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ABSTRACT

Multimodal Large Language Models (MLLMs), which couple pre-trained vision
encoders and language models, have shown remarkable capabilities. However,
their reliance on the ubiquitous Pre-Norm architecture introduces a subtle yet criti-
cal flaw: a severe norm disparity between the high-norm visual tokens and the low-
norm text tokens. In this work, we present a formal theoretical analysis demon-
strating that this imbalance is not a static issue. Instead, it induces an “asymmetric
update dynamic,” where high-norm visual tokens exhibit a “representational iner-
tia,” causing them to transform semantically much slower than their textual coun-
terparts. This fundamentally impairs effective cross-modal feature fusion. Our
empirical validation across a range of mainstream MLLMs confirms that this the-
oretical dynamic—the persistence of norm disparity and the resulting asymmetric
update rates—is a prevalent phenomenon. Based on this insight, we propose a
remarkably simple yet effective solution: inserting a single, carefully initialized
LayerNorm layer after the visual projector to enforce norm alignment. Experi-
ments conducted on the LLaVA-1.5 architecture show that this intervention yields
significant performance gains not only on a wide suite of multimodal benchmarks
but also, notably, on text-only evaluations such as MMLU, suggesting that resolv-
ing the architectural imbalance leads to a more holistically capable model.

1 INTRODUCTION

In recent years, Multimodal Large Language Models (MLLMs) have achieved significant progress,
demonstrating robust performance across a wide range of cross-modal tasks (Comanici et al., 2025;
Hurst et al., 2024; Wu et al., 2024; Bai et al., 2025). A prevailing architectural paradigm involves
augmenting a pre-trained Large Language Model (LLM) with visual capabilities by coupling it with
a pre-trained Vision Encoder (VE). The VE, typically a Vision Transformer (ViT) (Dosovitskiy
et al., 2020), first partitions an image into a sequence of patches and encodes them into a series of
feature vectors, or “visual tokens.” To bridge the modality gap, a lightweight adapter module is then
introduced. This module’s core function is to act as a translator, projecting these visual tokens into
the LLM’s word embedding space, thereby making visual information comprehensible to a model
originally designed for text (Zhang et al., 2024).

Despite their powerful general-purpose capabilities, emerging research has revealed inherent limi-
tations in MLLMs. For instance, many models struggle with the perception of fine-grained visual
details (Rahmanzadehgervi et al., 2024). Furthermore, within their self-attention mechanisms—the
core component for weighing the importance of different inputs—visual tokens often receive less
focus than their textual counterparts (Chen et al., 2024a). To address these challenges, we identify a
more fundamental problem rooted in the now-ubiquitous Pre-Norm Xiong et al. (2020) architectural
design. In this paradigm, normalization is applied before the main computational block (F ), with
the residual update defined as:

h(l+1) = h(l) + F (Norm(h(l))) (1)

This architecture is widely adopted because it is easier to train. By leaving the residual path h(l)

unaltered, it creates an identity-like connection that ensures smooth gradient flow, preventing van-
ishing gradients in deep networks. However, this design has a critical side effect: since the output
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(a) Pre-Norm vs Post-Norm (b) The Norm Mismatch Problem Induced by MLLM Architectures

of the residual sum is never re-normalized, the variance—and consequently, the L2 norm—of the
hidden states tends to accumulate and grow with network depth (Kim et al., 2025). As is shown in
Figure 1b, it creates a particularly acute imbalance in MLLMs where high-norm visual tokens and
lower-norm text tokens are processed together within a shared Pre-Norm LLM backbone—as the
visual tokens themselves are generated by a deep, Pre-Norm ViT.

Our formal theoretical analysis reveals a critical dynamic: a fundamental asymmetry in the evolu-
tionary pace of visual and textual representations through the LLM’s layers. We demonstrate that for
high-norm visual tokens, the Pre-Norm update mechanism induces a high “representational inertia”,
causing them to undergo a much slower semantic transformation. In contrast, lower-norm textual to-
kens adapt their representations more readily, leading to a mismatched rate of convergence towards
a unified multimodal space. Notably, this dynamic divergence arises not from an intrinsic property
of visual versus textual information, but from an architectural artifact: the interplay between the
Pre-Norm design and the prevailing MLLM paradigm.

Bridging theory and practice, we first analyzed a range of mainstream open-source VL models,
finding that the norm disparities and asymmetric update rates are consistent with our theoretical pre-
dictions. Based on this validation, we conducted experiments on the LLaVA architecture, revealing
that a remarkably simple intervention—inserting a single LayerNorm layer for visual tokens after
the adapter—is sufficient to yield significant performance gains across both multimodal and pure
text evaluations, indicating a more holistic improvement in the model’s capabilities.

In this work, our key contributions are threefold:

• Theoretical Identification of Asymmetric Dynamics. We are the first to identify and theo-
retically formalize the issue of cross-modal norm disparity in Pre-Norm MLLMs. Our analysis
reveals an “asymmetric update dynamic” where high-norm visual tokens exhibit “representational
inertia,” leading to a slower semantic evolution compared to text tokens .

• Extensive Empirical Validation. We provide extensive empirical validation across a suite of
mainstream open-source MLLMs, demonstrating that the predicted norm disparities and asym-
metric update rates exist, confirming our theoretical model in practice.

• A Simple and Effective Solution. We propose a simple, effective, and computationally inex-
pensive solution: a single, carefully initialized LayerNorm layer to enforce norm alignment. Our
experiments show this method yields significant performance gains not only on multimodal tasks
but also, unexpectedly, on text-only benchmarks, indicating a more holistic improvement to the
model’s capabilities.
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2 PRELIMINARIES

Our analysis is grounded in the core components of modern Transformer architectures. We briefly
review the self-attention mechanism, the role and types of normalization layers, and the critical
design choice between Pre-Norm and Post-Norm architectures.

2.1 SELF-ATTENTION

The self-attention mechanism is the computational core of the Transformer. For an input sequence
of hidden states H ∈ RN×D, it first linearly projects the sequence into queries (Q), keys (K),
and values (V ) using learned weight matrices WQ,WK ,WV ∈ RD×dk . The unnormalized dot-
product scores are computed as QKT .

2.2 NORMALIZATION LAYERS IN TRANSFORMERS

Normalization layers are a critical component for stabilizing the training of deep networks by con-
trolling the distribution of activations. In Transformers, they ensure that the inputs to each sublayer
(self-attention and FFN) remain well-behaved, preventing the magnitude of activations from explod-
ing or vanishing. This is particularly important in MLLMs where features from different modalities,
with potentially different statistical properties, are processed together. Two common normalization
schemes are:

Layer Normalization (LayerNorm). This technique normalizes activations across the feature di-
mension for each token independently (Ba et al., 2016). For an input vector x, it is defined as:

LayerNorm(x) =
x− E[x]√
Var[x] + ϵ

⊙ g + β (2)

where g (gain) and β (bias) are learnable parameters that restore expressive power.

Root Mean Square Norm (RMSNorm). A simplified and computationally efficient variant of
LayerNorm that forgoes re-centering (subtracting the mean) (Zhang & Sennrich, 2019). It normal-
izes by the root mean square of the vector, proving effective in many modern LLMs:

RMSNorm(x) =
x√

1
D∥x∥22 + ϵ

⊙ g (3)

2.3 THE PRE-NORM VS. POST-NORM RESIDUAL ARCHITECTURE

A Transformer block is functionally an additive update mechanism that refines a token’s representa-
tion (Vaswani et al., 2017; He et al., 2016). For our analysis, it is useful to interpret the components
of this update geometrically. The core operation is:

h(l+1) = h(l) +∆h(l) (4)
In this view, we can consider h(l) as the Previous State, representing the token’s current position in
a semantic space, which arrives via the skip connection. The term ∆h(l), computed by the residual
branch (e.g., the self-attention sublayer), can be seen as the Update Vector that adjusts this position.
The sum, h(l+1), is therefore the resulting New State.

The critical design choice is where to place the normalization operation relative to this residual sum.
The structural difference between the Pre-Norm and Post-Norm architectures is illustrated in Figure
1a. This defines two architectural families with distinct trade-offs:

Post-Norm Architecture. This was the original Transformer design, which applies normalization
after the residual connection:

h(l+1) = Norm(h(l) + Sublayer(h(l))) (5)
While its direct normalization of the output path can preserve strong representational fidelity, the
gradients must pass through a normalization layer at every block. This can impede gradient flow in
very deep networks, making them harder to train. However, Post-Norm does not lead to network
depth degradation and exhibits stronger representational capabilities.
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Pre-Norm Architecture. This design, now widely adopted, applies normalization before the sub-
layer, within the residual branch:

∆h(l) = Sublayer(Norm(h(l))) (6)

h(l+1) = h(l) +∆h(l) (7)

Its primary advantage is improved training dynamics. The skip connection path is an uninterrupted,
identity-like connection, which ensures smooth gradient flow and makes training deep models sig-
nificantly easier. However, this design has a critical side effect: since the final output h(l+1) is
never re-normalized, the variance—and thus the L2 norm—of the hidden states tends to accumulate
across layers. This creates the vulnerability we analyze, especially in multimodal contexts where
initial norms are already disparate.

Building upon the architectural components defined in the Preliminaries, we now formalize our cen-
tral argument: the Pre-Norm architecture, when applied to MLLMs, inherently creates a dynamic
imbalance that impairs cross-modal fusion. The issue originates from the standard MLLM paradigm,
which injects features from a pre-trained vision encoder into a language model. It is an established
property that deep Pre-Norm networks, like those used in modern vision encoders, accumulate vari-
ance as signals propagate through the layers, resulting in high-norm outputs (Kim et al., 2025).
Consequently, when these pre-computed, high-norm visual tokens are introduced into the relatively
lower-norm embedding space of the LLM, a significant initial norm disparity is established at the
modality interface.

3 THEORETICAL ANALYSIS OF NORM-INDUCED DECOUPLING EFFECT

In this section, we present a theoretical proof that this initial norm imbalance is not a static issue but
rather the catalyst for an accelerated geometric divergence between the two modalities, ultimately
suppressing the cross-modal attention signal. The full mathematical derivation is provided in the
Appendix.

3.1 ANALYTICAL FRAMEWORK AND ASSUMPTIONS

Our proof is predicated on a set of simplifying assumptions that capture the core dynamics of the
Pre-Norm architecture:

• Modality Norm Imbalance: We analyze two cases: the imbalanced case (k = ∥hvis∥2

∥htxt∥2
> 1) and

the ideal balanced case (k = 1).
• Uniform Update Magnitude: Due to the Pre-Norm design, the magnitude of the update vector,
∥∆h(l)∥2, is decoupled from the input norm ∥h(l)∥2. We denote this uniform magnitude as C(l)

for a given layer.
• Consistent Update Geometry: We assume the update vector ∆h forms a consistent expected

angle, ϕ, with the hidden state h for all tokens within a given layer.
• Random Rotational Direction: We assume the direction of the rotational component of the up-

date is drawn from a symmetric distribution over the relevant subspace.

3.2 ASYMMETRIC ANGULAR VELOCITY AND GEOMETRIC DIVERGENCE

To quantify the rate of directional change, we introduce the concept of effective angular velocity.
The update vector ∆h can be decomposed into a component parallel to the hidden state h (which
only scales its length) and a component orthogonal to it (which causes rotation). The effective
angular velocity, measured by the angle of pure rotation θeff, is driven solely by this orthogonal
component. As derived in Appendix B, its tangent is given by:

tan(θeff) =
C(l) sin(ϕ)

∥h∥2 + C(l) cos(ϕ)
(8)

A direct and critical consequence of our framework is that this angular velocity becomes asymmetric
in the imbalanced case. Because a uniform update magnitude C(l) is applied to hidden states of
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different norms, the high-norm vision tokens exhibit a lower effective angular velocity than the
low-norm text tokens. Formally, for ∥hvis∥2 > ∥htxt∥2, it follows that:

tan(θeff, vis) < tan(θeff, txt) (9)

This disparity imparts a higher “representational inertia” to visual tokens. In Appendix B, we rigor-
ously prove that this asymmetry leads to an accelerated geometric divergence between the represen-
tations of the two modalities, which in turn weakens the underlying similarity signal available to the
attention mechanism.

3.3 SUPPRESSION OF THE CROSS-MODAL ATTENTION SIGNAL

This weakened geometric signal fundamentally limits the attention mechanism’s ability to learn an
effective similarity metric. The attention mechanism learns a metric based on the dot product be-
tween queries and keys; if the foundational similarity between these vectors is systematically eroded
layer by layer due to geometric divergence, the gradient signal for learning this metric becomes
weaker and noisier.

As rigorously detailed in the Appendix, this results in a systematically suppressed final attention
score. Let Simb and Sbal denote the unnormalized attention scores in the imbalanced and balanced
cases, respectively. We conclude that their expected values are related by:

E[Simb] < E[Sbal] (10)

This provides a formal, first-principles explanation for the experimentally observed phenomenon
of poor cross-modal fusion. The norm imbalance creates a vicious cycle: it accelerates geometric
divergence, which weakens the gradient signal for learning the attention metric, leading to a less
effective metric and, ultimately, lower cross-modal attention.

4 EMPIRICAL VALIDATION: PROBING THE DYNAMICS OF NORM
IMBALANCE

Our theoretical analysis provides a formal, first-principles explanation for how norm imbalance can
impair multimodal fusion. However, this framework relies on a set of simplifying assumptions to
ensure analytical tractability, while the dynamics of large-scale MLLMs are considerably more com-
plex. Therefore, to bridge the gap between our idealized model and real-world behavior, we conduct
a series of empirical investigations. These experiments are designed to probe whether the core con-
sequences predicted by our theory—namely, the persistence of norm imbalance and the resulting
asymmetric update dynamics—manifest in state-of-the-art Pre-Norm MLLMs. Our investigation is
guided by the following research questions:

• RQ1: Existence of Initial Norm Disparity. Do visual and text tokens exhibit a significant norm
mismatch at the modality interface?
To answer this, we benchmarked the L2 norms from both sides of the modality interface.
For the visual modality, we measured the output norms of four representative vision en-
coders—CLIP (Radford et al., 2021), SigLIP (Zhai et al., 2023), SigLIP-v2 (Tschannen et al.,
2025), and MoonViT (Team et al., 2025). For the text modality, we established a baseline by com-
puting the average L2 norm of the text embedding layers from prominent LLMs: Qwen2.5 (Bai
et al., 2025), Qwen3 (Yang et al., 2025), and Llama3.2 (Grattafiori et al., 2024). The analysis of
vision encoders was conducted on a dataset of 1000 samples drawn from the MMBench, POPE,
and MM-Star benchmarks, which serves as the foundation for all subsequent experiments in this
section. The combined results are presented in Table 1.
As shown in 1, vision encoder output norms are substantially larger than those of text embed-
dings. This disparity persists because the encoders’ contrastive pre-training—even with a final
post-norm—is not designed to align with the norm scale of an external LLM’s embedding space.

• RQ2: The Efficacy of the Adapter. Does the projection adapter harmonize the initial norm
disparity before the tokens enter the LLM backbone?
Within MLLMs, the projector’s role is to map visual tokens into the LLM’s textual embedding
space. A critical question is whether this process also serves to align their norms. To investigate
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Table 1: L2 norms and hidden dimensions at the modality interface: Vision Encoder outputs vs.
LLM text embeddings (mean ± std).

Modality Model Dimension Average L2 Norm

Visual

CLIP-ViT-large-patch14 1024 29.30
SigLIP-SO-400m-patch14-384 1152 71.78
SigLIP2-SO-400m-patch14-384 1152 59.37
MoonViT-SO-400M 1152 72.17

Text
Qwen2.5-7B-Instruct 3584 0.80
Qwen3-8B-Instruct 4096 1.38
Llama3.2-3B-Instruct 3072 1.09

this, we analyzed a suite of prominent models: LLaVA-v1.5 (Li et al., 2024a), Qwen-2.5-VL (Bai
et al., 2025), KimiVL (Team et al., 2025), and GLM-4.1V (Hong et al., 2025). For each model,
we measured the L2 norm of visual tokens both before and after the projector and compared them
to the text token norm. The results are summarized in Table 2.

Table 2: L2 norms of visual tokens (before and after projector) vs. text tokens.

Model Visual (Before Proj.) Visual (After Proj.) Text (Embedding)
LLaVA-v1.5 39.96 39.96 1.08
Qwen-2.5-VL 3484.24 56.88 0.86
KimiVL 137.93 4.78 0.85
GLM-4.1V 47.44 4.58 0.80

The results in Table 2 reveal a clear spectrum of effectiveness across different projector designs.
While sophisticated projectors like those in KimiVL and GLM-4.1V demonstrate a significant
capability for norm compression, a substantial disparity between visual and text token norms
persists in all analyzed models. This varied effectiveness highlights a key finding: simply inserting
a normalization layer within the projector is not a guaranteed solution. With the exception of
LLaVA-v1.5, all other models incorporate internal norm layers, yet their final output norms differ
by an order of magnitude.
This leads to a broader discussion on current design practices. We note that these architectural
choices and their impact on cross-modal norm alignment are seldom, if ever, addressed in the
models’ respective technical reports.
Notably, the multi-modal training increase in the text embedding norm of Qwen-2.5-VL corrob-
orates that the norm discrepancy is such a fundamental issue that the model inefficiently adjusts
static parameters to passively compensate.

• RQ3: Asymmetry in Update Dynamics. Do visual and textual hidden states exhibit different
update rates, as predicted by our theory of asymmetric angular velocity?
This question serves as the most direct empirical test of our theory’s core mechanism. We use the
cosine similarity between consecutive layers (l−1 and l) as a proxy for the rate of representational
change, a metric conceptually linked to angular velocity. A higher similarity score implies a
smaller angular change and thus a slower update rate. We computed this metric for both modalities
across all layers to determine if a systematic divergence in their update rates exists, as shown in
Figure 2.
The results in Figure 2 confirm our theoretical predictions, revealing a consistent divergence in
update rates between visual and text tokens across all analyzed models. Notably, the magnitude of
this dynamic asymmetry appears to be directly correlated with the initial norm disparity identified
in RQ1 and RQ2. Models with a smaller initial norm gap, such as Kimi-VL and GLM-4.5V,
exhibit a less pronounced difference in update rates. Conversely, models with a more severe
norm imbalance, like LLaVA-1.5 and Qwen-2.5-VL, demonstrate a significantly larger gap in
their update dynamics, providing strong correlational evidence for our theory.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0 4 8 12 16 20 24 28 32
Decoder Layer Index

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e 
Si

m
ila

rit
y

Inter-Layer Cosine Similarity Analysis
(LLaVA-1.5 Similarity)

Image Similarity
Text Similarity

(a) LLaVA-1.5

0 3 6 9 12 15 18 21 24 27
Decoder Layer Index

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e 
Si

m
ila

rit
y

Inter-Layer Cosine Similarity Analysis
(Qwen-2.5-VL Similarity)

Image Similarity
Text Similarity

(b) Qwen-2.5-VL

0 5 10 15 20 25 30 35 40
Decoder Layer Index

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e 
Si

m
ila

rit
y

Inter-Layer Cosine Similarity Analysis
(GLM4.1-V Similarity)

Image Similarity
Text Similarity

(c) GLM4.1-V
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Figure 2: Inter-layer cosine similarity of hidden states for visual vs. text tokens.

5 EXPERIMENTS

Our theoretical analysis in Section 3 posited a mechanism whereby norm disparity leads to update
asymmetry and, consequently, suppressed visual attention. A critical question remains, however: do
these internal dynamics translate into a tangible degradation of the model’s downstream capabilities?
To investigate this link between internal mechanics and practical performance, we conducted a series
of comparative experiments.

5.1 METHOD: NORM ALIGNMENT

To enforce norm alignment between visual and text tokens, we introduce a straightforward interven-
tion. Our approach involves inserting an additional LayerNorm layer immediately after the projector
for the visual tokens. Crucially, the learnable gain parameter of this new LN layer is initialized to
match the average L2 norm of the text tokens at the input of the LLM.

To achieve this, we first compute the target L2 norm, T , by averaging the norms of all non-zero
vectors from the language model’s text embedding matrix, We:

T =
1

|W∗|
∑

w∈W∗

∥w∥2, where W∗ = {w ∈ We | ∥w∥2 > ϵ} (11)

This target norm T is then used to initialize the gain g and shift β parameters of the additional
LayerNorm layer. The shift is set to zero, while the gain is uniformly initialized to a scalar value,
gscalar, calculated as:

gscalar =
T√
D
, and βinit = 0 (12)

where D is the hidden size of the large language model.
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5.2 EXPERIMENTAL SETUP

Our experiments are conducted within the LLaVA-1.5 architectural framework. Specifically, we
employ Llama-3.2-3B-Instruct as the base language model and SigLIP-SO400M-Patch14-384 as
the vision encoder. Further details are provided in Appendix C.

A detailed list of the evaluation benchmarks is provided in the Appendix C; for all tasks, we em-
ployed a greedy decoding strategy.

5.3 RESULTS AND ANALYSIS

5.3.1 MAIN PERFORMANCE GAINS

The results, summarized in Table 3, underscore the profound impact of our norm alignment strategy.
The model equipped with our method consistently outperforms the baseline across a wide array of
multimodal tasks. Notably, it also shows marked improvement on pure text evaluations like MMLU
(+8.02) and HellaSwag. This latter finding is particularly significant, as it suggests that rectifying
the cross-modal dynamic imbalance does not merely improve feature fusion but also leads to a
more robust and holistically capable language model, likely by freeing up model capacity that was
previously spent compensating for the norm disparity.

Table 3: Performance comparison on various benchmarks. Our method with Norm Alignment con-
sistently outperforms the baseline.

Model MMBenchdev MM-Star POPE SEED-Bench-2 OCRBench
w/o Norm 71.39 37.72 88.14 42.86 40.70
w/ Norm 72.16 (+0.77) 41.19 (+3.47) 88.88 (+0.74) 47.26 (+4.40) 45.60 (+4.90)

ScienceQA AI2D HellaSwag MMLU Avg

w/o Norm 78.99 60.17 65.96 45.19 59.01
w/ Norm 80.83 (+1.84) 63.24 (+3.07) 66.01 (+0.05) 53.21 (+8.02) 62.62 (+3.61)

We visualized the attention matrices in Appendix D. The analysis reveals that in the baseline model,
text-to-image attention is inappropriately and broadly concentrated on the bottom regions of the im-
age. This suggests a failure in semantic fusion, caused by the positional proximity bias introduced
by RoPE’s distance-decay property. In stark contrast, our norm-aligned model’s text-to-image atten-
tion correctly converges on the specific image regions that are semantically relevant to the text query.
This visual evidence provides direct confirmation that our method successfully restores meaningful
cross-modal attention by correcting the underlying dynamic imbalance, thus enabling true feature
fusion.

5.3.2 ABLATION STUDY: THE CRITICAL ROLE OF INITIALIZATION

To isolate the effect of our proposed initialization strategy, we conducted a crucial ablation study.
We compared our method against a baseline where the added LayerNorm layer was initialized with
default parameters (gain=1, bias=0). We analyzed the learned parameters immediately after the
LLaVA Stage 1 pre-training phase. As shown in Table 4, the parameters of the default-initialized
layer remained largely unchanged from their initial state, indicating that the optimization process
failed to begin effectively without a reasonable starting point. In contrast, our method shows mean-
ingful parameter updates even after this initial stage. This demonstrates that simply adding a norm
layer is insufficient; our targeted initialization is essential to place the parameters in a gradient-rich
region of the loss landscape, enabling effective learning.

5.3.3 DIAGNOSTIC ANALYSIS: VERIFYING THE MECHANISM OF IMPROVEMENT

Finally, we performed a diagnostic analysis to confirm that the performance gains are indeed rooted
in the successful mitigation of the dynamic imbalance we identified. We analyzed the internal states
of the fully trained model (after Stage 2) with and without our norm alignment method. Figure 3
visualizes two key metrics:
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Table 4: Learned parameters of the added LayerNorm layer after Stage 1 pre-training, comparing
default initialization with our proposed strategy.

Parameter Metric Default Init Our Init
(After Stage 1) (After Stage 1)

Gain (g) L2 Norm 53.2500 2.2812
Mean of Abs. 0.9609 (± 0.0005) 0.0400 (± 0.0001)

Bias (β) Mean of Abs. 0.0175 (± 0.0002) 0.0152 (± 0.0001)

• Layer-wise L2 Norms (Fig. 3a): The left panel shows that our method successfully aligns the
visual token norms with the text token norms from the very first layer and maintains this alignment
throughout the model’s depth. The baseline model, in contrast, exhibits a persistent and large norm
gap.

• Inter-layer Cosine Similarity (Fig. 3b): The right panel demonstrates the direct consequence of
this alignment. In our model, the update rates (proxied by cosine similarity) of visual and text
tokens are nearly identical. This resolves the asymmetric update dynamic present in the baseline,
where the high similarity of visual tokens indicates their slower “representational inertia.”

Together, these results provide strong evidence that our method works precisely as intended: it
corrects the norm disparity, which in turn fixes the asymmetric update rates, leading to the observed
performance improvements.

0 5 10 15 20 25
Layer

0

20

40

60

80

Av
er

ag
e 

L2
 N

or
m

L2 Norm of Hidden States vs. Layer Depth

w/o Norm - Image Norm
w/o Norm - Text Norm
w Norm - Image Norm
w Norm - Text Norm

(a) Caption for the left image (e.g., Layer-wise
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Figure 3: A comparison of token dynamics with and without our norm alignment method. (a) shows
the layer-wise L2 norm evolution, while (b) shows the inter-layer cosine similarity, which acts as a
proxy for update rate.

6 CONCLUSION

Our analysis reveals a critical, previously undiscovered dynamic within Pre-Norm MLLMs: an
“asymmetric update.” We have formalized this dynamic theoretically and validated it empirically,
showing it to be a direct consequence of the severe norm disparity between visual and text tokens.
This analysis demonstrates that the dynamic manifests as ”representational inertia” in high-norm
visual tokens, fundamentally impairing cross-modal fusion at an architectural level. It was this deep
analysis of the mechanism that motivated our targeted solution of enforcing norm alignment via a
single LayerNorm. The resulting significant performance gains on both multimodal and, critically,
text-only tasks, serve as compelling validation for our core analysis, confirming that resolving this
dynamic imbalance unlocks the model’s full potential.
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A BACKGROUND & RELATED WORK

A.1 MULTIMODAL LARGE LANGUAGE MODELS

The remarkable success and emergent capabilities of Large Language Models (LLMs) in natural
language processing have catalyzed efforts to generalize their powerful abilities to other modalities
(Achiam et al., 2023; Hurst et al., 2024; Comanici et al., 2025; Fu et al., 2025; Bai et al., 2025;
Yang et al., 2025; Wu et al., 2024). In the multimodal domain, this trend has spurred the rapid
development of Multimodal Large Language Models (MLLMs).

Early explorations in MLLMs, such as Flamingo (Alayrac et al., 2022) and BLIP-2 (Li et al.,
2023a), primarily relied on the cross-attention mechanism for modality fusion. A subsequent evolu-
tion witnessed a paradigm shift toward a simpler and more efficient approach, an approach popular-
ized by LLaVA (Liu et al., 2023) that has now become the undisputed mainstream. The LLaVA-style
architecture eschews the complexity of cross-attention in favor of a more direct solution: it employs
a simple projection module, typically a Multi-Layer Perceptron (MLP), to map visual token features
directly into the LLM’s word embedding space. Conceptually, this treats the image as a sequence
of special “visual words” prepended to the text input, which are then processed uniformly by the
LLM in an auto-regressive manner. The simplicity, scalability, and powerful performance of this
paradigm—particularly when combined with visual instruction tuning—have firmly established it
as the foundational blueprint for the vast majority of today’s advanced MLLMs

Despite the dominance of the LLaVA paradigm, the pursuit of optimal cross-modal fusion remains
an active area of research. Investigators continue to experiment with more sophisticated projector
designs (Team et al., 2025; Hong et al., 2025; Cha et al., 2024), alternative representation schemes
like visual vocabularies (Lu et al., 2024), or deeper fusion strategies (Meng et al., 2024), novel
methods for adapting the core architectures of large models for multimodal scenarios (Deng et al.,
2025; Wei et al., 2025; Li & Zhang, 2025). Beyond these m, other researchers have approached the
challenge from a data-centric perspective (Bai et al., 2024; Liu et al., 2024c).

In line with this latter direction,

A.2 NORMALIZATION

Normalization layers are a cornerstone of modern deep learning, designed to stabilize the training
process and accelerate model convergence. By re-scaling the distribution of activations between
layers, normalization effectively mitigates the internal covariate shift problem and ensures smooth
gradient propagation in deep networks. While Batch Normalization (BN) (Ioffe & Szegedy, 2015)
was a seminal work in this area, its dependency on batch size makes it less suitable for natural
language processing tasks with variable sequence lengths. Layer Normalization (LayerNorm) was
therefore introduced, performing normalization along the feature dimension independently of the
batch, and it quickly became the standard for Transformer architectures (Vaswani et al., 2017). This
paradigm was further refined by RMSNorm, which improves computational efficiency by removing
the mean re-centering step while maintaining performance, leading to its widespread adoption in
many modern LLMs such as Llama.

A critical design axis in Transformer architectures is the placement of the normalization layer rela-
tive to the residual connection, giving rise to the Pre-Norm and Post-Norm paradigms. The original
Post-Norm design applies normalization after the residual addition, which can help preserve strong
representational fidelity but is often prone to training instability in deep models. In contrast, the Pre-
Norm approach places normalization within the residual branch, greatly improving gradient flow and
training stability by maintaining a “clean” skip-connection path. This has made it the de facto stan-
dard for large-scale language models. However, the Pre-Norm architecture has a well-documented
side effect: because the hidden states on the main path are never re-normalized, their L2 norm tends
to accumulate and grow with network depth.

Recently, the community has begun to re-evaluate this classic dichotomy, spurring research into
alternative placement strategies. Recent works, like Peri-Norm (Kim et al., 2025)and Hybrid-Norm
(Zhuo et al., 2025), have begun to explore combining normalization at different points of the residual
connection to merge the benefits of both paradigms. These efforts, however, aim to find a universally
optimal static design for unimodal models. In contrast, our work takes a diagnostic perspective:
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rather than proposing a new general architecture, we are the first to deeply analyze and reveal how
the de facto standard Pre-Norm design itself directly induces a destructive dynamic imbalance within
the multimodal context.

B APPENDIX: DETAILED DERIVATION AND PROOFS

This appendix provides the full mathematical derivation for the claims made in Section 3, arguing
from asymmetric velocity to the final suppression of the attention score.

B.1 STEP 1: THE GENERAL UPDATE MODEL AND EFFECTIVE ANGULAR VELOCITY

We begin by defining the geometry of a general update. Any update vector ∆h can be uniquely
decomposed into a component parallel to the hidden state h, denoted ∆h∥, and a component or-
thogonal to it, ∆h⊥.

∆h = ∆h∥ +∆h⊥ (13)
The new hidden state is h′ = h +∆h = (h +∆h∥) + ∆h⊥. Here, ∆h∥ only scales the original
vector’s magnitude, while ∆h⊥ is solely responsible for the change in direction (rotation).

The rotation is caused by the orthogonal component ∆h⊥ acting on the scaled hidden state (h +
∆h∥). The tangent of the effective angle of rotation, θeff, is therefore:

tan(θeff) =
∥∆h⊥∥2

∥h+∆h∥∥2
(14)

Under our Consistent Update Geometry assumption, the angle ϕ between ∆h and h is consis-
tent, which implies ∥∆h⊥∥ = ∥∆h∥ sin(ϕ) and ∥∆h∥∥ = ∥∆h∥ cos(ϕ) (assuming ϕ is acute).
Substituting this and the Uniform Update Magnitude ∥∆h∥ = C(l), we get:

tan(θeff) =
C(l) sin(ϕ)

∥h∥2 + C(l) cos(ϕ)
(15)

This is the general formula for the effective angular velocity. For visual and text tokens:

tan(θeff, vis) =
C(l) sin(ϕ)

∥h(l)
vis∥2 + C(l) cos(ϕ)

(16)

tan(θeff, txt) =
C(l) sin(ϕ)

∥h(l)
txt ∥2 + C(l) cos(ϕ)

(17)

Since ∥h(l)
vis∥2 > ∥h(l)

txt ∥2, the denominator for the visual token is strictly larger. Therefore, the core
asymmetry is proven: tan(θeff, vis) < tan(θeff, txt).

B.2 STEP 2: PROOF OF RECURSIVE SIMILARITY DECAY (THEOREM 1)

The evolution of cosine similarity is governed by the effective angular velocities.

Theorem 1: Recursive Decay of Cross-Modal Similarity.

The expected cosine similarity evolves according to E[cos(Θ(l+1)) | . . . ] = γ
(l)
eff ·

cos(Θ(l)), where the effective decay factor is γ(l)
eff = cos(θ

(l)
eff, vis) cos(θ

(l)
eff, txt).

Proof of Theorem 1. The proof structure is identical to the simpler orthogonal case, as the ge-
ometric rotation is driven only by the orthogonal component of the update. Let u and v be the
hidden states. The updated unit vector û′ undergoes an effective rotation θeff, u and can be written as
û′ = cos(θeff, u)û+ sin(θeff, u)p̂u, where p̂u is a random direction in the orthogonal subspace. The
expectation of the new dot product E[û′ · v̂′] is computed. The three cross-terms involving random
vectors p̂u and p̂v vanish in expectation due to the symmetric distribution assumption, leaving only
the deterministic term:

E[cos(Θ(l+1)) | u,v] = cos(θeff, u) cos(θeff, v)(û · v̂) = γ
(l)
eff · cos(Θ(l)) (18)

This completes the proof.
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■

B.3 STEP 3: PROOF THAT ASYMMETRY MAXIMIZES DECAY RATE (LEMMA 1)

The lemma is a general mathematical statement about angles and is independent of the underlying
model.

Lemma 1: Asymmetry Maximizes Decay Rate.

For a fixed geometric mean of effective angular velocities, T =√
tan(θeff,1) tan(θeff,2), the decay factor γeff = cos(θeff,1) cos(θeff,2) is minimized

when θeff,1 ̸= θeff,2.

Proof of Lemma 1. The proof follows by maximizing the inverse squared of the decay factor,
1/γ2

eff = (1+tan2(θeff,1))(1+tan2(θeff,2)). Using the AM-GM inequality on the term tan2(θeff,1)+
tan2(θeff,2) shows it is minimized in the symmetric case. Thus, 1/γ2

eff is minimized, and γeff is
maximized, when the velocities are symmetric. Asymmetry therefore accelerates decay.

■

B.4 STEP 4: FROM ACCELERATED DIVERGENCE TO A SUPPRESSED LEARNED SCORE

This final step proves that the weaker geometric signal in the norm-imbalanced case necessitates a
lower final attention score.

1. From Geometric Divergence to Weaker Input Correlation. First, we establish that the inputs
to the attention projections, u = RMSNorm(h

(L)
txt ) and v = RMSNorm(h

(L)
vis ), are less correlated

in the imbalanced case. From Theorem 1 and Lemma 1, the expected cosine similarity between
the final hidden states is systematically lower in the norm-imbalanced scenario. Let Θimb and Θbal
be the final angles between the hidden states in their respective cases. We have E[cos(Θimb)] <

E[cos(Θbal)]. The inputs to the shared projection matrices WQ and WK are u =
√
D · (g ⊙ ĥtxt)

and v =
√
D · (g ⊙ ĥvis). Their dot product is a positively weighted sum of the component-wise

products of the underlying unit vectors: u ·v = D ·
∑D

i=1 g
2
i (ĥtxt,iĥvis,i). Since the unweighted sum

is cos(Θ), and the weights are positive, a lower expected cosine similarity directly implies a lower
expected dot product between the inputs to the attention mechanism.

E[u · v]imb < E[u · v]bal (19)

This rigorously establishes that the foundational geometric signal is weaker in the norm-imbalanced
case.

2. The Inescapable Conclusion: Suppressed Scores. The attention mechanism cannot invent
correlations where none exist; it can only discover and amplify statistical patterns present in its
input data. The statistical object containing all learnable second-order correlation information is the
cross-covariance matrix, Cuv = E[uvT ]. A lower expected dot product implies that the trace of
this matrix, Tr(Cuv), is smaller, indicating a spectrally weaker matrix. The maximum achievable
expected attention score is mathematically bounded by the singular values of this matrix. Since the
cross-covariance matrix for the imbalanced case (Cimb) is spectrally weaker than for the balanced
case (Cbal), it places a lower mathematical ceiling on the maximum possible attention score the
model can learn. The model does its best to find correlation, but there is simply less correlation to
be found. Let Simb and Sbal denote the final scores. We can thus conclude:

E[Simb] < E[Sbal] (20)

This completes the proof, showing that the suppressed attention score is a direct mathematical con-
sequence of the impoverished statistical signal caused by the initial norm imbalance.
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C TRAINING DETAILS

Our experiments are conducted within the LLaVA-1.5 architectural framework. Specifically, we
employ Llama-3.2-3B-Instruct as the base language model and SigLIP-So400M-Patch14-384 as the
vision encoder. We follow a two-stage training protocol: the first stage consists of one epoch of
feature alignment pre-training on the LLaVA-558K dataset, using a learning rate of 1e-3, a per-
device batch size of 2, and 2 gradient accumulation steps. This is followed by one epoch of full-
model instruction tuning on the LLaVA-NeXT instruction-tuning dataset, for which the learning
rate was decreased to 1e-5 for the language model and 2e-6 for the vision encoder, with a per-
device batch size of 1 and 4 gradient accumulation steps. Across both stages, we utilized a cosine
learning rate scheduler with a warmup ratio of 0.03 and set weight decay to 0. Notably, we do not
employ dynamic high-resolution strategies; all images are uniformly resized to 384x384. To ensure
reproducibility, we set the random seed to 42 for all experiments.

To comprehensively evaluate the model’s performance, we assessed its capabilities on both mul-
timodal and text-only tasks. The model’s multimodal abilities were benchmarked against a com-
prehensive suite of benchmarks, including MMBench-EN (Liu et al., 2024a), MM-Star (Chen et al.,
2024b), OCRBench (Liu et al., 2024b), SEED-Bench-2-Plus (Li et al., 2024b), ScienceQA (Lu et al.,
2022), AI2D (Kembhavi et al., 2016), and POPE (Li et al., 2023b). Furthermore, to gauge its core
language understanding and commonsense reasoning skills, we evaluated its performance on the
HellaSwag (Zellers et al., 2019) and MMLU (Hendrycks et al., 2020) benchmarks.

D APPENDIX: ATTENTION VISUALIZATION

In each pair of heatmaps, the bottom image shows the model with norm applied, while the top image
shows the baseline model. The caption for each pair corresponds to the text query used.
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(a) Which mood does this image convey?

(b) What is the main subject of the flyer seen in the image?

(c) How many different p̈ointedk̈inds are there?

(d) What type of family is shown in the image

17
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