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ABSTRACT

Estimating treatment effects from observational data is a central problem in causal
inference. Methods to solve this problem exploit inductive biases and heuristics
from causal inference to design multi-head neural network architectures and reg-
ularizers. In this work, we propose to use neurosymbolic program synthesis, a
data-efficient, and interpretable technique, to solve the treatment effect estimation
problem. We theoretically show that neurosymbolic programming can solve the
treatment effect estimation problem. By designing a Domain Specific Language
(DSL) for treatment effect estimation problem based on the inductive biases used
in literature, we argue that neurosymbolic programming is a better alternative to
treatment effect estimation than traditional methods. Our empirical study reveals
that our method, which implicitly encodes inductive biases in a DSL, achieves
better performance on benchmark datasets than the state-of-the-art methods.

1 INTRODUCTION

Treatment effect (also referred to as causal effect) estimation estimates the effect of a treatment
variable on an outcome variable (e.g., the effect of a drug on recovery). Randomized Controlled Trials
(RCTs) are widely considered as the gold standard approach for treatment effect estimation (Chalmers
et al., 1981; Pearl, 2009). In RCTs, individuals are randomly split into the treated group and the
control (untreated) group. This random split removes the spurious correlation between treatment and
outcome variables before the experiment so that estimated treatment effect is unbiased. However,
RCTs are often: (i) unethical (e.g., in a study to find the effect of smoking on lung disease, a randomly
chosen person cannot be forced to smoke), and/or (ii) impossible/infeasible (e.g., in finding the effect
of blood pressure on the risk of an adverse cardiac event, it is impossible to intervene on the same
patient with and without high blood pressure with all other parameters the same) (Sanson-Fisher
et al., 2007; Carey & Stiles, 2016; Pearl et al., 2016). These limitations leave us with observational
data to compute treatment effects.

Observational data, similar to RCTs, suffers from the fundamental problem of causal inference (Pearl,
2009), which states that for any individual, we cannot observe all potential outcomes at the same time
(e.g., once we record a person’s medical condition after taking a medicinal drug, we cannot observe
the same person’s medical condition with an alternate placebo). Observational data also suffers from
selection bias (e.g., certain age groups are more likely to take certain kinds of medication compared
to other age groups) (Collier & Mahoney, 1996). For these reasons, estimating unbiased treatment
effects from observational data can be challenging (Hernan & Robins, 2019; Farajtabar et al., 2020).
However, due to the many use cases in the real-world, estimating treatment effects from observational
data is one of the long-standing central problems in causal inference (Rosenbaum & Rubin, 1983;
1985; Brady et al., 2008; Morgan & Winship, 2014; Shalit et al., 2017; Yoon et al., 2018; Shi et al.,
2019; Yao et al., 2018; Zhang et al., 2021).

Earlier methods that estimate treatment effects from observational data are based on matching
techniques that compare data points from treatment and control groups that are similar w.r.t. a
metric (e.g., Euclidean distance in nearest-neighbor matching, or propensity score in propensity
score matching) (Brady et al., 2008; Morgan & Winship, 2014). Recent methods exploit induc-
tive biases and heuristics from causal inference to design multi-head neural network (NN) mod-
els and regularizers (Hill, 2011; Farajtabar et al., 2020; Shi et al., 2019; Schwab et al., 2020;
Chu et al., 2020; Shalit et al., 2017; Alaa & van der Schaar, 2017; Yoon et al., 2018; Bica
et al., 2020; Künzel et al., 2019; Chernozhukov et al., 2018; Yao et al., 2018; Zhang et al.,
2021). Multi-head NN models are typically used when treatment variables are single-dimensional
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and categorical (Shi et al., 2019; Shalit et al., 2017; Farajtabar et al., 2020; Schwab et al.,
2020), and regularizers therein enforce constraints such as controlling for propensity score in-
stead of pre-treatment covariates, i.e. covariates that are not caused by the treatment variable
in the underlying causal data generating graph (Shi et al., 2019; Rosenbaum & Rubin, 1983).

Figure 1: IPM regularization in CFRNet (note that
CFRNet is a combination of a simple two-head TAR-
Net with IPM regularization) controls for covariates
x which may lead to incorrect treatment effect w.r.t.
causal model B. However, NESTER learns to synthe-
size different estimators for the two causal models.

However, each such model is well-suited to a cer-
tain kind of causal graph, and may not apply to
all causal data generating processes. For example,
as shown in Fig 1, CFRNet (Shalit et al., 2017),
a popular NN-based treatment estimation model,
controls pre-treatment covariates using a regular-
izer based on an Integral Probability Metric (IPM).
It requires the representations of non-treatment
covariates (denoted as x in Fig 1) with and with-
out treatment to be similar. This is relevant for
causal model A in the figure, but does not work
for causal model B, where non-treatment covari-
ates are caused by the treatment t and hence could
vary for different values of t. One would ideally
need a different regularizer or architecture to ad-
dress causal model B (the same observation holds
for TARNet (Shalit et al., 2017) too). In practice,
one may not be aware of the underlying causal
model, making this more challenging. In this work, we instead propose to use a neurosymbolic
program synthesis technique to compute treatment effect, which does not require such explicit reg-
ularizers or architecture redesign for each causal model. Such a technique learns to automatically
synthesize differentiable programs that satisfy a given set of input-output examples (Shah et al., 2020;
Parisotto et al., 2016), and can hence learn the sequence of operations to estimate treatment effect
for this set. We call our method as the NEuroSymbolic Treatment Effect EstimatoR (or NESTER).
Neurosymbolic program synthesis is known to have the flexibility to synthesize different programs
for different data distributions to optimize a performance criterion, while still abiding by the inductive
biases studied in treatment effect estimation literature (see Sec 4.1 for more details). To describe
further, one could view CFRNet/TARNet as implementing one if− then− else program primitive
with its two-headed NN architecture. NESTER will instead automatically synthesize the sequence of
program primitives (from a domain-specific language of primitives) for a given set of observations
from a causal model, and can thus generalize to different distributions.

Program synthesis methods, in general, enumerate a set of programs and select (from the enumer-
ation) a set of feasible programs that satisfy given input-output examples so that the synthesized
programs generalize well to unseen inputs (see Appendix for an example) (Biermann, 1978; Gulwani,
2011; Parisotto et al., 2016; Valkov et al., 2018; Shah et al., 2020). Usually, a Domain-Specific
Language (DSL) (e.g., a specific context-free grammar) is used to synthesize relevant programs for
a given domain and task. Recently, various NN-based techniques have been proposed to perform
neurosymbolic program synthesis (Parisotto et al., 2016; Valkov et al., 2018; Gaunt et al., 2017;
Bošnjak et al., 2017). We use the neurosymbolic program synthesis paradigm where each program
primitive (e.g., if− then− else, α1 + α2) is a differentiable module (Parisotto et al., 2016; Shah
et al., 2020). Such differentiable programs simultaneously optimize program primitive parameters
while learning the overall program structure and flow. The set of possible programs that can be
synthesized using a DSL is often large (Parisotto et al., 2016). Many methods have been proposed to
search through the vast search space of programs efficiently (Gulwani et al., 2012; Parisotto et al.,
2016; Valkov et al., 2018; Shah et al., 2020). We use Neural Admissible Relaxation (Shah et al.,
2020) in this work, which uses neural networks as relaxations of partial programs while searching the
program space using informed search algorithms such as A∗ (Hart et al., 1968). The final program
can be obtained by training using gradient descent algorithms. Our key contributions are:

• We study the use of neurosymbolic program synthesis as a practical approach for solving treatment
effect estimation problems. To the best of our knowledge, this is the first such effort that applies
neurosymbolic program synthesis to estimate treatment effects.

• We propose a Domain-Specific Language (DSL) for treatment effect estimation, where each
program primitive is motivated from basic building blocks of models for treatment effect estimation
in literature.
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• We theoretically show that our neurosymbolic program synthesis approach can approximate a
continuous function upto an arbitrary precision. This result enables us to solve the treatment
effect estimation problem by assuming a continuous function relating the treatment and outcome
variables.

• We perform comprehensive empirical studies on multiple benchmark datasets (including additional
results in the Appendix) where we outperform existing state-of-the-art models. We also show the
interpretability of such a neurosymbolic approach on synthetic as well as real-world datasets, thus
highlighting the usefulness of our approach over traditional treatment effect estimation methods.

2 RELATED WORK

Traditional Methods for Treatment Effect Estimation. Early methods of treatment effect estimation
from observational data are largely based on matching techniques (Brady et al., 2008; Morgan &
Winship, 2014; Stuart, 2010) where similar data points in treatment and control groups are compared
using methods such as nearest neighbor matching and propensity score matching to estimate treatment
effects. In nearest neighbor matching (Stuart, 2010), for each data point in the treatment group, the
nearest points from the control group w.r.t. Euclidean distance are identified, and the difference
in potential outcomes between treatment and corresponding control data points is estimated as the
treatment effect. In propensity score matching (Rosenbaum & Rubin, 1983), a model is trained
to predict the treatment effect value using all data points from both treatment and control groups.
Using this model, points from treatment and control groups that are close w.r.t. the model’s output
are compared, and the difference in potential outcomes of these points is estimated as treatment
effect. However, such matching techniques are known to not scale to high-dimensional or large-scale
data (Abadie & Imbens, 2006).
Another family of methods estimates treatment effects using the idea of backdoor adjustment (Pearl,
2009; Rubin, 2005). Under the assumption of availability of a sufficient adjustment set (Pearl, 2009),
these models rely on fitting conditional probabilities given the treatment variable and a sufficient
adjustment set of covariates. However, such models are known to suffer from high variance in the
estimated treatment effects (Shalit et al., 2017). Covariate balancing is another technique to control
for the confounding bias to estimate treatment effects. Weighting techniques perform covariate
balancing by assigning weights to each instance based on various techniques (e.g., weighting each
instance using propensity score in the inverse probability weighting technique) (Rosenbaum & Rubin,
1983; Assaad et al., 2021; CRUMP et al., 2009; L & T, 2013; Diamond & Sekhon, 2013; Li & Fu,
2017). As noted in (Assaad et al., 2021), such methods face challenges with large weights and
high-dimensional inputs. Besides, leveraging the success of learning-based methods has delivered
significantly better performance in recent years.
Learning-based Methods for Treatment Effect Estimation. Recent methods to estimate treatment
effects have largely been based on multi-headed NN models equipped with regularizers (Hill, 2011;
Farajtabar et al., 2020; Shi et al., 2019; Schwab et al., 2020; Chu et al., 2020; Shalit et al., 2017;
Yoon et al., 2018; Bica et al., 2020). To find treatment effects under multiple treatment values
and continuous dosage for each treatment, (Schwab et al., 2020) devised an NN architecture with
multiple heads for multiple treatments, and multiple sub-heads from each of the treatment-specific
heads to model (discretized) dosage values. CFRNet (Shalit et al., 2017) proposed a two-headed
NN architecture with a regularizer that forced representations of treatment and control groups to be
close to each other, in order to adjust for confounding features before forwarding the representation
to treatment-specific heads. Extending CFRNet architecture, (Farajtabar et al., 2020) proposed an
additional regularizer to adjust for confounding by forcing both treatment-specific heads to have
same baseline outcomes (i.e., for any data point, both treatment-specific heads should output same
value). In Dragonnet (Shi et al., 2019), along with two heads for predicting treatment-specific
(potential) outcomes, an additional head to predict treatment value was also used; this allowed pre-
treatment covariates to be used in predicting potential outcomes. Assuming that potential outcomes
are strongly related, (Curth & van der Schaar, 2021) proposed techniques that improve existing
models using the structural similarities between potential outcomes. All of these methods, however,
have a fixed architecture design and can hence address observational data from certain causal models.
Our approach is also NN-based but uses a neurosymbolic approach to automatically synthesize
an architecture (or a flow of program primitives), thereby providing it a capability to work across
observational data from different causal models conveniently.
Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) have also been used to learn
the interventional distribution (Yoon et al., 2018; Bica et al., 2020) from observed data in both
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categorical and continuous treatment variable settings to estimate treatment effects. By disentangling
confounding variables from instrumental variables, (Zhang et al., 2021) proposed a variational
inference method for treatment effect estimation that uses only confounding variables. However,
generative modeling requires a large amount of data to be useful, which is often not practical in
treatment effect estimation tasks. (Yao et al., 2018) proposed a method to learn representations by
leveraging local similarities and thereby estimate treatment effect. Ensemble models such as causal
forests (Wager & Athey, 2018), and Bayesian additive regression trees (Chipman et al., 2010) have
also been considered for interval estimation. As stated earlier, our work is however very different
from these efforts, and seeks to build a flexible yet powerful framework for treatment effect estimation
using neurosymbolic program synthesis.
Neurosymbolic Program Synthesis. Program synthesis, viz. automatically learning a program that
satisfies a given set of input-output examples (Biermann, 1978; Gulwani, 2011; Parisotto et al., 2016;
Valkov et al., 2018; Shah et al., 2020), has been shown to be helpful in diverse tasks such as low-level
bit manipulation code (Solar-Lezama et al., 2005), data structure manipulations (Solar Lezama, 2008),
and regular expression-based string generation (Gulwani, 2011). For each task, a specific DSL is used
to synthesize programs. Even with a small DSL, the number of programs that can be synthesized is
very large. Several techniques such as greedy enumeration, Monte Carlo sampling, Monte Carlo tree
search, evolutionary algorithms, and recently, node pruning with neural admissible relaxation have
been proposed to efficiently search for optimal programs from a vast search space (Gulwani et al.,
2012; Parisotto et al., 2016; Valkov et al., 2018; Shah et al., 2020). We use the idea of node pruning
with neural admissible relaxation (Shah et al., 2020) in this work as it gives near-optimal solutions
with fast convergence. This is the first use of neurosymbolic program synthesis for treatment effect
estimation, to the best of our knowledge.

3 BACKGROUND AND PROBLEM FORMULATION

Treatment Effect Estimation: Let D = {(xi, ti, yi)}ni=1 be an observational dataset of n triplets.
Each triplet (xi, ti, yi) is a sample drawn from the true data distribution p(X, T, Y ), where X, Y and
T are the corresponding random variables (described herein). xi ∈ Rd denotes the d− dimensional
covariate vector, ti ∈ R denotes the treatment value (ti is not a part of xi), and yi ∈ R denotes the
corresponding outcome. To explain treatment effects, consider a simple setting where treatment is
binary-valued i.e., t ∈ {0, 1}. For the ith observation, let Y 0

i denote the true potential outcome under
treatment ti = 0 and Y 1

i denote the true potential outcome under treatment ti = 1. Because of the
fundamental problem of causal inference, we observe only one of Y 0

i , Y
1
i for a given [ti;xi]. The

observed outcome yi can be expressed in terms of true potential outcomes as: yi = tiY
1
i +(1− ti)Y

0
i .

One of the goals in treatment effect estimation from observational data is to learn the estimator
f(x, t) such that the difference between estimated potential outcomes (i.e., under t = 1 and t = 0):
f(xi, 1)− f(xi, 0) is as close as possible to the difference in true potential outcomes: Y 1

i − Y 0
i ∀i.

This difference for a specific individual i is known as Individual Treatment Effect (ITE) (Pearl, 2009).
Extending the discussion on ITE to an entire population, our goal is to estimate the Average Treatment
Effect (ATE) of the treatment variable T on the outcome variable Y which is defined as:

ATEY
T = E[Y |do(T = 1)]− E[Y |do(T = 0)] (1)

where the do(.) notation denotes external intervention to the treatment variable (Pearl, 2009), i.e.
E[Y |do(T = t)] refers to the expected value of the outcome Y when every individual in the
population is administered with the treatment t. (Note that if treatment is not binary-valued, treatment
effects are calculated w.r.t. a baseline treatment value (Pearl, 2009), and the right term in Eqn 1
would compute the interventional expectation at the baseline.) Assuming X satisfies the backdoor
criterion relative to the treatment effect of T on Y (Pearl, 2009), we can write E[Y |do(T = t)] =
Ex∼X [E[Y |T = t,X = x]]. Using this, a simple technique to estimate E[Y |T = t,X = x] (and
thus E[Y |do(T = t)], the ATE) is to fit a model for Y given T , and X. These models are the
basic building blocks of most methods for treatment effect estimation. We use the finite sample
approximation of ATE by taking the average of ITEs. Following (Shalit et al., 2017; Lechner, 2001;
Imbens, 2000; Schwab et al., 2020; Zhang et al., 2021), we make the following assumptions which
are sufficient to guarantee the identifiability (Pearl, 2009) of treatment effects from observational data.

• Ignorability: This is also referred to as no unmeasured confounding assumption. For a given set of
pre-treatment covariates, treatment is randomly assigned. Mathematically, in a binary treatment
setting, conditioned a set of pre-treatment covariates X, treatment T is indepedent of the outcomes
Y 0, Y 1 (i.e., (Y 0, Y 1) ⊥⊥ T |X).
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• Positivity: Treatment assignment for each individual is not deterministic, and it must be possible to
assign all treatment values to each individual, i.e. 0 < p(t|x) < 1 ∀t,x.

• Stable Unit Treatment Value Assumption (SUTVA): The observed outcome of any individual
under treatment must be independent of the treatment assignment to other individuals.

Neurosymbolic Program Synthesis: Following (Shah et al., 2020), let (P, θ) be a neurosymbolic
program where P denotes the program structure and θ denotes the program parameters. (P, θ) is
differentiable in θ (see Appendix for an example neurosymbolic program). P is synthesized using a
Context-Free Grammar (CFG). A CFG consists of a set of rules of the form α → σ1, . . . , σn where α
is a non-terminal and σ1, . . . , σn are either non-terminals or terminals. Program synthesis starts with
an initial non-terminal, then iteratively applies the CFG rules to produce a series of partial structures,
viz. structures made from one or more non-terminals and zero or more terminals. These partial
structures are considered as nodes in a program graph. The process continues until no non-terminals
are left, i.e., we have synthesized a program. The leaf nodes of the resultant program graph contain
structures that consist of only terminals. Let θ be the set of parameters of such a leaf node structure P .
Let s(r) be the cost incurred in using the rule r while generating a program structure. The structural
cost of P is s(P) =

∑
r∈R(P) s(r), where R(P) is the set of rules used to create the structure P . In

this paper, we set s(r) to a constant real number for all production rules (e.g., s(r) = 1 ∀r ∈ R(P)).
The program learning problem is thus usually formulated as a graph search problem, i.e., starting
with an empty graph, the graph is expanded by creating new partial structures (internal nodes of the
graph) and structures (leaf nodes of the graph). When searching for an optimal program, parameters
of the program (and program structures) are updated simultaneously along with the synthesis of the
programs (Shah et al., 2020).

For a synthesized program (P, θ), we define ζ(P, θ) = E(x,t,y)∼D[((P, θ)(x, t) − y)2] as the
error/cost incurred by (P, θ) in estimating treatment effects. The overall goal of neurosymbolic
program synthesis is then to find a structurally simple program (that can also be human-interpretable)
with low prediction error, i.e. to solve the optimization problem: (P∗, θ∗) = argmin(P,θ)(s(P) +

ζ(P, θ)). We now describe our methodology.

4 NEUROSYMBOLIC TREATMENT EFFECT ESTIMATOR: METHODOLOGY
The overall idea of our methodology is to design a Domain-Specific Language (DSL) for treatment
effect estimation that is fairly general, followed by the use of the standard A∗ search algorithm to
synthesize programs given observational data from a specific causal model. We begin by discussing
the DSL we design, followed by the program synthesizer. Note that one could view each primitive
of our DSL as modules of existing learning-based treatment effect estimators such as TARNet or
CFRNet (Shalit et al., 2017). We also theoretically analyze the usefulness of the search-based
neurosymbolic program synthesizer for the given task.

4.1 DOMAIN SPECIFIC LANGUAGES FOR TREATMENT EFFECT ESTIMATION

Since a program synthesizer requires as input a set of input-output examples, unsurpris-
ingly, we can pose the problem of treatment effect estimation as the problem of map-
ping a set of inputs to corresponding outputs. Concretely, given observational data D,
the set of pairs {(ti,xi)}ni=1 act as inputs and the set of outcomes {yi}ni=1 act as outputs.

Regularizer/ Program Synthesis
Architectural Changes Alternative

Two-head/Multi-head network if− then− else
(Farajtabar et al., 2020) (Shi et al., 2019) subset
(Shalit et al., 2017) (Schwab et al., 2020)

Pre-treatment selection, subset
Propensity Score Matching (Shi et al., 2019)

IPM regularization transform
(Shalit et al., 2017) (Farajtabar et al., 2020)

Table 1: Connection between inductive biases in existing
literature and the program primitives in the proposed DSL.
This equivalence allows us to device a method that doesn’t
require additional regularizers or architectural changes.

For simplicity, let vi = [ti;xi] (concatena-
tion of treatment and covariates) denote the
ith input. A synthesized program learns
to estimate the potential outcomes for un-
seen inputs by learning a mapping between
given input-output examples. To bring in-
terpretability to synthesized programs and
to leverage the inductive biases considered
in treatment effect estimation literature, we
develop a DSL (Table 2) based on well-
known program primitives that have con-
nections to ideas used in literature for treat-
ment effect estimation (illustrated in Ta-
ble 1) (We later state Propn 4.2 that guar-
antees the existence of a DSL for treatment effect estimation task). As discussed earlier, existing
treatment effect estimation methods introduce inductive biases into machine learning models either
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A DSL for the Treatment Effect Estimation Task

α := if α then α else α | transform(α, µ, σ) | subset(α, [a..b]) | const(S) | ⊙ (α, α)| v

Program Primitive Description

1. if α then α else α Simple if− then− else condition. To avoid evaluating conditions, and to enable back-
propagation, we implement smooth approximation of if− then− else.

2. transform(α, µ, σ) Transform the input vector α into ϕ(α) as ϕ(α) = α−µ
σ where µ and σ are mean and

standard deviation of observational data. Feed ϕ(α) into a NN to get a real number as output.

3. subset(α, [a..b]) Select a set of features from the start index a (including) to end index b (excluding) from the
input α. Other features are set to 0. Feed this vector into a NN to get a real number as output.

4. const(S) Learn a set of constants of shape S.

5. ⊙(α, α) Parameterized algebraic functions (e.g., α1 + α2, α1 ∗ α2;α1, α2 ∈ R).

Table 2: A DSL for the treatment effect estimation task in Backus-Naur form (Winskel, 1993) and its semantics.
v represents input from D. More details of each primitives is provided below.

through regularizers or through changes in NN architectures. On a similar note, one could view a
DSL as a set of inductive biases based on learnable program primitives (Shah et al., 2020; Chaudhuri
et al., 2021). The proposed DSL is based on inductive biases used in treatment effect estimation
literature. We next describe the connections between program primitives in our DSL in Table 2 and
inductive biases used in traditional treatment effect estimation methods.
Connection between multi-head neural network architectures and if− then− else, subset:
Recall that, in treatment effect estimation, our goal is to estimate the quantity E[Y |T = t,X = x].
If a single model is used to estimate both E[Y |T = 0,X = x] and E[Y |T = 1,X = x], it is often
the case that X is very high dimensional and hence the treatment T , which is often one dimensional,
may be discarded by the model when making predictions. This will result in the estimated treatment
effect being biased towards 0 (Künzel et al., 2019). To account for this, two separate models can
be used to estimate E[Y |T = 0,X = x],E[Y |T = 1,X = x]. However, this method suffers from
high variance in estimated treatment effect due to limited data in treatment-specific sub-groups and
selection bias (Shalit et al., 2017).

In order to mitigate this problem, (Shalit et al., 2017) and subsequent efforts by (Shi et al., 2019;
Schwab et al., 2020; Farajtabar et al., 2020) use an NN architecture in which two separate heads are
spanned from a latent representation layer to predict treatment specific outcomes and thus achieve
better treatment effect estimate with lower variance. Such two-head NNs can be implemented using
a combination of if− then− else and subset program primitives. For example, to implement
a two-head NN architecture, a neurosymbolic program synthesizer can perform the following: if
α1 = subset(v, [0..1]) = 1 (subset(v, [a..b]) takes a vector v as input and returns a real number
as output as explained later in this section), the program synthesizer executes α2 else it executes α3

where α2, α3 are two different sub-structures that act as two heads of the overall architecture.

Note that each α in the primitive: “if α then α else α” returns a real number and hence the output
of “if α then α else α” is also a real number. For e.g., as discussed above, α here can be either
subset(v, [0..1]) or transform(v, µ, σ) too. Here both subset(v, [0..1]) and transform(v, µ, σ)
take a vector v as input and return a real number as output.

To avoid discontinuities and to enable backpropagation, following (Shah et al., 2020), we im-
plement a smooth approximation of if− then− else. For example, smooth approximation of
if a > 0 then b else c can be written as σ(β · a) · b+ (1− σ(β · a)) · c, where σ is the sigmoid
function and β is a temperature parameter. As β → 0, the approximation approaches the usual
if− then− else. It is now easy to see that multi-head NN architectures can be implemented
using multiple if− then− else and subset primitives. It is important to note that we do not
hard-code/pre-define the network architecture. Instead, the program synthesizer learns to generate
programs such that the primitives are composed in any order it deems to be effective in minimizing
the loss value during training (see Sec. 5 and Appendix for examples).
Connection between IPM regularization and transform: To improve the results from two head
NN architectures (e.g., TARNet), CFRNet (Shalit et al., 2017) proposes to use IPM regularization (e.g.,
Maximum Mean Discrepancy (Gretton et al., 2012), Wasserstein distance (Cuturi & Doucet, 2014))
on a latent layer representation. This enforces the encoded distribution of treatment (p(x|t = 1)) and
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control (p(x|t = 0)) groups to be close to each other. Minimizing IPM between p(ϕ(x)|t = 1) and
p(ϕ(x)|t = 0) (where ϕ is the learned representation) is then the same as ensuring that treatment and
covariates are independent (i.e., T ⊥⊥ X) thus mimicking RCTs (Shalit et al., 2017). To introduce this
kind of inductive bias, we introduce a program primitive called transform(α, µ, σ) that transforms
a given input vector α into ϕ(α) using two other vectors µ, σ as ϕ(α) = α−µ

σ , where µ, σ are mean
and standard deviations of the observational data D.

If transform(α, µ, σ) is applied to the entire dataset D, the transformed data now has mean 0
and standard deviation 1 (where 0 and 1 are vectors of 0s and 1s respectively). When the two
subpopulations p(x|t = 0) and p(x|t = 1) are distributed similarly to D (which would also satisfy
the ignorability assumption), the means and standard deviations of p(ϕ(x)|t = 0) and p(ϕ(x)|t = 1)
will also be approximately equal to 0 and 1 respectively (note that ϕ(x) = x−µ

σ , and the input to
transform(α, µ, σ) is the vector [t,x] ∈ D). Then, the Maximum Mean Discrepancy between
p(ϕ(x)|t = 0) and p(ϕ(x)|t = 1) will go towards zero when matching the first two moments of
p(ϕ(x)|t = 0) and p(ϕ(x)|t = 1) for treatment effect estimation. The transformed vector ϕ(x) is
subsequently fed into a multi-layer perceptron to produce a real number as output, which is then fed
into other program primitives.

transform(α, µ, σ) appears to be similar to data standardization, a data pre-processing step. How-
ever, unlike the fixed architecture in traditional NNs, program synthesis has the flexibility to choose
when to use transform(α, µ, σ) (for e.g, x could be the output of the 3rd program primitive, not
input). Besides, though the reason to introduce transform(α, µ, σ) is to mimic IPM regularization
(specifically Maximum Mean Discrepancy), it is evident from our DSL that the program synthesizer
can use transform(α, µ, σ) multiple times in a program (see Appendix for examples).
Connection between pre-treatment covariate selection and subset: Under the ignorability as-
sumption, pre-treatment covariates are controlled to find estimates of treatment effects. For e.g., (Shi
et al., 2019) controls pre-treatment covariates via controlling propensity score (Rosenbaum & Rubin,
1983). However, it is not required to control all the covariates in the input. In order to identify a
minimal set of pre-treatment covariates to control, we use subset(α, [a..b]) primitive. If we do not
know which indices to select, multiple instances of subset(α, [a..b]) can be used by assigning dif-
ferent values to a, b in each instance. Program synthesizer then selects appropriate subset(α, [a..b])
for some a, b. subset(α, [a..b]) also helps to identify the most important dimensions from a given
input/hidden representation as explained in the if− then− else example earlier. Finally, the
chosen vector is fed into a multi layer perceptron to produce a real number as output which will
subsequently be used by other primitives.

The other two simple program primitives–const(S),⊙(α, α)–whose semantics are given in Table 2,
are included for giving additional flexibility to the program synthesizer and combining various
program primitives effectively to achieve better results. ⊙(α, α) takes two real numbers as inputs and
returns a real number as output after performing the algebric operation ⊙. Using the proposed DSL,
we now present the algorithm to synthesize neurosymbolic programs that estimate treatment effects.

4.2 NEUROSYMBOLIC PROGRAM SYNTHESIS FOR TREATMENT EFFECT ESTIMATION

We use the A∗ informed search algorithm (Hart et al., 1968) to implement the proposed NESTER
method. The heuristic function h we use in our method is defined as follows. For any partial structure
P(u) in a node u, NNs with adequate capacity (enough width and depth) are used to replace the
non-terminals. The training loss of the resultant program (P(u), θ(u)) on D then acts as the heuristic
value h(u) at the node u (Shah et al., 2020). Using this heuristic function, we run A∗ algorithm to
find the programs that estimate treatment effects. We outline our approach in Algorithm 1. We now
study the theoretical guarantees of neurosymbolic program synthesis in estimating treatment effects.

Definition 4.1. (Admissible Heuristics (Harris, 1974; Pearl, 1984)) In an informed search algorithm,
a heuristic function h(u) that estimates the cost to reach goal node from a node u is said to be
admissible if h(u) ≤ h∗(u),∀u where h∗(u) is the actual/true cost to reach the goal node from u.
h(u) is said to be ϵ−admissible if h(u) ≤ h∗(u) + ϵ,∀u.

Proposition 4.1. In an informed search algorithm, let the cost of the leaf edge (ui, ul) (edge
connecting internal node ui to leaf node ul) be s(r) + ζ(P, θ∗), where θ∗ = argminθ ζ(P, θ) and r
is the rule used to create ul from ui. If NNs N parameterized by their capacity (architecture width and
height) are used to substitute the non-terminals in the partial structure of ui, the resultant program’s
training loss is equal to the ϵ−admissible heuristic value at the node ui. Such an ϵ−admissible
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heuristic returns a solution whose path cost is at most an additive constant ϵ away from the path cost
of the optimal solution (Shah et al., 2020).

Proposition 4.2. Given an ϵ−admissible heuristic, for any trained 1-hidden layer NN N with m
inputs, n hidden neurons, and one output, there exist a Domain Specific Language L such that the
error/loss incurred by the synthesized program (P, θ) is ϵ−close to the error/loss incurred by N in
approximating any continuous function.

Algorithm 1: NESTER using A∗

Input: Source node u0, Q := {u0}, f(u0) :=∞
while Q ̸= ∅ do
v ← argminu∈S f(u)
Q← Q \ {v}
if v is goal node then

return v
end

else
create new partial architectures from
v (children of v) using DSL L
foreach child u of v do

h(u)← minθ(u) ζ(P(u), θ(u))
f(u)← s(P(u)) + h(u)
Q← Q ∪ {u}
end

end
end

Proofs of the above propositions are in the Appendix.
The universal approximation theorem (Hornik et al.,
1989) states that we can increase the number of hid-
den layer neurons of a 1-hidden layer NN N to ap-
proximate any continuous function f with a certain
error, say ϵ̂. Proposition 4.2 states that there exists a
neurosymbolic program (P, θ) whose error in approx-
imating N is ϵ. Equivalently, there exists a neurosym-
bolic program (P, θ) whose error in approximating
f is (ϵ + ϵ̂). That is, if the relationship between
treatment and effect is a continuous function, neu-
rosymbolic programming is a viable candidate for
estimating treatment effects.

5 EXPERIMENTS AND RESULTS

We perform experiments to showcase the usefulness
of NESTER in estimating treatment effects when
coupled with our proposed DSL. Our code along with
instructions for reproducibility of results is in the supplementary material. To permit interpretability,
we limit the program depth to utmost 5 for the main experiments (see Appendix for experiments with
other depths).
Datasets and Baselines: Evaluating treatment effect estimation methods requires all potential
outcomes to be available, which is impossible due to the fundamental problem of causal inference.
Thus, following (Shalit et al., 2017; Yoon et al., 2018; Shi et al., 2019; Farajtabar et al., 2020), we
experiment on two semi-synthetic datasets–Twins (Almond et al., 2005), IHDP (Hill, 2011)–that
are derived from real-world RCTs (see Appendix for details). For these two datasets, ground truth
potential outcomes (a.k.a. counterfactual outcomes) are synthesized and available, and hence can be
used to study the effectiveness of models in predicting potential outcomes. We also experiment on
one real-world dataset–Jobs (LaLonde, 1986)–where we observe only one potential outcome. Each
dataset is split 64/16/20% into train/validation/test sets, similar to earlier efforts.

We compare NESTER with Ordinary Least Squares with treatment as a feature (OLS-1), OLS
with two regressors for two treatments (OLS-2), k-Nearest Neighbors (k-NN), balancing linear
regression (BLR) (Johansson et al., 2016), Bayesian additive regression trees (BART) (Chipman
et al., 2010), random forest (Breiman, 2001), causal forest (Wager & Athey, 2018), balancing neural
network (BNN) (Johansson et al., 2016), treatment-agnostic representation network (TARNet) (Shalit
et al., 2017), multi-head network (MHNET) (Farajtabar et al., 2020), Generative Adversarial Nets
for inference of individualized treatment effects (GANITE) (Yoon et al., 2018), counterfactual
regression with Wasserstein distance (CFRWASS) (Shalit et al., 2017), Dragonnet (Shi et al., 2019)
and multi-task Gaussian process (CMGP) (Alaa & van der Schaar, 2017).

Evaluation Metrics: For the experiments on IHDP and Twins datasets where we have access to
both potential outcomes, following (Shalit et al., 2017; Yoon et al., 2018; Shi et al., 2019; Farajtabar
et al., 2020), we use the evaluation metrics–Error in estimation of Average Treatment Effect (ϵATE)
and Precision in Estimation of Heterogeneous Effect (ϵPEHE). ϵATE is a global measure in the
sense that it measures the error in the estimation of average treatment effect in a population. ϵPEHE

is a local measure as it operates on the error in the estimation of individual treatment effects. For
the experiment on the Jobs dataset where we observe only one potential outcome per data point,
following (Shalit et al., 2017; Yoon et al., 2018; Shi et al., 2019; Farajtabar et al., 2020), we use
the metric Error in estimation of Average Treatment Effect on the Treated (ϵATT ). Mathematical
definitions and details of these metrics are provided in the Appendix. Following (Shalit et al., 2017;
Shi et al., 2019; Yoon et al., 2018), we report both in-sample and out-of-sample performance w.r.t.
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Datasets→ IHDP Twins Jobs

Metrics→ ϵATE ϵATE ϵATT

Methods ↓ In-Sample Out-of-Sample In-Sample Out-of-Sample In-Sample Out-of-Sample

OLS-1 .73 ± .04 .94 ± .05 .0038 ± .0025 .0069 ± .0056 .01 ± .00 .08 ± .04
OLS-2 .14 ± .01 .31 ± .02 .0039 ± .0025 .0070 ± .0059 .01 ± .01 .08 ± .03
BLR .72 ± .04 .93 ± .05 .0057 ± .0036 .0334 ± .0092 .01 ± .01 .08 ± .03
k-NN .14 ± .01 .90 ± .05 .0028 ± .0021 .0051 ± .0039 .21 ± .01 .13 ± .05

BART .23 ± .01 .34 ± .02 .1206 ± .0236 .1265 ± .0234 .02 ± .00 .08 ± .03
R Forest .73 ± .05 .96 ± .06 .0049 ± .0034 .0080 ± .0051 .03 ± .01 .09 ± .04
C Forest .18 ± .01 .40 ± .03 .0286 ± .0035 .0335 ± .0083 .03 ± .01 .07 ± .03

BNN .37 ± .03 .42 ± .03 .0056 ± .0032 .0203 ± .0071 .04 ± .01 .09 ± .04
TARNet .26 ± .01 .28 ± .01 .0108 ± .0017 .0151 ± .0018 .05 ± .02 .11 ± .04
MHNET .14 ± .13 .37 ± .43 .0108 ± .0008 .0101 ± .0002 .04 ± .01 .06 ± .02
GANITE .43 ± .05 .49 ± .05 .0058 ± .0017 .0089 ± .0075 .01 ± .01 .06 ± .03
CFRWASS .25 ± .01 .27 ± .01 .0112 ± .0016 .0284 ± .0032 .04 ± .01 .09 ± .03
Dragonnet .16 ± .16 .29 ± .31 .0057 ± .0003 .0150 ± .0003 .04 ± .00 .04 ± .00
CMGP .11 ± .10 .13 ± .12 .0124 ± .0051 .0143 ± .0116 .06 ± .06 .09 ± .07

NESTER .06 ± .04 .09 ± .07 .0034 ± .0026 .0063 ± .0033 .06 ± .00 .02 ± .01

Table 3: Results on IHDP, Twins, and Jobs datasets. Lower is better. The best numbers are in bold. Second best
numbers are underlined. Simple machine learning models, ensemble models, and neural network based models
are separated using horizontal lines. See Appendix for further analysis on k-NN results.
√
ϵPEHE , ϵATE , ϵATT in our results. The in-sample evaluation is non-trivial since we do not observe

counterfactual outcomes (all potential outcomes) even during training.

From the results in Table 3, except w.r.t. in-sample ϵATT score in Jobs dataset, NESTER either
outperforms or is competitive with the best alternative methods. Our method has the flexibility to
learn both complex models that are required for small and complex datasets such as IHDP (complex
models such as CMGP outperforms simple models such as OLS on IHDP) and to learn simple models
to solve large and simple datasets such as Twins and Jobs (OLS, k−NN often perform better on
Twins, Jobs compared to complex models).

Flexibility in Applying Inductive Bias and Program Primitives as Regularizers: Inductive
biases, a set of assumptions we make to solve a ML problem, have a significant impact on
the ML model performance at test time (Mitchell, 1980). For a given task, inductive biases
are chosen based on the intuition that a particular way of problem-solving is better than others.

IHDP

if subset(v, [0..1])
then transform(v, µ, σ)
else transform(v, µ, σ) )

Twins

subset(v, [0..|v|]))
Jobs

if subset(v, [0..|v|])
then subset(v, [0..|v|])
else subset(v, [0..|v|])

Table 4: Sample programs
learned by NESTER. |v| =
size of vector v.

These intuitions either come from domain knowledge or from data anal-
ysis. As discussed earlier, these inductive biases are implicit in program
primitives in the proposed DSL. Using the proposed DSL, for each dataset,
NESTER has the flexibility to: (i) Choose or not choose a specific program
primitive; (ii) Decide order in which the program primitives are used; and
(iii) Use a specific program primitive multiple times. This flexibility allows
NESTER to use inductive biases differently for different datasets to per-
form better. Table 4 shows the best programs synthesized by NESTER for
IHDP, Twins, and Jobs datasets. Unlike traditional fixed architectures (e.g.,
IPM regularization followed by two head network in CFRNet), NESTER
synthesizes path flows (equivalent to different architectures) to solve each
dataset. Additional experimental details including analysis on the depth
of synthesized programs, impact of the choice of DSL are provided in the
Appendix.

6 CONCLUSIONS

This paper presents a new neurosymbolic programming approach for treatment effect estimation,
and also studies why neurosymbolic programming is a good choice for solving such a problem.
By making an analogy between parameterized program primitives and the basic building blocks
of machine learning models in the literature on treatment effect estimation, we propose a Domain
Specific Language on which program synthesis is rooted. Our results and analysis on benchmark
datasets with several baselines show the usefulness of the proposed approach. Exploring new program
primitives corresponding to unexplored heuristics for the treatment effect estimation task is an
interesting future direction.
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