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Abstract

Humans are able to perceive, understand and reason about physical events. Devel-1

oping models with similar physical understanding capabilities is a long standing2

goal of artificial intelligence. As a step towards this goal, in this work, we introduce3

CRAFT, a new visual question answering dataset that requires causal reasoning4

about physical forces and object interactions. It contains 58K video and question5

pairs that are generated from 10K videos from 20 different virtual environments,6

containing various objects in motion that interact with each other and the scene.7

Two question categories from CRAFT include previously studied descriptive and8

counterfactual questions. Besides, inspired by the theories of force dynamics in9

cognitive linguistics, we introduce new question categories that involve understand-10

ing the interactions of objects through the notions of cause, enable, and prevent.11

Our results demonstrate that even though these tasks seem to be simple and intu-12

itive for humans, the evaluated baseline models, including existing state-of-the-art13

methods, do not yet deal with the challenges posed in our benchmark dataset.14

1 Introduction15

The cognitive capabilities of humans to understand and make approximate predictions about physical16

objects and their interactions are known as intuitive physics [1]. Cognitive scientists have extensively17

studied the factors that affect physical reasoning in infants or adults [2–5]. Some of these abilities have18

also been studied for other animals such as chicks (Gallus gallus) [6]. Recent advances in machine19

learning have enabled computers to understand what type of object is present in a specified image20

(classification), which bounding box best wraps that object (detection), what its exact boundaries21

are (segmentation). Although these artificial vision systems have shown astounding progress in22

the past decade, there are some areas in which these systems are still significantly below human23

performance. One such area includes the capability of humans to reason about physical actions of24

objects by observing their environment. In this line of work, cognitive and computer scientists are25

⇤indicates equal contributions.
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Q:  “How many objects fall to the ground?” A: “2”
Q:  “After entering the basket, does the small yellow square collide with other objects?” A: “True”

Q:  “Will the small gray box enter the basket if any of the other objects are removed?” A: “True”
Q:  “How many objects fall to the ground if the small yellow box is removed?” A: “1”

Q:  “Does the small brown sphere cause the tiny yellow box to enter the basket?” A: “True”

Q:  “Does the small brown sphere enable the small yellow box to enter the basket?” A: “False”

Q:  “Does the small brown ball cause the big gray triangle to fall to the ground?” A: “False”

Q:  “How many objects does the small gray block enable to enter the basket?” A: “0”

Q:  “Does the small yellow square prevent the tiny brown circle from entering the basket?” A: “True”
Q:  “How many objects does the large cyan triangle prevent from entering the basket?” A: “1”

Ground

Figure 1: Example CRAFT questions generated for a sample scene. There are 48 different tasks
divided into 5 distinct categories for 20 different scenes. Besides having tasks questioning descriptive
properties, possibly needing temporal reasoning, CRAFT introduces challenges including more
complex tasks requiring single or multiple counterfactual analysis or understanding object intentions
for deep causal reasoning.

working together to bring similar capabilities to artificially intelligent systems so that they acquire26

similar intuitions and better understand their surroundings.27

Importantly, improving physical reasoning capabilities can make agents better anticipate the results28

of their actions in their physical environments. They can gain the ability to consider counterfactual29

actions without actually performing them. They can estimate what will happen if they perform a30

specific action. One of the recent examples in this direction is the Jenga-playing robot [7]. We believe31

intuitive physics is an essential ability to develop machines that are safe to interact with humans.32

In this work, our main aim is to judge how well the existing neural models understand and reason33

about physical relationships between dynamic objects in a scene. We propose a new visual question34

answering task, named CRAFT (Causal Reasoning About Forces and inTeractions), which requires35

understanding complex physical reasoning to be able to score high. CRAFT is designed to be36

complex for artificial models and simple for humans. Our dataset contains virtually generated videos37

of 2-dimensional scenes with accompanying questions. Its most prominent properties are that it38

contains video clips with complex physical interactions between objects and questions that test strong39

reasoning capabilities. For example, answering the questions needs understanding what is being40

asked, and requires detecting objects, tracking their states in relation to other objects, which in turn41

can be attributed to causing, enabling or preventing certain events. Moving beyond simple causal42

relations, enable and prevent categories refer to interactions between multiple forces. Distinct causal43

verbs are mapped onto these three classes of causal events. Moreover, there are also counterfactual44

questions about understanding what would have happened after an intervention, i.e. a slight change45

in the environment [8]. Figure 1 shows sample questions from CRAFT from 5 different categories,46

which are explained in detail in the subsequent sections, for a single simulation2.47

Our main contribution is the creation of a novel dataset that uses language and vision to test spa-48

tiotemporal reasoning on complex physical systems. In addition, we experiment with some simple49

and strong baselines and demonstrate that they are insufficient to handle the challenges CRAFT50

introduces. We hope that our work will lead to the generation of better systems on the path of51

approaching the level of human intelligence for physical reasoning.52

2 Related Work53

Visual Question Answering. Existing visual question answering (VQA) datasets can be categorized54

along two dimensions. The first dimension is the type of visual data, which include either real55

world images [9–13] or videos [14, 15], or synthetically created content [16–18]. The second is56

2More examples from CRAFT can be found in Appendix A.3 and also on the project website, located at
http://sites.google.com/view/craft-benchmark.

2

http://sites.google.com/view/craft-benchmark


at how the questions and answers are collected, which are usually done via crowdsourcing [9, 11]57

or by automatic means [10, 19, 16]. An important challenge for creating a good VQA dataset lies58

in minimizing the dataset bias. A model may exploit such biases and cheat the task by learning59

some shortcuts. In our work, we generate questions about simulated scenes using a pre-defined60

set of templates by considering some heuristics to eliminate strong biases. As compared to the61

existing VQA datasets, our CRAFT dataset is specifically designed to test the agents’ understanding62

of dynamic state changes of the objects in a scene. Although some existing VQA datasets question63

temporal reasoning [15, 20–22], they do not require the models to have a deep understanding of64

intuitive physics to answer the questions, the only exceptions being TIWIQ [23], CLEVRER [18], and65

CLEVR_HYP [24] datasets. In these datasets, there exist some hypothetical questions that require66

mental simulations about the consequences of performing certain actions or the lack of specific67

actions or objects. These datasets have received interest in the community to develop reasoning68

models with physical understanding capabilities, e.g., the neural-symbolic approaches proposed69

in [25, 26]. CRAFT shares a similar design goal with these aforementioned TIWIQ, CLEVRER, and70

CLEVR_HYP datasets – however the scenes in our benchmark are more complex, as explained later.71

Intuitive Physics in Cognitive Science. Common sense is considered as the collection of human72

reasoning abilities to perceive, understand and judge everyday situations. Intuitive physics, an73

important part of commonsense knowledge, is related to people’s perceptions of changes in physical74

world and their own understanding of how physical phenomena works [27]. Different theories have75

been proposed by cognitive scientists to model how humans learn, experience, and perform physical76

reasoning for certain events. Some of them are mental model theory [28], causal model theory [29],77

and force dynamics theory [30], which try to represent a variety of causal relationships such as cause,78

enable, and prevent between two main entities, an affector and a patient (the object the affector acts79

on). To our knowledge, our work is the first attempt at integrating these complex causal relationships80

in a VQA setup for machine learning models to improve their physical reasoning capabilities.81

Intuitive Physics in Artificial Intelligence. In recent years, there has been a growing interest82

within the AI community in developing models that have reasoning about intuitive physics. For83

instance, some researchers have explored the problem of predicting whether a set of objects are84

in stable configuration or not [31] or if not where they fall [32]. Others have tried to estimate a85

motion trajectory of a query object under different forces [31] or developed methods to build a86

stack configuration of the objects from scratch through a planning algorithm [33]. [34] suggested87

to represent rigid bodies, fluids, and deformable objects as a collection of particles and used this88

representation to learn how to manipulate them. Very recently, Bakhtin et al. [35] and Allen et al. [36]89

created the PHYRE and the Tools benchmarks, respectively, which both include different types of90

2D-environments. An agent must reason about the scene and predict the outcomes of possible actions91

in order to solve the task associated with the environment. CoPhy [37] is another recent benchmark,92

which deals with physical reasoning prediction about counterfactual interventions. Although these93

works involve complicated physical reasoning tasks, the language component is largely missing.94

As mentioned earlier, Wagner et al. [23], Yi et al. [18] and [24] created VQA datasets for intuitive95

physics, but they lack visual variations unlike PHYRE and Tools. In that sense, our CRAFT dataset96

combines the best of both worlds. Moreover, in addition to the two types of questions investigated in97

CLEVRER [18], namely descriptive and counterfactual, CRAFT also involves questions that need98

reasoning about the concepts like cause, enable, and prevent. To succeed in these tasks, the machine99

reasoning models need to learn the semantics of each verb category that specifies different kinds of100

interactions between objects, i.e. in a way, need have a kind of commonsense knowledge.101

3 The CRAFT Dataset102

CRAFT is built to evaluate temporal and causal reasoning capabilities of existing algorithms on103

video clips of 2D simulations and related questions. The dataset has approximately 57K question104

and video pairs, which are created from 10K videos. It is split into train, validation, and test sets105

with a 60:20:20 ratio per video basis, meaning that video clips in the training set are not seen in the106

validation or test set. Moreover, we have two different settings, an easy setting and a hard setting.107

They differ from each other in the way how the test split is chosen. In the hard setting, we deliberately108

use scene types that are not seen during training in picking the video and question pairs. The easy109

setting does not have this constraint. In the easy setting, there are 35K, 12K, and 11K question and110

video pairs in the train, validation and test splits, whereas in the hard setting these numbers are 35K,111
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Figure 2: Random configurations of static scene element properties for each scene. The opaque
regions show the mean value for that element, whereas the overlayed regions show the extreme values.
Although these changes may seem subtle, they provide a wide variety in terms of scene dynamics.

11K and 12K, respectively. We provide an example set of questions from CRAFT in Figure 1. In112

what follows, we are going to mention how we generate visual scenes, which types of objects and113

events exist in videos and questions, how we represent our simulations, how we define the tasks and114

accordingly generate the questions, and finally, how we reduce the biases that might easily emerge in115

visual question answering datasets.116

Video Generation. We use Box2D physics simulator [38] to create our virtual scenes. There are 20117

distinct scene layouts from which 10 seconds of video clips are collected with a spatial resolution118

of 256 ⇥ 256 pixels. Besides generating original simulation video, CRAFT scripts also generate119

variation videos by removing each object of the same video from the scene. These variation videos120

help question generation script to provide answer for certain types of questions, as explained later.121

Objects. Each scene is composed of both static scene elements and dynamic objects, containing122

variable number of and different type of these elements and objects. There are 7 static scene elements123

(ramp, platform, button, basket, left wall, right wall, ground). These elements are all drawn in black124

color in order to differentiate them from the dynamic objects. Their attributes such as position or125

orientation are decided at the beginning of a simulation and then they are kept fixed throughout the126

video sequence. The values of these attributes are assigned randomly from sets of different intervals127

which are predefined for each type of scene as in Figure 2. The set of the dynamic objects contains128

3 shapes (cube, triangle, circle), 2 sizes (small, large), and 8 colors (gray, red, blue, green, brown,129

purple, cyan, yellow). Attributes of dynamic objects, on the other hand, are in continuous change130

throughout the sequence due to the gravity or the interactions that they are subject to, until they rest.131

Events. To formally represent the dynamical interactions in the simulations, we extract different132

types of events. These events are Start, End, Collision, Touch Start, Touch End, and Enter Basket.133

Start and End events represent the start and the end of the simulations, respectively. Although we134

mainly question Collision events in our tasks, we want models to understand the difference between135

a collision and rolling on a ramp or a platform or two objects moving together. Therefore, we also136

extract Touch Start, Touch End events. Finally, Enter Basket event is triggered if the object enters the137

basket in the scene. All events happening a simulation are represented as a causal graph, which is138

also key for the question generator to extract causal relationships in an easy manner. Causal graph is139

a directed graph where events are represented as nodes. Each edge represents a cause relation where140

the source event is considered as the cause of target event because of the shared objects between them.141

We demonstrate the causal graph of a sample simulation in Figure 3.142

Simulation Representation. A simulation instance is represented by 3 different data structures,143

which are the initial state of the scene, the final state of the scene, and the causal graph of extracted144

events. The inial and final state of a scene refers to the information regarding the objects’ static145

and dynamic attributes such as color, position, shape, and velocity. at the start or at the end of the146

simulation, respectively. The final state is important as it bears causal relationships between the147
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Figure 3: A simple causal graph. The causal graph shows the graphical representations of the
events that occur in a simulation. For the sake of simplicity, here we only include the interactions
between the dynamic objects and the basket and moreover the scene is uncomplicated that there is no
intermediate branching in the causal graph.

events of a simulation. Together these information sources have sufficient information to find the148

correct answers to CRAFT questions. Our simulation system also allows us to generate scene graphs149

like the ones used in CLEVR [16], though we have not investigated it yet, which might be used for150

spatial reasoning.151

Question Generation. Each CRAFT question is represented with a functional program as in CLEVR.152

We use a different set of functional modules for our programs extending the CLEVR approach. For153

example, our module set includes, but is not limited to functions which can filter events such as Enter154

Basket and Collision, and functions which can filter objects based on whether they are stationary at155

the start or the end of the video. List of our functional modules and some example programs are156

provided in Appendices A.1 and A.2 in the supplementary material, respectively. Moreover, we157

use different sets of word synonyms and allow question text to be paraphrased for language variety158

similar to CLEVR. Our preliminary analysis reveals that human performances in some questions159

are very poor. When investigated, we figure out that these questions seem to be counter-intuitive to160

humans. Humans do not accurately reason about the objects for some counterfactual cases as subtle161

changes in the scenes result in very different outcomes. Hence, while finalizing our dataset, we apply162

minor random perturbations to each dynamic object in a video to verify whether the same answer is163

obtained for all such cases, and exclude those questions that do not pass this verification step.164

Question Types. CRAFT has 48 different question types under 5 different categories, namely165

Descriptive, Counterfactual, Enable, Cause, Prevent. Among these, Descriptive questions mainly166

require extracting the attributes of objects, but some of them, especially those involving counting,167

need temporal analysis as well. Our dataset extends CLEVRER by Yi et al. [18] with different types168

of events and multiple environments. Counterfactual questions require understanding what would169

happen if one of the objects was removed from the scene. Exclusive to CRAFT, some Counterfactual170

questions (“Will the small gray circle enter the basket if any of the other objects are removed?”)171

require multiple counterfactual simulations to be explored. As an extension to Counterfactual172

questions, Enable, Cause, Prevent questions require grasping what is happening inside both the173

original video and the counterfactual video. In other words, models must infer whether an object is174

causing or enabling an event or preventing it by comparing the input video and the counterfactual175

video that should be simulated somehow. In the question text, the affector and the patient objects are176

explicitly specified. Some questions even include multiple patients.177

In order to have a better understanding of the differences between Enable, Cause, and Prevent178

questions, one should understand the intention of the objects. We identify the intention in a simulation179

by examining the initial linear velocity of the corresponding object. If the magnitude of the velocity180

is greater than zero, then the object is intended to perform the task specified in the question text,181

such as entering the basket or colliding with the ground. If the magnitude of the velocity is zero,182

then it is assumed that the object has no such intention – even if there is an external force such as183

gravity, upon it at the beginning of the simulation. Therefore, an affector can only enable a patient to184

complete the task if the patient is originally intended to do it but fails without the affector. Similarly,185

an affector can only cause a patient to do the task if the patient is not intended to execute it. Moreover,186

an affector can only prevent a patient from completing the task if the patient is intended to do it and187

succeeds without the affector.188
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Figure 4: Distribution of question types
and answers in CRAFT. Innermost layer
represents the distribution of the questions
for different task categories. Middle layer il-
lustrates the distribution of the answer types
for each task category. Outermost layer rep-
resents the distribution of answers for each
answer type.

Variations in Natural Language. In datasets that189

involve a natural language component, it is crucial190

to have language variety. To improve this property,191

CRAFT data generation scripts for questions, first192

allow multiple paraphrased versions of the same text193

to be generated to represent the same task. For a194

question sample, a paraphrased version of the cor-195

responding task is chosen randomly by filling the196

object templates. Second, CRAFT enables synonyms197

of certain words to be integrated. We choose a base198

word and create its synonyms inside the CRAFT con-199

text. Similar to question paraphrases, the base word200

is replaced by a synonym randomly at run-time. All201

synonyms including the base word have equal chance202

to be included in the question text. This replacement203

is handled by word suffixes and verb conjugations by204

preserving English grammar.205

Bias Reduction. CRAFT contains simulations from206

different scenes increasing the variety in the visual207

domain as well. This variety also makes reducing the208

dataset biases difficult because of the multiplicity in209

the number of the domains (textual and visual). Our210

data generation process enforces different simulation211

and task pairs to have uniform answer distributions212

while trying to keep overall answer distribution as213

uniform as possible.214

Here, our aim is to make it harder for the models to find simple shortcuts by predicting the task215

identifier, the simulation identifier, or both, instead of understanding the scene dynamics and the216

question. Figure 4 shows the answer distributions for the question categories in CRAFT.217

4 Experimental Analysis218

In this section, we evaluate the performances of a wide range of baseline models on our CRAFT219

dataset. We also analyze how these performances relate with that of humans in understanding physical220

interactions between the objects and the environment.221

4.1 Baselines222

In our experiments, we consider several baseline models including the state-of-the-art visual reasoning223

approaches. In the following, we give details of these models. In particular, five of these models224

are text-only baselines which only read the question and give an answer without looking any of the225

video frames. Four of them are non-temporal multimodal neural baselines that process a single frame226

(either the first frame or the last one) along with the question. Finally, the remaining five models are227

video question answering models, including the recently proposed methods, which process the entire228

video sequence in providing an answer to a given question.229

Most Frequent Answer baseline (MFA) employs a simple heuristics and answers all the questions230

by using the most frequent answer in the training split. We use this simple baseline as a sanity231

check to inspect question biases. Answer Type based Most Frequent Answer model (AT-MFA)232

is a heuristics-based baseline like the MFA model. For each question querying a specific answer233

type (e.g. color, shape, boolean), it gives the same answer which corresponds to the most frequent234

answer observed for that answer type in the training split. In addition, Random model uniformly235

samples a random answer from the full answer space, whereas Answer Type Based Random model236

(AT-Random) makes random guesses based on the answer type (e.g. color, shape, boolean).237

LSTM model is our third image-blind baseline that processes the question with an Long Short-term238

Memory network (LSTM) [39], and then predicts an answer to a given question ignoring the visual239

input. It encodes the question by using 256 hidden units and initializing word embeddings randomly.240
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Each question is represented with the last hidden state of the network by processing each individual241

input word sequentially.242

LSTM-CNN baseline integrates both visual and textual cues by extending the LSTM model to243

additionally consider the features extracted from the 4-th convolutional layer of a pretrained ResNet-244

18 model. We evaluate both (non-temporal) single frame and video versions. In the former, each245

video is encoded with ResNet-18 model by taking into account either the first frame or the last246

frame, which are referred to as LSTM-CNN-F and LSTM-CNN-L, respectively. The video version,247

which we call LSTM-CNN-V, processes downsampled videos by using R3D [40], a 3-dimensional248

variation of ResNet-18, as visual feature extractor. All these three baselines concatenate the extracted249

visual and textual features to obtain a combined representation of the video and the question pair,250

feeding it to a multilayer perceptron network (MLP) which consists of 2 layers with unit size of 256251

and with ReLU non-linearity. Finally, a linear layer generates scores for the answers. A dropout with252

a probability of 0.2 is used for both visual and textual representations.253

Memory, Attention, and Composition (MAC) model [41] is a state-of-the-art compositional visual254

reasoning model. It decomposes the reasoning task into a series of attention-guided processing steps255

by isolating memory and control functions from each other. The attention mechanism considers256

visual and textual features jointly, which leads to robust encodings of the question and the image.257

Similar to the LSTM-CNN baseline, we have implemented two alternative versions. While the first258

one, which we name MAC-F, looks at only the first frame, the latter is called MAC-L and only pays259

attention to the last frame. Differently from the original MAC architecture, we use 256 units for260

control, read and write cells of MAC, insert batch normalization layers after convolutional layers,261

and apply dropout with 0.2 probability similar to the other baselines. We opted out self attention and262

memory gate in the write unit since they are optional.263

MAC-V baseline extends the MAC model by considering the video frames sampled from the given264

video as the visual input. Like LSTM-CNN-V model, MAC-V also processes videos by using R3D.265

Unlike its non-temporal variations, MAC-F and MAC-L, where the read unit originally has spatial266

attention over the image, this temporal variation has a read unit that applies spatio-temporal attention267

over the entire video features extracted by R3D. MAC-V has same hyperparameters with MAC-F and268

MAC-L.269

TVQA is a multi-stream state-of-the-art video question answering neural model [15]. To adapt this270

model to our dataset, we only use its video stream branch and omit the answer input by generating271

scores for the entire answer vocabulary. In parallel with other baselines, TVQA model also extracts272

visual features by using ResNet-18 architecture. Different from the original implementation, our273

TVQA implementation uses LSTM networks with 256 units, uses a MLP network with 2 layers.274

Unlike the original model, we do not use GloVe word embeddings [42] to make a fair comparison275

with the remaining baseline models.276

TVQA+ is another multi-stream video question answering model, which is built upon TVQA model.277

In contrast to TVQA, TVQA+ uses convolutional networks as sequence encoder instead of LSTM278

networks, replaces GloVe word embeddings with BERT embeddings [43], and implements a span279

proposal / prediction mechanism. We do not implement span proposal mechanism, and omit using280

BERT embeddings to compare TVQA+ with others more fairly as we disable GloVe embeddings in281

TVQA. Our TVQA+ implementation uses 256 hidden units in all submodules throughout the network,282

and it generates answer scores by feeding weighted average of fused multi-modal simulation-question283

representation into a linear layer.284

G-SWM is an object-centric model [44], which is originally designed for simulating possible futures285

in a scene consisting of multiple dynamic objects. It models each frame in a video by two different286

latent variables encoding object and context features. We modify G-SWM to solve the reasoning287

tasks in CRAFT. In particular, our version of G-SWM takes in video frames resized to 64⇥ 64 pixels288

and extracts an object-centric representation of the input video thorough object and context features.289

These latent codes are then combined and concatenated with the LSTM-based question representation,290

similar to LSTM-CNN model, just before the final classifier layer.291

Implementation and Training Details. Unless otherwise speficied, all learnable baselines are292

trained with Adam optimizer [45] with default hyperparameters. LSTM and single frame models are293

trained for 75 epochs with batch size of 64. All temporal baselines are trained for 30 epochs with294

batch size of 32. G-SWM is trained for 100 epochs using a batch size of 64 with Adam optimizer295

7



Table 1: Performances of the tested baselines on the test set of the CRAFT dataset on easy and hard
splits. C, CF, D, E and P columns stand for Cause, Counterfactual, Descriptive, Enable and Prevent
tasks, respectively.

Baseline Easy Setting Hard Setting
C CF D E P All C CF D E P All

Random 7.41 5.25 5.09 4.72 5.76 5.24 7.52 4.62 5.08 3.99 5.73 4.98
AT-Random 38.68 44.34 33.95 37.13 33.87 37.47 36.27 46.06 34.16 34.44 31.08 37.52

Te
xt

on
ly

MFA 34.16 43.28 23.53 33.79 29.72 30.72 32.03 43.94 23.20 30.78 28.02 29.98
AT-MFA 46.50 47.21 37.57 51.87 50.46 42.03 49.67 47.17 36.55 49.08 49.28 41.12
LSTM 49.18 53.14 38.29 53.63 56.68 44.69 49.69 56.24 37.25 55.91 50.10 44.52

LSTM-CNN-F 50.21 55.23 44.86 55.60 53.46 49.07 46.08 48.12 35.54 47.25 50.31 40.64
LSTM-CNN-L 52.06 55.63 43.12 55.60 57.14 48.42 50.33 54.44 38.88 51.25 47.85 44.66

Si
ng

le
fr

am
e

MAC-F 51.03 52.88 44.40 54.22 54.38 48.10 51.31 53.50 42.12 52.08 51.94 46.55
MAC-L 45.88 53.08 44.54 54.03 49.77 47.83 45.10 53.80 41.46 50.25 53.37 46.05

V
id

eo

LSTM-CNN-V 51.03 61.42 48.12 56.58 56.45 53.01 48.69 54.89 41.36 52.58 52.97 46.50
MAC-V 54.73 57.72 44.41 53.05 54.15 49.74 49.67 54.71 42.94 52.08 51.12 47.31
TVQA 51.85 55.57 36.89 54.42 54.84 44.71 52.61 55.12 36.31 50.08 51.12 43.46
TVQA+ 54.32 60.02 40.22 58.35 51.38 48.11 54.90 55.12 39.09 51.41 48.06 45.12
G-SWM 51.03 55.29 37.05 55.60 53.92 44.69 51.96 48.68 37.77 49.42 52.35 42.47

C CF D E P All
Human 83.00 77.10 86.96 72.36 79.71 80.37

and a learning rate of 0.0001. Input videos are downsampled at 5 frame per second (fps) and their296

frames are resized to 112 ⇥ 112 pixels. We used mixed precision strategy to train baselines more297

efficiently on Tesla V100 and Tesla P4 GPUs, with the exception of TVQA+ which is trained by using298

full precision. Training single frame models take 2 minutes, and training video models take 20-30299

minutes per epoch approximately. All word embeddings have the length of 256 and are randomly300

initialized. Pretrained convolutional video and image encoders are jointly trained with the rest of the301

networks. We use negative log-likelihood loss function for all models where the modelds predict a302

distribution over the set of possible answers. All models are tuned based on their performances on303

the validation split.304

4.2 Results305

In Table 1, we present the performances of the baseline models for each question type, considering306

both the easy and the hard settings explained in Section 3. We evaluate the performance of each307

model by comparing the answer token predicted by the model to the ground-truth and estimating the308

average accuracy accordingly.309

Among the evaluated baselines, the text only models perform the worst, as expected, since they310

completely ignore the visual information present in the videos. Also, the performances of the single311

frame methods are typically worse than those of the video models, showing the importance of the312

temporal aspect of the questions that a single snapshot of the simulation does not carry enough313

information. Clearly, to excel in this task, a model must capture the interactions between the dynamic314

objects with each other and with the environment.315

Moreover, as evident from the results of Table 1, there exists a substantial gap between the model316

performances in the easy and hard settings of CRAFT. Not surprisingly, this is not the case for317

the text-based baselines, in which it is not important whether a scene layout has been seen before318

during training or not. Overall, these results suggest that our tested multimodal methods are not able319

to generalize well to previously unseen scenes. They simply cannot fully recognize the physical320

interactions and corresponding events taking place in a video.321

It is worth mentioning that the performances of the models vary between different question types in322

CRAFT. Out of the five question types, the models consistently perform poorly on the Descriptive323

questions in that the accuracies are around 23.5%-44.9% in the easy setting and 23.2%-42.9% in the324
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hard setting. The reason behind this could be attributed to the variety of the answers in this task as it325

includes questions covering both count, shape, and color of the object(s) (see Figure 4). On the other326

hand, the accuracies of the models on the remaining questions types are between 29.7% and 57.1% in327

the easy setting, and 28.0% and 56.2% in the hard setting.328

LSTM-CNN-V baseline does reasonably well on the easy setting, but its generalization capability on329

the hard setting is not that good. TVQA performs worse than the LSTM-CNN-V baseline, which330

points out the fact that it is more tailor-fit to video question answering about TV clips, and its331

performance degrades when it does not have access to subtitles or the related concept detectors.332

Notably, MAC variants perform the best in the hard setting. MAC model, together with G-SWM, is a333

more expressive model specifically designed for compositional visual reasoning. G-SWM, however334

performs poorly in our experiments, which might be because the scenes in CRAFT usually consists of335

many objects, thus making it harder to learn decomposing a given video into objects and background.336

This problem might be alleviated by switching into a two-stage framework, in which G-SWM is337

pretrained first to improve its decomposition ability. For now, we left this as future work. Overall, the338

accuracies are not very high, indicating the shortcomings of the existing models in understanding339

physical reasoning.340

In order to support our thesis stating that CRAFT is designed to be easy for humans, but difficult341

for machines, we also conducted a small human study. We asked 481 randomly selected CRAFT342

questions to 101 adults. We divided the questions into 5 parts with counterbalancing and every343

participant took one of the parts randomly. As well as answering the questions, the participants were344

allowed to state that the question was not clear enough to understand. Among these 94 participants,345

we only considered the ones who responded at least 75% of the questions , which corresponds to 56346

people.As can be seen from Table 1, there is a large gap (> 40%) between human subjects and neural347

baselines in the hard setting. However, we should say that humans had more difficulty answering348

Enable questions, but even for that question type the gap is big (> 20%). We must admit that detailed349

studies on human subjects solving CRAFT tasks are also required to better understand differences350

between humans and machines.351

5 Conclusion352

We have presented CRAFT, a new video question answering benchmark to challenge intuitive physics353

capabilities of the current machine learning algorithms. Motivated by the theories of force dynamics354

in cognitive linguistics, CRAFT requires models to perform temporal and causal reasoning and even355

to imagine alternative versions of the events occurring in videos. Our results demonstrate that, while356

reasoning about the physical interactions between objects seem intuitive to humans, these questions357

cannot be solved reliably by the current state-of-the-art models. At present, there is large room for358

improvement when compared to human performance. In our experiments, we did not report the359

results of recent neuro-symbolic models (e.g. Neuro-Symbolic Dynamic Reasoning (NS-DR) [18]).360

Such approaches are very interesting and worth pursuing, but they currently require extra object-level361

annotations. Another exciting direction is to test other object-centric models like G-SWM. However,362

it seems that they might require extra pretraining or self-supervised objectives, as explored by [46].363

Current version of CRAFT includes multiple patients in cause, enable, and prevent tasks, but does364

not include multiple affectors. Hence, it might be possible to extend CRAFT with these kind of more365

complex object relationships. Moreover, new object attributes, such as density, can be integrated366

using material textures. Finally, the programs designed for our tasks depend on the end results of367

the simulations to be able to provide correct answers to the questions. Investigating temporally local368

relationships between objects might be interesting as well. We believe that developing more effective369

algorithms for solving CRAFT tasks is an exciting research direction for artificial intelligence systems370

mimicking humans for causal reasoning about forces and interactions.371
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