

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 THE UNSEEN BIAS: HOW NORM DISCREPANCY IN PRE-NORM MLLMS LEADS TO VISUAL INFORMA- TION LOSS

Anonymous authors

Paper under double-blind review

ABSTRACT

Multimodal Large Language Models (MLLMs), which couple pre-trained vision encoders and language models, have shown remarkable capabilities. However, their reliance on the ubiquitous Pre-Norm architecture introduces a subtle yet critical flaw: a severe norm disparity between the high-norm visual tokens and the low-norm text tokens. In this work, we present a formal theoretical analysis demonstrating that this imbalance is not a static issue. Instead, it induces an “asymmetric update dynamic,” where high-norm visual tokens exhibit a “representational inertia,” causing them to transform semantically much slower than their textual counterparts. This fundamentally impairs effective cross-modal feature fusion. Our empirical validation across a range of mainstream MLLMs confirms that this theoretical dynamic—the persistence of norm disparity and the resulting asymmetric update rates—is a prevalent phenomenon. Based on this insight, we propose a remarkably simple yet effective solution: inserting a single, carefully initialized LayerNorm layer after the visual projector to enforce norm alignment. Experiments conducted on the LLaVA-1.5 architecture show that this intervention yields significant performance gains not only on a wide suite of multimodal benchmarks but also, notably, on text-only evaluations such as MMLU, suggesting that resolving the architectural imbalance leads to a more holistically capable model.

1 INTRODUCTION

In recent years, Multimodal Large Language Models (MLLMs) have achieved significant progress, demonstrating robust performance across a wide range of cross-modal tasks (Comanici et al., 2025; Hurst et al., 2024; Wu et al., 2024; Bai et al., 2025). A prevailing architectural paradigm involves augmenting a pre-trained Large Language Model (LLM) with visual capabilities by coupling it with a pre-trained Vision Encoder (VE). The VE, typically a Vision Transformer (ViT) (Dosovitskiy et al., 2020), first partitions an image into a sequence of patches and encodes them into a series of feature vectors, or “visual tokens.” To bridge the modality gap, a lightweight adapter module is then introduced. This module’s core function is to act as a translator, projecting these visual tokens into the LLM’s word embedding space, thereby making visual information comprehensible to a model originally designed for text (Zhang et al., 2024).

Despite their powerful general-purpose capabilities, emerging research has revealed inherent limitations in MLLMs. For instance, many models struggle with the perception of fine-grained visual details (Rahmanzadehgervi et al., 2024). Furthermore, within their self-attention mechanisms—the core component for weighing the importance of different inputs—visual tokens often receive less focus than their textual counterparts (Chen et al., 2024a). To address these challenges, we identify a more fundamental problem rooted in the now-ubiquitous Pre-Norm Xiong et al. (2020) architectural design. In this paradigm, normalization is applied before the main computational block (F), with the residual update defined as:

$$\mathbf{h}^{(l+1)} = \mathbf{h}^{(l)} + F(\text{Norm}(\mathbf{h}^{(l)})) \quad (1)$$

This architecture is widely adopted because it is easier to train. By leaving the residual path $\mathbf{h}^{(l)}$ unaltered, it creates an identity-like connection that ensures smooth gradient flow, preventing vanishing gradients in deep networks. However, this design has a critical side effect: since the output

054 of the residual sum is never re-normalized, the variance—and consequently, the L_2 norm—of the
 055 hidden states tends to accumulate and grow with network depth (Kim et al., 2025). As is shown in
 056 Figure 1b, it creates a particularly acute imbalance in MLLMs where high-norm visual tokens and
 057 lower-norm text tokens are processed together within a shared Pre-Norm LLM backbone—as the
 058 visual tokens themselves are generated by a deep, Pre-Norm ViT.

059 Our formal theoretical analysis reveals a critical dynamic: a fundamental asymmetry in the evolution-
 060 ary pace of visual and textual representations through the LLM’s layers. We demonstrate that for
 061 high-norm visual tokens, the Pre-Norm update mechanism induces a high “representational inertia”,
 062 causing them to undergo a much slower semantic transformation. In contrast, lower-norm textual to-
 063 kens adapt their representations more readily, leading to a mismatched rate of convergence towards
 064 a unified multimodal space. Notably, this dynamic divergence arises not from an intrinsic property
 065 of visual versus textual information, but from an architectural artifact: the interplay between the
 066 Pre-Norm design and the prevailing MLLM paradigm.

067 Bridging theory and practice, we first confirmed that these norm disparities and asymmetric update
 068 rates are prevalent across mainstream open-source VL models. Based on this validation, we propose
 069 a targeted intervention: inserting a normalization layer to enforce strict norm alignment. However,
 070 practical implementation reveals a critical optimization bottleneck. Since text embeddings in mod-
 071 ern LLMs (e.g., Qwen2.5) exhibit extremely low magnitudes, aligning visual tokens to this target
 072 requires initializing the normalization gain to a minute value. This naively triggers a *vanishing gra-*
 073 *dient problem*, detaching the vision encoder from supervision. To resolve this, we introduce a Global
 074 Weight Compensation (GWC) mechanism. This technique decouples the forward norm compression
 075 from the backward gradient magnitude, ensuring effective learning even under extreme alignment
 076 constraints.

077 In this work, our key contributions are threefold:

- 079 • **Theoretical Identification of Asymmetric Dynamics.** We are the first to identify and theo-
 080 retically formalize the issue of cross-modal norm disparity in Pre-Norm MLLMs. Our analysis
 081 reveals an “asymmetric update dynamic” where high-norm visual tokens exhibit “representational
 082 inertia,” leading to a slower semantic evolution compared to text tokens.
- 083 • **Extensive Empirical Validation.** We provide extensive empirical validation across a suite of
 084 mainstream open-source MLLMs, demonstrating that the predicted norm disparities and asym-
 085 metric update rates exist, confirming our theoretical model in practice.
- 086 • **A Simple and Robust Solution.** We propose Gradient-Aware Norm Alignment, incorporating a
 087 novel WC mechanism. This approach resolves the optimization dilemma caused by extreme norm
 088 compression. Our experiments show that this method yields significant performance gains not
 089 only on multimodal tasks but also, notably, on text-only benchmarks, indicating a more holistic
 090 improvement to the model’s capabilities.

092 2 PRELIMINARIES

094 Our analysis is grounded in the core components of modern Transformer architectures. We briefly
 095 review the self-attention mechanism, the role and types of normalization layers, and the critical
 096 design choice between Pre-Norm and Post-Norm architectures.

098 2.1 SELF-ATTENTION

100 The self-attention mechanism is the computational core of the Transformer. For an input sequence
 101 of hidden states $\mathbf{H} \in \mathbb{R}^{N \times D}$, it first linearly projects the sequence into queries (\mathbf{Q}), keys (\mathbf{K}),
 102 and values (\mathbf{V}) using learned weight matrices $\mathbf{W}_Q, \mathbf{W}_K, \mathbf{W}_V \in \mathbb{R}^{D \times d_k}$. The unnormalized dot-
 103 product scores are computed as $\mathbf{Q}\mathbf{K}^T$.

105 2.2 NORMALIZATION LAYERS IN TRANSFORMERS

106 Normalization layers are a critical component for stabilizing the training of deep networks by con-
 107 trolling the distribution of activations. In Transformers, they ensure that the inputs to each sublayer

(self-attention and FFN) remain well-behaved, preventing the magnitude of activations from exploding or vanishing. This is particularly important in MLLMs where features from different modalities, with potentially different statistical properties, are processed together. Two common normalization schemes are:

Layer Normalization (LayerNorm). This technique normalizes activations across the feature dimension for each token independently (Ba et al., 2016). For an input vector \mathbf{x} , it is defined as:

$$\text{LayerNorm}(\mathbf{x}) = \frac{\mathbf{x} - \mathbb{E}[\mathbf{x}]}{\sqrt{\text{Var}[\mathbf{x}] + \epsilon}} \odot \mathbf{g} + \beta \quad (2)$$

where \mathbf{g} (gain) and β (bias) are learnable parameters that restore expressive power.

Root Mean Square Norm (RMSNorm). A simplified and computationally efficient variant of LayerNorm that forgoes re-centering (subtracting the mean) (Zhang & Sennrich, 2019). It normalizes by the root mean square of the vector, proving effective in many modern LLMs:

$$\text{RMSNorm}(\mathbf{x}) = \frac{\mathbf{x}}{\sqrt{\frac{1}{D} \|\mathbf{x}\|_2^2 + \epsilon}} \odot \mathbf{g} \quad (3)$$

2.3 THE PRE-NORM VS. POST-NORM RESIDUAL ARCHITECTURE

A Transformer block is functionally an additive update mechanism that refines a token’s representation (Vaswani et al., 2017; He et al., 2016). For our analysis, it is useful to interpret the components of this update geometrically. The core operation is:

$$\mathbf{h}^{(l+1)} = \mathbf{h}^{(l)} + \Delta \mathbf{h}^{(l)} \quad (4)$$

In this view, we can consider $\mathbf{h}^{(l)}$ as the **Previous State**, representing the token’s current position in a semantic space, which arrives via the skip connection. The term $\Delta \mathbf{h}^{(l)}$, computed by the residual branch (e.g., the self-attention sublayer), can be seen as the **Update Vector** that adjusts this position. The sum, $\mathbf{h}^{(l+1)}$, is therefore the resulting **New State**.

The critical design choice is where to place the normalization operation relative to this residual sum. The structural difference between the Pre-Norm and Post-Norm architectures is illustrated in Figure 1a. This defines two architectural families with distinct trade-offs:

Post-Norm Architecture. This was the original Transformer design, which applies normalization after the residual connection:

$$\mathbf{h}^{(l+1)} = \text{Norm}(\mathbf{h}^{(l)} + \text{Sublayer}(\mathbf{h}^{(l)})) \quad (5)$$

162 While its direct normalization of the output path can preserve strong representational fidelity, the
 163 gradients must pass through a normalization layer at every block. This can impede gradient flow in
 164 very deep networks, making them harder to train. However, Post-Norm does not lead to network
 165 depth degradation and exhibits stronger representational capabilities.
 166

167 **Pre-Norm Architecture.** This design, now widely adopted, applies normalization before the sub-
 168 layer, within the residual branch:

$$\Delta \mathbf{h}^{(l)} = \text{Sublayer}(\text{Norm}(\mathbf{h}^{(l)})) \quad (6)$$

$$\mathbf{h}^{(l+1)} = \mathbf{h}^{(l)} + \Delta \mathbf{h}^{(l)} \quad (7)$$

173 Its primary advantage is improved training dynamics. The skip connection path is an uninterrupted,
 174 identity-like connection, which ensures smooth gradient flow and makes training deep models sig-
 175 nificantly easier. However, this design has a critical side effect: since the final output $\mathbf{h}^{(l+1)}$ is
 176 never re-normalized, the variance—and thus the L2 norm—of the hidden states tends to accumulate
 177 across layers. This creates the vulnerability we analyze, especially in multimodal contexts where
 178 initial norms are already disparate.

179 Building upon the architectural components defined in the Preliminaries, we now formalize our cen-
 180 tral argument: the Pre-Norm architecture, when applied to MLLMs, inherently creates a dynamic
 181 imbalance that impairs cross-modal fusion. The issue originates from the standard MLLM paradigm,
 182 which injects features from a **pre-trained** vision encoder into a language model. It is an established
 183 property that deep Pre-Norm networks, like those used in modern vision encoders, accumulate vari-
 184 ance as signals propagate through the layers, resulting in high-norm outputs (Kim et al., 2025).
 185 Consequently, when these pre-computed, high-norm visual tokens are introduced into the relatively
 186 lower-norm embedding space of the LLM, a significant initial norm disparity is established at the
 187 modality interface.

188 3 THEORETICAL ANALYSIS OF NORM-INDUCED DECOUPLING EFFECT

191 In this section, we present a theoretical proof that this initial norm imbalance is not a static issue but
 192 rather the catalyst for an accelerated geometric divergence between the two modalities, ultimately
 193 suppressing the cross-modal attention signal. The full mathematical derivation is provided in the
 194 Appendix.

195 3.1 ANALYTICAL FRAMEWORK AND ASSUMPTIONS

197 Our proof is predicated on a set of simplifying assumptions that capture the core dynamics of the
 198 Pre-Norm architecture:

- 200 • **Modality Norm Imbalance:** We analyze two cases: the **imbalanced case** ($k = \frac{\|\mathbf{h}_{\text{vis}}\|_2}{\|\mathbf{h}_{\text{txt}}\|_2} > 1$) and
 201 the ideal **balanced case** ($k = 1$).
- 202 • **Uniform Update Magnitude:** Due to the Pre-Norm design, the magnitude of the update vector,
 203 $\|\Delta \mathbf{h}^{(l)}\|_2$, is decoupled from the input norm $\|\mathbf{h}^{(l)}\|_2$. We denote this uniform magnitude as $C^{(l)}$
 204 for a given layer.
- 206 • **Consistent Update Geometry:** We assume the update vector $\Delta \mathbf{h}$ forms a consistent expected
 207 angle, ϕ , with the hidden state \mathbf{h} for all tokens within a given layer.
- 208 • **Random Rotational Direction:** We assume the direction of the rotational component of the up-
 209 date is drawn from a symmetric distribution over the relevant subspace.

211 3.2 ASYMMETRIC ANGULAR VELOCITY AND GEOMETRIC DIVERGENCE

213 To quantify the rate of directional change, we introduce the concept of **effective angular velocity**.
 214 The update vector $\Delta \mathbf{h}$ can be decomposed into a component parallel to the hidden state \mathbf{h} (which
 215 only scales its length) and a component orthogonal to it (which causes rotation). The effective
 angular velocity, measured by the angle of pure rotation θ_{eff} , is driven solely by this orthogonal

216 component. As derived in Appendix B, its tangent is given by:
 217

$$218 \quad \tan(\theta_{\text{eff}}) = \frac{C^{(l)} \sin(\phi)}{\|\mathbf{h}\|_2 + C^{(l)} \cos(\phi)} \quad (8)$$

220 A direct and critical consequence of our framework is that this angular velocity becomes asymmetric
 221 in the imbalanced case. Because a uniform update magnitude $C^{(l)}$ is applied to hidden states of
 222 different norms, the high-norm vision tokens exhibit a lower effective angular velocity than the
 223 low-norm text tokens. Formally, for $\|\mathbf{h}_{\text{vis}}\|_2 > \|\mathbf{h}_{\text{txt}}\|_2$, it follows that:
 224

$$225 \quad \tan(\theta_{\text{eff, vis}}) < \tan(\theta_{\text{eff, txt}}) \quad (9)$$

226 This disparity imparts a higher “representational inertia” to visual tokens. In Appendix B, we rigor-
 227 ously prove that this asymmetry leads to an accelerated geometric divergence between the represen-
 228 tations of the two modalities, which in turn weakens the underlying similarity signal available to the
 229 attention mechanism.

230 3.3 SUPPRESSION OF THE CROSS-MODAL ATTENTION SIGNAL 231

232 This weakened geometric signal fundamentally limits the attention mechanism’s ability to learn an
 233 effective similarity metric. The attention mechanism learns a metric based on the dot product be-
 234 tween queries and keys; if the foundational similarity between these vectors is systematically eroded
 235 layer by layer due to geometric divergence, the gradient signal for learning this metric becomes
 236 weaker and noisier.

237 As rigorously detailed in the Appendix, this results in a systematically suppressed final attention
 238 score. Let S_{imb} and S_{bal} denote the unnormalized attention scores in the imbalanced and balanced
 239 cases, respectively. We conclude that their expected values are related by:

$$240 \quad \mathbb{E}[S_{\text{imb}}] < \mathbb{E}[S_{\text{bal}}] \quad (10)$$

241 This provides a formal, first-principles explanation for the experimentally observed phenomenon
 242 of poor cross-modal fusion. The norm imbalance creates a vicious cycle: it accelerates geometric
 243 divergence, which weakens the gradient signal for learning the attention metric, leading to a less
 244 effective metric and, ultimately, lower cross-modal attention.

245 4 EMPIRICAL VALIDATION: PROBING THE DYNAMICS OF NORM 246 IMBALANCE

247 Our theoretical analysis provides a formal, first-principles explanation for how norm imbalance can
 248 impair multimodal fusion. However, this framework relies on a set of simplifying assumptions to
 249 ensure analytical tractability, while the dynamics of large-scale MLLMs are considerably more com-
 250 plex. Therefore, to bridge the gap between our idealized model and real-world behavior, we conduct
 251 a series of empirical investigations. These experiments are designed to probe whether the core con-
 252 sequences predicted by our theory—namely, the persistence of norm imbalance and the resulting
 253 asymmetric update dynamics—manifest in state-of-the-art Pre-Norm MLLMs. Our investigation is
 254 guided by the following research questions:
 255

- 256 • **RQ1: Existence of Initial Norm Disparity.** Do visual and text tokens exhibit a significant norm
 257 mismatch at the modality interface?

258 To answer this, we benchmarked the L_2 norms from both sides of the modality interface.
 259 For the visual modality, we measured the output norms of four representative vision en-
 260 coders—CLIP (Radford et al., 2021), SigLIP (Zhai et al., 2023), SigLIP-v2 (Tschannen et al.,
 261 2025), and MoonViT (Team et al., 2025). For the text modality, we established a baseline by com-
 262 puting the average L_2 norm of the text embedding layers from prominent LLMs: Qwen2.5 (Bai
 263 et al., 2025), Qwen3 (Yang et al., 2025), and Llama3.2 (Grattafiori et al., 2024). The analysis of
 264 vision encoders was conducted on a dataset of 1000 samples drawn from the MMBench, POPE,
 265 and MM-Star benchmarks, which serves as the foundation for all subsequent experiments in this
 266 section. The combined results are presented in Table 1.

267 As shown in 1, vision encoder output norms are substantially larger than those of text embed-
 268 dings. This disparity persists because the encoders’ contrastive pre-training—even with a final
 269 post-norm—is not designed to align with the norm scale of an external LLM’s embedding space.

270 Table 1: L_2 norms and hidden dimensions at the modality interface: Vision Encoder outputs vs.
 271 LLM text embeddings (mean \pm std).

273	Modality	Model	Dimension	Average L_2 Norm
274	Visual	CLIP-ViT-large-patch14	1024	29.30 ± 17.12
275		SigLIP-SO-400m-patch14-384	1152	71.78 ± 13.95
276		SigLIP2-SO-400m-patch14-384	1152	59.37 ± 106.08
277		MoonViT-SO-400M	1152	72.17 ± 7.13
278	Text	Qwen2.5-7B-Instruct	3584	0.80
279		Qwen3-8B-Instruct	4096	1.38
280		Llama3.2-3B-Instruct	3072	1.09

283 • **RQ2: The Efficacy of the Adapter.** Does the projection adapter harmonize the initial norm
 284 disparity before the tokens enter the LLM backbone?

285 Within MLLMs, the projector’s role is to map visual tokens into the LLM’s textual embedding
 286 space. A critical question is whether this process also serves to align their norms. To investigate
 287 this, we analyzed a suite of prominent models: LLaVA-v1.5 (Li et al., 2024a), Qwen-2.5-VL (Bai
 288 et al., 2025), KimiVL (Team et al., 2025), and GLM-4.1V (Hong et al., 2025). For each model,
 289 we measured the L_2 norm of visual tokens both before and after the projector and compared them
 290 to the text token norm. The results are summarized in Table 2.

291 Table 2: L_2 norms of visual tokens (before and after projector, mean \pm std) vs. text tokens.

293	Model	Visual (Before Proj.)	Visual (After Proj.)	Text (Embedding)
295	LLaVA-v1.5	28.71 ± 16.87	39.96 ± 45.58	1.08
296	Qwen-2.5-VL	3484.24 ± 3882.82	56.88 ± 25.73	0.86
297	KimiVL	137.93 ± 34.43	4.78 ± 2.21	0.85
298	GLM-4.1V	47.44 ± 4.58	4.58 ± 2.03	0.80

300 The results in Table 2 reveal a clear spectrum of effectiveness across different projector designs.
 301 While sophisticated projectors like those in KimiVL and GLM-4.1V demonstrate a significant
 302 capability for norm compression, a substantial disparity between visual and text token norms
 303 persists in all analyzed models. This varied effectiveness highlights a key finding: simply inserting
 304 a normalization layer within the projector is not a guaranteed solution. With the exception of
 305 LLaVA-v1.5, all other models incorporate internal norm layers, yet their final output norms differ
 306 by an order of magnitude.

307 This leads to a broader discussion on current design practices. We note that these architectural
 308 choices and their impact on cross-modal norm alignment are seldom, if ever, addressed in the
 309 models’ respective technical reports.

310 Notably, the systemic inflation of text embedding norms observed in Qwen-2.5-VL and Qwen-
 311 2-VL (detailed in Appendix C) corroborates that norm discrepancy is a fundamental bottleneck.
 312 This phenomenon suggests that the model is forced to inefficiently adjust its static embedding
 313 parameters to passively compensate for the massive norm gap at the modality interface.

314 • **RQ3: Asymmetry in Update Dynamics.** Do visual and textual hidden states exhibit different
 315 update rates, as predicted by our theory of asymmetric angular velocity?

316 This question serves as the most direct empirical test of our theory’s core mechanism. We use the
 317 cosine similarity between consecutive layers ($l-1$ and l) as a proxy for the rate of representational
 318 change, a metric conceptually linked to angular velocity. A higher similarity score implies a
 319 smaller angular change and thus a slower update rate. We computed this metric for both modalities
 320 across all layers to determine if a systematic divergence in their update rates exists, as shown in
 321 Figure 3.

322 The results in Figure 3 confirm our theoretical predictions, revealing a consistent divergence in
 323 update rates between visual and text tokens across all analyzed models. Notably, the magnitude of
 324 this dynamic asymmetry appears to be directly correlated with the initial norm disparity identified
 325 in RQ1 and RQ2. Models with a smaller initial norm gap, such as Kimi-VL and GLM-4.5V,

324 exhibit a less pronounced difference in update rates. Conversely, models with a more severe
 325 norm imbalance, like LLaVA-1.5 and Qwen-2.5-VL, demonstrate a significantly larger gap in
 326 their update dynamics, providing strong correlational evidence for our theory.

- **RQ4: Norm Discrepancy in Models with Visual Embedding Tables.** Does the significant norm disparity persist in architectures utilizing probabilistic visual tokenization, such as Ovis 2.5 (Lu et al., 2025)?

To verify whether the norm discrepancy and its dynamic consequences persist across different architectural paradigms, we conducted experiments on Ovis-2.5-9B, a model that employs probabilistic visual tokenization. Unlike LLaVA-style models that project continuous features, Ovis utilizes a discrete visual vocabulary derived from a SigLIP2 encoder.

Table 3: L_2 norms in Ovis 2.5. Note that while the visual tokens are strictly clustered (low std), their magnitude remains drastically higher than text tokens.

Modality	Source	Avg L ₂ Norm
Visual	SigLIP2 Vocab (Frozen)	64.00 ± 0.71
Text	Text Vocab (Base LLM)	1.38 ± 0.32

As detailed in Table 3, a substantial static norm discrepancy persists in Ovis 2.5: the visual vocabulary exhibits an average norm of 64.00—likely stemming from its derivation via the SigLIP2 encoder—compared to the text norm of 1.38.

However, Figure 2 indicates that the internal dynamics differ from those observed in continuous projection models. Despite the norm disparity, the update rates (proxied by cosine similarity) for visual and text tokens do not exhibit the marked asymmetry found in LLaVA-style architectures. The curves overlap significantly, suggesting that the discrete tokenization paradigm may inherently mitigate the representational inertia usually associated with high-norm inputs.

5 EXPERIMENTS

Our theoretical analysis in Section 3 posited a mechanism whereby norm disparity leads to update asymmetry and, consequently, suppressed visual attention. A critical question remains, however: do these internal dynamics translate into a tangible degradation of the model’s downstream capabilities? To investigate this link between internal mechanics and practical performance, we conducted a series of comparative experiments.

5.1 METHOD: GRADIENT-AWARE NORM ALIGNMENT

To enforce norm alignment between visual and text tokens, we introduce a straightforward intervention: inserting an additional LayerNorm layer immediately after the visual projector. Crucially, the learnable gain parameter g of this layer is initialized to explicitly match the average L_2 norm of the text tokens within the LLM’s embedding space.

Determining the Alignment Target. First, we compute the target L_2 norm, T , by averaging the norms of all non-zero vectors from the language model’s text embedding matrix, \mathbf{W}_e :

$$T = \frac{1}{|\mathcal{W}^*|} \sum_{\mathbf{w} \in \mathcal{W}^*} \|\mathbf{w}\|_2, \quad \text{where } \mathcal{W}^* = \{\mathbf{w} \in \mathbf{W}_e \mid \|\mathbf{w}\|_2 > \epsilon\}. \quad (11)$$

Based on this target, the gain parameter g is initialized to a scalar $g_{\text{init}} = T/\sqrt{D}$.

Figure 2: Layer-wise cosine similarity in Ovis 2.5. Despite the massive norm gap (64 vs 1.38), the update rates of visual and text tokens remain remarkably synchronized.

Figure 3: Inter-layer cosine similarity of hidden states for visual vs. text tokens.

The Optimization Dilemma. A critical challenge arises from the intrinsic properties of the LLM’s embedding space. Specifically, pre-trained text embeddings exhibit an **extremely small magnitude** (e.g., $\|w\|_2 \approx 1$ even for $D = 4096$). Consequently, aligning to this target requires initializing g to a minute value (e.g., $g_{\text{init}} \approx 0.01$). In standard backpropagation, the gradient flowing back to the vision encoder is scaled by this weight: $\nabla_{\mathbf{x}}\mathcal{L} = \nabla_{\mathbf{y}}\mathcal{L} \odot g$. Thus, a minute initialization triggers a *vanishing gradient problem*, detaching the vision encoder from supervision.

Resolution via Global Weight Compensation. To resolve this, we propose a **Global Weight Compensation** mechanism implemented via a backward hook. Instead of redefining the gradient simply as identity, we actively rescale the gradients to counteract the dampening effect of the small initialization. Formally, let $\bar{g} = \frac{1}{D} \sum_i |g_i|$ be the mean magnitude of the gain vector. We define the backward pass dynamics as:

$$\text{Backward}(\nabla_{\mathbf{x}}\mathcal{L}) = \underbrace{(\nabla_{\mathbf{y}}\mathcal{L} \odot g)}_{\text{Standard Gradient}} \times \underbrace{\frac{1}{\bar{g}}}_{\text{Compensation Factor}}. \quad (12)$$

By multiplying the gradient by the inverse of the global weight magnitude, we effectively cancel out the scaling term ($g \cdot \bar{g}^{-1} \approx 1$), restoring the gradient flow to a unit scale while maintaining the precise architectural norm alignment in the forward pass.

5.2 EXPERIMENTAL SETUP

Our experiments are conducted within the LLaVA-1.5 architectural framework. Specifically, we employ Llama-3.2-3B-Instruct (Grattafiori et al., 2024) and Qwen2.5-7B-Instruct (Bai et al., 2025) as the base language model and SigLIP-SO400M-Patch14-384 as the vision encoder. Further details are provided in Appendix E.

A detailed list of the evaluation benchmarks is provided in the Appendix E; for all tasks, we employed a greedy decoding strategy.

432 5.3 RESULTS AND ANALYSIS
433434 5.3.1 MAIN PERFORMANCE GAINS
435

436 The results in Table 4 reveal a backbone-dependent response. For Llama-3.2, simple norm alignment
437 suffices to yield robust improvements. Conversely, Qwen2.5 exhibits the predicted *vanishing gradient*
438 pathology: the minute initialization stifles gradient flow to the adapter, causing naive alignment
439 to improve only text metrics while stagnating on multimodal tasks. Introducing our Global Weight
440 Compensation (GWC) resolves this optimization bottleneck, unlocking gains across both domains.
441 While this validates that norm alignment is fundamental for holistic model capability, the potential
442 for gradient oscillation with GWC suggests that exploring more stable compression strategies
443 remains a vital direction for future research.

444 Table 4: Performance comparison on various benchmarks across different backbones. **w/ Norm**
445 (**w/o GWC**) denotes norm alignment with naive initialization (leading to gradient vanishing). **w/**
446 **Norm (w/ GWC)** denotes our proposed **Global Weight Compensation** mechanism.

447 Model	448 Method	449 MMBench _{dev}	450 MM-Star	451 POPE	452 SEED-Bench-2	453 OCRBench
449 Llama	w/o Norm	71.39	37.72	88.14	42.86	40.70
	w/ Norm (w/o GWC)	72.16 (+0.77)	41.19 (+3.47)	88.88 (+0.74)	47.26 (+4.40)	45.60 (+4.90)
	w/ Norm (w/ GWC)	71.82 (+0.43)	41.24 (+3.52)	88.26 (+0.12)	45.56 (+2.70)	44.10 (+3.40)
451 Qwen	w/o Norm	76.80	50.34	87.51	56.65	47.00
	w/ Norm (w/o GWC)	75.60 (-1.20)	48.08 (-2.26)	87.83 (+0.32)	59.51 (+2.86)	47.60 (+0.60)
	w/ Norm (w/ GWC)	77.66 (+0.86)	50.58 (+0.24)	87.87 (+0.36)	58.27 (+1.62)	49.40 (+2.40)
454 Model	455 Method	456 ScienceQA	457 AI2D	458 HellaSwag	459 MMLU	460 Avg
456 Llama	w/o Norm	78.99	60.17	65.96	45.19	59.01
	w/ Norm (w/o GWC)	80.83 (+1.84)	63.24 (+3.07)	66.01 (+0.05)	53.21 (+8.02)	62.04 (+3.03)
	w/ Norm (w/ GWC)	81.00 (+2.01)	61.85 (+1.68)	65.99 (+0.03)	51.60 (+6.41)	61.27 (+2.26)
458 Qwen	w/o Norm	82.81	73.74	70.56	71.02	68.49
	w/ Norm (w/o GWC)	82.20 (-0.61)	72.70 (-1.04)	73.73 (+3.17)	71.14 (+0.12)	68.71 (+0.22)
	w/ Norm (w/ GWC)	82.93 (+0.12)	74.61 (+0.87)	71.64 (+1.09)	71.74 (+0.72)	69.41 (+0.92)

461 We visualized the attention matrices in Appendix G. The analysis reveals that in the baseline model,
462 text-to-image attention is inappropriately and broadly concentrated on the bottom regions of the im-
463 age. This suggests a failure in semantic fusion, caused by the positional proximity bias introduced
464 by RoPE’s distance-decay property. In stark contrast, our norm-aligned model’s text-to-image atten-
465 tion correctly converges on the specific image regions that are semantically relevant to the text query.
466 This visual evidence provides direct confirmation that our method successfully restores meaningful
467 cross-modal attention by correcting the underlying dynamic imbalance, thus enabling true feature
468 fusion.

469 We also analyze the temporal evolution of layer-wise similarity and its convergence behavior during
470 pre-training in Appendix F.

472 5.3.2 ABLATION STUDY: THE CRITICAL ROLE OF INITIALIZATION
473

474 To isolate the effect of our proposed initialization strategy, we conducted a crucial ablation study.
475 We compared our method against a baseline where the added LayerNorm layer was initialized with
476 default parameters (gain=1, bias=0). We analyzed the learned parameters immediately after the
477 LLaVA Stage 1 pre-training phase. As shown in Table 5, the parameters of the default-initialized
478 layer remained largely unchanged from their initial state, indicating that the optimization process
479 failed to begin effectively without a reasonable starting point. In contrast, our method shows mean-
480 ingful parameter updates even after this initial stage. This demonstrates that simply adding a norm
481 layer is insufficient; our targeted initialization is essential to place the parameters in a gradient-rich
482 region of the loss landscape, enabling effective learning.

483 5.3.3 DIAGNOSTIC ANALYSIS: VERIFYING THE MECHANISM OF IMPROVEMENT
484

485 Finally, we performed a diagnostic analysis to investigate whether the performance gains correlate
486 with the mitigation of the dynamic imbalance we identified. We analyzed the internal states of

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Table 5: Learned parameters of the added LayerNorm layer after Stage 1 pre-training, comparing default initialization with our proposed strategy.

Parameter	Metric	Default Init (After Stage 1)	Our Init (After Stage 1)
Gain (\mathbf{g})	L_2 Norm	53.2500	2.2812
	Mean of Abs.	0.9609 (± 0.0005)	0.0400 (± 0.0001)
\mathbf{Bias} (β)	Mean of Abs.	0.0175 (± 0.0002)	0.0152 (± 0.0001)

the fully trained model (after Stage 2) comparing the baseline against our norm-aligned method. Figure 4 visualizes two key metrics:

- **Layer-wise L2 Norms (Fig. 4a):** The left panel indicates that our method effectively harmonizes the visual token norms with the text token norms starting from the initial layers and maintains this alignment throughout the model’s depth. In contrast, the baseline model exhibits a marked and persistent norm divergence.
- **Inter-layer Cosine Similarity (Fig. 4b):** The right panel illustrates the corresponding shift in update dynamics. With our intervention, the update rates (proxied by cosine similarity) of visual and text tokens exhibit significantly improved synchronization. This observation suggests that our method successfully mitigates the extreme asymmetry present in the baseline, where the persistently high similarity of visual tokens pointed to substantial “representational inertia.”

Collectively, these findings corroborate our theoretical framework: correcting the static norm disparity appears to alleviate the asymmetric update rates, thereby facilitating the observed improvements in downstream performance.

Figure 4: A comparison of token dynamics with and without our norm alignment method. (a) shows the layer-wise L2 norm evolution, while (b) shows the inter-layer cosine similarity, which acts as a proxy for update rate.

6 CONCLUSION

Our analysis reveals a critical, previously undiscovered dynamic within Pre-Norm MLLMs: an “asymmetric update.” We have formalized this dynamic theoretically and validated it empirically, showing it to be a direct consequence of the severe norm disparity between visual and text tokens. This analysis demonstrates that the dynamic manifests as “representational inertia” in high-norm visual tokens, fundamentally impairing cross-modal fusion at an architectural level. It was this deep analysis of the mechanism that motivated our targeted solution of enforcing norm alignment via a single LayerNorm with global Weight Compensation. The resulting significant performance gains on both multimodal and, critically, text-only tasks, serve as compelling validation for our core analysis, confirming that resolving this dynamic imbalance unlocks the model’s full potential.

540 REFERENCES
541

542 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
543 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
544 report. *arXiv preprint arXiv:2303.08774*, 2023.

545 Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
546 Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
547 model for few-shot learning. *Advances in neural information processing systems*, 35:23716–
548 23736, 2022.

549 Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. *arXiv preprint
550 arXiv:1607.06450*, 2016.

551 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
552 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
553 2025.

554 Tianyi Bai, Hao Liang, Binwang Wan, Yanran Xu, Xi Li, Shiyu Li, Ling Yang, Bozhou Li, Yifan
555 Wang, Bin Cui, et al. A survey of multimodal large language model from a data-centric perspec-
556 tive. *arXiv preprint arXiv:2405.16640*, 2024.

557 Junbum Cha, Wooyoung Kang, Jonghwan Mun, and Byungseok Roh. Honeybee: Locality-enhanced
558 projector for multimodal llm. In *Proceedings of the IEEE/CVF Conference on Computer Vision
559 and Pattern Recognition*, pp. 13817–13827, 2024.

560 Liang Chen, Haozhe Zhao, Tianyu Liu, Shuai Bai, Junyang Lin, Chang Zhou, and Baobao Chang.
561 An image is worth 1/2 tokens after layer 2: Plug-and-play inference acceleration for large vision-
562 language models. In *European Conference on Computer Vision*, pp. 19–35. Springer, 2024a.

563 Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan, Jiaqi
564 Wang, Yu Qiao, Dahua Lin, et al. Are we on the right way for evaluating large vision-language
565 models? *Advances in Neural Information Processing Systems*, 37:27056–27087, 2024b.

566 Xinlong Chen, Yue Ding, Weihong Lin, Jingyun Hua, Linli Yao, Yang Shi, Bozhou Li, Yuanx-
567 ing Zhang, Qiang Liu, Pengfei Wan, et al. Avocado: An audiovisual video captioner driven by
568 temporal orchestration. *arXiv preprint arXiv:2510.10395*, 2025.

569 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
570 Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
571 frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
572 bilities. *arXiv preprint arXiv:2507.06261*, 2025.

573 Chaorui Deng, Deyao Zhu, Kunchang Li, Chenhui Gou, Feng Li, Zeyu Wang, Shu Zhong, Weihao
574 Yu, Xiaonan Nie, Ziang Song, et al. Emerging properties in unified multimodal pretraining. *arXiv
575 preprint arXiv:2505.14683*, 2025.

576 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
577 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
578 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint
579 arXiv:2010.11929*, 2020.

580 Yingjie Fu, Bozhou Li, Linyi Li, Wentao Zhang, and Tao Xie. The first prompt counts the most! an
581 evaluation of large language models on iterative example-based code generation. *Proceedings of
582 the ACM on Software Engineering*, 2(2):1583–1606, 2025.

583 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
584 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
585 of models. *arXiv preprint arXiv:2407.21783*, 2024.

586 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
587 nition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
588 770–778, 2016.

594 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
 595 Jacob Steinhardt. Measuring massive multitask language understanding. *arXiv preprint*
 596 *arXiv:2009.03300*, 2020.

597

598 Wenyi Hong, Wenmeng Yu, Xiaotao Gu, Guo Wang, Guobing Gan, Haomiao Tang, Jiale Cheng,
 599 Ji Qi, Junhui Ji, Lihang Pan, et al. Glm-4.1 v-thinking: Towards versatile multimodal reasoning
 600 with scalable reinforcement learning. *arXiv e-prints*, pp. arXiv–2507, 2025.

601

602 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 603 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint*
 604 *arXiv:2410.21276*, 2024.

605

606 Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
 607 reducing internal covariate shift. In *International conference on machine learning*, pp. 448–456.
 608 pmlr, 2015.

609

610 Aniruddha Kembhavi, Mike Salvato, Eric Kolve, Minjoon Seo, Hannaneh Hajishirzi, and Ali
 611 Farhadi. A diagram is worth a dozen images. In *European conference on computer vision*, pp.
 612 235–251. Springer, 2016.

613

614 Jeonghoon Kim, Byeongchan Lee, Cheonbok Park, Yeontaek Oh, Beomjun Kim, Taehwan Yoo,
 615 Seongjin Shin, Dongyo Han, Jinwoo Shin, and Kang Min Yoo. Peri-In: Revisiting normaliza-
 616 tion layer in the transformer architecture. *arXiv preprint arXiv:2502.02732*, 2025.

617

618 Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan
 619 Zhang, Yanwei Li, Ziwei Liu, et al. Llava-onevision: Easy visual task transfer. *arXiv preprint*
 620 *arXiv:2408.03326*, 2024a.

621

622 Bohao Li, Yuying Ge, Yi Chen, Yixiao Ge, Ruimao Zhang, and Ying Shan. Seed-bench-2-plus:
 623 Benchmarking multimodal large language models with text-rich visual comprehension. *arXiv*
 624 *preprint arXiv:2404.16790*, 2024b.

625

626 Bozhou Li and Wentao Zhang. Id-align: Rope-conscious position remapping for dynamic high-
 627 resolution adaptation in vision-language models. *arXiv preprint arXiv:2505.21465*, 2025.

628

629 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
 630 pre-training with frozen image encoders and large language models. In *International conference*
 631 *on machine learning*, pp. 19730–19742. PMLR, 2023a.

632

633 Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating
 634 object hallucination in large vision-language models. *arXiv preprint arXiv:2305.10355*, 2023b.

635

636 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances*
 637 *in neural information processing systems*, 36:34892–34916, 2023.

638

639 Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan,
 640 Jiaqi Wang, Conghui He, Ziwei Liu, et al. Mmbench: Is your multi-modal model an all-around
 641 player? In *European conference on computer vision*, pp. 216–233. Springer, 2024a.

642

643 Yuliang Liu, Zhang Li, Mingxin Huang, Biao Yang, Wenwen Yu, Chunyuan Li, Xu-Cheng Yin,
 644 Cheng-Lin Liu, Lianwen Jin, and Xiang Bai. Ocrbench: on the hidden mystery of ocr in large
 645 multimodal models. *Science China Information Sciences*, 67(12):220102, 2024b.

646

647 Zheng Liu, Hao Liang, Bozhou Li, Tianyi Bai, Wentao Xiong, Chong Chen, Conghui He, Wen-
 648 tao Zhang, and Bin Cui. Synthvlm: High-efficiency and high-quality synthetic data for vision
 649 language models. *arXiv preprint arXiv:2407.20756*, 2024c.

650

651 Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord,
 652 Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains for
 653 science question answering. *Advances in Neural Information Processing Systems*, 35:2507–2521,
 654 2022.

648 Shiyin Lu, Yang Li, Qing-Guo Chen, Zhao Xu, Weihua Luo, Kaifu Zhang, and Han-Jia Ye.
 649 Ovis: Structural embedding alignment for multimodal large language model. *arXiv preprint*
 650 *arXiv:2405.20797*, 2024.

651 Shiyin Lu, Yang Li, Yu Xia, Yuwei Hu, Shanshan Zhao, Yanqing Ma, Zhichao Wei, Yinglun Li,
 652 Lunhao Duan, Jianshan Zhao, et al. Ovis2. 5 technical report. *arXiv preprint arXiv:2508.11737*,
 653 2025.

654 Lingchen Meng, Jianwei Yang, Rui Tian, Xiyang Dai, Zuxuan Wu, Jianfeng Gao, and Yu-Gang
 655 Jiang. Deepstack: Deeply stacking visual tokens is surprisingly simple and effective for Imms.
 656 *Advances in Neural Information Processing Systems*, 37:23464–23487, 2024.

657 Jianing Qi, Jiawei Liu, Hao Tang, and Zhigang Zhu. Beyond semantics: Rediscovering spatial
 658 awareness in vision-language models. *arXiv preprint arXiv:2503.17349*, 2025.

659 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 660 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 661 models from natural language supervision. In *International conference on machine learning*, pp.
 662 8748–8763. PMLR, 2021.

663 Pooyan Rahmazadehgeri, Logan Bolton, Mohammad Reza Taesiri, and Anh Totti Nguyen. Vision
 664 language models are blind. In *Proceedings of the Asian Conference on Computer Vision*, pp. 18–
 665 34, 2024.

666 Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
 667 hanced transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024.

668 Kimi Team, Angang Du, Bohong Yin, Bowei Xing, Bowen Qu, Bowen Wang, Cheng Chen,
 669 Chenlin Zhang, Chenzhuang Du, Chu Wei, et al. Kimi-vl technical report. *arXiv preprint*
 670 *arXiv:2504.07491*, 2025.

671 Michael Tschannen, Alexey Gritsenko, Xiao Wang, Muhammad Ferjad Naeem, Ibrahim Alabdul-
 672 mohsin, Nikhil Parthasarathy, Talfan Evans, Lucas Beyer, Ye Xia, Basil Mustafa, et al. Siglip 2:
 673 Multilingual vision-language encoders with improved semantic understanding, localization, and
 674 dense features. *arXiv preprint arXiv:2502.14786*, 2025.

675 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 676 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-
 677 tion processing systems*, 30, 2017.

678 Xilin Wei, Xiaoran Liu, Yuhang Zang, Xiaoyi Dong, Pan Zhang, Yuhang Cao, Jian Tong, Haodong
 679 Duan, Qipeng Guo, Jiaqi Wang, et al. Videorope: What makes for good video rotary position
 680 embedding? *arXiv preprint arXiv:2502.05173*, 2025.

681 Zhiyu Wu, Xiaokang Chen, Zizheng Pan, Xingchao Liu, Wen Liu, Damai Dai, Huazuo Gao, Yiyang
 682 Ma, Chengyue Wu, Bingxuan Wang, et al. Deepseek-vl2: Mixture-of-experts vision-language
 683 models for advanced multimodal understanding. *arXiv preprint arXiv:2412.10302*, 2024.

684 Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang,
 685 Yanyan Lan, Liwei Wang, and Tieyan Liu. On layer normalization in the transformer architecture.
 686 In *International conference on machine learning*, pp. 10524–10533. PMLR, 2020.

687 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 688 Chang Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint*
 689 *arXiv:2505.09388*, 2025.

690 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
 691 chine really finish your sentence? *arXiv preprint arXiv:1905.07830*, 2019.

692 Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
 693 image pre-training. In *Proceedings of the IEEE/CVF international conference on computer vision*,
 694 pp. 11975–11986, 2023.

702 Biao Zhang and Rico Sennrich. Root mean square layer normalization. *Advances in neural infor-*
703 *mation processing systems*, 32, 2019.

704

705 Duzhen Zhang, Yahan Yu, Jiahua Dong, Chenxing Li, Dan Su, Chenhui Chu, and Dong Yu. Mm-
706 llms: Recent advances in multimodal large language models. *arXiv preprint arXiv:2401.13601*,
707 2024.

708 Zhijian Zhuo, Yutao Zeng, Ya Wang, Sijun Zhang, Jian Yang, Xiaoqing Li, Xun Zhou, and Jinwen
709 Ma. Hybridnorm: Towards stable and efficient transformer training via hybrid normalization.
710 *arXiv preprint arXiv:2503.04598*, 2025.

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 A BACKGROUND & RELATED WORK
757758 A.1 MULTIMODAL LARGE LANGUAGE MODELS
759760 The remarkable success and emergent capabilities of Large Language Models (LLMs) in natural
761 language processing have catalyzed efforts to generalize their powerful abilities to other modalities
762 (Achiam et al., 2023; Hurst et al., 2024; Comanici et al., 2025; Fu et al., 2025; Bai et al., 2025; Yang
763 et al., 2025; Wu et al., 2024; Chen et al., 2025). In the multimodal domain, this trend has spurred
764 the rapid development of Multimodal Large Language Models (MLLMs).
765766 Early explorations in MLLMs, such as Flamingo (Alayrac et al., 2022) and BLIP-2 (Li et al.,
767 2023a), primarily relied on the cross-attention mechanism for modality fusion. A subsequent evolution
768 witnessed a paradigm shift toward a simpler and more efficient approach, an approach popularized
769 by LLaVA (Liu et al., 2023) that has now become the undisputed mainstream. The LLaVA-style
770 architecture eschews the complexity of cross-attention in favor of a more direct solution: it employs
771 a simple projection module, typically a Multi-Layer Perceptron (MLP), to map visual token features
772 directly into the LLM’s word embedding space. Conceptually, this treats the image as a sequence
773 of special “visual words” prepended to the text input, which are then processed uniformly by the
774 LLM in an auto-regressive manner. The simplicity, scalability, and powerful performance of this
775 paradigm—particularly when combined with visual instruction tuning—have firmly established it
776 as the foundational blueprint for the vast majority of today’s advanced MLLMs.
777778 Despite the dominance of the LLaVA paradigm, the pursuit of optimal cross-modal fusion remains
779 an active area of research. Investigators continue to experiment with more sophisticated projector de-
780 signs (Team et al., 2025; Hong et al., 2025; Cha et al., 2024), alternative representation schemes like
781 visual vocabularies (Lu et al., 2024), or deeper fusion strategies (Meng et al., 2024), novel methods
782 for adapting the core architectures of large models for multimodal scenarios (Deng et al., 2025;
783 Wei et al., 2025; Li & Zhang, 2025). Beyond these methods, other researchers have approached the
784 challenge from a data-centric perspective (Bai et al., 2024; Liu et al., 2024c).
785786 A.2 NORMALIZATION
787788 Normalization layers are a cornerstone of modern deep learning, designed to stabilize the training
789 process and accelerate model convergence. By re-scaling the distribution of activations between
790 layers, normalization effectively mitigates the internal covariate shift problem and ensures smooth
791 gradient propagation in deep networks. While Batch Normalization (BN) (Ioffe & Szegedy, 2015)
792 was a seminal work in this area, its dependency on batch size makes it less suitable for natural
793 language processing tasks with variable sequence lengths. Layer Normalization (LayerNorm) was
794 therefore introduced, performing normalization along the feature dimension independently of the
795 batch, and it quickly became the standard for Transformer architectures (Vaswani et al., 2017). This
796 paradigm was further refined by RMSNorm Zhang & Sennrich (2019), which improves computa-
797 tional efficiency by removing the mean re-centering step while maintaining performance, leading to
798 its widespread adoption in many modern LLMs such as Llama.
799800 A critical design axis in Transformer architectures is the placement of the normalization layer relative
801 to the residual connection, giving rise to the Pre-Norm and Post-Norm paradigms Xiong et al.
802 (2020). The original Post-Norm design applies normalization after the residual addition, which can
803 help preserve strong representational fidelity but is often prone to training instability in deep mod-
804 els. In contrast, the Pre-Norm approach places normalization within the residual branch, greatly
805 improving gradient flow and training stability by maintaining a “clean” skip-connection path. This
806 has made it the de facto standard for large-scale language models. However, the Pre-Norm archi-
807 tecture has a well-documented side effect: because the hidden states on the main path are never
808 re-normalized, their L2 norm tends to accumulate and grow with network depth (Zhuo et al., 2025).
809810 Qi et al. (2025) have also observed the norm discrepancy between visual and textual tokens in
811 MLLMs, they predominantly attribute the resulting performance degradation to the failure of Rotary
812 Positional Embeddings (RoPE (Su et al., 2024)) in handling high-magnitude features. However,
813 we argue that this attribution overlooks the fundamental mechanics of the Pre-Norm architecture.
814 Specifically, in this paradigm, normalization is applied before the query and key projections; conse-
815 quently, the vectors processed by RoPE are already normalized.
816

Recently, the community has begun to re-evaluate this classic dichotomy, spurring research into alternative placement strategies. Recent works, like Peri-Norm (Kim et al., 2025) and Hybrid-Norm (Zhuo et al., 2025), have begun to explore combining normalization at different points of the residual connection to merge the benefits of both paradigms. These efforts, however, aim to find a universally optimal static design for unimodal models. In contrast, our work takes a diagnostic perspective: rather than proposing a new general architecture, we are the first to deeply analyze and reveal how the de facto standard Pre-Norm design itself directly induces a destructive dynamic imbalance within the multimodal context.

B APPENDIX: DETAILED DERIVATION AND PROOFS

This appendix provides the full mathematical derivation for the claims made in Section 3, arguing from asymmetric velocity to the final suppression of the attention score.

B.1 STEP 1: THE GENERAL UPDATE MODEL AND EFFECTIVE ANGULAR VELOCITY

We begin by defining the geometry of a general update. Any update vector $\Delta\mathbf{h}$ can be uniquely decomposed into a component parallel to the hidden state \mathbf{h} , denoted $\Delta\mathbf{h}_{\parallel}$, and a component orthogonal to it, $\Delta\mathbf{h}_{\perp}$.

$$\Delta\mathbf{h} = \Delta\mathbf{h}_{\parallel} + \Delta\mathbf{h}_{\perp} \quad (13)$$

The new hidden state is $\mathbf{h}' = \mathbf{h} + \Delta\mathbf{h} = (\mathbf{h} + \Delta\mathbf{h}_{\parallel}) + \Delta\mathbf{h}_{\perp}$. Here, $\Delta\mathbf{h}_{\parallel}$ only scales the original vector's magnitude, while $\Delta\mathbf{h}_{\perp}$ is solely responsible for the change in direction (rotation).

The rotation is caused by the orthogonal component $\Delta\mathbf{h}_{\perp}$ acting on the scaled hidden state $(\mathbf{h} + \Delta\mathbf{h}_{\parallel})$. The tangent of the effective angle of rotation, θ_{eff} , is therefore:

$$\tan(\theta_{\text{eff}}) = \frac{\|\Delta\mathbf{h}_{\perp}\|_2}{\|\mathbf{h} + \Delta\mathbf{h}_{\parallel}\|_2} \quad (14)$$

Under our **Consistent Update Geometry** assumption, the angle ϕ between $\Delta\mathbf{h}$ and \mathbf{h} is consistent, which implies $\|\Delta\mathbf{h}_{\perp}\| = \|\Delta\mathbf{h}\| \sin(\phi)$ and $\|\Delta\mathbf{h}_{\parallel}\| = \|\Delta\mathbf{h}\| \cos(\phi)$ (assuming ϕ is acute). Substituting this and the **Uniform Update Magnitude** $\|\Delta\mathbf{h}\| = C^{(l)}$, we get:

$$\tan(\theta_{\text{eff}}) = \frac{C^{(l)} \sin(\phi)}{\|\mathbf{h}\|_2 + C^{(l)} \cos(\phi)} \quad (15)$$

This is the general formula for the effective angular velocity. For visual and text tokens:

$$\tan(\theta_{\text{eff, vis}}) = \frac{C^{(l)} \sin(\phi)}{\|\mathbf{h}_{\text{vis}}^{(l)}\|_2 + C^{(l)} \cos(\phi)} \quad (16)$$

$$\tan(\theta_{\text{eff, txt}}) = \frac{C^{(l)} \sin(\phi)}{\|\mathbf{h}_{\text{txt}}^{(l)}\|_2 + C^{(l)} \cos(\phi)} \quad (17)$$

Since $\|\mathbf{h}_{\text{vis}}^{(l)}\|_2 > \|\mathbf{h}_{\text{txt}}^{(l)}\|_2$, the denominator for the visual token is strictly larger. Therefore, the core asymmetry is proven: $\tan(\theta_{\text{eff, vis}}) < \tan(\theta_{\text{eff, txt}})$.

B.2 STEP 2: PROOF OF RECURSIVE SIMILARITY DECAY (THEOREM 1)

The evolution of cosine similarity is governed by the effective angular velocities.

Theorem 1: Recursive Decay of Cross-Modal Similarity.

The expected cosine similarity evolves according to $\mathbb{E}[\cos(\Theta^{(l+1)}) \mid \dots] = \gamma_{\text{eff}}^{(l)} \cdot \cos(\Theta^{(l)})$, where the effective decay factor is $\gamma_{\text{eff}}^{(l)} = \cos(\theta_{\text{eff, vis}}^{(l)}) \cos(\theta_{\text{eff, txt}}^{(l)})$.

864 **Proof of Theorem 1.** The proof structure is identical to the simpler orthogonal case, as the ge-
 865 ometric rotation is driven only by the orthogonal component of the update. Let \mathbf{u} and \mathbf{v} be the
 866 hidden states. The updated unit vector $\hat{\mathbf{u}}'$ undergoes an effective rotation $\theta_{\text{eff}, \mathbf{u}}$ and can be written as
 867 $\hat{\mathbf{u}}' = \cos(\theta_{\text{eff}, \mathbf{u}})\hat{\mathbf{u}} + \sin(\theta_{\text{eff}, \mathbf{u}})\hat{\mathbf{p}}_u$, where $\hat{\mathbf{p}}_u$ is a random direction in the orthogonal subspace. The
 868 expectation of the new dot product $\mathbb{E}[\hat{\mathbf{u}}' \cdot \hat{\mathbf{v}}']$ is computed. The three cross-terms involving random
 869 vectors $\hat{\mathbf{p}}_u$ and $\hat{\mathbf{p}}_v$ vanish in expectation due to the symmetric distribution assumption, leaving only
 870 the deterministic term:

$$\mathbb{E}[\cos(\Theta^{(l+1)}) \mid \mathbf{u}, \mathbf{v}] = \cos(\theta_{\text{eff}, \mathbf{u}}) \cos(\theta_{\text{eff}, \mathbf{v}}) (\hat{\mathbf{u}} \cdot \hat{\mathbf{v}}) = \gamma_{\text{eff}}^{(l)} \cdot \cos(\Theta^{(l)}) \quad (18)$$

873 This completes the proof. ■

876 B.3 STEP 3: PROOF THAT ASYMMETRY MAXIMIZES DECAY RATE (LEMMA 1)

878 The lemma is a general mathematical statement about angles and is independent of the underlying
 879 model.

881 Lemma 1: Asymmetry Maximizes Decay Rate.

883 For a fixed geometric mean of effective angular velocities, $T =$
 884 $\sqrt{\tan(\theta_{\text{eff},1}) \tan(\theta_{\text{eff},2})}$, the decay factor $\gamma_{\text{eff}} = \cos(\theta_{\text{eff},1}) \cos(\theta_{\text{eff},2})$ is minimized
 885 when $\theta_{\text{eff},1} \neq \theta_{\text{eff},2}$.

887 **Proof of Lemma 1.** The proof follows by maximizing the inverse squared of the decay factor,
 888 $1/\gamma_{\text{eff}}^2 = (1 + \tan^2(\theta_{\text{eff},1}))(1 + \tan^2(\theta_{\text{eff},2}))$. Using the AM-GM inequality on the term $\tan^2(\theta_{\text{eff},1}) +$
 889 $\tan^2(\theta_{\text{eff},2})$ shows it is minimized in the symmetric case. Thus, $1/\gamma_{\text{eff}}^2$ is minimized, and γ_{eff} is
 890 maximized, when the velocities are symmetric. Asymmetry therefore accelerates decay. ■

893 B.4 STEP 4: FROM ACCELERATED DIVERGENCE TO A SUPPRESSED LEARNED SCORE

895 This final step proves that the weaker geometric signal in the norm-imbalanced case necessitates a
 896 lower final attention score.

898 **1. From Geometric Divergence to Weaker Input Correlation.** First, we establish that the inputs
 899 to the attention projections, $\mathbf{u} = \text{RMSNorm}(\mathbf{h}_{\text{txt}}^{(L)})$ and $\mathbf{v} = \text{RMSNorm}(\mathbf{h}_{\text{vis}}^{(L)})$, are less correlated
 900 in the imbalanced case. From Theorem 1 and Lemma 1, the expected cosine similarity between
 901 the final hidden states is systematically lower in the norm-imbalanced scenario. Let Θ_{imb} and Θ_{bal}
 902 be the final angles between the hidden states in their respective cases. We have $\mathbb{E}[\cos(\Theta_{\text{imb}})] <$
 903 $\mathbb{E}[\cos(\Theta_{\text{bal}})]$. The inputs to the shared projection matrices \mathbf{W}_Q and \mathbf{W}_K are $\mathbf{u} = \sqrt{D} \cdot (\mathbf{g} \odot \hat{\mathbf{h}}_{\text{txt}})$
 904 and $\mathbf{v} = \sqrt{D} \cdot (\mathbf{g} \odot \hat{\mathbf{h}}_{\text{vis}})$. Their dot product is a positively weighted sum of the component-wise
 905 products of the underlying unit vectors: $\mathbf{u} \cdot \mathbf{v} = D \cdot \sum_{i=1}^D g_i^2 (\hat{h}_{\text{txt},i} \hat{h}_{\text{vis},i})$. Since the unweighted sum
 906 is $\cos(\Theta)$, and the weights are positive, a lower expected cosine similarity directly implies a lower
 907 expected dot product between the inputs to the attention mechanism.

$$\mathbb{E}[\mathbf{u} \cdot \mathbf{v}]_{\text{imb}} < \mathbb{E}[\mathbf{u} \cdot \mathbf{v}]_{\text{bal}} \quad (19)$$

910 This rigorously establishes that the foundational geometric signal is weaker in the norm-imbalanced
 911 case.

913 **2. The Inescapable Conclusion: Suppressed Scores.** The attention mechanism cannot invent
 914 correlations where none exist; it can only discover and amplify statistical patterns present in its
 915 input data. The statistical object containing all learnable second-order correlation information is the
 916 cross-covariance matrix, $\mathbf{C}_{\mathbf{uv}} = \mathbb{E}[\mathbf{uv}^T]$. A lower expected dot product implies that the trace of
 917 this matrix, $\text{Tr}(\mathbf{C}_{\mathbf{uv}})$, is smaller, indicating a spectrally weaker matrix. The maximum achievable
 expected attention score is mathematically bounded by the singular values of this matrix. Since the

cross-covariance matrix for the imbalanced case (\mathbf{C}_{imb}) is spectrally weaker than for the balanced case (\mathbf{C}_{bal}), it places a lower mathematical ceiling on the maximum possible attention score the model can learn. The model does its best to find correlation, but there is simply less correlation to be found. Let S_{imb} and S_{bal} denote the final scores. We can thus conclude:

$$\mathbb{E}[S_{\text{imb}}] < \mathbb{E}[S_{\text{bal}}] \quad (20)$$

This completes the proof, showing that the suppressed attention score is a direct mathematical consequence of the impoverished statistical signal caused by the initial norm imbalance.

C EMPIRICAL ANALYSIS OF EMBEDDING NORM SHIFTS

To investigate the impact of multimodal training on the embedding space, we analyzed the statistical properties of token embeddings across the Qwen2 and Qwen2.5 model families. We systematically compared the pre-trained pure language models (Base) against their visual-language counterparts (VL).

C.1 GLOBAL STATISTICS

Table 6 presents the global statistics (Mean and Standard Deviation) of the embedding norms. We observe that while Qwen2-VL maintains a mean norm similar to its base model, Qwen2.5-VL exhibits a noticeable systemic inflation (Mean: $0.80 \rightarrow 0.90$), indicating a broader shift in the embedding distribution during multimodal alignment.

Table 6: Comparison of global embedding statistics (L_2 Norm Mean and Standard Deviation) between Base (Pure Text) and VL (Multimodal) models.

Metric	Qwen2 Family (7B)		Qwen2.5 Family (7B)	
	Base	VL	Base	VL
Mean Norm (μ)	0.6908	0.6820	0.8031	0.8965
Std. Deviation (σ)	0.1610	0.1588	0.1801	0.1821

C.2 DETAILED ANALYSIS OF TOP-NORM TOKENS

Tables 7 and 8 detail the Top-10 tokens with the highest L_2 norms. The comparison reveals a fundamental structural change in the embedding space:

1. **Base Models (Pure Text):** In pure language models, the tokens with the highest norms are typically rare subwords or specific syntactic markers (e.g., 'áveis', '=>'). The maximum norm is relatively contained ($\approx 1.0 - 1.1$).
2. **VL Models (Multimodal):** Upon multimodal training, the visual boundary tokens ($<|\text{vision_start}|>$, $<|\text{vision_end}|>$) emerge as extreme outliers. In Qwen2-VL, they reach norms of ≈ 2.4 , far exceeding the previous maximums. This explicitly confirms that the model allocates significantly larger magnitudes to visual anchors to accommodate the high-norm visual features.

D DETAILED IMPLEMENTATION OF NORM ALIGNMENT

Our norm alignment layer, denoted as `GlobalWeightCompensatedLayerNorm`, is designed to enforce norm compression in the forward pass while preserving gradient magnitude in the backward pass. Unlike standard `LayerNorm`, we introduce a gradient compensation mechanism to handle the extremely small initialization of the gain parameter.

Forward Pass (Standard LayerNorm). Given the input vector $\mathbf{x} \in \mathbb{R}^D$ (representing the projected visual tokens), we first compute the mean μ and variance σ^2 across the feature dimension:

$$\mu = \frac{1}{D} \sum_{i=1}^D x_i, \quad \sigma^2 = \frac{1}{D} \sum_{i=1}^D (x_i - \mu)^2. \quad (21)$$

972 Table 7: **Qwen2 Family Comparison:** Top-10 tokens by L_2 norm. Note how the visual tokens (in
 973 VL) far exceed the magnitude of the outliers in the Base model.

Rank	Token	Qwen2-7B-Instruct (Base) L_2 Norm	Qwen2-VL-7B-Instruct (VL) Token	Qwen2-VL-7B-Instruct (VL) L_2 Norm
1	'áveis'	1.0273	< vision_start >	2.4590
2	'=>'	0.9741	< vision_end >	2.3320
3	>();\\n\\n	0.9258	'áveis'	1.0049
4	's'	0.9072	'=>'	0.9458
5	'is'	0.9004	's'	0.9067
6	'an'	0.8999	>();\\n\\n	0.9009
7	'le'	0.8994	'.'	0.8999
8	'ed'	0.8979	'is'	0.8989
9	'.'	0.8965	'an'	0.8975
10	'ar'	0.8965	'le'	0.8965

986
 987 Table 8: **Qwen2.5 Family Comparison:** Top-10 tokens by L_2 norm. In the Base model, visual
 988 tokens are initialized to zero or unused. In the VL model, they become the largest vectors.

Rank	Token	Qwen2.5-7B-Instruct (Base) L_2 Norm	Qwen2.5-VL-7B-Instruct (VL) Token	Qwen2.5-VL-7B-Instruct (VL) L_2 Norm
1	'áveis'	1.1201	< vision_end >	2.1523
2	'.'	1.1025	< vision_start >	1.4004
3	'is'	1.0322	'.'	1.2764
4	's'	1.0303	'unb'	1.2158
5	'an'	1.0293	'áveis'	1.1748
6	'en'	1.0283	':\\n\\n'	1.1670
7	'(Chinese Char)'	1.0264	'en'	1.1670
8	'out'	1.0264	's'	1.1650
9	'on'	1.0254	'(Chinese Char)'	1.1650
10	'le'	1.0254	'(Chinese Char)'	1.1650

1001
 1002 The input is then normalized and transformed by the affine parameters, the learnable gain g and bias
 1003 β :

$$\hat{\mathbf{x}} = \frac{\mathbf{x} - \mu}{\sqrt{\sigma^2 + \epsilon}}, \quad \mathbf{y} = \hat{\mathbf{x}} \odot \mathbf{g} + \beta. \quad (22)$$

1004 Crucially, consistent with our method description in Section 5.1, g is initialized to a small scalar
 1005 value (derived from the target text norm T) to ensure immediate alignment, while β is initialized to
 1006 zero.

1007
 1008 **Backward Gradient Compensation.** Since g is initialized to a minute value, standard backprop-
 1009 agation would attenuate the gradients flowing back to the input $\hat{\mathbf{x}}$ (and consequently to the vision
 1010 encoder) by a factor proportional to $\|\mathbf{g}\|$. To prevent this, we register a backward hook on the
 1011 normalized tensor $\hat{\mathbf{x}}$ to dynamically rescale the gradients.

1012 The compensation process proceeds as follows during training:

1013 1. **Global Gain Aggregation:** We compute the mean absolute value of the gain parameter
 1014 vector g to obtain a global scaling scalar:

$$\mu_g = \frac{1}{D} \sum_{i=1}^D |g_i|. \quad (23)$$

1015 2. **Safety Clamping:** To ensure numerical stability and prevent division by zero (in the rare
 1016 event of parameter collapse), we clamp the scalar with a minimal threshold $\delta = 10^{-3}$:

$$\mu_{\text{safe}} = \max(\mu_g, \delta). \quad (24)$$

1026
1027 3. **Compensation Factor Application:** The gradient $\nabla_{\hat{x}}\mathcal{L}$ flowing backwards through the
1028 normalization operation is scaled by the inverse of this scalar:

1029
$$\nabla_{\hat{x}}\mathcal{L}_{\text{scaled}} = \nabla_{\hat{x}}\mathcal{L} \times \frac{1}{\mu_{\text{safe}}}. \quad (25)$$

1030

1031 This mechanism effectively decouples the forward scale (controlled by g) from the backward gra-
1032 dient scale (restored to ≈ 1.0). By preserving the gradient magnitude, we ensure that the vision
1033 encoder receives effective supervision signals from the very first training iteration, despite the se-
1034 vere norm compression applied at the interface.

1035 E TRAINING DETAILS

1038 E.1 EXPERIMENTAL SETUP

1040 Our experiments are conducted within the LLaVA-1.5 architectural framework. To ensure a com-
1041 prehensive evaluation, we employ two distinct base language models: Llama-3.2-3B-Instruct and
1042 Qwen2.5-7B-Instruct. Both models are coupled with SigLIP-SO400M-Patch14-384 as the vision
1043 encoder. We follow a unified two-stage training protocol for both backbones: the first stage consists
1044 of one epoch of feature alignment pre-training on the LLaVA-558K dataset, using a learning rate of
1045 1e-3, a per-device batch size of 2, and 2 gradient accumulation steps, resulting in a global batch size
1046 of 256. This is followed by one epoch of full-model instruction tuning on the LLaVA-NeXT dataset,
1047 for which the learning rate is decreased to 1e-5 for the language model and 2e-6 for the vision en-
1048 coder, with a per-device batch size of 1 and 4 gradient accumulation steps, corresponding to a global
1049 batch size of 128. Across both stages, we utilize a cosine learning rate scheduler with a warmup ratio
1050 of 0.03 and set weight decay to 0. Notably, we do not employ dynamic high-resolution strategies;
1051 all images are uniformly resized to 384×384 . To ensure reproducibility, we set the random seed to
1052 42 for all experiments.

1053 To comprehensively evaluate the model’s performance, we assessed its capabilities on both mul-
1054 timodal and text-only tasks. The model’s multimodal abilities were benchmarked against a com-
1055 prehensive suite of benchmarks, including MMBench-EN (Liu et al., 2024a), MM-Star (Chen et al.,
1056 2024b), OCRBench (Liu et al., 2024b), SEED-Bench-2-Plus (Li et al., 2024b), ScienceQA (Lu et al.,
1057 2022), AI2D (Kembhavi et al., 2016), and POPE (Li et al., 2023b). Furthermore, to gauge its core
1058 language understanding and commonsense reasoning skills, we evaluated its performance on the
1059 HellaSwag (Zellers et al., 2019) and MMLU (Hendrycks et al., 2020) benchmarks.

1060 F TRAINING DYNAMICS

1062 To further probe the temporal evolution of these dynamics, we tracked the layer-wise cosine simi-
1063 larity of image and text tokens across varying checkpoints during the multimodal pre-training phase
1064 (Figure 5a) and 5b). As shown in Figure 5a, without the additional normalization layer, visual to-
1065 kens exhibit persistently high inter-layer similarity. This pattern remains virtually static throughout
1066 the training process, confirming that the “representational inertia” induced by norm discrepancy is a
1067 persistent barrier, effectively locking visual features against semantic transformation from the very
1068 beginning. In contrast, our method (Figure 5b) initiates with a significantly lower visual similarity,
1069 indicating active feature updates. Interestingly, as training progresses, we observe a gradual upward
1070 trend in similarity, which correlates with the optimization of the added LayerNorm’s gain parameter
1071 (g). Crucially, as observed in the figure, this upward trend has converged. This phenomenon implies
1072 that perfectly consistent update rates between image and text tokens might not be optimal, sug-
1073 gesting that a certain degree of divergence between the two could be appropriate. However, this is
1074 fundamentally distinct from the significant update inconsistency driven by the massive initial norm
1075 discrepancy observed in the baseline.

1076 G APPENDIX: ATTENTION VISUALIZATION

1077 In each pair of heatmaps, the bottom image shows the model with norm applied, while the top image
1078 shows the baseline model. The caption for each pair corresponds to the text query used.

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

Layer-wise Similarity Analysis Across Checkpoints (w/o Norm)

1104 (a) Evolution of layer-wise cosine similarity across different checkpoints during the multimodal pre-training
 1105 phase (w/o Norm).

1106

1107

Layer-wise Similarity Analysis Across Checkpoints (w/ Norm)

(b)

1119
 1120 Figure 5: Evolution of layer-wise cosine similarity across different checkpoints during the multi-
 1121 modal pre-training phase (w Norm).

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

(a) Which mood does this image convey?

1140

1141

1142

1143

1144

1145

(b) What is the main subject of the flyer seen in the image?

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

(c) How many different pointed kinds are there?

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

(d) What type of family is shown in the image?

(a) What emotion is portrayed in this image?

(b) How many people are performing on the stage?

(c) which image is more colorful?

(d) What is the main focus of the image?