Under review as submission to TMLR

Learning Energy-Based Models by
Self-Normalising the Likelihood

Anonymous authors
Paper under double-blind review

Abstract

Training an energy-based model (EBM) with maximum likelihood is challenging due to the
intractable normalisation constant. Traditional methods rely on expensive Markov chain
Monte Carlo (MCMC) sampling to estimate the gradient of logartihm of the normalisation
constant. We propose a novel objective called self-normalised log-likelihood (SNL) that
introduces a single additional learnable parameter representing the normalisation constant
compared to the regular log-likelihood. SNL is a lower bound of the log-likelihood, and its
optimum corresponds to both the maximum likelihood estimate of the model parameters
and the normalisation constant. We show that the SNL objective is concave in the model
parameters for exponential family distributions. Unlike the regular log-likelihood, the SNL
can be directly optimised using stochastic gradient techniques by sampling from a crude
proposal distribution. We validate the effectiveness of our proposed method on various
density estimation and parameter estimation tasks. Our results show that the proposed
method, while simpler to implement and tune, outperforms existing techniques on small
to moderate dimensions but its performance starts to degrade for very high-dimensional
problems. We extend this framework to handle EBM for regression and show the usefulness

of our method in this setting as we outperform existing techniques.

1 Introduction

Energy-based models (EBMs) specify a probability density over

a space X through a parameterised energy function Fy : X — R.

The associated density is then

e—Fo(z)

pola) = . 1)

where Zy = [e Fo(z)dx is called the partition function or
the normalising constant. However, Zy is often unknown and
intractable, which makes training an EBM through maximum
likelihood challenging.

Initial methods address the challenge with a pseudo-likelihood
function, an altered version of the likelihood function that cir-
cumvents the need to compute the normalising constant (Besag
1975, Mardia et all |2009; Varin et al., 2011)). Alternatively,
gradients of the log-likelihood function can be estimated using
the Boltzmann learning rule (Hinton & Sejnowskil [1983) or
approximated using contrastive divergence (Hinton) 2002) at
the price of expensive and difficult-to-tune Markov chain Monte
Carlo (MCMC) sampling methods (Dalalyan) [2017; Welling &
Tehl |2011)). To alleviate this difficulty, [Du & Mordatch| (2019)
proposed to maintain a buffer of samples during training using

lgnt,(0,0)

/,;:;‘f‘:‘;}\;\\
=
///é/%gi%‘::“:§§\\\
 0)%
/44{{{?»‘,__\\:\&\

Figure 1: The SNL for a Gaussian with un-
known mean 6 € R and unit variance. The
SNL a function of both # and the additional
parameter b, estimating the normalising con-
stant. The black line corresponds to max-
imising b for each given #, which exactly
recovers the log-likelihood. The red star is
the maximum log-likelihood, which is also
the maximum of £gni,(60,0), see details in

Appendix E

Under review as submission to TMLR

Langevin MCMC. This work was extended by |Du et al.| (2021]), who considered a Kullback-Leibler divergence
term that was claimed to be negligible by [Hinton| (2002)). Relatedly, use a flow trained
alongside the EBM as a starting point for a short-term MCMC sampler, reducing the dependency on long
chains. In another work, |Gao et al| (2021 proposed training a succession of EBM on data diffused with
noise, allowing for both training and sampling the conditional distribution. Nijkamp et al.| (2019) studied the
training of EBM for short-term non-convergent Langevin Markov chains and showed excellent generation,
albeit without directly optimising the likelihood. As it is critical to have a good estimate of this gradient,
alternative methods consider using a proposal distribution ¢ together with importance sampling
2003). However, this results in an objective that is an upper bound of the log-likelihood. Additionally,
the choice of a proposal is critical, and a poor choice will lead to a loose bound. To tighten it,
train the proposal to minimise the bound. This results in a min-max objective, similar to that of
generative adversarial networks (GANs), which are infamous for their instability in training
[2019; [Farnia & Ozdaglar] 2021)).

Another line of work aims at getting rid of the partition function altogether. It notably includes score
matching and its variants (Hyvéarinen, 2005; [Vincent| 2011)). Score matching is a family of objectives that
circumvents the normalising constant by matching the Stein score of the data distribution
to that of the model. Several variants have subsequently been proposed: implicit score matching trades
the Stein score of the data distribution for the Hessian of the model (Hyvérinen| 2005} Kingma & Le Cun,
[2010} [Martens et all [2012)), while denoising score matching models instead a corrupted version of the data,
which has a tractable density. The latter approach has proven very successful at generating high-dimensional
data, such as images and videos (Song et al., |2021; Ho et al. [2022). Another approach that bypasses the
normalising constant is to minimise the Stein discrepancy (Barp et al., 2019; \Grathwohl et all |2020)).

An alternative approach more closely related to our work is noise contrastive estimation (NCE), where
|Gutmann & Hyvérinen| (2010) frames the problem as a logistic regression task between the data and a
tractable noise distribution. This leads to a consistent estimate of the model parameters. Additionally, the
normalisation constant is learned using an additional parameter (Mnih & Tehl [2012). The crucial issue of
NCE, and that will not affect our method, is that the objective depends on the noise distribution, which is
very hard to optimise (Chehab et al, 2022).

1.1 Contributions

Our work is inspired by two papers on local likelihood density estimation (Loader, 1996; Hjort & Jones|,
1996)), which mention ways of bypassing the normalising constants in their quite specialised context. Our
contributions are the following:

o We propose a new objective, the self-normalised log-likelihood (SNL) that is amenable to stochastic
optimisation and allows for recovering both the maximum likelihood estimate and its normalising
constant.

o We study theoretical properties of the SNL, in particular its concavity for exponential families and
its links with information geometry.

o We demonstrate on a range of low-dimensional tasks, including density estimation and parameter
estimation, that SNL is straightforward to implement and achieves performance comparable to that
of more complex approaches for learning energy-based models. We show state-of-the-art results on
image regression datasets using an energy-based model.

o We derive a surrogate training objective, the SNELBO, for variational autoencoders with an EBM
prior, and evaluate it on binary MNIST, CIFAR-10, and CelebA. While this approach improves

upon the vanilla VAE baseline, the resulting generations remain below the performance of current
state-of-the-art models.

2 Self-normalising the likelihood

We deal with some data x1,...,x, € X, assumed to be independent and identically distributed samples
from a distribution pgata. Our goal is to fit an EBM py, as defined in Eq. , to these data. The standard

Under review as submission to TMLR

approach for fitting a probabilistic model is to maximise the likelihood function
€0) = 23 logpolar))
- - gPo(Ti)-

Unfortunately, as we will discuss now, maximising such a function for an EBM is a daunting task.

2.1 Why maximum likelihood for EBMs is hard
Let us focus on a single data point . The log density of our EBM is

logpe(x) = —Ey(x) — log Zy, (3)

with 6 being the learnable parameters of the model. Gradient-based methods are a popular approach to train
an EBM via maximum likelihood; those methods require the gradient of the log density with respect to the
parameters, 6, that is

Vologpg(x) = —VeEg(x) — Vg log Zy. (4)

While automatic differentiation can, usually, easily compute the gradient of the energy VgFEy(x), it is not
the case for Vylog Zy. However, following the Boltzmann learning rule (Hinton & Sejnowskil 1983]), we can
express the gradient of the normalising constant as an expected value (see, e.g., [Song & Kingmal [2021| for a
full derivation):

Vglog Zy = —Ex.p,[VoEe(X)]. (5)

We can obtain a Monte Carlo estimate of this gradient, but this requires sampling from the EBM itself, which
leads to the use of MCMC-based methods that often suffer from poor stability and high computational cost.
These procedures usually require very long chains to converge to the true distribution pg. For the EBM to be
computationally trainable, one needs to cut short the procedure, and as a result, the obtained samples do not
follow exactly pg, meaning that the estimates of Vglog Zy are biased. As it is critical to have a good and
fast estimate of this gradient, alternative methods consider using a proposal distribution ¢ in an importance
sampling fashion, to yield a cheaper estimate:

g7 =tog [¢~#09 da =g [oty 2 8 s S
og Zy =log [e ") dx = log glz)de > Ex, .., ~q |log —— 5
q(w) Ao X 1 B8 A 2270 (X,,)

where the last inequality is a consequence of Jensen’s inequality (Jensen! |1905; [1906). In turn, this means
that we will maximise the likelihood upper bound

n M
1 e_EG(Xm,)
;_Eﬁ(mi) —Exi,... Xun~a IOgM Z

m=1

lis(0) = > £(0), (7)

q(Xm) | —

3=

in lieu of the likelihood. Depending on the choice of ¢ and on the number of importance samples M,
this inequality is potentially very loose, meaning that one would train the model to maximise a biased
approximation of the likelihood. Finding a good proposal ¢ that allows for fast sampling and correct estimation
of its entropy is still a very active research area (Grathwohl et al.| [2021; [Kumar et al.l |2019; Xie et al., 2018).
Usually, this proposal is trained in parallel with the model Ey, which leads to a very unstable adversarial
objective (Geng et al.l [2021]).

2.2 Can we make this logarithm disappear?

The looseness of the importance sampling approximation ¢1g(f) is only due to Jensen’s inequality: if the
logarithm were replaced by a linear function, it would be possible to compute an unbiased estimate of the
log-likelihood gradients. Our key idea is therefore to linearise the logarithm, using the following simple
variational formulation. This will help us bypass the issues mentioned in Section [2.1]

Lemma 2.1. For all z > 0,

log 2 = min (2¢7* + A~ 1)
og z &nel]g ze N+ ()

Under review as submission to TMLR

The proof of this lemma is elementary and provided in Appendix This result is often used as an
illustration of variational representations in variational inference tutorials (see, e.g., |[Jordan et all (1999
Section 4.1; |Ormerod & Wandl [2010] Section 3), but we are not aware of it being used in a context similar to
ours. Applying Lemma to Eq. give us, for any = € X,

logpg(z) = —FEp(x) —log Zyg = —Ey(x) — rbniﬂrg (e_ng +b- 1)

€
(9)
- _o—by — _ _bh_e b
- Eg(x)+r£1€aﬂi<(€2y ~b+1) Iileaﬂé((Eolw) —b—e "2y +1).
Using Eq. @D, we define a new objective named the self-normalised log-likelihood (SNL) /gy, that is a
function of the original parameter of the EBM 6 and a single additional parameter b € R:

n

1
loni(b,0) = — > —Ep(z:i) —b—e"Zy+ 1. (10)

i=1

When maximised w.r.t. b, we can recover the exact log-likelihood of a given model py and maximising both 6
and b leads to the maximum log-likelihood estimate, as formalised below.

Theorem 2.1. For any given 6, when the SNL is maximised with respect to b, we have access to the exact
log-likelihood of the model:
max fsnL(f,b) = €(6). (11)

Moreover, at the optimum, b is the normalisation constant:

arg max lsniL(0,b) = log Zy. (12)

Finally, there is a one-to-one correspondence between the local optima of the SNL and the log-likelihood.

The proof is available in Appendix and is a simple application of the variational formulation of the
logarithm. The important consequence of this result is that maximising the SNL w.r.t. 8 and b will recover
both the mazimum log-likelihood estimate and its normalising constant. This ability of our objective to learn
both the model and its normaliser motivates the name self-normalised log-likelihood. We chose to call
the extra parameter b because, when Fjy is modelled as a neural network, b can simply be understood as the
bias of its last layer. In Appendix we propose another interpretation of SNL that derives directly from
the Donsker-Varadhan variational representation of the KL distribution.

Another direct consequence of Eq. @ is that, for any 6 and b, SNL is a lower bound of the log-likelihood.
Using the importance-sampling upper bound, this will lead to useful “sandwichings” of the log-likelihood:

lsni(0,b) < £(0) < f1s(0). (13)

2.3 Why maximising the SNL is easier

Why is the SNL more tractable than the standard log-likelihood? After all, the SNL also involves the
intractable normalising constant. The key difference is that, since it depends linearly on it, it is now possible
to obtain unbiased estimates of the SNL gradients.

Indeed, using a proposal g gives us estimates of the gradient of Zy with importance sampling. Using

67E9()
Zy = /7q(m)dx =Ex~q4 (14)

q(z)

allows to get unbiased estimates of the SNL gradients w.r.t. § and b. More precisely, for a batch of size Ng
and a number of samples M, we use the following estimate of the gradient w.r.t. 6:

o~ Bo(X)
q(X) |’

Volsn(6,b) = —*ZVQEQ 7))+ e "Exeg

VoEy (X)efE"(X)
q(X)

(15)
V(;Ee xm ~Fa(an)
(@m)

M
—QZVQEG .’El - mz:

Under review as submission to TMLR

Similarly, we can compute unbiased estimates of the gradients w.r.t. b:

7E9£Em)
Ry

The theory of stochastic optimisation (see, e.g., Bottou et al.| [2018) then ensures that SGD-like algorithms,
when applied to SNL, will converge to the maximum likelihood estimate and its normalising constant. In
practice, we use popular algorithms like Adam (Kingma & Bal, [2015) to train 6 and b jointly. Some more
specialised algorithms could also be used. For instance, Bietti & Mairal| (2017)) call optimisation problems
similar to ours “infinite datasets with finite sum structure” (in our case, the infinite dataset is samples from
the proposal, and the finite sum corresponds to the actual data), and propose an algorithm fit for this purpose.
The full algorithm for training an energy-based model with SNL is available in Algorithm

(16)

b e~ Fo(X)
VilsniL(6,0) = =1+ e "Ex~,q

q(X)

Are the gradients of / and /gn1, related? If we rewrite this gradient in the same fashion as Eq. @, we
can express the gradient of the SNL with the gradient of the log-likelihood:

VolsnL(0,b) = —— Z VoEy(z) — e "8 20V log Zy = Vyly + Vglog Zg(1 — e 0108 Z0) (17)

When b equals the normalisation constant log Zy, we obtain an unbiased estimator of the true log-likelihood
gradient.

2.4 Practicalities when using SNL

For EBMs to be well-posed, it is required that the normalisation constant exists, i.e., that [e (@) dr < 0. To
that end, following (Grathwohl et al| (2020)) and similarly to exponential tilting [1976), multiplying
the un-normalised probability by a density d ensures the existence of the normalisation constant. The
distribution becomes py(z) o e~ Fo@)d(z).

We call d the base density or the base distribution. In the case where the proposal ¢ is equal to the base
distribution, the SNL estimates and the gradient estimates simplify:

M
1
VoZy =~ M Z VgE@(ZL‘m)eiEg(zm). (18)

m=1

Furthermore, we initialise b by estimating log Zy with importance sampling using the proposal ¢ at the
beginning of the training procedure. This practice allows us to get gradient estimates of SNL somewhat close
to the true gradient log-likelihood.

2.5 Related works

Objectives similar to SNL have been proposed in the past. In particular, in the context of local likelihood
density estimation, |Loader| (1996) and Hjort & Jones| (1996) handled intractable normalising constants in
a similar fashion to ours. |Arbel et al.| (2020) leveraged a similar approach to estimate the normalisation
constant to train hybrids of generative adversarial nets and EBMs. Neither of these works used importance
sampling. [Pihlaja et al|(2010) and |Gutmann & Hirayama) (2011) proposed families of generalisations of
NCE which contain an objective similar to SNL as a special case. In these generalisations of NCE, the noise
distribution plays a similar role to our proposal, but the obtained estimates in general differ from maximum
likelihood. The novelty of SNL lies in the fact that it allows for performing exact maximum likelihood
optimisation (regardless of the choice of proposal) for an EBM using stochastic optimisation together with
importance sampling.

The SNL objective is related to the Donsker-Varadhan representation of the Kullback-Leibler diver-
gence (Donsker & Varadhanl [1975)), a variational formulation that has inspired several related approaches
[bel et all 2020} Belghazi et al} 2018} Glaser et al.| [2021)). SNL arises by evaluating the Donsker-Varadhan dual
at a specific parametrisation h(z) = —FEg(xz) — b, where b learns the log-partition function (see Appendix.
Two closely related methods also build on this variational foundation but differ in key ways. The Generalized
Energy Based Model (GEBM) (Arbel et all, [2020) uses the same parametrisation as SNL, but treats the base
measure B as a learnable implicit model (e.g., a GAN generator), jointly optimising both the energy and the

Under review as submission to TMLR

base via alternating updates. A key distinction is that in SNL, the base measure d(z) defines the probabilistic
model while the proposal ¢(z) used for importance sampling can be chosen independently without affecting
the optimum; in GEBM, no such separation exists, as samples for estimation are drawn directly from the
learned base B. KALE Flow (Glaser et all [2021]) takes a different approach, optimising over a restricted
function class H with regularisation to define a surrogate divergence for gradient flows rather than maximum
likelihood estimation. We discuss these connections and differences in detail in Appendices [E-3] and [E.4]

3 Some theoretical properties of SNL

3.1 Concavity of SNL for exponential families

It is a well-known fact that the log-likelihood of exponential families is concave because of the particular form
of the gradient of the normaliser. We provide a proof in Appendix [A-3] for completeness. The self-normalised
log-likelihood preserves this property with the exponential family: the SNL is even jointly concave in both
parameters.

Theorem 3.1. If (pg)e s a canonical exponential family, then Lsni.(0,b) is jointly concave.

The proof is available in Appendix [A24] and follows directly from the convexity of the exponential. This
means that the many theoretical results on stochastic optimisation for convex functions could be leveraged to
prove convergence guarantees of SNL (see, e.g., [Bottou et al.| [2018).

3.2 An information-theoretic interpretation

Maximum likelihood has the following classical information-theoretic interpretation: when the number of
samples goes to infinity, maximising the likelihood is equivalent to minimising the Kullback-Leibler divergence
between py and the true data distribution pgata (see, e.g., . A similar rationale also exists for
SNL and involves a generalisation of the Kullback-Leibler divergence to un-normalised finite measures. This
generalisation exists also in the more general context of f-divergences, as detailed for instance by
Section 3.6) or [Stummer & Vajda (2010). It reduces to the usual definition when f; and
f2 are probability densities and shares many of the merits of the usual Kullback-Leibler divergence (see
Appendix @l for more details).

Standard maximum likelihood is asymptotically equivalent to minimising KL(pdata||pe). As we detail in
Appendix |D] this turns out to be equivalent to minimising the generalised divergence between pqat. and all
un-normalised models proportional to e~ #¢:

KL(paatallps) = min KL (pdatallce 7). (19)

This new divergence is related to the SNL in the same way that the standard Kullback-Leibler divergence is
related to the likelihood. Indeed, for any ¢ > 0,

— ata x
KL (paatal [ce™F) = / log <f€d_;(())> Paata(2)(z)dz + cZp — 1 (20)
= —/e_E"(””)pdata(x)dx —logec+cZy —1+ /log(pdata(x))pdata(x)dx. (21)

does not depend on 6 nor ¢

The first integral, that depends on 6, is intractable, but may be estimated if we have access to an i.i.d. dataset
Z1,...,Tn, leading to the estimate

B 1< o
KL (paatallce) =~ - D e) —loge+eZy — 1+ /IOg(pdata(x))pdata(x) da (22)
=1
— ~tse(0,10ge) + [1og(pasa(@)pasea(o) dr, (23)

which means that minimising the SNL will asymptotically resemble minimising the generalised Kullback-
Leibler divergence. In the context of local likelihood density estimation, Hjort & Jones (1996) also derived
similar connections with the generalised Kullback-Leibler divergence. More recently, applied
the same variational representation of the logarithm to the generalised Kullbakc-Leibler, in a context very
different from ours.

Under review as submission to TMLR

4 Extending SNL beyond basic density estimation

4.1 Truncated densities

Truncated densities are probability density functions defined on truncated domains. They retain the same
parametric form as their non-truncated counterparts, differing only by a normalising constant. However,
because this normalising constant is often difficult or impossible to compute analytically, applying Maximum
Likelihood Estimation to truncated density models becomes challenging. Even for a simple Gaussian
distribution with more than two dimensions, estimating such parameters is not straightforward. We restrict
the study to the truncated density of the following shape:

t(x)po(x)

7 (24)

pp(x) =

where pg(x) is a standard density, ¢ : X — {1,0} is the known truncation function and Z} is the unknown
normalisation constant. The corresponding energy function for an EBM is then

e[s

4.2 Self-normalisation in the regression setting

We consider the supervised regression problem where we are given a dataset of pairs of inputs and targets
(z,y) € X x Y where the target space) is continuous. We want to estimate the conditional distribution
Pdata(y|z) using an EBM:

e—Eo(z,y)

“Zon (26)

polylz) =
where Zy , = fe_Ee(“’y) dy. The main difference with the previous density estimation setup is that the
normalisation constant Zg , also depends on the input value z.
Because the normaliser now also depends on z, we introduce a new family of functions bg whose role
is to estimate the normalisation constant Zy ,. Similarly to the density estimation case, we define the
self-normalised log-likelihood as

n

1 .
lsni(0,) = — > (—Ee(% yi) = by(i) — Zga,e 00" + 1) . (27)
i=1

Provided the family b4 is expressive enough, this SNL for regression enjoys the same properties as its
unsupervised counterpart. We can retrieve the maximum likelihood estimate when maximising the SNL in
both 6 and ¢. Moreover, at the optimum, for any « € X, by(x) is the normalisation constant log Zy .. The
SNL for regression is also a lower bound of the true conditional log-likelihood. Following the reasoning of
Section [2.3] we propose to train an EBM model for regression using the SNL. To that end, we consider a
proposal g, that depends on both x and y and is parameterised by 1. For instance, |Gustafsson et al.| (2020])
use a mixture density network (MDN, Bishopl, [1994) proposal. In the work of |Gustafsson et al| (2020)), the
EBM is trained jointly with the MDN. The MDN maximisation objective is an average combination between
the negative Kullback-Leibler divergence between the py and gy.

In concurrent work, Sander et al.| (2025)) introduced the SNL loss of Eq. for regression in the context
of multi-label classification and label ranking. They extend Theorem to the same neural network
parametrisation of the normalisation constant bs and study the connection to broader Fenchel-Young losses
and the generalisation capacity of the objective.

4.3 Self-normalised evidence lower bound

The SNL approach allows training a variational auto-encoder (VAE, |[Kingma & Welling), 2014)) with an
energy-based prior using approximate inference. Both [Pang et al.| (2020) and ? trained an EBM as a prior in
the latent space for a noisy sampler, but required MCMC to sample from the posterior and the prior during
training. We introduce the self-normalised evidence lower bound (SNELBO), a surrogate ELBO objective
that leverages the self-normalised log-likelihood to allow for straightforward training.

Under review as submission to TMLR

- ML - ML

m— PL 40 —PL
= SNL = SNL
[- SsM

Ik =Kl
1A =All2
N
S

S s o - i IS

Group 1 Group 2 Group 3 Group 4 Group 1 Group 2 Group 3 Grouj

p4

Figure 2: Error on the estimated parameters obtained using different likelihood methods (approximate
maximum likelihood, ML), pseudo likelihood (PL), self-normalising likelihood (SNL) and score matching
(SM, Mardia et al.,|2008). The score and uncertainty for ML, PL and MM are directly reported from
et al.| (2008) while we report average scores of SNL and SM over five different generated datasets and runs.
The exact value of the estimated parameters is given in Table [17] of the appendix.

—_

Formally, we consider a VAE with a prior pg(z) defined by an EBM composed of an energy function Ej

—E
parameterised by a neural network and an associated base distribution d(z), i.e., pp(z) = %ed(z) where

Zy = [e Fo()d(2)dz. The generative model is the same as in VAE, and an output density ps(z|z) is
parameterised by a neural network g,(z). Since the likelihood is intractable, we posit a conditional variational
distribution ¢, (z|z) to approximate the posterior of the model, similarly to the original VAE. Using Lemma 2.1
we can obtain the SNELBO:

d(z)
L 0,0,v,b) = E,_(s12) |lO z|2)| + E; (212) |log ——
SNL(o,y) g~ (2|)[gp¢(\)} g (2])l gq’y(z|)]

+ By, (zl2) [_EG(Z) - b] —Eaz) [efE“’(z)*b} +1. (28)

We note that the SNELBO is a lower bound on the log-likelihood, £(6,¢), and a lower bound on the
regular ELBO, £, that is tight for optimal b, i.e., £(0,¢) > L(0,¢,7) > Lsnn(0,,7,b) and L(6,¢,v) =
maxper L3N (6, ¢,7,b). See Appendix |G| for derivation details. This surrogate objective can be interpreted
as the combination of the ELBO from a VAE whose prior is the base distribution d(z) with a regularisation
term from the EBM. As such, the EBM can be added easily on top of any VAE model.

5 Experiments

In this section, we employ SNL for different applications. While SNL does not achieve state-of-the-art
performance in every case, it provides an easy-to-use, out-of-the-box solution for problems where the
normalising constant is unavailable. Although extending SNL to high-dimensional, arbitrary density estimation
remains challenging, it works seamlessly for directional and truncated distributions, which are otherwise
nontrivial cases. Moreover, we obtain state-of-the-art results with SNL applied to energy-based models
(EBMs) for image regression.

5.1 Density estimation
5.1.1 Density estimation for directional distributions

As presented Theorem [3.1] the SNL objective is concave for exponential families. This makes the objective very
attractive for exponential families with unknown normalisation. This includes many directional distributions,
such as the multivariate von Mises (Mardia et al.,[2008) for which no tractable formulas exist. The multivariate
von Mises distribution has a density of the form

MoM(z) exp (HTc(ac, 0) + s(z,0)" As(z, 9)), (29)

ZQ,A,R

Under review as submission to TMLR

True Distribution EM GMMis SNL
logL = —3.994 logL = —4.656 loge = —4.077 loge=—-4.172

Figure 3: Different methods are used to estimate the parameters of a truncated mixture of 3 Gaussians.
Each method is fed with truncated data (the blue points). The log-likelihood £ is evaluated on a complete
test set (i.e. without truncation) in order to verify the quality of the estimation. From left to right, we show
the true density of the GMM, the model obtained with a standard Expectation maximisation algorithm, the
model obtained with an EM using imputation (GMMis [Melchior & Goulding| (2018)) and our model trained
using gradient descent and SNL.

with Zp a . an unknown normalisation constant, 6 the localisation parameter, A the correlation param-
eter and k the concentration parameters. These parameters satisfy —nm < 6, < n, —7m < pu; <7
and k; > 0. The matrix A real valied and symmetric with (A);; = A;; = Aj for ¢ # j and

diagonal elements)\; = 0. We defined c(z,0)T = (cos (x—61),cos(z—0),...,cos (z— 9,,)) and

s(z,0)T = (sin (x—61),sin(z —6),...,sin(z — 9p))

We evaluate the performance of our SNL estimator using datasets sampled with four different sets of
parameters of the multivariate von Mises distribution, following the setup of Mardia et al.| (2008). Following
their experimental set-up, we fix the localisaton parameters 6 to their true value and only estimates the
concentration and correlation parameters. Each set of parameters was designed to explore the possible
combinations with high/low concentration x and high/low correlation A;;. In Figure [2, we compare our
estimator to score matching (SM) by Mardia et al|(2016), pseudo-likelihood and approximate maximum
likelihood with numerical integration by [Mardia et al. (2008). SNL outperforms the other estimators in most
cases, except in the low correlation case where the variance is high.

5.1.2 Density estimation for truncated distributions

We evaluate the performance of SNL on a truncated distribution using a simple test without model misspeci-
fication from Melchior & Goulding| (2018). We draw samples from a Gaussian Mixture Model with K = 3
clusters truncated by a box and a circle with known boundaries. As opposed to the original implementation
by Melchior & Goulding| (2018), we do not add noise to the sample and simply discard samples outside
these boundaries to create the truncated distribution. The details of our parameterisation are provided in
Appendix [[.2]

We evaluate the log-likelihood of the resulting model (without truncation) on the non-truncated test dataset
in Fig. 8] We further evaluate the quality of the estimation by comparing the parameters of the estimated
mixture to the true parameters in Fig. Although the performance in likelihood does not match the
specialised GMMis implementation of [Melchior & Goulding| (2018]), the simplicity of our approach suggests
that SNL constitutes a promising and flexible alternative for truncated density estimation.

5.1.3 Density estimation for tabular data

In this section, we evaluate the capacity of SNL to train an EBM for density estimation. We consider both
an artificial dataset and a real dataset from UCI. In both cases, we compare our model with an EBM trained
in the same condition but with noise contrastive estimation (NCE, Gutmann & Hyvérinen, [2010)).

We evaluate the performances of EBMs for density estimation, trained with SNL on four different, two-
dimensional, generated datasets. We compare our model with an EBM trained in the same condition but
with noise contrastive estimation. Both setup also leverages a base distribution that equals the proposal
distribution. Qualitatively in Fig. [6] we observe that the two models perform on par, except for the four
circles dataset, where SNL dominates. We explore the impact of the base distribution in this setting. We show

Under review as submission to TMLR

Funnel Pinwheel Checkerboard Four Circles
Objective Base Dist lrs LsNL ls lsSNL lis lsNL, lrs lsNL
NCE ./\/’(07 1) —2.040 (+0.251) —2.044 (20.250) —1.004 (20.072) —1.020 (+0.080) —1.947 (z0.033) —1.964 (+0.0s2) —2.117 (+0.005) —2.120 (+0.006)
SNL ./\/'(07 1) —1.811 (zo0a7s) —1.831 (xo1s1) —1.031 (xo.066) —1.035 (z0.065) —1.902 (£0.012) —1.905 (20.012) —1.914 (20.022) —1.918 (20.022)
NCE None —1.894 (+0.006) —1.896 (+0.007) —1.063 (+0.019) —1.069 (+to0.02a) —1.997 (20.022) —2.025 (+0.056) —2.231 (+0.038) —2.232 (0.039)
SNL None —2.006 (+o0.378) —2.066 (+to.468) —1.072 (+o0.040) —1.086 (+0.030) —1.966 (+0.030) —1.969 (+o.028)y —1.971 (+0.0a7) —1.973 (20.048)

Table 1: Evaluation of the performance of EBMs trained with NCE or SNL objective with or without a base
distribution. We generate each dataset five times and run each set of parameters once on each. We report
the mean and standard deviation of the estimated log-likelihood and the self-normalised likelihood fsy .
Highest is best.

EBM - SNL Gaussian MADE MADE MoG Real NVP (5) Real NVP (10) MAF (5) MAF (10) MAF MoG (5)

Power (d = 6) 0.28,0.41] —774 —3.08 0.40 —0.02 0.17 0.14 0.24 0.30
Gas (d =8) 5.73,7.74] -3.58 3.56 847 478 8.33 9.07 10.08 9.59
Hepmass (d =21) [-19.22,-19.20] —27.93 —20.98 ~15.15 ~19.62 ~18.71 —17.70 —17.73 ~17.39

Table 2: For EBM-SNL the upper bound corresponds to ¢;g and the lower bound to ¢syr. Both are
computed using 20000 samples from the test set.

our results in Table[I] According to those results, SNL-trained EBMs with a base distribution perform better
than all the NCE settings across all datasets except Pinwheel. Using a base distribution always improves the
performance with SNL, while it varies with NCE.

We also evaluate SNL-trained EBMs on UCI datasets in order to assess the impact of increasing dimensionality.
We use a simple Gaussian proposal with full covariance. The results, reported in Table 2] show that EBM-SNL
is competitive on lower-dimensional tabular datasets, while its performance degrades compared to strong
normalizing-flow baselines on Hepmass (d = 21). Despite this drop in performance at higher dimensions, the
method remains appealing in low-dimensional settings due to its simplicity, relying only on a fully connected
neural network for the EBM and a simple Gaussian proposal.

5.2 EBMs for regression

Following |Gustafsson et al.| (2022), we study and compare our training method on two one-dimensional
regression tasks (seeFig. 5| in Appendix and four image regression datasets. We parameterise our model
with the same architecture as [Gustafsson et al/ (2022) where the output of a feature extractor, h,, feeds both
the proposal ¢y (.|hs;) and a head neural network for the EBM (see Figure 1 in Gustafsson et al.| (2022) for
more details). When used as a proposal, the weights of the feature extractor are frozen.

In our experiments, we consider three different proposals:

—— NCE

_2.754 — SNL -3.04
~3.00 —3.21
-3.251 -3.44
@ @
= 3501 = 361
-3.751 _381
-4.004 ~4.0 1
-4.254
1 8 16 32 64 128 1 2 8 16 32 64 128
Nb Samples Nb Samples
(a) Cell Count (b) UTK Faces

Figure 4: This graphs depict how the number of samples M in the proposal affects the performance of
the EBM for regression. Each model is trained on the Cell Count and UTKFaces dataset with a Gaussian
proposal.

10

Under review as submission to TMLR

Regression Dataset 1 Regression Dataset 2

Objective Proposal ¢ l1s lsNL l1s lsNL
NCE /\/(/L,E) —0.030 (+o0.278y —0.718 (+ro0.256) —2.592 (+o0.214) —3.559 (+1.881)
NCE MDN K2 —0.611 (+o0.154) —1.492 (+r0.903) —2.451 (+o0.088) —2.634 (+0.084)
SNL /\/(M,Z) 0.164 (+o0.088) 0.033 (+0.077) —1.813 (+0.10099) —1.836 (+0.109)
SNL MDN K2 0.255 (+o0.017) 0.251 (+o.016) —2.099 (+0.250 —2.170 (o0.353)

Table 3: Evaluation of regression EBMs on the 1D toy regression problems with two different objectives and
two different proposals. Each model is trained for five runs and we report the mean and standard deviation
of the estimated log-likelihood /15 and the self normalized log-likelihood fgni1,. Using the SNL as objective
clearly outperforms the NCE.

e A mixture density network proposal whose parameters are given by a small fully connected neural
network.

o A fixed multivariate Gaussian N (p, ¥) whose parameters are estimated before training with the
training dataset and fixed during training.

e A fixed uniform distribution I/ that is defined by leveraging the knowledge from the dataset and
fixed during training.

(

All models are evaluated using an estimate of the log-likelihood with M = 20,000 samples yim) from a

multivariate Gaussian whose parameters are estimated before training:

N M
1 1 Bz ™) b (z
lrs = > | —EBo(i,yi) — by(w:) —log - Y e Bolron) mbelm) | (30)

i=1 m=1

Since NCE normalises the EBM at the optimum (Mnih & Tehl [2012), we also provide the ¢gny, (i.e. a lower
bound estimate of the log-likelihood) for each set of parameters using the same proposal as 1 with 20,000
samples. If N, is close to {1g, this means that the lower-bound is tight and by approximates correctly log Zg
(or if no by is used the network is self-normalised and Zy = 1).

5.2.1 1D regression datasets

We consider here the two artificial datasets for 1D regression with multimodal distributions p(y|z) (see Fig.).
We provide a description of the neural network architecture in Appendix On both datasets, the SNL
always outperformed its NCE counterparts with respect to the estimated upper bound /g, as seen in Table [3]
Moreover, the ¢sni, of the NCE is loose compared to the fgnr. This is due to a poor estimation of the
normalisation constant with NCE. We provide additional results in Table Using a base distribution to
ensure the existence of the normalisation constant Z, either improves or gives similar results with the SNL
objective but systematically damages the results when minimising the NCE loss. As mentioned by Mnih &
Teh| (2012), with both objectives, explicitly modelling by does not provide a better estimation of the network.
The normalisation is implicitly learned with Fjy.

5.2.2 Image regression datasets

We train an NCE-EBM setup and an SNL-EBM setup on an image regression task. We train on four different
datasets, steering angle, cell count, UTKFaces and BIWI and follow the same setup as |Gustafsson et al.
(2022)). Similarly to the 1D regression datasets, SNL-trained EBM always outperforms its NCE counterparts
(Table . When using NCE, the normalisation constant is off resulting in a loose lower bound of the likelihood
whereas SNL usually provides a better approximation. In Fig. [d] we observe that our method improves with
the number of samples but stagnates after M = 64 samples. On the other hand, NCE seems to improve with
the sample size but in a less compelling fashion. We provide additional results in Table

5.3 VAE with latent prior EBM

11

Under review as submission to TMLR

Steering Angle Cell Count UTKFaces BIWI
Objective Proposal lis I lis I lis I, lis It
NCE N(,u, E) —3.649 (£1.22a) UNNORMALIZED —3.367 (+0.300) —9.675 (0.605) —3.147 (£o.1100) —8.223 (£3.705) —11.02 (x0.576) UNNORMALIZED
NCE MDN-8 —4.001 (+o.66ry UNNORMALIZED —3.864 (+0.04sy UNNORMALIZED —4.123 (+0.21) —5.170 (z0.955 —11.998 (+0.339) UNNORMALIZED
SNL ./\f(p,, Y) —2.665 (z1.3n —3.973 (+3.15) —2.701 (+0.0a1) —2.725 (+0.046 —2.966 (+o.057) —2.991 (+o.060) —10.86 (+1.007) —11.05 (£1.141)

SNL Uniform —1.402 (zo.068) —1.423 (+0.079) —2.604 (z0.000 —2.620 (x0.00m) —2.927 (+0.032) —2.965 (20.0109) —10.44 (zo0.138) —10.51 (+1.222)
SNL MDN-8 —1.673 (+0.0a2) —1.692 (+0.046) —2.801 (x0.071) —2.811 (xo0.071) —2.921 (+0.055) —2.943 (£0.062) —10.01 (x0.002) —10.04 (+0.001)

Table 4: Evaluation of EBMs for regression on image regression datasets with two different objectives and
different proposals. Each model is trained for five runs, and we report the mean and standard deviation
of the estimated log-likelihood (¢1s) and estimated self-normalised log-likelihood (¢snr). When the proposal
is MDN, the proposal is learned jointly with the model following |Gustafsson et al.| (2022).

We train a VAE with EBM prior on binary MNIST using SNELBO, as VAE -89.10
outlined in Section [f:3] We parameterise the output distribution with VAE-MoG -88.73
a Bernoulli distribution with parameters from a neural network g4, i.e. ~ VAE-EBM Post-Hoc -88.11
pe(z|z) = B(x|gs(z)) and the approximate posterior with a Gaussian VAE-EBM -87.09

whose parameters are given by a neural network ¢, (z|z). We either train
from scratch the VAE with EBM prior (VAE-EBM) or we only train the Table 5: ELBO/SNELBO for
prior of a pre-trained VAE with a standard Gaussian prior (VAE-EBM VAEs with different priors.
Post-hoc). We compare to a standard VAE with a Gaussian prior (VAE)

and a VAE with a Mixture of Gaussian Prior (VAE-MoG) and 10 mixtures. All VAEs are trained with
a latent space of size 16. In Table [5] we show that training VAE-EBM with latent EBM provides better
SNELBO.

We report the FID scores of generated samples for a standard VAE, a VAE with a learned EBM prior, and a
latent short-term MCMC approach [Pang et al.| (2020)) in Table While the learned EBM prior yields only
a marginal improvement over the vanilla VAE, the latent short-term MCMC method produces substantially
higher-quality samples. This improvement, however, comes at the cost of losing direct access to ELBO or
SNELBO estimates.

6 Conclusion

We proposed a new objective to train energy-based models (EBMs) called self-normalising log-likelihood
(SNL). By maximising SNL with respect to the parameters of the EBM and an additional single parameter
b, we can recover both the maximum likelihood estimate and the normalising constant at optimality. We
conducted an extensive experimental study on parameter estimation for directional and truncated distributions,
low-dimensional datasets for density estimation, complex regression problems and training VAEs with EBM
prior. These experiments illustrate that SNL can easily handle intractable normalising constants in many
different situations. Finding ways to make it more scalable in high-dimensional settings will be the subject of
future work.

References

S Amari and H Nagaoka. Methods of information geometry, volume 191. American Mathematical Soc., 2000.

M Arbel, L Zhou, and A Gretton. Generalized energy based models. In International Conference on Learning
Representations, 2020.

F Bach. Sum-of-squares relaxations for information theory and variational inference. arXiv preprint
arXiv:2206.13285, 2022.

A Barp, F.X Briol, A Duncan, M Girolami, and L. Mackey. Minimum Stein discrepancy estimators. Advances
in Neural Information Processing Systems, 32, 2019.

M.I Belghazi, A Baratin, S Rajeshwar, S Ozair, Y Bengio, A Courville, and D Hjelm. Mutual information
neural estimation. In International conference on machine learning, pp. 531-540. PMLR, 2018.

12

Under review as submission to TMLR

Y Bengio and J.S Senécal. Quick training of probabilistic neural nets by importance sampling. In International
Workshop on Artificial Intelligence and Statistics, pp. 17-24. PMLR, 2003.

J Besag. Statistical analysis of non-lattice data. Journal of the Royal Statistical Society: Series D (The
Statistician), 24(3):179-195, 1975.

D Best and N.I Fisher. Efficient simulation of the von mises distribution. Journal of the Royal Statistical
Society: Series C (Applied Statistics), 28(2):152-157, 1979.

A Bietti and J Mairal. Stochastic optimization with variance reduction for infinite datasets with finite sum
structure. Advances in Neural Information Processing Systems, 2017.

C.M Bishop. Mixture density networks. Neural Computing Research Group report: NCRG/94/004, 1994.

L Bottou, F.E Curtis, and J Nocedal. Optimization methods for large-scale machine learning. SIAM review,
60(2):223-311, 2018.

O Chehab, A Gramfort, and A Hyvarinen. The optimal noise in noise-contrastive learning is not what you
think. In Uncertainty in Artificial Intelligence, pp. 307-316. PMLR, 2022.

A Dalalyan. Further and stronger analogy between sampling and optimization: Langevin monte carlo and
gradient descent. In Conference on Learning Theory, pp. 678-689. PMLR, 2017.

A.P Dempster, N.M Laird, and D.B Rubin. Maximum likelihood from incomplete data via the em algorithm.
Journal of the royal statistical society: series B (methodological), 39(1):1-22, 1977.

M.D Donsker and S.S Varadhan. Asymptotic evaluation of certain markov process expectations for large
time, ii. Communications on Pure and Applied Mathematics, 28(2):279-301, 1975.

Y Du and I Mordatch. Implicit generation and modeling with energy based models. Advances in Neural
Information Processing Systems, 2019.

Y Du, S Li, J Tenenbaum, and I Mordatch. Improved contrastive divergence training of energy-based models.
In International Conference on Machine Learning, 2021.

F Farnia and A Ozdaglar. Train simultaneously, generalize better: Stability of gradient-based minimax
learners. In International Conference on Machine Learning, pp. 3174-3185. PMLR, 2021.

R Gao, Y Song, B Poole, Y.N Wu, and D.P Kingma. Learning energy-based models by diffusion recovery
likelihood. In International Conference on Learning Representations, 2021.

C Geng, J Wang, Z Gao, J Frellsen, and S Hauberg. Bounds all around: training energy-based models with
bidirectional bounds. Advances in Neural Information Processing Systems, 2021.

P Glaser, M Arbel, and A Gretton. Kale flow: A relaxed kl gradient flow for probabilities with disjoint
support. Advances in Neural Information Processing Systems, 34:8018-8031, 2021.

W Grathwohl, K.C Wang, J.H Jacobsen, D Duvenaud, and R Zemel. Learning the stein discrepancy for
training and evaluating energy-based models without sampling. In International Conference on Machine
Learning, 2020.

W.S Grathwohl, J.J Kelly, M Hashemi, M Norouzi, K Swersky, and D Duvenaud. No {mcmc} for me:
Amortized sampling for fast and stable training of energy-based models. In International Conference on
Learning Representations, 2021.

F.K Gustafsson, M Danelljan, R Timofte, and T.B Schén. How to train your energy-based model for regression.
In British Machine Vision Conference (BMVC), 2020.

F.K Gustafsson, M Danelljan, and T.B Schoén. Learning proposals for practical energy-based regression. In
International Conference on Artificial Intelligence and Statistics, pp. 4685-4704. PMLR, 2022.

13

Under review as submission to TMLR

M Gutmann and J.I Hirayama. Bregman divergence as general framework to estimate unnormalized statistical
models. In Proceedings of the Twenty-Seventh Conference on Uncertainty in Artificial Intelligence, pp.
283-290, 2011.

M Gutmann and A Hyvérinen. Noise-contrastive estimation: A new estimation principle for unnormalized
statistical models. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and
Statistics, pp. 297-304. PMLR, 2010.

K He, X Zhang, S Ren, and J Sun. Deep residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 770-778, 2016.

G.E Hinton. Training products of experts by minimizing contrastive divergence. Neural computation, 14(8):
1771-1800, 2002.

G.E Hinton and T.J Sejnowski. Optimal perceptual inference. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, volume 448, 1983.

N.L Hjort and M.C Jones. Locally parametric nonparametric density estimation. The Annals of Statistics,
pp- 1619-1647, 1996.

J Ho, T Salimans, A Gritsenko, W Chan, M Norouzi, and D.J Fleet. Video diffusion models. arXiv:2204.03458,
2022.

A Hyvérinen. Estimation of non-normalized statistical models by score matching. Journal of Machine
Learning Research, 6:695-709, 2005.

J Jensen. Om konvekse funktioner og uligheder imellem middelveerdier. Nyt tidsskrift for matematik, 16:
49-68, 1905. ISSN 09093524. URL http://www. jstor.org/stable/24528332.

J Jensen. Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta mathematica, 30(1):
175-193, 1906.

M.I Jordan, Z Ghahramani, T.S Jaakkola, and L.K Saul. An introduction to variational methods for graphical
models. Machine learning, 37:183-233, 1999.

D.P Kingma and J Ba. Adam: A method for stochastic optimization. In International conference on learning
representations, 2015.

D.P Kingma and M Welling. Auto-encoding variational Bayes. International Conference on Learning
Representations, 2014.

D.P Kingma and Y Le Cun. Regularized estimation of image statistics by score matching. Advances in
Neural Information Processing Systems, 2010.

R Kumar, S Ozair, A Goyal, A Courville, and Y Bengio. Maximum entropy generators for energy-based
models. arXiv preprint arXiv:1901.08508, 2019.

E.L Lehmann and J.P Romano. Testing statistical hypotheses (4th edition). Springer, 2022.
C.R Loader. Local likelihood density estimation. The Annals of Statistics, 24(4):1602-1618, 1996.

K.V Mardia, J.T Kent, and A.K Laha. Score matching estimators for directional distributions. arXiv preprint
arXiw:1604.08470, 2016.

K.V Mardia, G Hughes, C.C Taylor, and H Singh. A multivariate von mises distribution with applications to
bioinformatics. Canadian Journal of Statistics, 36(1):99-109, 2008.

K.V Mardia, J.T Kent, G Hughes, and C.C Taylor. Maximum likelihood estimation using composite likelihoods
for closed exponential families. Biometrika, 96(4):975-982, 10 2009.

J Martens, I Sutskever, and K Swersky. Estimating the hessian by back-propagating curvature. In International
Conference on International Conference on Machine Learning, 2012.

14

http://www.jstor.org/stable/24528332

Under review as submission to TMLR

P Melchior and A.D Goulding. Filling the gaps: Gaussian mixture models from noisy, truncated or incomplete
samples. Astronomy and computing, 25:183-194, 2018.

A Mnih and Y Teh. A fast and simple algorithm for training neural probabilistic language models. In
International Conference on Machine Learning, 2012.

E Nijkamp, M Hill, S.C Zhu, and Y.N Wu. Learning non-convergent non-persistent short-run memec toward
energy-based model. Advances in Neural Information Processing Systems, 2019.

J.T Ormerod and M.P Wand. Explaining variational approximations. The American Statistician, 64(2):
140-153, 2010.

B Pang, T Han, E Nijkamp, S.C Zhu, and Y.N Wu. Learning latent space energy-based prior model. Advances
in Neural Information Processing Systems, 2020.

A Paszke, S Gross, F Massa, A Lerer, J Bradbury, G Chanan, T Killeen, Z Lin, N Gimelshein, L. Antiga,
A Desmaison, A Kopf, E Yang, Z DeVito, M Raison, A Tejani, S Chilamkurthy, B Steiner, L. Fang, J Bai,
and S Chintala. Pytorch: An imperative style, high-performance deep learning library. Advances in Neural
Information Processing Systems, 2019.

M Pihlaja, M Gutmann, and A Hyvérinen. A family of computationally efficient and simple estimators
for unnormalized statistical models. In Proc. Conf. on Uncertainty in Artificial Intelligence (UAI), pp.
442-449. AUAT Press, 2010.

M.E Sander, V Roulet, T Liu, and M Blondel. Joint learning of energy-based models and their partition
function. arXiv preprint arXiv:2501.18528, 2025.

D Siegmund. Importance sampling in the monte carlo study of sequential tests. The Annals of Statistics, pp.
673-684, 1976.

Y Song and D.P Kingma. How to train your energy-based models. arXiv preprint arXiw:2101.03288, 2021.

Y Song, C Durkan, I Murray, and S Ermon. Maximum likelihood training of score-based diffusion models.
Advances in Neural Information Processing Systems, 34:1415-1428, 2021.

C Stein. A bound for the error in the normal approximation to the distribution of a sum of dependent random
variables. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability,
Volume 2: Probability Theory, volume 6, pp. 583—-603. University of California Press, 1972.

W Stummer and I Vajda. On divergences of finite measures and their applicability in statistics and information
theory. Statistics, 44(2):169-187, 2010.

C Varin, N Reid, and D Firth. An overview of composite likelihood methods. Statistica Sinica, pp. 542,
2011.

P Vincent. A connection between score matching and denoising autoencoders. Neural Computation, 23:
1661-1674, 2011.

M.J Wainwright and M.I Jordan. Graphical models, exponential families, and variational inference. Founda-
tions and Trends® in Machine Learning, 1(1-2):1-305, 2008.

M Welling and Y.W Teh. Bayesian learning via stochastic gradient langevin dynamics. In International
Conference on Machine Learning, 2011.

H White. Maximum likelihood estimation of misspecified models. Econometrica: Journal of the econometric
society, pp. 1-25, 1982.

J Xie, Y Lu, R Gao, and Y.N Wu. Cooperative learning of energy-based model and latent variable model via
mcmc teaching. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

J Xie, Y Zhu, J Li, and P Li. A tale of two flows: Cooperative learning of langevin flow and normalizing flow
toward energy-based model. In International Conference on Learning Representations, 2021.

15

Under review as submission to TMLR

A Proofs

A.1 Lemma[2.1} Variational linearising the logarithm
Inspired by |Jordan et al.| (1999) and |Ormerod & Wand| (2010), we show the following lemma:

Lemma 2.1. For all z > 0,

— i = _
1ongr){1€1]§1 (ze +A 1) . (8)

Proof. Let z > 0 and A € R, we define the function:

h(\) = ze > + A — 1. (31)
By differentiating this function with respect to A, we get:

(A =—ze + 1. (32)

The differentiated function i’ is negative for A < log z and positive for A > log z. Thus the minimum of A is
reached at A = log(z) and h(log (2)) = log(z), hence the proof. O

A.2 Theorem 2.1} Equivalence between SNL and the log-likelihood

We begin by reminding notations: we consider an energy-based model, which specifies a probability density
over a space X through a parameterised energy function Fy : X — R. The associated density is:

e—Fo(x)

Po (Jf) = Zo) (33)

where Zg = [e” Eo(r)dx is the partition function. Given n data points zi,...,r, € X, we define the
log-likelihood functlon

3

1
~ > —Eg(x:) ~log Zp. (34)
i=1

3

We define as well the self-normalised log-likelihood (SNL) as

s (0, D) (2;) —b—e"Zy+ 1. (35)

3\’—‘
HM:

We now recall Theorem 2.1}

Theorem 2.1. For any given 6, when the SNL is maximised with respect to b, we have access to the eract
log-likelihood of the model:

max /£ 0,b) = £(0). 11
bea]é(SNL()) () ()
Moreover, at the optimum, b is the normalisation constant:

arg ri?]é(lsn1(0,b) = log Zy. (12)
Finally, there is a one-to-one correspondence between the local optima of the SNL and the log-likelihood.

16

Under review as submission to TMLR

Proof. Using Lemma we show that for any 0, maxper fsn(6,b) = £(6).

1 n
£00) = - Z log po(x;) (36)
i=1
N ~Eo(w:)
= Z log(e™™¢'*")) —log Zy (37)
- _ Ee(a? : —b _

Z log(e) —min(e™"Zg +b—1) (38)
=— Z log(e~Feo(@)y 4 max(Zy—b+1) (39)
— - —Bo(zi)y _ o=bry, _

max — ; log(e)—eZyp—b+1 (40)
= rilgﬂgfsm(@’ b). (41)

We show that £(6) and £gn1 (0, b) share the same local maxima. Let 6* a local optimum of ¢, we will construct
a local optimum of £gnp,. Let b* = log Zp~, then

vaSNL(g*; b*)(x) =—-1+ Zg*eib = 0. (42)
Moreover,
1 & .
1 0%, b*) = —— Eo(x)|g- —e b VoZ 4

Volsn(0%,0%) n;VG o(x)o- — e VoZylg (43)
:—7ZVQE9 |9* —e (44)

=—= Z VoE(wi)|ex — 720* (45)

= Z VoEg(z;)|e~ — Vo log Zy|o- (46)

i=1
= Vee(e*) (47)
=0. (48)

Thus, for any local optimum of £(6*), the pair (6*,1og Zg-) is a local optimum £syz. Conversely, with the
same reasoning, for any (6,b) local optimum of £gny, 6 is a local maximum of /. O

A.3 Theorem[A.I} Concavity of the log-likelihood in exponential families

For completeness, we prove the classical result about the convexity of exponential families. For more details,
see e.g., Wainwright & Jordan| (2008, Chapter 3).

Theorem A.1. If (pg)g is a canonical exponential family, then £(0) is concave. In particular, the gradient
and the Hessian of log Zy are respectively the mean and the covariance matriz of the sufficient statistics.

Proof. Let us consider an exponential family whose densities with respect to a base measure are parameterised
as pp(z) = ef" s(z)—log Zs where s(x) is the sufficient statistics and @ the natural parameters. To simplify
formulas, we will assume that we observe a single data point x € X. Observing several i.i.d. data points will
preserve concavity because a sum of concave functions remains concave, so there is no loss of generality.
The log-likelihood of such a model is given by:

() = 0T s(z) —log Zy = 67 s(x) — log/elﬂs(x)dx. (49)

17

Under review as submission to TMLR

We will prove that this objective is concave by showing that the Hessian is negative semi-definite. Let’s
calculate the gradient and Hessian of log Zy. For integrals akin to the normalising constant, switching
differentiation and integration is allowed (see, e.g., Lehmann & Romano, [2022, Theorem 2.7.1), and we get

Vo log Zy = Vg log / " 5@ gy (50)

s(z)ed (@ dg
- f(egTs(w)dx oy
B /S(x)eeTs(”)_long’dx (52)
= Eo[s(2)]; (53)

and

Hy(log Zy) = /s(x)s(x)TegTs(I)_logZ"dm — (/s(x)eeTs(’J)_logZde> (Volog Zy)" (54)
:/s(x)s(x)TegTs(m)_logZde (55)
_ (/ S(x)eOTs(m)—logZde) (/S(x)eeTs(m)—logZde)T (56)
= Eg[s(z)s(x)"] — Eg[s(z)|Eq[s(x)]" (57)
= Vy[s(z)]. (58)

Using the Hessian of log Zy, we can express directly the Hessian of the log-likelihood £(0):
H(£(0)) = —Va[s(z)]. (59)

The covariance matrix Vy[s(x)] is positive semi-definite thus the hessian H(¢()) is negative semi-definite.
Hence, £(0) is concave. U

A.4 Theorem 3.1} Concavity of SNL in exponential families

Theorem 3.1. If (pg)e is a canonical exponential family, then lsn1,(0,b) is jointly concave.

Proof. Using the same notations as the previous proof, our exponential family is parameterised as pg(z) =

" s(@)—log Zowhere s(z) is the sufficient statistics and § the natural parameters. We again assume without
loss of generality that we observe a single data point « € X.
The self-normalised log-likelihood is as follows:

lsnp(0,0) = 0T s(x) — b — e bFlo8Z0 1 (60)
=0Ts(z) —b+1— /eGTS("”)*bdx. (61)

Since the first term of the equation is affine, we will show that the function (6,b) +— e~?*1°8 %6 ig jointly
convex in (0,b). Let (by,61) and (b2, 62) any given pair of parameters and let A € [0, 1]:

/6(,\91+(1—,\)92)Ts(a;)—(,\b1+(1—,\)b2)dx:/eA(elTs(x)—bl)+(1—A)(9§s(z)—b2)d$ (62)
> [/ (Aef’?s<r)—bl (1= M)e2 s<r>—b2) dx] (63)
=)\/eelTs(x)’bldm—k (1— A)/eegs(z)’dex. (64)

The function (6,b) — e~?*1°8 %6 is convex jointly in (6,b), thus (6,b) — fsn1.(0,b) is also convex jointly in
(6,b) which concludes the proof. O

18

Under review as submission to TMLR

B The Gaussian case

We consider a univariate Gaussian with unknown mean 6 € R and known unit variance. The model is
parameterised as an exponential family with energy and normalising constant:

1
Ey(x) = —0z, log Zg = 592, (65)

the base measure being the standard Gaussian measure.
For a dataset (z1,...,z,) € R", the log-likelihood is:

1 & 1
o) =~ > @6 - 592, (66)
=1

which is concave and is maximised at éML = Z,. The SNL equals:

1 n
lsni(6,b) = EE 20 —b— Zge " +1 (67)
i=1
1 — L2
== wf—b—e2? P41, 68

. . . i A 7 — —92
which is also concave and is maximised at (6sni, bsni) = (Zn, T5 /2).

C The Bernoulli case

In the same vein as in Appendix [B] we derive here the SNL for a Bernoulli distribution, in order to gain
basic insights. We consider a Bernoulli distribution with unknown natural parameter § € R (6 here is the
logit of the probability of success). The model is parameterised as an exponential family with energy and
normalising constant:

Ey(xz) = =0z, log Zy = log (1 + 66) , (69)

the base measure being the uniform measure on {0, 1}.
For a dataset (z1,...,2,) € {0,1}", the log-likelihood is:

09) = % zn: 20 — log (1 + eﬁ) : (70)

=1

which is concave and is maximised at éML = logit(Z,). The SNL equals:

1 n
lsni(0,b) = ﬁiné)*b— Zge P +1 (71)
1=1
1 S -b 6
—;;xlﬂ—b—e (1—|—e)+1, (72)

which is also concave and is maximised at (éSNL, ESNL) = (logit(z,),log(1 + elo8it(@n))),

D The Kullback-Leibler divergence for un-normalised densities

We consider a measured space X, equipped with a base measure dz (typically the Lebesgue or the counting
measure). Let fi, fo be the densities of two finite measures. The Kullback-Leibler divergence between these

is then defined as
KL(All) = 1o (245) fote + ([faonas [o). (73)

19

Under review as submission to TMLR

It is clear that this reduces to the usual KL when f; and f> are probability densities. For more details, see,
for instance, |/Amari & Nagaokal (2000}, Section 3.6) or [Stummer & Vajdal (2010)).

Why is this a sensible generalisation? We can write our un-normalised densities as f; = pu1p1 and fo = p1p2,
where

i = [ha)de, pa= [oo (74)

Plugging this into equation [73] gives

KL(f1|lfa) =KL (pt|[p2) + 11 log (Z) T (2 —) (75)

o (KL<p1||p2> h (’;)) , (76)

where h:t+—t —1—logt. Since h(t) > 0 for all t # 1 and h(1) = 0, we will have
« KL(f1][f2) 20
o KL(f1]||f2) = 0if and only if f1 = f.

This means that this generalised KL enjoys some of the nice properties of the usual KL, which motivates its
use for statistical inference.
Another interesting property that is a direct consequence of Eq. is that

KL(p1|lp2) = Ig{}KL(P1||Cf2)7 (77)

which means that we can recover the KL between probability densities by minimising the KL between
un-normalised densities, transforming the computation of the normalising constant into an optimisation
problem. This justifies Eq. . Another interpretation of this property is that the KL between p; and the
set {cfa;¢ > 0} is just the KL between p; and ps.

The KL divergence between two un-normalised densities relates to the self-normalised log-likelihood as such:

atalT
KL puallec) = [g (P22) pule)w)ie +e2 1 ™

— 7/ (e*Ee(w)pdata(x) —logec+cZy — 1) dz + /log(pdata(x))pdata(x)dx. (79)

does not depend on 6 nor ¢

As we assume we have access to an i.i.d. dataset xy, ..., z,, we can estimate the above quantity:

1 < _
KL(pdata| |ce_E9> ~ _E Z e—Ee(ﬁfq,) - IOg c + CZ9 -1 + /log(pdata(x))pdata(l‘> dl‘ (80)
=1
— o (0, log c) + / 108 (Paata ())Pata (@) dz. (81)

This implies that maximising the self-normalised log-likelihood will, asymptotically, resemble minimising the
generalised Kullback-Leibler divergence.

E Link with the Donsker-Varadhan representation

E.1 The Donsker-Varadhan representation

The Donsker-Varadhan representation (Donsker & Varadhanl [1975)) provides a variational (Fenchel dual)
formulation of the Kullback-Leibler divergence between two distributions P and B:

KL(P|B) = sup {1+/th—/eh dB}, (82)

heC?(R4)

20

Under review as submission to TMLR

where CP (R?) denotes the set of continuous bounded functions from R? to R. The supremum is attained
when h = log(dP/dB), i.e., the log-density ratio between the two distributions.

This variational formulation has inspired several approaches to training energy-based models and defining
divergences between distributions. Different methods arise from different choices of parametrisation or
constraints the function h. In this section, we describe how SNL can be derived from this formulation and
contrast it with two related approaches: Generalized Energy Based Models (Arbel et al.| [2020) and KALE
Flow (Glaser et al. 2021)).

E.2 From Donsker-Varadhan to SNL

To connect with the Donsker-Varadhan representation, we take P = pqat. (the data distribution) and define
the base measure dB as the Lebesgue measure directly. Crucially, SNL does not optimise over all functions
h; instead we restrict the function h to be of the form h(x) = —FEy(x) — b where Ejy is an energy function
parameterised by # and b € R is a scalar. Substituting this into Eq. yields:

1+/hd]P’—/eh dB =1 —/Eg(x) dP(x) —b—e—b/e—Ee(@ dB(z) (83)
=1- /Eg(:t) dP(z) —b— e ’Z,. (84)

where Zy = [e Fo(x) dB(x) is the partition function of the energy-based model defined by Ejy. In our case,
Ey is parameterized by a neural network fy. When P is the empirical data distribution, this becomes exactly
the SNL objective (Eq. (10) in the main text):

n

lsnL(6,b) = % > {ng(:ci) —b—e"Zy+ 1} : (85)

i=1

Using a base distribution. The above derivation assumes that the function Ej is defined with respect
to the Lebesgue measure, which is not the case in the general setting when parameterized by an arbitrary
neural network fy. To alleviate this issue, we introduced in Section a fixed base density d(z) and define
the energy-based model as Fy(z) = fo(z) — logd(x).

From the Donsker-Varadhan perspective, this can be interpreted in two ways:

o We can take the base measure B to be the measure with density d(z) with respect to the Lebesgue
measure dz, i.e. dB(x) = d(z)dz. In this case, the complete energy function Fjy is still defined as
Ey(z) = fo(x). The normalisation constant becomes Zp = [e~ @ dB(z) = [e~F(*)d(z) dx.

o Alternatively, we can take the base measure B to be the Lebesgue measure, and define the energy
function as Fy(x) = fo(x)—logd(z). In this case, the SNL objective is obtained by substituting h(z) =
—Ey(x) +logd(x) — b into the Donsker-Varadhan representation, and the base density d(z) appears
as a multiplicative factor in the partition function Zy = [e /@) d(z) dB(z) = [e~fo(*)d(x) dz.

In both cases, we can use a proposal distribution ¢ to obtain unbiased estimates of the partition function and
its gradients, without affecting the population-level objective or the correspondence with maximum likelihood.
In particular, if one chooses proposal density ¢(x) to be the base density d(z), we obtain a special case of
SNL loss that corresponds to a special case of the GEBM.

E.3 On the difference with Generalized Energy Based Models

The Generalized Energy Based Model (GEBM) is derived by using a slightly changed parameterisation.
Instead, of having B as the Lebesgue measure, the base measure B is a learnable distribution, typically
an implicit generative model such as a GAN generator. The GEBM objective is obtained by substituting
h(z) = —E(x) — b into the Donsker-Varadhan representation with this learnable base B:

GEBM(E, b, B) = 1 — / E(z) dP(z) — b — e~ / ~E@) iB(z). (86)

In the general case, this base measure does not admit a density with respect to the Lebesgue measure, and
the energy function F is only defined with respect to this base measure.

21

Under review as submission to TMLR

No separation between base and proposal. A key distinction between SNL and GEBM lies in the
relationship between the base measure and the proposal distribution. In SNL, the base measure d(z) is part of
the model definition, while the proposal ¢(x) used for importance sampling can be chosen independently—the
population-level objective is invariant to this choice. In GEBM, no such separation exists: samples for
estimating the partition function are drawn directly from the learned base B itself. The base and proposal
are thus identical, and both change during training. This coupling means that changing B simultaneously
changes both the probabilistic model and the distribution from which samples are drawn.

In the special case where the base distribution B admits a density with respect to the Lebesgue measure, the
GEBM objective can be understood as SNL where the base distribution and the proposal distribution are
forced to coincide. However, in the general case where B is an implicit model (e.g., a GAN generator), this
interpretation does not apply, and the lack of separation between base and proposal becomes a fundamental
characteristic of the method.

E.4 On the difference with KALE Flow

KALE Flow (Glaser et al.| 2021)) also builds on the Donsker-Varadhan representation, but takes a fundamentally
different approach. Rather than evaluating the dual at a fixed parametrisation, KALE optimises over a
restricted function class H and introduces a regularisation term:

KALE, (P||B) = (1 +) sup {1+/hd]P’— /eh dB — th%}, (87)
heH

where H is typically a reproducing kernel Hilbert space (RKHS) and « > 0 is a regularisation parameter.
The KALE objective defines a surrogate divergence between P and B that depends on both the function class
‘H and the regularisation strength a. For finite o and a restricted #H, the minimiser of KALE does not, in
general, coincide with the maximum likelihood solution. Instead, KALE is designed as a tool for defining
gradient flows: the optimal A* in Eq. provides a transport direction that moves samples from B toward
P. This makes KALE well-suited for particle-based inference and sampling methods, where the goal is to
iteratively transport a source distribution toward a target.

The key distinction with SNL is that KALE optimises over functions h to define a divergence, whereas
SNL fixes the parametrisation h = —Fy — b and optimises over # and b to perform maximum likelihood
estimation. In SNL, the function h is not a transport potential but rather encodes the energy-based model
whose parameters we wish to learn. As a result, SNL retains an exact correspondence with maximum
likelihood, while KALE defines a relaxed divergence useful for gradient flows.

F Algorithms

Algorithm 1: Training an EBM for density estimation using SNL loss and proposal g.

input :Learning iterations, T'; learning rate, n; initial parameters, {6o, bo }; observed examples, {z;};—;; batch
size, ny; number of samples from the proposal ¢, M.
output: Op,br.
fort=0:7-1do
1. Mini-batch: Sample observed examples {z;}.,.
2. Proposal sampling: Sample M elements from the proposal z,, ~ G(zm)
3. Learn EBM parameters 0: Update 6,41 = 0; — T]VAQZSNL(Q, b) using VAQZSNL(et b) defined in Eq. .
4. Learn b: Update byy1 = by — nVAbZSNL(O, bt) using VAbKSNL(G, b:) in defined Eq. .

22

Under review as submission to TMLR

Algorithm 2: Training a VAE with EBM prior using the SNELBO loss.

input :Learning iterations, T'; learning rate, 7; initial parameters, {60, Y0, ¢o, bo }; observed examples, {z;}i—1;
batch size, ny; number of samples from the base d, M.
output: 0r,yr, o7, br.
fort=0:T7-1do
1. Mini-batch: Sample observed examples {z;}}2;.
. Proposal sampling: Sample M elements from the base x,, ~ J(mm)
Learn EBM parameters 6: Update 0,1 = 0; — nVgLsnw((0,7, ¢, b) using Eq. .
Learn VAE parameters: Update {7, ¢}t+1 = {7y, ¢}+ — 77@{7,¢}£SNL (0,7, ¢,b) using Eq. .
. Learn b: Update bi1 = b, — nVilsni (0, b;) using Eq. .

ST

G Derivation of the SNELBO

Using the variational distribution ¢, (z|z), we can write the regular ELBO for the VAE with the energy-based
prior as

£160,6.7) = Eq i 108 o (012)] + By o) |log 2] (59)
@5 44 (22) ¢ 45 (2]2) ¢, (22)Z |
which is a lower bound, ¢(6, ¢) > L(6, ¢,~), on the log-likelihood
£00.6) = poo(e) = [poalaipn(2) (59)
where we left out the sum over data to simply the notation. Using Lemma [2.I] we define the SNELBO as
d(z)
LsnL(0,6,7,b) = Eq_ (2o [log pg(2]2)] + Eg (20 [log ———
gy (2]z)

+]E‘I'y(z‘m) [_EG(Z) - b] - de_b + 1a (90)

which can be written using the base distribution d,

d(z)
‘CSNL 07¢77ab =E z|lz Ing zlz)| + E 2l log
+Eq (ola) [~ Eo(2) = b] — Ea(z) {e‘EG(Z)‘b] +1 (91)
Lemma [2.1] gives directly the following results :

€(97 ¢) > ‘6(97 ¢7 rY) > ESNL(07 ¢7 s b) (92)

H Regression datasets

*aNIRAYRAANYY R AR

-3 -2 -1 0 1 2 3 0.0 0.2 0.4 0.6 0.8 1.0

(a) 1D regression dataset 1 (b) 1D regression dataset 2

Figure 5: Visualisation of the two toy regression datasets. The z-axis corresponds to the input of the
regression (x in Eq.) and the y-axis corresponds to the regressed value (y in Eq.)

23

Under review as submission to TMLR

The first dataset set, on the left-hand side of Fig. [5] is a mixture of two Gaussians with weights 0.2 and
0.8 for negative values on the z-axis and a log-normal distribution Log —AN(0.,0.25) for positive values of .
There are 2000 training samples that we generated by uniformly sampling values in [—3, 3].

The second dataset, on the right-hand side of Fig. [5] is defined for x in [0, 1] and is divided into four chunks.
The first one, for z < 0.21, is sampled from Beta(a = 0.5, 8 = 1); the second one, for 0.21 < z < 0.47 is
sampled from N (,u =3-cosx—2,0 =13 -cosxz — 2|); the third one for 0.47 < x < 0.61 from an increasing
uniform distribution; the fourth and last one, for 0.61 < x < 1 is obtained from a mixture of uniform
distribution, (8, 0.5),U (1, 3) and U(—4.5,1.5).

| Experimental setting

1.1 Multivariate von Mises

The multivariate von Mises distribution has a density of the following form:

MoM(x)

- Zy Ak P (nTc(a;, 0) + s(x,0)" As(a, 9))’ (93)

with Zp a . an unknown normalisation constant, § the localisation parameter, A the correlation parameter and
K the concentration parameters verifying: —m < 0; <7, —7 < p; <7, K; > 0, —00 < Aj; < oo and A is such

that (A)i; = X\ij = Nji, i # j, Ais = 0. We defined c(z,0)T = (cos (x—61),cos(x—6),...,cos (z— 0,,))
and s(z,0)T = (Sin (x—61),sin(z —6),...,sin (z — Gp)>.

1.1.1 Implementation of the Multivariate von Mises

To implement the multivariate von Mises (mVM) distribution, we adopt a parameterisation that ensures the
required constraints on the concentration and interaction parameters:

o Concentration parameters k are constrained to be non-negative. We enforce this by parameterising
in the log-domain and applying the exponential function:

k; = exp(n;), where n; € R.

e Interaction matrix A must be symmetric to ensure valid dependencies among angular variables.
We construct it by symmetrising a lower-triangular matrix:

A=L+LT,
where L is a lower-triangular matrix with unconstrained entries.

1.1.2 Sampling the dataset from MuvM using Gibbs Sampling

This distribution has an unknown normalisation constant, which prevents the use of the inverse cumulative
distribution function for sampling. In fact, there is no direct way of sampling from this distribution. However,
the distribution of a single dimension conditioned on the other leads to a simple von Mises distribution
VM (Ujrest s Kj-rest) With the following parameters:

Hess = 1+ tan™" IS " Agesin (ze — 60) | /Ky (94)
i
9y 1/2
Rg‘f)rest = K,? + Z Ajesin (xe; — 6p) (95)
i

Sampling from a standard univariate Von Mises distribution Best & Fisher| (1979)) is possible. Thus, by
successively updating the conditional parameters (ft; rest , Kj-rest) and sampling the corresponding coordinate
from the resulting von Mises distribution using Gibbs sampling, it is possible to sample from the multivariate
von Mises distribution.

24

Under review as submission to TMLR

Following the experiments in |Mardia et al.| (2008]), we consider four parameter groups for the Multivariate von
Mises distribution that encompass different scenarios. These parameters can be found in Table For each
group of parameters, we sample 100 data points by repeating 50 Gibbs sampling cycles over each dataset.
We fix the location parameters to 0 and assume they are known.

1.1.3 Training Hyperparameters

For each set of parameters, we simulate five datasets of 100 samples with Gibbs sampling, where each sample
is separated by 50 steps of filtering (following the setup in Mardia et al.| (2008)). We report the average
parameter estimate and standard deviation for parameters estimated with SNL in Fig. [2] and Table [I7] We
trained MvM with SNL for 10 000 steps using 100 samples from a Uniform Proposal on the Torus using the
Adam optimiser with a learning rate of 0.1.

1.2 Density estimation with Truncated distribution

We are interested in obtaining the parameters of the constrained mixture of Gaussians in Fig. [3]

1.2.1 Mixture parameterisation

We parametrise the multivariate Gaussian distributions to ensure the covariance matrix is symmetric and
positive definite:

o Diagonal elements of the covariance matrix are parameterised using a log-scale transformation:
Ldiag = exp(0),
where o € R? is a vector of unconstrained parameters.
« Off-diagonal structure is captured via a Cholesky decomposition LL T, where L s lower triangular.
e The full covariance of a single Gaussian of the mixture is obtained as follows :

Y = Ydiag + LLT, where L is lower triangular.

We train a mixture of K = 3 full-covariance Gaussian:

K
ple) = 3 m N (e | i, S, (96)

k=1
which is then truncated with a known truncation h : X — {0,1}:

K
PTruncated (.’13) X e_lh(w>=1 Zk:l N(m|#k72k)+1’L(w)=OC' (97)
In practice, we use C' = 1e8 to enforce high energy outside the truncated domain.
We train the model using SNL with a simple univariate Gaussian Distribution as proposal. We optimise the
model using Adam |Kingma & Baj (2015) for 10 000 steps and learning rate 0.01, and we chose C' = 1€9 to
mimic a potential barrier. The parameters are initialised using standard Gaussians and K-Means centres.

1.3 Density estimation

For density estimation, we parametrise the energy Fjy using a neural network with parameters given in
Table [6

Ey Activation Output shape
Fully Connected ReLU 2 x 200

Fully Connected ReLU 200 x 100
Fully Connected ReLU 100 x 50
Fully Connected ReLLU 50 x 50

Fully Connected ReLU 50 x 1

Total trainable parameters 30450

Table 6: Ey for the toy distribution estimation

25

Under review as submission to TMLR

1.4 Energy Based Regression

In Energy Based Regression, we consider an architecture similar to |Gustafsson et al.| (2020) in which a feature
extractor hy is parameterised as a neural network. The outputs of the feature extractor are fed to both
the energy Ey(z,y) = fo(ho(z),y) with overhead fp parameterised by a neural network. The normalisation
constant Z,is obtained by considering a neural network overhead over the feature extractor by(h(z)).
When indicated, we use a Mixture Density Network as proposal distribution. A Mixture Density Network
(MDN) models a conditional distribution ¢(y | =) using a mixture of Gaussians, where the mixture parameters
are predicted by a neural network conditioned on x. That is

K
aly | @)=Y ml@) Ny | p(2), o)) (98)
k=1

where:
o m(x) are the mixing coefficients, satisfying 7 (z) > 0 and Zszl me(z) =1,
o pi(z) € R% is the mean of the k-th component,

o or(x) € R? is the standard deviation of the k-th component.

All parameters {my, pr, Xi 15| are predicted by a neural network that use the extracted features h(z) as
input.

1.4.1 Toy regression

For Toy regression, we follow the same training procedure as |Gustafsson et al.| (2022) but replacing the NCE
loss with the SNL loss. As such, the model is trained for 75 epochs, a batch size B = 32, M = 1024 samples
and a learning rate 0.001.

For toy regression problems defined in Fig. [with results in Table 20| and Table [3] we parametrise the feature
extractor hy as Table |7}, the energy overhead as Table [8| and the normalisation constant as Table The
mixture density network’s parameters are given in Table [9]

Feature extractor Activation Output shape
Fully Connected ReLLU 10 x 10

Fully Connected ReLU 10 x 10

Fully Connected ReLLU 10x1

Total trainable parameters 210

Table 7: Feature extractor. Inputs x and outputs h,

Ey Activation Output shape
Input y — Output f(y)

Fully Connected ReLLU 1x16

Fully Connected ReLU 16 x 32

Fully Connected ReLU 32 x 64

Fully Connected ReLU 64 x 128
Concatenation of h; and f(y)

Fully Connected ReLLU 144 x 10

Fully Connected ReLU 10x1

Total trainable parameters 30450

Table 8: Ejy for 1d regression estimation.

26

Under review as submission to TMLR

MDN Activation Output shape
Input h,

Fully Connected ReLU 10 x 10

Fully Connected ReLLU 10 x K

Total trainable parameters

100+ 10 x K

Table 9: Neural network estimating one parameter of the MDN with K components in the mixture.

by Activation Output shape
Input h,

Fully Connected ReLU 10 x 10

Fully Connected ReLLU 10x 1

Total trainable parameters 110

Table 10: Neural network estimating the normalization constant Zy , for every z.

1.4.2 Image for regression

For image regression, we follow the same training procedure as |Gustafsson et al.| (2022). Each model is run
for 75 epochs, with batch size 32, learning rate 0.001 and M = 64 (unless specified otherwise) samples from

the proposal distribution.

For image regression problems with results in Table] and Table the feature extractor is a Resnet-18 [He
et al.| (2016)) from torchvision [Paszke et al.|(2019)). The energy overhead is parameterised as Table [L1{and the
normalisation constant as Table The mixture density network’s parameters are given in Table

Ey Activation Output shape
Input y — Output f(y)
Fully Connected ReLU 1x16
Fully Connected ReLU 16 x 32
Fully Connected ReLU 32 x 64
Fully Connected ReLLU 64 x 128
Concatenation of hy; and f(y)
Fully Connected ReLU 640 x 640
Fully Connected ReLU 640 x 1
Total trainable parameters 420816
Table 11: Ejy for 1d regression estimation.
MDN Activation Output shape
Input h,
Fully Connected ReLLU 512 x 512
Fully Connected ReLLU 512 x K
Total trainable parameters 262144 + 512 x K

Table 12: Neural network estimating one parameter of the MDN with K components in the mixture. We use

three such networks for my, fty, 0y.

27

Under review as submission to TMLR

EBM Model for BinaryMNIST
Layers In-Out Size | Stride
Input: z 100
Linear, LReLLU 200 -
Linear, LReLU 200 -
Linear 1 -

Table 14: Architecture of the Energy-Based Model (EBM) prior used for all the datasets in the VAE with
EBM prior.

by Activation Output shape
Input h,

Fully Connected ReLU 512 x 512

Fully Connected ReLLU 512 x 1

Total trainable parameters 262656

Table 13: Neural network estimating the normalization constant Zy , for every x.

1.4.3 Training the proposal distribution for MDN

Following the method from |Gustafsson et al. (2022]), the MDN proposal is trained by minimising a sum of
the negative log-likelihood and the KL divergence with the EBM:

1
a7 . N |75 log vy (yz | Lis ¢) (99)
i=1 M m=1 Gy (yl | Ly <Z5) 2

This allows us to guide the proposal distribution towards the EBM. While this is trained at the same time as
the EBM, only the head of the MDN is updated, while the feature extractor h(x) remains fixed.

1.5 VAE with prior EBM

All the parameters of the VAE with prior EBM are given in Table Table [15] and ?77.

28

Under review as submission to TMLR

Generator Model for BinaryMNIST, ngf = 16

Layers In-Out Size Stride
Input: z 16x1x1
4x4 convT(ngf x 8), LReLU | 4x4x(ngf x 8) 1
3x3 convT(ngf x 4), LReLU | 7x7x(ngf x 4) 2
4x4 convT(ngf x 2), LReLU | 14x14x(ngf x 2) | 2
4x4 convT(1), Sigmoid 28%x28x1 2

Generator Model for CIFAR-10, ngf = 128
Input: z 1x1x128
8x8 convT(ngf x 8), LReLU | 8x8x(ngf x 8) 1
4x4 convT(ngf x 4), LReLU | 16x16x (ngf x 4) 2
4x4 convT(ngf x 2), LReLU | 32x32x(ngf x 2) 2
3x3 convT(3), Tanh 32x32x3 1
Generator Model for CelebA, ngf = 128
Input: z 1x1x100
4x4 convT(ngf x 8), LReLU | 4x4x(ngf x 8) 1
4x4 convT(ngf x 4), LReLU | 8x8x(ngf x 4) 2
4x4 convT(ngf x 2), LReLU | 16x16x (ngf x 2) 2
4x4 convT(ngf x 1), LReLU | 32x32x(ngf x 1) 2
4x4 convT(3), Tanh 64%64%3 2

Table 15: Generator architectures used for BinaryMNIST, CIFAR-10, and CelebA datasets. convT(n) denotes
a transposed convolution with n output feature maps.

Encoder Model for BinaryMNIST, nef = 16
Layers In-Out Size Stride
Input: x 1x28%28
5x5 conv(ngf x 2), LReLU | 14x14x (ngf x 2) 2
5x5 conv(ngf x 4), LReLU | 7x7x(ngf x 4) 2
5x5 conv(ngf x 8), LReLU | 4x4x(ngf x 8) 2
Linear 16 -
Encoder Model for CIFAR-10 (matches code), nef = 100
Layers In-Out Size Stride
Input: « nex32x32
4x4 conv(nef), LReLU 16x16x (nef) 2
4x4 conv(nefx2), LReLU 8x8x (nefx2) 2
4x4 conv(nefx4), LReLU dx4dx(nefx4) 2
4x4 conv(nefx8), LReLU 2x2x (nefx8) 2
4x4 conv(nz) 1x1x(nz) 1
Flatten nz -
Linear nz -
Encoder Model for CelebA (matches code), nef = 100
Layers In-Out Size Stride
Input: x nex64x64
4x4 conv(nef), LReLU 32x32x(nef) 2
4x4 conv(nefx2), LReLU | 16x16x (nefx2) 2
4x4 conv(nefx4), LReLU 8x8x (nefx4) 2
4x4 conv(nefx8), LReLU 4x4x(nefx8) 2
4x4 conv(nefx16), LReLU | 2x2x(nefx16) 2
4x4 conv(100) 1x1x(100) 1
Flatten 100 -
Linear 100 -

Table 16: Encoder architectures used for BinaryMNIST, CIFAR-10, and CelebA. For CIFAR-10 and CelebA,
the table matches the provided implementation: stack28 4 x 4 Conv2d blocks with stride 2 and pad 1, followed
by a final 4 x 4 Conv2d to nz, flatten, and a linear layer.

Under review as submission to TMLR

1.6.1 Sampling from the prior EBM

Samples from the EBM prior are obtained using Langevin dynamics with 80 warm-up steps, a step size of
4 x 107!, and thinning set to 1, from which 64 samples are retained.

30

Under review as submission to TMLR

Figure 6: Each row is a dataset, the first column displays samples from the dataset, the second column
displays the energy function of an EBM trained with the self normalised log-likelihood (SNL), the third
column displays the energy function of an EBM trained with Noise Contrastive Estimation (NCE). We use a
standard Gaussian as the base distribution for both training methods. These parameterisations correspond
to the first two lines of Table

31

Under review as submission to TMLR

Figure 7: Each row corresponds to a dataset, the first column displays samples from the dataset, the second
column displays the energy function of an EBM trained with the self normalised log-likelihood (SNL), the
third column displays the energy function of an EBM trained with Noise Contrastive Estimation (NCE). We
use a the Mixture density Network (MDN) proposals with K = 2 as the proposal for both methods (see
Table |3).

B bt]

'
Sy

A1
]

3
3y

AR AR

‘.}.‘&'}.;v, e

32

Under review as submission to TMLR

J Additional results

True ML + SE PL £+ SE SNL + o SM + o
K1 2.00 | 2.66 £0.38 | 2.81 & 0.53 1.99 + 0.28 1.67 + 0.38
Ko 3.00 | 2.84 +£0.39 | 2.81 044 | 3.06 £+ 0.23 2.92 + 0.45
K3 1.00 | 0.98 £0.21 | 0.93£0.19 | 0.89 £ 0.21 0.55 4+ 0.20
A2 | 2.00 | 2.33 £0.55 | 2.64 £ 0.80 | 2.31 +0.48 2.78 £ 0.28
A1z | 2.00 | 258 £045 | 2.57 & 0.50 | 2.00 £ 0.31 0.16 4 0.46
A3 2.00 1.49 + 0.48 1.17 £ 0.51 1.82 £+ 0.32 0.89 £ 0.55
K1 0.50 | 0.82 £0.26 | 0.82 +0.30 | 0.47 £ 0.19 0.82 £+ 0.58
Ko 0.75 | 0.71 £0.26 | 0.71 = 0.26 | 0.81 £ 0.36 0.83 £ 0.74
K3 0.25 | 0.39 +0.26 | 0.40 +0.28 | 0.13 £ 0.13 1.53 + 0.86
A2 2.00 2.36 = 0.73 2.24 £+ 0.68 1.87 4+ 0.58 2.66 = 1.54
A13 3.00 3.27 £ 0.71 3.36 = 0.64 2.91 £ 0.63 2.95 + 1.41
Aoz | 4.00 | 349 £0.70 | 3.53 £0.69 | 4.62 £ 0.43 2.98 + 1.77
K1 2.00 | 2.65+0.97 | 2.65+0.98 | 2.19 £+ 0.92 4.44 £ 4.87
Ko 2.00 1.66 + 0.81 1.65 £ 0.85 | 2.04 4+ 0.27 5.99 4+ 7.31
K3 2.00 2.01 £ 0.85 2.02 £ 0.92 1.87 + 1.01 4.01 £+ 10.0
A1z | 20.00 | 36.85 + 8.63 | 36.76 = 6.99 | 15.6 £ 8.51 8.6 + 12.76
A1z | 30.00 | 40.01 £ 8.55 | 40.15 £+ 8.49 | 35.0 &= 8.11 | 19.26 & 16.06
Aoz | 40.00 | 23.66 £ 8.61 | 23.64 & 7.87 | 40.23 &+ 6.88 | 26.47 + 19.97
K1 2.00 1.84 + 0.23 1.84 4+ 0.23 2.17 £ 0.14 2.20 + 0.22
Ko 2.00 1.83 £+ 0.23 1.83 4+ 0.23 2.10 £ 0.19 2.14 £+ 0.36
K3 2.00 1.94 024 | 1.94 +£0.23 | 2.09 £+ 0.13 2.14 +£ 0.21
A2 | 0.10 | 0.15£0.28 | 0.14 +0.28 | -0.12 = 0.17 2.25 £+ 0.20
Az | 0.10 | 0.17 £0.28 | 0.16 & 0.28 | 0.01 &= 0.19 2.29 £+ 0.29
Aoz | 0.10 | 0.12 £0.28 | 0.124+0.30 | 0.12 £ 0.26 2.38 4+ 0.20

Table 17: Parameters estimates of a multivariate von Mises distribution (Mardia et al.| [2008) for 4 different
sets of parameters. For this experiment, the location parameters are known and set to 0. The Maximum
Likelihood (ML) and Pseudo-Likelihood (PL) results are directly reported from Mardia et al.| (2008)). In these
cases, the uncertainty estimates (SE) are obtained using Jacknife estimators. The score matching estimators
are obtained using explicit formulation in Mardia et al. (2016)) while the SNL estimators are calculated using
gradient descents. We report the average parameters and associated standard deviation over five runs with

five different datasets.

c [l — 71z —plle [I= =%
EM —4.934 £0.419 | 0.0143 £0.0084 | 10.87 &= 11.22 55.66 £+ 35.61
GMMis | —4.284 +0.348 | 0.0043 4+ 0.0029 1.46 + 0.84 16.23 +£5.74
SNL —4.145 £ 0.095 | 0.0066 + 0.003 0.87 +£0.83 17.89 +£4.38

Table 18: Comparative evaluation of the three estimation models (Standard EM Dempster et al.| (1977,
GMMis Melchior & Goulding (2018) and SNL). We evaluate the likelihood of the model on a non-truncated
test dataset to show the quality of the estimated parameters and the norm of the difference with the original
parameters. Each entry is reported as mean + standard deviation over five generated datasets and runs.
Both SNL and GMMis perform on par, outperforming the original EM, but it should be noted that GMMis

is much faster than doing gradient descent with SNL.

33

Under review as submission to TMLR

10° mem EM
B GMMis
|| —-sni
10! -
" 100.
[
=]
3
10*1.
10—2.

—Ltest

K K K
%”"k‘"k”z ;”Hk‘ﬂk”z %HZ;l =il

Figure 8: Log-scale bar plot comparing EM, GMMis, and SNL methods for the truncated mixture of Gaussians
across four evaluation metrics. Bars represent the absolute mean values, with error bars indicating standard
deviation over five different runs and datasets. We report the negative log-likelihood over the untruncated
test set and the norm of the difference of estimated parameters with the original parameters.

Dataset VAE SNELBO short-term MCMC IPang et al.l q2020D

CIFAR-10 107.57 98.36 70.15
CelebA 66.7 64.2 37.87

Table 19: FID of generated samples for CIFAR-10 and CelebA. The results of short-term MCMC are
directly reported from [Pang et al| (2020)). Though using the EBM prior with SNELBO improves slightly the
generation, the quality ofthe generation is far from being competitive with latent short term MCMC.

34

Under review as submission to TMLR

Models Datasets

Regression Dataset 1 Regression Dataset 2

Objective Proposal ¢ bs Base Dist l1s lsNr, l1s lsNL
NCE N(p, E) None None —0100 (4+0.186) —0638 (+0.168) —2.416 (£0.376) —3049 (40.900)
NCE N(:U‘a E) None q —0336 (40.468) —1567 (£0.282) —2548 (£0.232) —2676 (4+0.169)
NCE N(:U‘a 2) MLP None —0030 (£0.278) —0718 (£0.256) —2592 (£0.214) —3559 (4+1.881)
NCE N(u, E) MLP q —0644 (4+0.632) —1580 (£0.480) —2.426 (£0.257) —2586 (40.238)
NCE MDN K2 None None —0.570 (40.209) —1.275 (40.688) —2.451 (40.040) —-3.094 (£0.515)
NCE MDN K2 MLP None —0.611 (40.154) —1.492 (40.993) —2.451 (40.088) —2.634 (40.084)
SNL N(/l,, 2) None None 0.091 (40.122) —0.023 (40.071) —1.597 (40.047) —1.619 (40.063)
SNL N(u, 2) None q 0.065 (40.084) —0.044 (40.095) —1.493 (40.039) —1.503 (£0.041)
SNL N(u, 2) MLP None 0.164 (40.088) 0.033 (40.077) —1.813 (40.109) —1.836 (£0.109)
SNL N(u, Y) MLP q 0.091 (+0.004) —0.048 (+0.030) —1.468 (+0.014) —1.477 (+o0.016)
SNL MDN K2 None None 0.227 (£0.058) 0.221 (£0.059) —2.061 (£0.145) —2.070 (£0.141)
SNL MDN K2 MLP None 0.255 (4£0.017) 0.251 (4£0.016) —2.099 (£0.250) —2.170 (£0.353)

Table 20: Evaluation of regression EBMs on the 1D toy regression problems with two different objectives
and different sets of parameters. Each model is trained for five runs, and we report the mean and standard
deviation of the estimated log-likelihood ¢1g and the self-normalised log-likelihood fgnr,. Using the SNL as
the objective clearly outperforms the NCE.

Models Datasets
Steering Angle Cell Count UTKFaces BIWI
Objective Proposal lis lsNL lis lsNL l1s lsNL l1s lsNL
NCE N(pX) —3.649 (£1.229) UNNORMALIZED —3.367 (x0.300) —9.675 (x0.605) —3.147 (zo1100) —8.223 (xa7905 —11.02 (xo.576) UNNORMALIZED
NCE MDN-4 —4.044 (zo.7a1y —10.272 (20.742) —3.856 (+0.0200 UNNORMALIZED —3.876 (+0.1a0) —4.821 (+0.233y —12.093 (01559 UNNORMALIZED
NCE MDN-8 —4.001 (+o.66y ~ UNNORMALIZED —3.864 (+0.00s) UNNORMALIZED —4.123 (+0.21) —5.170 (+0.055) ~ —11.998 (+0.339) UNNORMALIZED
SNL N(ﬂ, Y) —2.665 (+1.37) —3.973 (43.15) —2.701 (+0.0a1y —2.725 (+0.046 —2.966 (+0.057) —2.991 (+0.069) —10.86 (+1.017) —11.05 (£1.141)
SNL Uniform —1.402 (+0.068 —1.423 (+o.074) —2.604 (r0.001 —2.620 (x0.00m —2.927 (+0.032) —2.965 (+0.019) —10.44 (+0.138) —10.51 (41.222)
SNL MDN-4 —1.780 (+0.2312) —1.795 (20.231) —2.834 (+0.011) —2.846 (+0.043) —2.992 (£0.045) —3.004 (+0.075) —10.08 (+0.149) —10.11 (+0.126)
SNL MDN-8 —1.673 (+0.042) —1.692 (+0.040) —2.801 (+o.0r1y —2.811 (x0.0m1) —2.921 (20055 —2.943 (+o.062) —10.01 (0.002y —10.04 (o.001)

Table 21: Evaluation of EBMs for regression on image regression datasets with two different objectives and
different proposals. Each model is trained for five runs and we report the mean and standard deviation of the
estimated log-likelihood (£r5) and estimated self-normalised log-likelihood (¢snr). When the proposal is
MDN, the proposal is learned jointly with the model following (Gustafsson et al.| (2022).

35

	Introduction
	Contributions

	Self-normalising the likelihood
	Why maximum likelihood for EBMs is hard
	Can we make this logarithm disappear?
	Why maximising the SNL is easier
	Practicalities when using SNL
	Related works

	Some theoretical properties of SNL
	Concavity of SNL for exponential families
	An information-theoretic interpretation

	Extending SNL beyond basic density estimation
	Truncated densities
	Self-normalisation in the regression setting
	Self-normalised evidence lower bound

	Experiments
	Density estimation
	Density estimation for directional distributions
	Density estimation for truncated distributions
	Density estimation for tabular data

	EBMs for regression
	1D regression datasets
	Image regression datasets

	VAE with latent prior EBM

	Conclusion
	Proofs
	 Variational linearising the logarithm
	 Equivalence between SNL and the log-likelihood
	 Concavity of the log-likelihood in exponential families
	 Concavity of SNL in exponential families

	The Gaussian case
	The Bernoulli case
	The Kullback-Leibler divergence for un-normalised densities
	Link with the Donsker-Varadhan representation
	The Donsker-Varadhan representation
	From Donsker-Varadhan to SNL
	On the difference with Generalized Energy Based Models
	On the difference with KALE Flow

	Algorithms
	Derivation of the SNELBO
	Regression datasets
	Experimental setting
	Multivariate von Mises
	Implementation of the Multivariate von Mises
	Sampling the dataset from MvM using Gibbs Sampling
	Training Hyperparameters

	Density estimation with Truncated distribution
	Mixture parameterisation

	Density estimation
	Energy Based Regression
	Toy regression
	Image for regression
	Training the proposal distribution for MDN

	VAE with prior EBM
	Sampling from the prior EBM

	Additional results

