Such an interactive approach presents a challenging optimization problem and potentially opens
up the door for borrowing techniques from reinforcement learning. In contrast, our work focuses on
the setting where high-quality pretrained teacher model is fixed throughout the training. We focus
on a setting where updating the large teacher model is prohibitively costly or undesirable as such a
model would potentially be used to distill many student models. Moreover, many large models like
GPT-3 may only be available through API access, thus making it infeasible to update the teacher.

Using pretrained models. One can use large pretrained class conditional generative models
like BigGAN (Brock et al., 2019) or VQ-VAE2 (Razavi et al., 2019) to generate more data for
augmentation. Despite evidence (Webster et al., 2019) that GANs are not memorizing training data,
using them to simply augment the training dataset has limited utility when training ResNets (Ravuri
& Vinyals, 2019b;a). Lack of diversity (Arora et al., 2017) in data generated by GANs, especially
among high density regions (Arora et al., 2018), is a potential reason for this. In contrast, we use
generative models to adaptively explore the local region of disagreement between teacher and student
as opposed to blindly sampling from the generative model. This way we circumvent the excessive
reliance on samples from high density regions which often have low diversity.

Another line of work by Chen et al. (2020b) combines unsupervised/self-supervised pretraining
(on unlabeled data) with SimCLR-based approach (Chen et al., 2020a), task-specific finetuning (on
labeled data), and distillation (natural loss on labeled and distillation loss on unlabeled data). Our
work is very close to this line of work with two key differences: (1) We assume access to a very high-
quality teacher, which is potentially trained on a much larger labeled set, to provide pseudo labels;
(2) We go beyond utilizing a given relevant unlabeled dataset and explore the dynamic generation
of domain-specific unlabeled data by leveraging the representations learned by pretrained models.
Additionally, we develop a theoretical framework to establish the utility of unlabeled data instances
for student training, specifically the instances generated based on teacher learned representations.

Using both pseudo labels and pretrained models. The GAL framework (He et al., 2021) previously
considered generating training instances by using pretrained generator models along with pseudo-
labelers. However, the GAL framework generates these new instances in an offline manner at the
beginning of student training. In contrast, our approach (cf. Fig. 1) generates new informative
instances in an online fashion to attain high-performance and reduce training time for the student.

Recently, MATE-KD (Rashid et al., 2021) also used a generator model to obtain new training instances
based on the student’s current performance (by looking at the divergence between the student and
teacher predictions). However, there are two key differences between our TGT approach and the
MATE-KD framework: First, their method updates the teacher so as to find adversarial examples for
the students, which can cause the generator to drift away from the true data distribution. Second, they
introduce perturbations in the input space itself and do not leverage the latent space of the teacher,
which is the crux of our method. See Appendix A for further details.

Notably KDGAN (Wang et al., 2018) leverages a GAN during distillation. However, it samples
examples from a GAN without taking student’s performance into account. Heo et al. (2019); Dong
et al. (2020) search for adversarial examples during distillation. However, their search also does
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not depend on student’s performance, resulting in wasteful exploration of those regions of the input
spaces where the student is already good. Further, unlike TGT, they search examples in the input
space which is often inefficient due to the large ambient dimension of the input space.

Finally, data-free KD approaches (Nayak et al., 2019; Yoo et al., 2019; Chen et al., 2019) use only
synthetically generated data for knowledge distillation. Unlike TGT, in such approaches, the synthetic
data distribution is updated at each epoch, which causes the student model to lose the information
over epochs and experience accuracy degradation (Binici et al., 2022). In this framework, Micaelli
& Storkey (2019) targeted generating samples that would cause maximum information gain to the
student when learned, however, it also suffers from similar drawbacks as MATE-KD noted above.

3 TEACHER GUIDED TRAINING

We begin by formally introducing our setup in Section 3.1. We then describe our proposed TGT
framework in Section 3.2 and present its theoretical analysis in Section 3.3.

3.1 PROBLEM SETUP

In this paper, we focus on a multiclass classification task where given an instance x ∈ X the objective
is to predict its true label y ∈ Y := [K] out of K potential classes. Let D := DX,Y denote the
underlying (joint) data distribution over the instance and label spaces for the task. Moreover, we use
DX and DY |X=x to denote the marginal distribution over the instance space X and the conditional
label distribution for a given instance x, respectively. A classification model f : X → RK , with
f(x) = (f(x)1, . . . , f(x)K), takes in an input instance x and yields scores for each of the K classes.
Finally, we are given a (tractable) loss function ℓ : RK × [K] → R which closely approximates
model’s misclassification error on an example (x, y), e.g., softmax-based cross-entropy loss.

Given n i.i.d. labeled samples Slabeledn := {(xi, yi)}i∈[n] generated from D and a collection of
allowable models F , one typically learns a model via empirical risk minimization (ERM):

f̂n = argmin
f∈F

1

n

∑
i∈[n]

ℓ(f(xi), yi). (1)

In our TGT setup, we further assume access to a high quality teacher model, which has:
• Teacher generator. A generative component that captures DX well, e.g., a transformer, VAE, or

ALI-GAN. This usually consists of an encoder Enc : X→ Rd and a decoder Dec : Rd → X.

• Teacher labeler. A classification network, denoted by h : X→ RK , with good performance on
the underlying classification task. In general, our framework allows for h to be either a head on
top of the teacher generator or an independent large teacher classification model.

Given Slabeledn and such a teacher model, our objective is to learn a high-quality compact student
(classification) model in F , as assessed by its misclassification error on D.

3.2 PROPOSED APPROACH

To train a student model f ∈ F , we propose to minimize:

RTGT
f (Slabeledn ) :=

1

n

∑
i∈[n]

(
ℓ(f(xi), yi) + ℓd(f(xi), h(xi))

)
+

1

m

∑
j∈[m]

ℓd(f(x̃j), h(x̃j)) (2)

where ℓd : RK ×RK → R is a loss function that captures the mismatch between two models f and h,
and S̃m = {x̃j}j∈[m] is introduced in subsequent passage. The first term, ℓ(f(xi), yi), corresponds to
standard ERM problem (cf. Eq. (1)). The subsequent terms, ℓd(f(xi), h(xi)) and ℓd(f(x̃j), h(x̃j)),
do not make use of labels. In particular, the second term, ℓd(f(xi), h(xi)), corresponds to the
standard knowledge distillation where the teacher h provides supervision for the student f .

We introduce a novel third term, ℓd(f(x̃j), h(x̃j)), where S̃m = {x̃j} is generated based on Sn =

{xi}. Here, we want to generate informative instances S̃m that will help student learn faster, e.g.,
points on the data manifold where the student disagrees with the teacher. In other words, we want to
find x̃ as follows:

x̃ ∈ argmax
x∈X

ℓd(f(x), h(x)) such that pDX
(x) ≥ λ (3)
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Note that the objective and constraint in Eq. (3) ensure that we select an instance where the student
and teacher disagree and the instance belongs to a region where true data distribution assigns a
non-trivial mass, respectively. Based on this, we propose two specific approaches to generate the
novel samples S̃m:

1. Isotropically perturb in latent space:

x̃ = Dec(Enc(x) + ν) where ν ∼ N (0, σ2Id). (4)

This can be regarded as a zero-order search in the latent space, which satisfies the constraint of
remaining within the data manifold.

2. Gradient-based exploration: Run a few iterations of gradient ascent on Eq. (3) in order to
find the example that diverges most with teacher. To enforce the constraint, we run the gradient
ascent in the latent space of the teacher generator as opposed to performing gradient ascent
in the instance space X, which might move the perturbed point out of the data manifold. For
a high-quality teacher generator, the latent space should capture the data manifold well. To
implement this we need to backprop all the way through the student and teacher-labeler to the
teacher-decoder, as shown in Fig. 1. Mathematically, it involves the following three operations:

z := Enc(x); z ← z + η∇zℓd (f(Dec(z)) , h(Dec(z))); x̃ := Dec(z). (5)

This is akin to a first-order search in the latent space.

Extension to discrete data. Note that perturbing an instance from a discrete domain, e.g., text
data, is not as straightforward as in a continuous space. Typically, one has to resort to expensive
combinatorial search or crude approximations to perform such perturbations (Tan et al., 2020; Zang
et al., 2020; Ren et al., 2019). Interestingly, our approach in Eq. (4) provides a simple alternative
where one performs the perturbation in the latent space which is continuous. On the other hand, in
gradient based exploration, we assume that X is a differentiable space in order to calculate necessary
quantities such as ∂f(x)

∂x in Eq. (5). This assumption holds for various data such as images and
point clouds but not for discrete data like text. We can, however, circumvent this limitation by
implementing weight sharing between the output softmax layer of the teacher’s decoder Dec and
the input embedding layer of the student f (and also to teacher labeler h when an independent
model is used). Now, one can bypass discrete space during the backward pass, similar to ideas
behind VQ-VAE (Hafner et al., 2019). Note that, during forward pass, we still need the discrete
representation for decoding, e.g., using beam search.

Finally, we address the superficial resemblance between our approach and adversarial training. For
latter, the goal is to learn a robust classifier, i.e., to increase margin. Towards this, for any x, one
encourages model agreement in its local neighborhood Br(x), i.e., f(x′) = f(x),∀x′ ∈ Br(x).
One needs to carefully choose small enough neighborhood by restricting r, so as to not cross the
decision boundary. In contrast, we are not looking for such max-margin training which has its own
issues (Nowak-Vila et al., 2021). We simply desire global agreement between the teacher and student,
i.e., f(x′) = h(x′), ∀x′. As a result, we can explore much bigger regions as long as we remain on
the data manifold, i.e., pDX

(x) is non-trivially large.

3.3 VALUE OF GENERATING SAMPLES VIA THE LATENT SPACE

Now, we formally show how leveraging the latent space can help learning. For this exposition, we
assume X = RD. Furthermore, for directly learning in the input space, we assume that our function
class F corresponds to all Lipschitz functions that map RD to RK . For any such function f ∈ F ,
existing generalization bounds take the form (Devroye et al., 2013; Mohri et al., 2018):

Rℓ,f (D) ≤ Rℓ,f (Sn) + Rn(Gℓ,F )︸ ︷︷ ︸
≤O(n−1/D)

+O
(√

log(1/δ)/n
)
,

where Rℓ,f (D) is true population risk of the classifier, Rℓ,f (Sn) is empirical risk, and Rn(Gℓ,F )
is the Rademacher complexity of the induced function class Gℓ,F , which is known in our case to
be O(n−1/D) (see Appendix B for more details). Note that any reduction in the Rademacher term
would imply a smaller generalizing gap, which is our goal.
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In our TGT framework, we assume availability of a teacher that is able to learn a good representation
for the underlying data distribution. In particular, we assume that, for x ∈ supp(DX), we have

∥Dec ◦ Enc(x)− x∥ ≤ ϵ, (6)

i.e., for x, applying the decoder Dec on the latent representation of x, as produced by the encoder
Enc, leads to a point Dec ◦ Enc(x) ∈ X that approximates x with a small error.

This ability of teacher generator to model the data distribution using latent representation can be used
to reduce the complexity of the function class needed. Specifically, in TGT framework, we leverage
the teacher decoder to restrict the function class to be a composition of the decoder function Dec
and a learnable Lipschitz function operating on the latent space Rd. Since d ≪ D, this leads to a
function class with much lower complexity. Next, we formally capture this idea for distillation with
both the original samples Sn sampled from DX as well as the novel samples S̃ introduced by the
teacher generator. In what follows, we only consider the distillation losses and ignore the first loss
term (which depends on true labels). Our analysis can be easily extended to take the latter term into
account (e.g., by using tools from Foster et al. (2019)).

We start with the standard distillation in the following result. See Appendix C.1 for the details.
Theorem 3.1. Suppose a generative model with Enc and Dec satisfies the approximation guarantee
in Eq. (6) for DX . Let Dec and teacher labeler h be Lipschtiz functions, and the distillation loss ℓd
satisfies Assumption C.1. Then, with probability at least 1− δ, the following holds for any f ∈ F .

Rℓ,f (D) ≤Rh
ℓd,f

(Sn) +Rn(Gh,Dec
ℓd,F )︸ ︷︷ ︸

≤O(n−1/d)

+O
(√log(1/δ)√

n

)
+ Lϵ+O

(√
KEDX

[
∥DY |X − h(X)∥2

] )
.

where L is the effective Lipschitz constant of Gh,Dec
ℓd,F = {z 7→ ℓd(f ◦Dec(z), h ◦Dec(z)) : f ∈ F}—

an induced function class which maps Rd (latent space of generator) to R.

Thus, we can reduce the Rademacher term from O(n−1/D) to O(n−1/d), which yields a significant
reduction in sample complexity. However, as the teacher model is not perfect, a penalty is incurred in
terms of reconstruction error Lϵ and prediction error O

(√
KEDX

[
∥DY |X − h(X)∥2

] )
.

Thus far, we have not leveraged the fact that we can also use the teacher to generate additional
samples. Accounting for using samples S̃n (cf. Section 3.2), one can obtain similar generalization
gap for the distillation based on the teacher generated samples:

Theorem 3.2. Let S̃n = {x̃i}i∈[n] be n i.i.d. samples generated by the the TGT framework, whose
distribution be denoted by D̃X . Further, let f̃n ∈ F denote the student model learned via distillation
on S̃n, with h as the teacher model and ℓd be the distillation loss satisfying Assumption C.1. Then,
with probability at least 1− δ, we have

Rℓ,f (D) ≤Rh
ℓd,f̃n

(S̃n) + R̃n(Gh,Dec
ℓd,F )︸ ︷︷ ︸

≤O(n−1/d)

+O

(√
log(1/δ)

n

)
+W(DX , D̃X)

+O
(√

KEDX

[
∥DY |X − h(X)∥2

] )
, where Gh,Dec

ℓd,F is defined in Thm. 3.1

Please see Appendix C.2 for a more precise statement and proof of Thm. 3.2. Comparing with
the generalization gap for standard distillation (cf. Thm. 3.1), the generalization gap for TGT in
Thm. 3.2 does not have the reconstruction error related term Lϵ. Thus, by working with the samples
with exact latent representation, TGT avoids this reconstruction error penalty. On the other hand,
generalization gap for TGT does have an additional term W(DX , D̃X), capturing the mistmatch
between the original data distribution and the distribution of the samples used by TGT.

As a guiding principle, Thm. 3.2 dictates that one should select a teacher generator that
minimizes W(DX , D̃X). Similarly, the teacher labeler should ensure small prediction error
O
(√

KEDX

[
∥DY |X − h(X)∥2

] )
for the underlying classification task.

Motivation for gradient-based exploration. Our theoretical results so far do not throw light on the
particular utility of the gradient-based exploration in Eq. (5). In this regard, we provide variance-based
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Approach Architecture Balanced Accuracy # parameters FLOPs

Im
ag

eN
et

1K
-L

T

Logit adjustment loss* (Menon et al., 2021b) ResNet-50 50.4 26 M 4.1 B
LDAM-DRS-RSG (Wang et al., 2021) ResNeXt-50 51.8 25 M 4.2 B
DRAGON + Bal’Loss (Samuel et al., 2021) ResNet-10 46.5 5.4 M 819 M
DRAGON + Bal’Loss (Samuel et al., 2021) ResNet-50 53.5 26 M 4.1 B

Teacher (labeler) model EfficientNet-b3 79.2 12 M 1.8 B
One-hot MobileNetV3-0.75 35.5 4.01 M 156 M
Distillation MobileNetV3-0.75 47.2 4.01 M 156 M
TGT (random) MobileNetV3-0.75 53.2 4.01 M 156 M
TGT (gradient-based) MobileNetV3-0.75 53.3 4.01 M 156 M

SU
N

39
7-

LT

LWS (Kang et al., 2020) ResNeXt-50 33.9 25 M 4.2 B
DRAGON + Bal’Loss (Samuel et al., 2021) ResNet-101 36.1 42 M 7.6 B

Teacher (labeler) model EfficientNet-b3 65.3 12 M 1.8 B
One-hot MobileNetV3-0.75 39.3 4.01 M 156 M
Distillation MobileNetV3-0.75 42.2 4.01 M 156 M
TGT (random) MobileNetV3-0.75 44.3 4.01 M 156 M
TGT (gradient-based) MobileNetV3-0.75 44.7 4.01 M 156 M

Table 1: Performance of TGT and various baselines on long-tail image classification benchmarks (see
Appendix E for results on Places-LT). Rows with * denote results taken from Menon et al. (2021b)
and the rest were taken from Samuel et al. (2021). We report top-1 accuracy on balanced eval sets.
We also state the number of model parameters and inference cost (in terms of FLOPs) for all the
methods. Note that TGT leads to performance improvements over standard distillation on all three
datasets, particularly for ImageNet-LT where the teacher generator models the task distribution well.
TGT also often outperforms stated baselines that rely on much larger and expensive models.

generalization bounds (Maurer & Pontil, 2009) in Appendix C.3. Such bounds suggest that, besides
minimizing the discrepancyW(DX , D̃X), an ideal D̃X should reduce the variance of ℓd

(
f(x̃), h(x̃)

)
for newly generated instances. Incidentally, the sampling approach realized by the gradient-based
exploration in Eq. (5) aims to achieve this: it controls forW(DX , D̃X) by operating in the latent
space of a good quality teacher generative model and minimizes variance by finding instances with
high loss values through gradient ascent, thereby striking a desired balance between the two objectives.
See Appendix C.3 for a detailed discussion.

4 EXPERIMENTS

We now conduct a comprehensive empirical study of our TGT framework in order to establish that
TGT (i) leads to high accuracy in transferring knowledge in low data/long-tail regimes (Section 4.1);
(ii) effectively increases sample size (Section 4.2); and (iii) has wide adaptability even to discrete
data domains such as text classification (Section 4.3) and retrieval (Section 4.4).

4.1 LONG-TAIL IMAGE CLASSIFICATION

Setup. We evaluate TGT by training student models on three benchmark long-tail image classification
datasets: ImageNet-LT (Liu et al., 2019c), SUN-LT (Patterson & Hays, 2012), Places-LT (Liu et al.,
2019c) We employ off-the-shelf teacher models, in particular BigBiGAN (ResNet-50) (Donahue
& Simonyan, 2019) and EfficientNet-B3 (Xie et al., 2020c) as the teacher generator and teacher
labeler models, respectively. We utilize MobileNetV3 (Howard et al., 2019) as compact student
model architecture. The teacher-labeler model is self-trained on JFT-300M (Sun et al., 2017), and
then finetuned on the task-specific long-tail dataset. The teacher generator is trained on the unlabelled
full version of ImageNet (Russakovsky et al., 2015).

Results. The results1 are reported in Table 1 compared with similar sized baselines (we ignored
gigantic transformer models). We see that TGT is able to effectively transfer knowledge acquired
by the teacher during its training with the huge amount of data into a significantly smaller student
model, which also has lower inference cost. TGT considerably improves the performance across
the board over standard distillation, even on Sun-LT and Places-LT whose data distribution does
not exactly match to the distribution that the teacher’s generator was trained with. That said, the
gains from TGT are more pronounced when the mismatch between the task data distribution and the

1 Results for Places-LT and additional baselines for ImageNet-LT and SUN-LT are in Appendix E.
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Method Architecture Amazon-5 IMDB MNLI Yelp-5
2.5k 3M 2.5k 650k

UDA (Random Init) (Xie et al., 2020b) BERT base 55.8 - - - 58.6 -
UDA (Pretrained) (Xie et al., 2020b) BERT base 62.9 - - - 67.9 -
Layer-wise Distillation (Sun et al., 2020) MobileBERT - - 93.6 83.3 - -
MATE-KD (Rashid et al., 2021) DistilBERT - - - 85.8 - -

Teacher (labeler) model RoBERTa large - 67.6 96.2 90.6 - 72.0
One-hot (Random Init) DistilBERT 44.3 53.6 50.0 63.0 50.4 58.1
One-hot (Pretrained) DistilBERT 55.9 66.3 93.6 84.1 59.1 67.3
Distillation (Random Init) DistilBERT 56.5 65.3 87.9 77.4 54.8 69.5
Distillation (Pretrained) DistilBERT 60.2 66.8 94.0 84.5 63.2 71.4
TGT (Random Init) DistilBERT 61.3 66.6 91.0 79.3 62.0 70.4
TGT (Pretrained) DistilBERT 64.6 67.1 95.4 86.0 68.6 71.7

Table 2: Performance of TGT and various baselines from the literature on four text classification
benchmarks. For student model training, we show results for task-specific finetuning on both randomly
initialized and pretrained DistilBERT models. Note that TGT (Pretrained) — TGT with a pretrained
student model — outperforms all other methods across the board. Even more interestingly, on
Amazon-5 and Yelp-5, TGT with randomly initialized student, i.e., TGT (Random Init), outperforms
the standard approach of finetuning a pretrained model with one-hot labels, i.e., One-hot (Pretrained).

distribution modeled by the generator is not very large, which is the case for ImageNet-LT. The fact
that TGT (random) (cf. Eq. (4)) provides large gains over standard distillation establishes the value of
utilizing the latent space, as suggested by our analysis in Section 3.3. Note that TGT (gradient-based)
brings further gains over TGT (random), particularly on SUN-LT and Places-LT which are extremely
long-tail. We believe that gradient-based first-order exploration is specifically useful for settings
where data is extremely sparse or where isotropic random perturbation in the latent space does not
produce diverse enough instances. A systematic study of this constitutes an interesting avenue for
future research. Owing to its computational efficiency, we focus on TGT (random) for rest of paper.

Note that some of the baselines in Table 1 rely on specialized loss functions and/or training methods
designed for long-tail settings, whereas we do not leverage such techniques. Combining the TGT
framework with a long-tail specific loss function as opposed to using the standard cross-entropy loss
function can potentially improve its performance. We leave this direction for future explorations.

4.2 TGT IN LOW-DATA REGIME
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Figure 2: Comparison among normal training
(one-hot), standard distillation (distillation),
and TGT in simulated low-data regimes. We
imitate a low-data regime via subsampling the
ImageNet training set and evaluate the trained
student models on the entire eval set. We em-
ploy 450k training steps for normal training
and standard distillation, and 112k training
steps for TGT. TGT outperforms other meth-
ods in less training steps, thus, effectively
simulating an increased sample size.

To further showcase effectiveness of knowledge trans-
fer via TGT, we simulate a low-data regime by vary-
ing the amount of available training data for Ima-
geNet (Russakovsky et al., 2015) and studying its
impact on student’s performance. We use the same
model architectures as in Section 4.1, but finetune
the teacher labeler on the entire ImageNet. We then
compare the performance of the student trained via
TGT, with the students trained via normal training
(with one-hot labels) and standard distillation.

Fig. 2 shows that both TGT and standard distillation
utilize additional training data more effectively than
normal training, with TGT being the most efficient of
the two. Interestingly, employing TGT is equivalent
to an increase in sample size by 4x, compared to
the normal training. This verifies that TGT generates
informative training instances for the student.

4.3 TEXT CLASSIFICATION

Setup. We evaluate the proposed TGT framework on four benchmark text classification datasets:
Amazon-5 (Zhang et al., 2015), IMDB (Maas et al., 2011), MNLI (Williams et al., 2018), and
Yelp-5 (Zhang et al., 2015). Following Xie et al. (2020a), we also consider an extremely sub-sampled
version of Amazon-5 and Yelp-5 consisting of only 2.5k labeled examples. Again, we utilize off-the-
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shelf teacher models, in particular a BART-base (Lewis et al., 2020) and RoBERTa-large (Liu et al.,
2019a) as the teacher generator and teacher labeler, respectively. Following Rashid et al. (2021), we
employ a DistilBERT (Sanh et al., 2019b) model as student architecture. Both teacher networks are
pretrained on a very large generic text corpus of size 160GB. The teacher labeler is finetuned on each
task-specific dataset while the teacher generator is not specialized to any specific task.

Results. We compare TGT with other data augmentation and distillation baselines in Table 2. Note
that TGT considerably improves the performance and beats the state-of-the-art methods MATE-
KD (Rashid et al., 2021) and UDA (Xie et al., 2020a). Interestingly, by using TGT on a randomly
initialized student, we can match the performance of finetuning (with one-hot labels) a pretrained
model on Amazon-5 and Yelp-5. We highlight that baselines such as MATE-KD always work with
a pretrained student model. Thus, the improvements realized by TGT with a randomly initialized
student demonstrates enormous saving in overall data and training time requirement as it eliminates
the need for pretraining on a large corpus. This further establishes that TGT can enable a data-efficient
knowledge transfer from the teacher to the student.

4.4 TEXT RETRIEVAL
Method recall@20 recall@100

Teacher (labeler) model 0.7957 0.8855
One-hot 0.6453 0.8198
Distillation (standard) 0.7486 0.8608
Uniform negatives 0.7536 0.8496
TGT (ours) 0.7659 0.8763

Table 3: Performance of TGT and various baselines
on the NQ retrieval task. (Kwiatkowski et al., 2019).
The teacher labeler follows the setup of (Oğuz et al.,
2021) that pretrains RoBERTa-base on a large corpus
and also PAQ (Lewis et al., 2021) and then finetuned
to NQ (Kwiatkowski et al., 2019). BART-base (Lewis
et al., 2020) is employed to serve as a task-agnostic
generator. All student models follow the architecture
of DistilBERT(Sanh et al., 2019b). TGT significantly
outperforms standard training (One-hot) and teacher-
label only distillation (Distillation). TGT closes the
teacher-student gap by 37% at @20, 63% at @100)
compared to the standard distillation. See Appendix F.4
for more details on the experimental setup.

Setup. Finally, we evaluate TGT on Nat-
ural Questions (NQ) (Kwiatkowski et al.,
2019) — a text retrieval benchmark. The
task is to find a matching passage for a
question, out of a large candidate pas-
sage corpus (21M). We use RoBERTa-Base
dual-encoder model Oğuz et al. (2021)
as teacher labeler and BART-base (Lewis
et al., 2020) as teacher generator. We uti-
lize DistilBERT dual encoder model as our
student architecture. We follow the stan-
dard retrieval distillation setup where the
teacher labeler provides labels for all the
within-batch question-to-passage pairs for
the student to match.

Besides one-hot training and standard dis-
tillation, we consider another baseline,
namely uniform negatives. In uniform neg-
atives, for each question-to-passage pair
in NQ, we uniformly sample 2 additional
passages from the passage corpus during
training. TGT instead dynamically generates 2 confusing passages for each question-passage pair
with BART generator, infusing the isotropic perturbation as per Eq. (4).

Results. Table 3 shows that TGT significantly improves performance, closing the teacher-student
gap by 37% at recall@20 and 63% at recall@100 compared to the standard distillation. Unlike
TGT, uniform negatives only partially helped (slight improvement on recall@20 but degradation
one recall@100 compared to the standard distillation). A plausible explanation is that, due to the
extremely large passage corpus (21M), uniformly sampled passages are not very relevant to the
matching question-to-passage pair in NQ. TGT instead generates informative passages that are close
to the matching pair.

5 CONCLUSION AND FUTURE DIRECTIONS

We have introduced a simple and theoretically justified distillation scheme (TGT) that adaptively
generates samples with the aim of closing the divergence between student and teacher predictions.
Our results show it to outperform, in aggregate, existing distillation approaches. Unlike alternative
methods, it is also applicable to both continuous and discrete domains, as the results on image and text
data show. TGT is orthogonal to other approaches that enable efficient inference such as quantization
and pruning, and combining them is an interesting avenue for future work. Another potential research
direction is to employ TGT for multi-modal data which would require accommodating multiple
generative models with their own latent spaces, raising both practical and theoretical challenges.
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ETHICS STATEMENT

TGT framework relies on the availability of a good-quality teacher for the underlying domain to
provide efficient distillation. The impact of knowledge distillation on transferring the teacher model’s
biases to the resulting student model is far from well understood. Moreover, the teacher generator that
TGT utilizes are often large pretrained models trained on lot of unfiltered data. As a result these large
models can have potential biases without the awareness of the user. Also, how various biases present
in the generator impact the student model’s fairness/bias is not addressed in our work. A deeper study
of this issue is required for our proposed method, as well as for the knowledge distillation as an ML
technique in general.
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Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. arXiv
preprint arXiv:2004.04906, 2020.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a
benchmark for question answering research. Transactions of the Association for Computational
Linguistics, 7:453–466, 2019.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova. Latent retrieval for weakly supervised open
domain question answering. In Proceedings of the 57th Annual Meeting of the Association for Com-
putational Linguistics, pp. 6086–6096, Florence, Italy, July 2019. Association for Computational
Linguistics. doi: 10.18653/v1/P19-1612.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-training for
natural language generation, translation, and comprehension. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, pp. 7871–7880, 2020.

Patrick Lewis, Yuxiang Wu, Linqing Liu, Pasquale Minervini, Heinrich Küttler, Aleksandra Piktus,
Pontus Stenetorp, and Sebastian Riedel. Paq: 65 million probably-asked questions and what you
can do with them. Transactions of the Association for Computational Linguistics, 9:1098–1115,
2021.

Hao-Ting Li, Shih-Chieh Lin, Cheng-Yeh Chen, and Chen-Kuo Chiang. Layer-level knowledge
distillation for deep neural network learning. Applied Sciences, 9(10):1966, 2019.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. RoBERTa: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019a.

Ziwei Liu, Zhongqi Miao, Xiaohang Zhan, Jiayun Wang, Boqing Gong, and Stella X. Yu. Large-
scale long-tailed recognition in an open world. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June 2019b.

Ziwei Liu, Zhongqi Miao, Xiaohang Zhan, Jiayun Wang, Boqing Gong, and Stella X Yu. Large-
scale long-tailed recognition in an open world. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 2537–2546, 2019c.

12



Published as a conference paper at ICLR 2023

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies, pp. 142–150,
Portland, Oregon, USA, June 2011. Association for Computational Linguistics.

A. Maurer and M. Pontil. Empirical bernstein bounds and sample-variance penalization. In Proceed-
ings of the 22nd Conference on Learning Theory (COLT), June 2009.

Aditya K Menon, Ankit Singh Rawat, Sashank Reddi, Seungyeon Kim, and Sanjiv Kumar. A
statistical perspective on distillation. In Marina Meila and Tong Zhang (eds.), Proceedings of
the 38th International Conference on Machine Learning, volume 139 of Proceedings of Machine
Learning Research, pp. 7632–7642. PMLR, 18–24 Jul 2021a.

Aditya Krishna Menon, Sadeep Jayasumana, Ankit Singh Rawat, Himanshu Jain, Andreas Veit, and
Sanjiv Kumar. Long-tail learning via logit adjustment. In International Conference on Learning
Representations, 2021b.

Paul Micaelli and Amos J Storkey. Zero-shot knowledge transfer via adversarial belief matching.
Advances in Neural Information Processing Systems, 32, 2019.

Takeru Miyato, Shin-Ichi Maeda, Masanori Koyama, and Shin Ishii. Virtual adversarial training: A
regularization method for supervised and semi-supervised learning. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 41(8):1979–1993, 2019. doi: 10.1109/TPAMI.2018.2858821.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learning. MIT
press, 2018.

Gaurav Kumar Nayak, Konda Reddy Mopuri, Vaisakh Shaj, Venkatesh Babu Radhakrishnan, and
Anirban Chakraborty. Zero-shot knowledge distillation in deep networks. In International
Conference on Machine Learning, pp. 4743–4751. PMLR, 2019.

Alex Nowak-Vila, Alessandro Rudi, and Francis Bach. Max-margin is dead, long live max-margin!
arXiv preprint arXiv:2105.15069, 2021.
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A FURTHER COMPARISON WITH MATE-KD

MATE-KD (Rashid et al., 2021) alternative trains generator model and student model, with the hope of
generating most adversarial examples for the students during the training. This can cause the generator
to drift away from true data distribution. In contrast, we keep the pre-trained teacher-generator model
fixed throughout the training process of the student. Our objective behind employing the generator
model is to leverage the domain knowledge it has already acquired during its pre-training. While we
do want to generate ‘hard instances’ for the student, we also want those instances to be relevant for
the underlying task. Thus, keeping the generator fixed introduces a regularization where the training
instances the student encounters do not introduce domain mismatch.

Keeping in mind the objective of producing new informative training instances that are in-domain, we
introduce perturbation in the latent space realized by the encoder of the teacher-generator model (see
Figure 1). This is different from directly perturbing an original training instance in the input space
itself, as done by MATE-KD. As evident from our theoretical analysis and empirical evaluation, for a
fixed teacher-generator model, employing perturbation in the latent space leads to more informative
data augmentation and enables good performance on both image and text domain.

B BACKGROUND AND NOTATION

For a, b ∈ R, we use a = O(b) to denote that there exits a constant γ > 0 such that a ≤ γ · b.
Given a collection of n i.i.d. random variables Un = {u1, . . . , un} ⊂ U , generated from a distribution
DU and a function τ : U → R, we define the empirical mean of {τ(u1), . . . , τ(un)} as

EUn
[τ(U)] :=

1

n

∑
i∈[n]

τ(ui). (7)

For the underlying multiclass classification problem defined by the distribution D := DX×Y , we
assume that the label set Y with K classes takes the form [K] := {1, . . . ,K}. We use F to denote
the collection of potential classification models that the learning methods is allowed to select from,
namely function class or hypothesis set:

F ⊆ {X→ RK}, (8)

which is a subset of all functions that map elements of the instance space X to the elements of RK .

Given a classification loss function ℓ : RK × Y → R and a model f : X → RK and a sample
Slabeledn = {(xi, yi)}i∈[n] generated from D, we define the empirical risk for f ∈ F as follows.

Rℓ,f (S
labeled
n ) := ESlabeled

n
[ℓ
(
f(X)

)
] =

1

n

∑
i∈[n]

ℓ
(
f(xi), yi

)
. (9)

Further, we define the population risk for f ∈ F associated with data distribution D as follows.

Rℓ,f (D) = EX,Y∼D[ℓ(f(X), Y )]. (10)

Note that, when the loss function ℓ is clear from the context, we drop ℓ from the notation and simply
use Rf (S

labeled
n ) and Rf (D) to denote the the empirical and populations risks for f , respectively.

Given a function class F , the loss function ℓ induces the following function class.

Gℓ,F =
{
(x, y) 7→ ℓ(f(x), y) : f ∈ F

}
. (11)

Definition B.1 (Rademacher complexity of Gℓ,F ). Now, given a sample Slabeledn = {(xi, yi)}i∈[n] ∼
Dn and a vector σ = (σi, . . . , σm) ∈ {+1,−1} with n i.i.d. Bernoulli random variables, empirical
Rademacher complexity RS(Gℓ,F ) and Rademacher complexity Rn(Gℓ,F ) are defined as

RSlabeled
n

(Gℓ,F ) =
1

n
Eσ

[
sup

g∈Gℓ,F

n∑
i=1

σig(xi, yi)

]
and

Rn(Gℓ,F ) = ES∼Dn

[
RSlabeled

n
(Gℓ,F )

]
(12)
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Let Sn = {xi}i∈[n] be a set of n unlabeled samples generated from DX . Then, given a teacher model
h : X→ RK and a distillation loss ℓd : RK × RK → R, we define the empirical (distillation) risk
for f ∈ F to be

Rh
ℓd,f

(Sn) := ESn [ℓd(f(X), h(X))] =
1

n

∑
i∈[n]

ℓd
(
f(xi), h(xi)

)
. (13)

Accordingly, the population (distillation) risk for f ∈ F is defined as

Rh
ℓd,f

(D) := EX∼DX
[ℓd(f(X), h(X))] . (14)

Again, when ℓd is clear from the context, we simply use Rh
f (Sn) and Rh

f (D) to denote the empirical
and population distillation risk for f , respectively.

Note that, for a (student) function class F and a teacher model h, ℓd produces an induced function
class Gℓd,h(F), defined as

Ghℓd,F := {x 7→ ℓd(f(x), h(x)) : f ∈ F}. (15)

Definition B.2 (Rademacher complexity of Ghℓd,F ). Given a sample Sn = {xi}i∈[n] ∼ Dn
X and a vec-

tor σ = (σi, . . . , σm) ∈ {+1,−1} with n i.i.d. Bernoulli randoms variable, empirical Rademacher
complexity RSn

(
Ghℓd,F

)
and Rademacher complexity Rn

(
Ghℓd,F

)
are defined as

RSn(Ghℓd,F ) =
1

n
Eσ

[
sup

g∈Gh
ℓd,F

n∑
i=1

σig(xi)
]
, (16)

and

Rn(Ghℓd,F ) = ES∼Dn
X

[
RSn(Ghℓd,F )

]
(17)

respectively.

C DEFERRED PROOFS FROM SECTION 3

C.1 PROOF OF THEOREM 3.1

In this subsection, we present a general version of Theorem 3.1. Before that, we state the following
relevant assumption on the distillation loss ℓd.

Assumption C.1. Let ℓ : RK × Y → R be a bounded loss function. For a teacher function
h : X→ RK , the distillation loss ℓd takes the form

ℓd(f(x), h(x)) =
∑
y∈[K]

h(x)y · ℓ(f(x), y).

Remark C.2. Note that the cross-entropy loss ℓd(f(x), h(x)) = −
∑

y h(x)y · log
(
f(x)y

)
, here, one

of the most common choices for the distillation loss, indeed satisfies Assumption C.1.2

The following results is a general version of Theorem 3.1 in the main body.

Theorem C.3. Let a generator with the encoder Enc and decoder Dec ensures the approximation
guarantee in Eq. (6) for DX . Let Dec and teacher labeler be Lipschtiz functions, F be function class
of Lipschitz functions, and the distillation loss ℓd be Lipschtiz. Then, with probability at least 1− δ,
the following holds for any f ∈ F .

Rh
ℓd,f

(DX) ≤ Rh
ℓd,f

(Sn) +O
(
n−1/d

)
+ Lϵ+O

(√ log(1/δ)

n

)
, (18)

2For the sake of brevity, we simply include the softmax-operation in the definition of h and f , i.e., h(x) and
f(x) are valid probability distributions over Y = [K].
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where L denotes the effective Lipschitz constant of the induced function class Ghℓd,F in Eq. (15).
Additionally, if the distillation loss ℓd satisfies Assumption C.1 with a classification loss ℓ, then
Eq. (18) further implies the following.

Rℓ,f (D) ≤ Rh
ℓd,f

(Sn) +O
(
n−1/d

)
+ Lϵ+O

(√ log(1/δ)

n

)
+O

(√
K · EDX

[
∥DY |X − h(X)∥2

] )
.

(19)

Proof. Note that
Rh

ℓd,f
(DX) = EDX

[ℓd(f(X), h(X))]

≤ ESn
[ℓd(f(X), h(X))] + sup

f∈F

∣∣∣ESn
[ℓd(f(X), h(X))]− EDX

[ℓd(f(X), h(X))]
∣∣∣

(i)

≤ ESn
[ℓd(f(X), h(X))] + sup

g∈Gh
ℓd,F

∣∣∣ESn
[g(X)]− EDX

[g(X)]
∣∣∣

(ii)

≤ ESn [ℓd(f(X), h(X))] +RSn(Ghℓd,F ), (20)

where (i) follows from the definition of Ghℓd,F in Eq. (15) and (i) follow from the standard sym-
metrization argument (Devroye et al., 2013; Mohri et al., 2018). Next, we turn our focus to the
empirical Rademacher complexity RSn

(Ghℓd,F ). Recall that Sn = {x1, x2, . . . , xn} contains n i.i.d.
samples generated from the distribution DX . We define another set of n points

S̃n = {x̃1 = Dec ◦ Enc(x1), . . . , x̃n = Dec ◦ Enc(xn)}.
It follows from our assumption on the quality of the generator (cf. Eq. (6)) that

∥Dec ◦ Enc(xi)− xi∥ ≤ ϵ, ∀i ∈ [n]. (21)
Note that

RSn(Ghℓd,F ) =
1

n
Eσ

∣∣∣∣∣∣ sup
g∈Gh

ℓd,F

∑
i

σig(xi)

∣∣∣∣∣∣ ,
where σ denote a vector with n i.i.d Bernoulli random variables.

RSn
(Ghℓd,F ) =

1

n
Eσ

∣∣∣∣∣∣ sup
g∈Gh

ℓd,F

1

n

∑
i

σi

(
g(x̃i)− g(x̃i) + g(xi)

)∣∣∣∣∣∣
≤ 1

n
Eσ

∣∣∣∣∣∣ sup
g∈Gh

ℓd,F

1

n

∑
i

σig(x̃i)

∣∣∣∣∣∣+
1

n
Eσ

∣∣∣∣∣∣ sup
g∈Gh

ℓd,F

∑
i

σi

(
g(xi)− g(x̃i)

)∣∣∣∣∣∣
≤ 1

n
Eσ

∣∣∣∣∣∣ sup
g∈Gh

ℓd,F

∑
i

σig(x̃i)

∣∣∣∣∣∣+ sup
g∈Gh

ℓd,F

1

n

∑
i

|g(xi)− g(x̃i)|

≤ 1

n
Eσ

∣∣∣∣∣∣ sup
g∈Gh

ℓd,F

∑
i

σig(x̃i)

∣∣∣∣∣∣+ 1

n

∑
i

L · ∥xi − x̃i∥

≤ 1

n
Eσ

∣∣∣∣∣∣ sup
g∈Gh

ℓd,F

∑
i

σig(x̃i)

∣∣∣∣∣∣+ Lϵ

≤ 1

n
Eσ

∣∣∣∣∣∣ sup
g∈Gh

ℓd,F

∑
i

σig(Dec(zi))

∣∣∣∣∣∣+ Lϵ, (22)
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where zi = Enc(xi), for i ∈ [n]. By definition of Ghℓd,F , g(Dec(e)) = ℓd(f(x), h(x)) for some
f ∈ F . Now, we can define a new function class from Rd to R:

Gh,Dec
ℓd,F = {z 7→ ℓd(f ◦ Dec(z), h ◦ Dec(z)) : f ∈ F}. (23)

Therefore, it follows from Eq. (22) and Eq. (23) that

RSn(Ghℓd,F ) ≤ REn(G
h,Dec
ℓd,F ) + Lϵ, (24)

where En = {Enc(x1), . . . ,Enc(xn)} ⊂ Rd. It follows from the standard concentration results for
empirical Rademacher complexity around Rademacher complexity that with probability at least 1− δ,

REn
(Gh,Dec

ℓd,F ) ≤ Rn(Gh,Dec
ℓd,F ) +O

(√
log
(1
δ

)
· 1
n

)
. (25)

Since f ∈ F , h and Dec are Lipschitz functions, Gh,Dec
ℓd,F is collection of Lipschitz functions from Rd

to R. Thus, it follows from the standard results (Gottlieb et al., 2016, Theorem 4.3) that

Rn(Gh,Dec
ℓd,F ) ≤ O

(
n− 1

d

)
. (26)

Now, Eq. (18) follow from Eq. (20), Eq. (24), Eq. (25), and Eq. (26). Finally, Eq. (19) follows by
combining Lemma D.4 with Eq. (18).

C.2 PROOF OF THEOREM 3.2

Here, we present the following result, which along with Theorem C.5 implies Theorem 3.2 stated in
the main body.

Theorem C.4. Let S̃n = {x̃i}i∈[n] be n i.i.d. samples generated from a distribution D̃X . Further, let
f̃n ∈ F denote the student model learned via distillation on S̃n, with h and ℓd as the teacher model
and distillation loss, respectively. Then, with probability at least 1− δ, we have

Rh
ℓd,f̃n

(DX) ≤ Rh
ℓd,f̃n

(S̃n) +W(DX , D̃X) + R̃n(Ghℓd,F ) +O
(√

log
(1
δ

)
· 1
n

)
, (27)

where R̃n(Ghℓd,F ) = ES̃∼D̃n

[
RS̃n

(Ghℓd,F )
]

denote that Rademacher complexity of the induced

function class Ghℓd,F , defined in Eq. (15). If S̃ is constructed with the TGT framework based on a
generator with the encoder Enc and decoder Dec, then Eq. (27) further specialized to

Rh
ℓd,f̃n

(DX) ≤ Rh
ℓd,f̃n

(S̃n) +W(DX , D̃X) + R̃n(Gh,Dec
ℓd,F ) +O

(√
log
(1
δ

)
· 1
n

)
, (28)

where Gh,Dec
ℓd,F defines the following induced function class from Rd (i.e., the latent space of the

generator) to R.

Gh,Dec
ℓd,F = {z 7→ ℓd(f ◦ Dec(z), h ◦ Dec(z)) : f ∈ F}. (29)

Proof. Note that

Rh
ℓd,f̃n

(D̃X) = ED̃X
[ℓd(f̃n(X), h(X))]

≤ ES̃n
[ℓd(f̃n(X), h(X))] + sup

f∈F

∣∣ES̃n
[ℓd(f(X), h(X))]− ED̃X

[ℓd(f(X), h(X))]
∣∣

≤ES̃n
[ℓd(f̃n(X), h(X))] + sup

g∈Gh
ℓd,F

∣∣∣ES̃n
[g(X)]− ED̃X

[g(X)]
∣∣∣

≤ES̃n
[ℓd(f̃n(X), h(X))] +RS̃n

(Ghℓd,F ), (30)

where the last two inequality follows from the definition of Ghℓd,F (cf. Eq. (15)) and the standard
symmetrization argument (Devroye et al., 2013; Mohri et al., 2018), respectively.
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Now, the standard concentration results for empirical Rademacher complexity implies that, with
probability at least 1− δ, we have the following.

RS̃n
(Ghℓd,F ) ≤ ES̃∼D̃n

[
RS̃n

(Ghℓd,F )
]
+O

(√
log
(1
δ

)
· 1
n

)
(31)

= R̃n(Ghℓd,F ) +O
(√

log
(1
δ

)
· 1
n

)
. (32)

It follows from Lemma D.3 that

Rh
ℓd,f̃n

(DX) ≤ Rh
ℓd,f̃n

(D̃X) +W(DX , D̃X) (33)

Now the first part of Theorem C.4, as stated in Eq. (27), follows by combining Eq. (30), Eq. (31), and
Eq. (33).

We now focus on establishing Eq. (28). Note that, for a sample S̃n = {x̃1, . . . , x̃n} generated by the
TGT framework, there exists {z1, . . . , zn} ⊂ Rd such that

x̃i = Dec(zi), ∀i ∈ [n]. (34)

Thus,

RS̃n
(Ghℓd,F ) =

1

n
Eσ

∣∣∣∣∣∣ sup
g∈Gh

ℓd,F

∑
i

σig(x̃i)

∣∣∣∣∣∣
(i)
=

1

n
Eσ

∣∣∣∣∣∣ sup
g∈Gh

ℓd,F

∑
i

σig(Dec(zi))

∣∣∣∣∣∣
≤ 1

n
Eσ

∣∣∣∣∣∣ sup
g′∈Gh,Dec

ℓd,F

∑
i

σig
′(zi)

∣∣∣∣∣∣
= RS̃n

(Gh,Dec
ℓd,F ), (35)

where (i) employs Eq. (34). Thus, combining Eq. (30) and Eq. (35) gives us that

Rh
ℓd,f̃n

(D̃X) ≤ ES̃n
[ℓd(f̃n(X), h(X))] +RS̃n

(Gh,Dec
ℓd,F ). (36)

Now, similar to the proof of Eq. (27), we can invoke Lemma D.3 and the concentration result for
empirical Rademacher complexity to obtain the desired result in Eq. (28) from Eq. (36).

Remark C.5. Note that, if the distillation loss ℓd satisfies Assumption C.1 with a loss function ℓ,
then, one can combine Theorem C.4 and Lemma D.4 to readily obtain bounds on Rℓ,f̃n

(D) with an
additional term

O
(√

K · EDX

[
∥DY |X − h(X)∥2

] )
.

This term captures the quality of the teacher labeler h.

C.3 WEIGHTED ERM: AN ALTERNATIVE TRAINING PROCEDURE FOR TGT

Note that given the samples S̃n = {x̃i}i∈[n] generated from D̃X and a teacher labeler h, we minimize
the following empirical risk for student training:

Rh
ℓd,f

(S̃n) =
1

n

∑
i∈[n]

ℓd
(
f(x̃i), h(x̃i)

)
. (37)

However, as we notice in Theorem C.4, this leads to an additional W(DX , D̃X) penalty term in
the generalization bound. One standard approach to address this issue is to consider the following
weighted empirical risk.

Rh,IS
ℓd,f

(S̃n) =
1

n

∑
i∈[n]

ℓd
(
f(x̃i), h(x̃i)

)
· pDX

(x̃i)

pD̃X
(x̃i)

, (38)
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where pDX
and pD̃X

denote the probability density function (pdf) for DX and D̃X .3 Accordingly,
we define a new induced function class related to the weighted empirical risk:

GhISℓd,F = {x 7→ ℓd
(
f(x̃i), h(x̃)

)
· pDX

(x̃)

pD̃X
(x̃)

: f ∈ F} (39)

Importantly, we have

Rh,IS
ℓd,f

(D̃X) = ED̃X

[
Rh,IS

ℓd,f
(S̃n)

]
= Rh

ℓd,f
(DX) (40)

Thus, following the analysis utilized in Theorem C.4, one can obtain a high probability generalization
of the form.

Rh
ℓd,f

(DX) ≤ Rh,IS
ℓd,f

(S̃n) + R̃n(Gh,ISℓd,F ) +O
(√

log
(1
δ

)
· 1
n

)
, (41)

which avoids theW(DX , D̃X) term.

In what follows, we explore an alternative approach to highlight the importance of the sam-
pling approach adapted by (gradient-based) TGT. By leveraging the variance-based generalization
bound (Maurer & Pontil, 2009) that were previously utilized by Menon et al. (2021a) in the context
distillation, we obtain the following result for the weighted empirical risk in Eq. (38).

Proposition C.6. Let h, ℓd, F and S̃n be as defined in the statement of Theorem C.4. Further, assume
that ℓh,ISd,f (x̃) := ℓd

(
f(x̃i), h(x̃)

)
· pDX

(x̃)

p
D̃X

(x̃) is bounded for all x̃ ∈ supp(D̃X ). Then, for any f ∈ F ,

the following holds with probability at least 1− δ.

Rh
ℓd,f

(DX) ≤ Rh,IS
ℓd,f

(S̃n) + (I), (42)

where (I) denotes

O
(√

VarD̃X
(ℓh,ISd,f (x̃)) · log(M(n)

δ )

n
+

log(M(n)
δ )

n

)
.

Here,M(n) = supSn⊂Xn N (1/n,Gh,ISℓd,F (Sn), ∥ · ∥∞), with N (ϵ,Gh,ISℓd,F (Sn), ∥ · ∥∞) denoting the
covering number (Devroye et al., 2013) of the set

Gh,ISℓd,F (Sn) := {(g(x1), . . . , g(xn)) : g ∈ Gh,ISℓd,F}.

Proof. By utilizing the uniform convergence version of Bennet’s inequality and uniform bound for√
VarS̃n

(ℓISd (x̃)), where VarS̃n
(ℓISd (x̃)) denotes the empirical variance of ℓISd (x̃) based on S̃n, the

following holds with probability at least 1− δ (Maurer & Pontil, 2009).

Rh,IS
ℓd,f

(D̃X) ≤ Rh,IS
ℓd,f

(S̃n) +O
(√

VarD̃X
(ℓISd (x̃)) · log(M(n)

δ )

n
+

log(M(n)
δ )

n

)
,∀ f ∈ F . (43)

Since, Rh,IS
ℓd,f

(D̃X) = ED̃X

[
Rh,IS

ℓd,f
(S̃n)

]
= Rh

ℓd,f
(DX), the statement of Theorem C.6 follows from

Eq. (43).

Note that by combining Eq. (42) with Theorem D.4 translate the bound on Rh
ℓd,f

(DX) to a bound on
Rℓ,f (D) with an additional penalty term that depends on the quality of the teacher labeler h.
Remark C.7. Eq. (42) suggests general approach to select the distribution D̃X that generated the
training samples S̃n. In order to ensure small generalization gap, it is desirable that the variance term
VarD̃X

(ℓISd (x̃)) is as small as possible. Note that, the distribution that minimizes this variance takes
the form

log pD̃X
(x) ∝ log ℓd

(
f(x), h(x)

)
+ log pDX

(x), ∀ x ∈ X. (44)

3Note that the formulation assumes that DX ≪ D̃X , i.e., DX is absolutely continuous w.r.t. D̃X . Also, one
can replace the pdf’s with probability mass functions if DX and D̃X are discrete distributions.
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This looks like the lagrangian form of Eq. (3). Interestingly, TGT framework with gradient-based
sampling (cf. equation 5) focuses on generating samples that maximizes the right hand side RHS
of Eq. (44) by first taking a sample generated according to DX and then perturbing it in the latent
space to maximize the loss ℓd

(
f(x), h(x)

)
. Thus, the resulting distribution D̃X has pdf that aims to

approximate the variance minimizing pdf in Eq. (44).

Here it is worth pointing out that, since exact form of pD̃X
(·) and pDX

(·) is generally not available
during the training, it’s not straightforward to optimize the weighted risk introduced in Eq. (38).
As introduced in Section 3, TGT framework optimizes the empirical risk in Eq. (37) as opposed to
minimizing Eq. (38). In this case, one can obatain a variance based bound analogous to Eq. (42) that
takes the form:

Rh
ℓd,f

(DX) ≤ Rh
ℓd,f

(S̃n) + (II) +W(DX , D̃X), (45)
where, (II) denotes

O
(√

VarD̃X
(ℓhd,f (x̃)) · log(

M(n)
δ )

n
+

log(M(n)
δ )

n

)
,

with ℓhd,f (x̃) := ℓd
(
f(x̃i), h(x̃)

)
andM(n) depending the covering number for the induced function

class Ghℓd,F (cf. Eq. (15)). Notably, this bound again incurs a penalty of W(DX , D̃X).

Remark C.8. Note that Eq. (45) suggests a general approach to select the distribution D̃X that
generates the training samples S̃n. In order to ensure small generalization gap, we need to focus on
two terms depending on D̃X : (1) the variance term VarD̃X

(ℓhd,f (x̃)); and (2) the divergence term
W(DX , D̃X). We note that finding a distribution that jointly minimizes both terms is a non-trivial
task. That said, in our sampling approach in Eq. (5), we control forW(DX , D̃X) by operating in the
latent space of a good quality teacher generative model and minimize variance by finding points with
high loss values through gradient ascent, thereby striking a balance between the two objectives.

D TOOLBOX

This section presents necessary definitions and lemmas that we utilize to establish our theoretical
results presented in Section 3 (and restated in Appendix C.
Definition D.1 (Wasserstein-1 metric). Let (X, ρ) be a metric space. Given two probability distribu-
tions D1

X and D2
X over X, Wasserstein-1 distance between D1

X and D2
X is defined as follows.

W(D1
X ,D2

X) := inf
π∈Π(D1

X ,D2
X)

EX,X′∼π [d(X,X ′)] = inf
π∈Π(D1

X ,D2
X)

∫
X×X

ρ(X,X ′) dπ(x, x′),

(46)

where Π(D1
X ,D2

X) denotes the set of all joint distributions over X × X that have D1
X and D2

X as
their marginals.
Lemma D.2 (Kantorovich-Rubinstein duality (Villani, 2008)). Let Lip1(ρ) denote the set of all
1-Lipschitz functions in the metric ρ, i.e., for any f ∈ Lip1(ρ),

|f(x)− f(x′)| ≤ ρ(x, x′), ∀ x, x′. (47)
Then,

W(D1
X ,D2

X) = sup
f∈Lip1(ρ)

(
EX∼D1

X
[f(X)]− EX′∼D2

X
[f(X ′)]

)
. (48)

Lemma D.3. Let ℓd : RK × RK → R be a loss function employed during the distillation. For a
given teacher h : X→ RK and a function class F , we assume the the induced function class

Ghℓd,F = {x 7→ ℓd(f(x), h(x)) : f ∈ F} (49)
is contained in the class of L-Lipschitz functions with respect to a metric ρ. Then, for any two
distributions D1

X and D2
X , we have

Rh
ℓd,f

(D1
X)−Rh

ℓd,f
(D2

X) ≤ W(D1
X ,D2

X), ∀ f ∈ F , (50)

where W(D1
X ,D2

X) denotes the Wasserstein-1 metric between the two distribution D1
X and D2

X
(cf. Definition D.1).
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Proof. Note that

Rh
ℓd,f

(D1
X)−Rh

ℓd,f
(D2

X) = EX∼D1
X
[ℓd(f(X), h(X)]− EX′∼D2

X
[ℓd(f(X

′), h(X ′)]

≤ sup
g∈Gh

ℓd,F

(
EX∼D1

X
[g(X)]− EX′∼D1

X
[g(X ′)]

)
(i)
= L · sup

g∈Gh
ℓd,F

(
EX∼D1

X

[
g(X)

L

]
− EX′∼D1

X

[
g(X ′)

L

])
(ii)

≤ L · sup
g∈Lip1(ρ)

(
EX∼D1

X
[g(X)]− EX′∼D1

X
[g(X ′)]

)
,

(iv)
= W(D1

X ,D2
X). (51)

where (i) follow by dividing and multiply by L; (ii) follows as, for any g ∈ Ghℓd,F is g
L is 1-Lipschitz;

and (iii) follows from Lemma D.2.

Lemma D.4. Let the distillation loss ℓd satisfy Assumption C.1 with a bounded loss function
ℓ : RK × Y→ R. Then, given a teacher h : X→ RK and a student model f : X→ RK , we have∣∣∣Rh

ℓd,f
(DX)−Rℓ,f (D)

∣∣∣ ≤ O(√K · EDX

[
∥DY |X − h(X)∥2

] )
, (52)

where DY |X = (DY |X(1), . . . ,DY |X(K)) is treated as a vector in RK .

Proof. Note that∣∣∣Rh
ℓd,f

(DX)−Rℓ,f (D)
∣∣∣ = ∣∣∣EDX

[ℓd(f(X), h(X))]−Rℓ,f (D)
∣∣∣

=
∣∣∣EDX

[ℓd(f(X), h(X))]− ED[ℓ(f(X), Y )]
∣∣∣

=
∣∣∣EDX

[ ∑
y∈[K]

h(X)y · ℓ(f(x), y)
]
− EDX

[ ∑
y∈[K]

DY |X(y) · ℓ(f(X), y)
]∣∣∣

=
∣∣∣EDX

[ ∑
y∈[K]

(
h(X)y −DY |X(y)

)
· ℓ(f(X), y)

]∣∣∣
(i)

≤ EDX
[∥DY |X − h(X)∥2 · ∥ℓ(f(X))∥2], (53)

where (i) follow from the Cauchy-Schwarz inequality. Now the statement of Lemma D.4 follows
from the assumption on the loss ℓ is bounded.

E ADDITIONAL EXPERIMENTS

E.1 LONG-TAIL IMAGE CLASSIFICATION

Please see Table 4 for Places365-LT result. The relevant discussion is provided in Section 4.1. We
also provided an expanded version of Table 1 (from the main text) in Table 5 with additional baselines.

F DETAILS TO REPRODUCE OUR EMPIRICAL RESULTS

Hereby we provide details to reproduce our experimental results.

F.1 LONG-TAIL IMAGE CLASSIFICATION (SEC. 4.1)

Dataset. The full balanced version of 3 datasets (ImageNet 4, Place365 5, SUN397 6) are available
in tensflow-datasets (https://www.tensorflow.org/datasets/). Next to obtain the the

4https://www.tensorflow.org/datasets/catalog/imagenet2012
5https://www.tensorflow.org/datasets/catalog/places365_small
6https://www.tensorflow.org/datasets/catalog/sun397
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Approach Architecture Balanced Accuracy # parameters FLOPs

Pl
ac

es
36

5-
LT

LWS (Kang et al., 2020) ResNet-152 37.6 60 M 11 B
LDAM-DRS-RSG (Wang et al., 2021) ResNet-152 39.3 60 M 11 B
OLTR (Liu et al., 2019b) ResNet-152 35.9 60 M 11 B
DRAGON + Bal’Loss (Samuel et al., 2021) ResNet-50 38.1 26 M 4.1 B

Teacher (labeler) model EfficientNet-b3 42.1 12 M 1.8 B
One-hot MobileNetV3-0.75 26.8 4.01 M 156 M
Distillation MobileNetV3-0.75 33.0 4.01 M 156 M
TGT (random) MobileNetV3-0.75 34.7 4.01 M 156 M
TGT (gradient-based) MobileNetV3-0.75 35.0 4.01 M 156 M

Table 4: Performance of TGT on Places-LT (Liu et al., 2019c). The table shows the top-1 accuracy
on the corresponding balanced eval sets for TGT and different long-tail baselines from the literature
(taken from (Samuel et al., 2021)). We also state the number of model parameters and inference
cost (in terms of FLOPs) for all the methods. Note that TGT leads to performance improvements
over standard distillation. Note that, for Places-LT, TGT does not outperform stated baselines for
the literature that rely on specialized loss functions and/or training procedures designed from the
long-tail setting. One reason for this could be that the BigBiGAN does not generate very informative
samples for Places-LT due to distribution mismatch. That said, as discussed in Section 4.1, one can
combine the TGT framework with a long-tail specific loss functions as opposed to employing the
standard cross-entropy loss function as a way to further improve its performance.

Approach Architecture Balanced Accuracy # parameters FLOPs

Im
ag

eN
et

1K
-L

T

LDAM-DRW* (Cao et al., 2019) ResNet-50 47.8 26 M 4.1 B
LWS (Kang et al., 2020) ResNeXt-50 49.9 25 M 4.2 B
Logit adjustment loss* (Menon et al., 2021b) ResNet-50 50.4 26 M 4.1 B
LDAM-DRS-RSG (Wang et al., 2021) ResNeXt-50 51.8 25 M 4.2 B
DRAGON + Bal’Loss (Samuel et al., 2021) ResNet-10 46.5 5.4 M 819 M
DRAGON + Bal’Loss (Samuel et al., 2021) ResNet-50 53.5 26 M 4.1 B

Teacher (labeler) model EfficientNet-b3 79.2 12 M 1.8 B
One-hot MobileNetV3-0.75 35.5 4.01 M 156 M
Distillation MobileNetV3-0.75 47.2 4.01 M 156 M
TGT (random) MobileNetV3-0.75 53.2 4.01 M 156 M
TGT (gradient-based) MobileNetV3-0.75 53.3 4.01 M 156 M

SU
N

39
7-

LT

LDAM-DRS-RSG (Wang et al., 2021) ResNeXt-50 29.8 25 M 4.2 B
CAD-VAE (Schönfeld et al., 2019) ResNet-101 32.8 42 M 7.6 B
LWS (Kang et al., 2020) ResNeXt-50 33.9 25 M 4.2 B
DRAGON + Bal’Loss (Samuel et al., 2021) ResNet-101 36.1 42 M 7.6 B

Teacher (labeler) model EfficientNet-b3 65.3 12 M 1.8 B
One-hot MobileNetV3-0.75 39.3 4.01 M 156 M
Distillation MobileNetV3-0.75 42.2 4.01 M 156 M
TGT (random) MobileNetV3-0.75 44.3 4.01 M 156 M
TGT (gradient-based) MobileNetV3-0.75 44.7 4.01 M 156 M

Table 5: Performance of TGT and various baselines from the literature on ImageNet-LT and SUN-LT.
Note that this table expands Table 1 (in the main text) as it includes additional baselines. Rows with *
denote results taken from Menon et al. (2021b) and the rest were taken from Samuel et al. (2021).
We report top-1 accuracy on balanced eval sets. We also state the number of model parameters
and inference cost (in terms of FLOPs) for all the methods. Note that TGT leads to performance
improvements over standard distillation on both datasets, particularly for ImageNet-LT where the
teacher generator models the task distribution well. TGT also often outperforms stated baselines that
rely on much larger and expensive models.

long-tail version of the datasets, we downloaded 7 image ids from repository of "Large-Scale Long-
Tailed Recognition in an Open World (Liu et al., 2019b)" according to which we subsampled the full
balanced dataset.

Teacher fine-tuning. For teacher labeler, we follow "Sharpness Aware Minimization’ (Foret et al.,
2020) codebase (available at https://github.com/google-research/sam) to fine-tune
on the long-tail datasets. We start with pretrained EfficientNet-B3 model checkpoint available from

7https://drive.google.com/drive/u/1/folders/1j7Nkfe6ZhzKFXePHdsseeeGI877Xu1yf
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official repository8 and used default parameters from the codebase. We fine-tuned all 3 datasets
(ImageNet-LT, SUN397-LT, Place365-LT) for 3 epochs.

We directly used teacher generator as BigBiGAN ResNet-50 checkpoint from the official
repository https://github.com/deepmind/deepmind-research/tree/master/
bigbigan. (We did not fine-tune it.)

Student training. We start from randomly initialized MobileNetV3-0.75 model. We employed SGD
optimizer with cosine schedule (peak learning rate of 0.4 and decay down to 0). We also did a linear
warm-up (from 0 to peak learning rate of 0.4) for first 5 epochs. The input image size are unfortunately
different between EfficientNet-B3 model, BigBiGAN-ResNet50, and MobileNetV3-0.75 models.
From original images in dataset, we use Tensorflow’s bicubic resizing to obtain appropriate size
image for each mode. We did a grid search over the perturbation parameters σ and η (c.f. Eq. (4) and
Eq. (5)). All hyper-parameters and grid are listed in table below:

Hyper-param ImageNet-LT Place365-LT Sun397-LT

Num epochs 90 30 30
Optimizer SGD
Schedule Cosine
Warm-up epochs 5
Peak learning rate 0.4
Batch size 256
Teacher labeler image size 300× 300× 3
Teacher generator image size 256× 256× 3
Student image size 224× 224× 3
Perturbation noise (σ) {0, 0.001, 0.01, 0.1}
Gradient exploration
- Step size (η) {0, 0.001, 0.01, 0.1}
- Num steps 2

Table 6: Hyper-parameters for long-tail image classification

F.2 TGT IN LOW-DATA REGIME (SEC. 4.2)

Dataset. We used ImageNet 9 dataset from tensflow-datasets repository (https://www.
tensorflow.org/datasets/). We used in-built sub-sampling functionality available in ten-
sorflow (https://www.tensorflow.org/datasets/splits) to simulate the low-data
regime.

Teacher model. For teacher labeler, we directly used trained EfficientNet-B3 model checkpoint
available from "Sharpness Aware Minimization" repository10 For teacher generator, we directly used
trained BigBiGAN checkpoint from the official repository https://github.com/deepmind/
deepmind-research/tree/master/bigbigan. (We did not fine-tune either of the mod-
els.)

Student training. We start from randomly initialized MobileNetV3-0.75 model. We employed SGD
optimizer with cosine schedule (peak learning rate of 0.4 and decay down to 0). We also did a linear
warm-up (from 0 to peak learning rate of 0.4) for first 5 epochs. The input image size are unfortunately
different between EfficientNet-B3 model, BigBiGAN-ResNet50, and MobileNetV3-0.75 models.
From original images in dataset, we use Tensorflow’s bicubic resizing to obtain appropriate size
image for each mode. Following standard practice in literature He et al. (2016); Jia et al. (2018), we
train one-hot and standard distillation student models for 90 epochs (= 450k steps). We use 4x less
steps for TGT than the simple distillation baseline, which amounts to 450k/4 = 112k steps.

8https://storage.googleapis.com/gresearch/sam/efficientnet_checkpoints/
noisystudent/efficientnet-b3/checkpoint.tar.gz

9https://www.tensorflow.org/datasets/catalog/imagenet2012
10https://storage.googleapis.com/gresearch/sam/efficientnet_checkpoints/

noisystudent/efficientnet-b3/checkpoint.tar.gz
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F.3 TEXT CLASSIFICATION (SEC. 4.3)

Dataset. We conduct text classification experiments on following datasets:

• Amazon-5 downloaded from http://goo.gl/JyCnZq

• IMDB from tensorflow-datasets https://www.tensorflow.org/datasets/
catalog/imdb_reviews

• MNLI from from tensorflow-datasets https://www.tensorflow.org/datasets/
catalog/multi_nli

• Yelp-5 downloaded from http://goo.gl/JyCnZq

Optimizer. For all training, we employed ADAM optimizer with linear decay schedule (peak learning
rate of 3e-5 and decay to 0). We also did a linear warm-up at start. We used batch size of 128.

Teacher fine-tuning. For teacher labeler, we started from RoBERTa-Base (Liu et al.,
2019a) pretrained checkpoint 11 from official FAIRSEQ repository https://github.com/
facebookresearch/fairseq. We fine-tuned using default parameters, other than number of
steps which are same as those listed in Table 7.

For teacher generator, we directly use a pre-trained BART-Base (Lewis et al., 2020) checkpoint 12

from official FAIRSEQ repository https://github.com/facebookresearch/fairseq.
(We did not fine-tune it.)

Student training. We start from DistillBERT pretrained checkpoint downloaded from HuggingFace
repository 13. We perturb by adding Gaussian noise of σ2 variance in between encoder-decoder
as well as masking out p fraction of input. Then we generate new examples by running a greedy
decoding of BART teacher generator for sequence length of 512. For dual input classification task,
like in MNLI, we generate the two inputs independently. We did a grid search over the perturbation
parameters σ and masking fraction p. All hyper-parameters and grid are listed in table below:

Hyper-param Amazon-5 IMDB MNLI Yelp-5
2.5k 3M 2.5k 650k

Num steps 5000 75000 20000 75000 5000 75000
Warm-up steps 1000 2000 500 2000 1000 2000
Optimizer Adam
Schedule Linear
Peak learning rate 3e-5
Batch size 128
Max Sequence length 512
Perturbation noise (σ) {0, 0.01, 0.1}
Masking fraction (p) {0, 0.1, 0.2}

Table 7: Hyper-parameters for student training of text classification

F.4 TEXT RETRIEVAL (SEC. 4.4)

Dataset. From official "Dense Passage Retrieval" repository at https://github.com/
facebookresearch/DPR, we download passage corpus 14. Further, from the same reposi-
tory, we download a pre-processed version of natural questions open dataset (Lee et al., 2019)
which has been aligned to passage corpus 15. Finally, we download a pre-processed version of

11https://dl.fbaipublicfiles.com/fairseq/models/roberta.base.tar.gz
12https://dl.fbaipublicfiles.com/fairseq/models/bart.base.tar.gz
13https://huggingface.co/distilroberta-base/tree/main
14https://dl.fbaipublicfiles.com/dpr/wikipedia_split/psgs_w100.tsv.gz
15https://dl.fbaipublicfiles.com/dpr/data/retriever/biencoder-nq-train.

json.gz,https://dl.fbaipublicfiles.com/dpr/data/retriever/
biencoder-nq-dev.json.gz
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Probably Asked Questions (PAQ) dataset (Lewis et al., 2021) dataset from official repository of
"Domain-matched Pre-training Tasks for Dense Retrieval" available at https://github.com/
facebookresearch/dpr-scale which has been aligned to the same passage corpus 16

Optimizer. For all text retrieval model training, we employed ADAM optimizer with linear decay
schedule (peak learning rate of 1e-5 and decay to 1e-7). We also did a linear warm-up (from 0 to
peak learning rate of 1e-5) for 1K steps. We used batch size of 128.

Teacher fine-tuning. For teacher labeler dual encoder (a question encoder and a passage encoder),
we utilized RoBERTa-Base (Liu et al., 2019a) pretrained checkpoint 17 from official FAIRSEQ
repository https://github.com/facebookresearch/fairseq. We then conducted first
round of fine-training for 300k iterations with passage-aligned PAQ dataset. We used same configu-
ration as Oğuz et al. (2021) except Oğuz et al. trained with PAQ longer. After the pretraining, the
teacher is fine-tuned on NQ-open (Kwiatkowski et al., 2019) downloaded with 40K steps. Similar
to Karpukhin et al. (2020); Oğuz et al. (2021), the teacher is trained with within-batch negatives and
the softmax-based cross-entropy loss.

For teacher generator, we directly use a pre-trained BART-Base (Lewis et al., 2020) checkpoint 18

from official FAIRSEQ repository https://github.com/facebookresearch/fairseq.
(We did not fine-tune it.)

This same teacher labeler and generator is used for all student training except for the direct training
(one-hot).

Student training. We start from DistillBERT pretrained checkpoint downloaded from HuggingFace
repository 19. All students are trained with 40K steps. The teacher labeler will label all-pair within
the batch and will label additional 2 passages per each question-passage pair for the uniform negative
sampling baseline and TGT. We employed a off-the-shelf BART-base model as our generator (Lewis
et al., 2020) and isotropic perturbation was added by random Gaussian noise of scale σ = 0.1
combined with p = 0.2 for masking the original passage.

G QUALITATIVE EXAMPLES OF GENERATED EXAMPLES

G.1 IMAGE CLASSIFICATION

We show some representative examples of generated images using TGT-random as well as TGT-
gradient based from the experiment on ImageNet classification in Table 8.

G.2 TEXT CLASSIFICATION

We show some representative examples of generated text using TGT from the experiment on MNLI
classification in Table 9.

16https://dl.fbaipublicfiles.com/dpr_scale/paq/PAQ.dpr.train.neg1.jsonl.
zip

17https://dl.fbaipublicfiles.com/fairseq/models/roberta.base.tar.gz
18https://dl.fbaipublicfiles.com/fairseq/models/bart.base.tar.gz
19https://huggingface.co/distilroberta-base/tree/main
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Input TGT-Random Example TGT-Gradient based Example

Data label: lion Teacher label: brown bear Teacher label: chow

Data label: cheeseburger Teacher label: potpie Teacher label: cheeseburger

Data label: digital clock Teacher label: tape player Teacher label: grocery store

Data label: wall clock Teacher label: shield Teacher label: gong

Table 8: Image examples
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Input TGT Example

Data label: Contradicts Teacher label: Neutral

The house was bought with the royalties
she earned from her first book, The
Tales of Peter Rabbit. [SEP] The house
was bought with the money she inherited
from her grandfather.

The book was published in the United
States in 1987 with the royalties she
received from her first book, The Tales
of Peter Rabbit. [SEP] The house was
bought with the money she inherited
from her grandfather.

Data label: Entail Teacher label: Entail

Leather goods are no longer a bargain
in Spain, though very good quality
products may still be priced lower than
at home. [SEP] Leather goods are still
very cheap in Spain.

Leather and leather goods are no longer
a bargain in Spain, though very good
quality products may still be priced
lower than at home and abroad. [SEP]
Leather goods are still very cheap at
Spain.

Data label: Entail Teacher label: Neutral

Then I got up as softly as I could, and
felt in the dark along the left-hand
wall. [SEP] The wall was wet.

Then I got up as softly as I could, and
walked the way I felt in the dark along
the left [SEP] The wall was wet.

Data label: Entails Teacher label: Entail

But then this very particular island
is hardly in danger of being invaded
except, of course, by tourism. [SEP]
This island is least likely to be
invaded by tourism.

But then this very particular island
is not in danger of being invaded
except, of course, by tourism. [SEP]
The island is likely to be invaded by
tourism.

Data label: Contradicts Teacher label: Neutral

All you need to do is just wander off
the beaten path, beyond the bustling
tourist zone. [SEP] There is no point
going off the beaten path, there is
nothing there.

All you need to do is just wander off
the beaten path, and youĺl be in the
bustling tourist zone of the city.
[SEP] There is no point going off the
beaten path, there is nothing there.

Data label: Entails Teacher label: Neutral

The silt of the River Maeander has
also stranded the once-mighty city of
Miletus. [SEP] The River Maeander has
been depositing silt near Miletus for
nearly two millennia.

The silt of the River Mae has also
stranded the once-mighty city of
Miletus. [SEP] The River Maeander has
been depositing silt near Miletus for
more than two decades.

Data label: Entails Teacher label: Entails

It was hardly the most enlightened
of times, not with the conflict in
Indochina rapidly becoming Americaś
costliest and most divisive war. [SEP]
The war in Indochina has cost America
100 billion dollars so far.

It was hardly the most enlightened of
times, not with the war in Indochina
becoming Americaś costliest and
most divisive war. [SEP] The war in
Indochina has cost America 100 billion
dollars so far.

Table 9: Text examples
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