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ABSTRACT

Behavior regularization is a widely adopted technique in offline reinforcement
learning (RL) to control distributional shift and mitigate extrapolation errors from
out-of-distribution (OOD) actions by keeping the learned policy close to the be-
havior policy used to collect the dataset. However, directly applying behavior
regularization to offline safe RL presents several issues. The optimal policy in safe
RL should not only favor actions that prevent the agent from entering unsafe re-
gions but also identify the shortest escape path when the agent finds itself in unsafe
states. Enforcing safety and behavior regularization constraints simultaneously
is inherently difficult and can often lead to infeasible solutions, especially when
multiple constraints are involved. Furthermore, adding behavior regularization may
cause the learned policy to imitate the behavior policy, even in states where the
behavior policy performs poorly (not safe). This issue becomes particularly severe
in offline safe RL, where the quality of the dataset collected by the behavior policy
heavily impacts the learned policy’s effectiveness. To address these challenges, we
propose BARS (Behavior-Aware Region-Based Safe offline RL), a novel algorithm
that distinguishes between safe and unsafe states and applies region-specific, selec-
tive behavior regularization to optimize the policy in safety-critical applications.
Extensive experiments show that BARS significantly outperforms several state-
of-the-art baselines in terms of both rewards and safety, particularly in scenarios
where the behavior policy is far from optimal. Notably, when dataset quality is low,
BARS continues to perform well and ensure safety, while all other baselines fail to
guarantee a safe policy in most of the environments. Our work has great potential
to address a previously overlooked issue in offline safe RL.

1 INTRODUCTION

Safe reinforcement learning (RL) has been successfully applied in areas such as autonomous driving
(Isele et al., 2018), recommend systems (Chow et al., 2017), and robotics (Achiam et al., 2017;
Dawson et al., 2023), helping to develop policies that adhere to critical safety constraints, including
collision avoidance, budget management, and system reliability. However, a significant challenge
lies in gathering the data needed to train these policies in an online setting. In many real-world
applications, interacting with the environment is not only costly and time-consuming but also
inherently risky. Training an RL agent online requires learning through trial and error, which can
lead to unsafe behavior during the learning process—an unacceptable risk in safety-critical tasks.

To overcome the limitations of data collection, offline RL offers a safer alternative by enabling policies
to be learned from pre-collected data, without the need for direct interaction with the environment
during training. Instead of relying on real-time exploration, offline safe RL leverages datasets gathered
from prior experiences, eliminating the risk of unsafe actions during the learning process. However,
in offline RL, a major problem arises when the learned policy encounters out-of-distribution (OOD)
actions (Fujimoto et al., 2019) since the policy is trained on a static, pre-collected dataset. Thus, the
policy may attempt actions that were not well-presented during training, leading to extrapolation
errors in the value function, which can not be eliminated without requiring coverage of the offline
dataset. Existing works tackle this problem by restricting the learned policy to only select actions
that have sufficient support under the behavior policy by adding a behavior regularization term in
both offline RL (Peng et al., 2019; Siegel et al., 2020; Wang et al., 2020; Jaques et al., 2019; Wu
et al., 2019; Dadashi et al., 2021) and offline safe RL (Lee et al., 2022; Xu et al., 2022; Lin et al.,

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: (a): Reach-avoid task: The agent starts from a fixed point (green) and aims to reach the
goal (orange) while avoiding hazard zones (pink). The initial state is set at (−0.8,−1.5) with a
velocity of 1.2 and a movement direction of π/4 radians from the horizontal. Any state in the hazard
region incurs a cost of 1, while all other states have a cost of 0. The total constraint violation is the
number of steps spent in the hazard region. The goal is to learn an optimal policy that reaches the
goal without violating constraints. (b): High-quality offline data is generated using an expert policy
trained by TD3-Lag modified on TD3 (Fujimoto et al., 2018). (c): Medium-quality data is collected
from a mixture of the expert policy in (b) and a random policy, resulting in a safe-to-unsafe data ratio
of 10 : 1. (d): To increase unsafe data, more random policy data is gathered in the hazard region,
leading to a safe-to-unsafe ratio of 5 : 1. The "Feasible Region" represents the largest safe region. See
Section 4 for more details. In all scenarios, BARS can successfully learn a safe and optimal policy
across various data distributions, while FISOR fails to maintain safety as the data quality degrades.

2023; Guan et al., 2024; Zheng et al., 2024). While behavior regularization has proven effective
for managing distributional shift in standard offline reinforcement learning, its direct application to
offline safe RL introduces significant challenges. Safe RL is typically modeled as a Constrained
Markov Decision Process (CMDP), where the goal is to maximize rewards while satisfying safety
constraints. In some CMDPs, certain states are so high-risk that no truly safe actions or trajectories
are available in those states.. In such cases, the optimal solution is to select the action with the
minimum cost. For example, imagine an autonomous vehicle experiencing a brake malfunction.
Every available action poses a risk—stopping abruptly could cause an accident, turning might result
in a skid, and continuing forward could lead to a more dangerous situation. Here, the vehicle must
choose the least harmful action, illustrating the need to navigate risk effectively when no safe options
are available. Therefore, the optimal policy in safe RL must not only avoid unsafe regions but also
find the quickest escape route when forced to enter an unsafe state. Enforcing safety constraints
alongside behavior regularization often leads to conflicting objectives, making it difficult to find
feasible solutions.

Another key drawback of applying behavior regularization directly in offline safe RL is that it may
cause the learned policy to overly imitate the behavior policy, even in states where the behavior policy
performs poorly or unsafely. Since offline RL relies on pre-collected datasets, the quality of the
behavior policy directly impacts the learned policy’s effectiveness. If the dataset contains sub-optimal
or unsafe behavior, behavior regularization may reinforce these undesirable actions, resulting in poor
performance. This issue is particularly severe in safety-critical environments.

To address these challenges, we propose BARS (Behavior-Aware Region-Based Safe offline RL),
a novel algorithm that distinguishes between safe and unsafe states while applying region-specific,
selective behavior regularization to optimize the policy. As visualized in Figure 1, we consider a
simple toy example, where the agent aims to find the shortest path from a fixed starting point to a
destination while avoiding hazardous zones. The performance of the behavior policy is regulated by
controlling the ratio between an expert and a random policy used to collect the offline dataset. The
figure demonstrates that BARS consistently performs well in different scenarios (high/medium/low-
quality offline dataset), while the state-of-the-art algorithm FISOR (Zheng et al., 2024) fails to satisfy
the safety constraints as the dataset quality degrades. More discussions on the related work can be
found in Section A in the Appendix. Our contributions are summarized as follows:

• BARS is the first to address the issue of behavior regularization constraints leading to infeasible so-
lutions in safe RL using a region-based approach. Infeasible solutions are especially likely to occur
when multiple constraints are involved. Unlike traditional methods, BARS adapts regularization
based on state safety (Eq.(4)), maximizing rewards in safe regions and minimizing risks in unsafe
regions by selecting the least harmful actions.
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• We propose a “Region-Based Risk-Reward Optimization” (Eq.(7)) in our algorithm, which handles
value function estimation errors and penalizes unsafe actions when optimizing in safe regions.

• Extensive experiments on the DSRL benchmark (Liu et al., 2023a) show that BARS significantly
outperforms state-of-the-art baselines in reward maximization and constraint satisfaction. On
Safety-Gymnasium tasks (Ray et al., 2019; Ji et al., 2023), BARS increases rewards by 5% and
reduces costs by 52% on average compared to the best baseline (Table 1). Additionally, Table 2
shows BARS consistently maintains safety as the data ratio varies. Ablation studies evaluate its
performance under different cost limits.

• To explore how to safely learn a safe policy, we propose a train-collect-and-train framework, which
significantly enhances BARS’s performance when new data collection is allowed. With just one
round of new data, performance improved by 72%, with the new dataset ensuring policy safety.

2 PRELIMINARY

We formulate safe-RL as a Constrained Markov Decision Process (CMDP), denoted by the tuple
M = (S,A, γ,P, r, c, ρ). Here, S and A represent the state and action spaces, ρ is the initial
state distribution, γ ∈ [0, 1) is the discount factor, r : S × A → R is the reward function, and
c : S × A → R+ is the cost function. WLOG, we use c = 0 to indicate that the state constraint
is satisfied (the state is safe). At each time step, an agent observes a state s ∈ S, takes an action
a ∈ A according to a policy π, receives a reward r(s, a) and a cost c(s, a), and then transitions to
the next state s′ based on the transition kernel P(·|s, a). Given a policy π, we use V π

r (s) and V π
c (s)

to denote the expected cumulative discounted return and cost under policy π, starting from state
s: V π

r (s) = E [
∑∞

t=0 γ
tr(st, at)|s0 = s] , V π

c (s) = E [
∑∞

t=0 γ
tc(st, at)|s0 = s] . It is well-known

that the optimal policy of a discounted MDP (or CMDP) (Sutton and Barto, 2018; Altman, 1999;
Bertsekas, 2019) depends on the initial state. To better illustrate the idea and address existing issues
in offline safe RL, we consider a fixed initial state ρ = s in this paper. The objective for safe-RL is to
find a policy π : S → ∆(A) (∆(·) is a probability simplex) to maximize the expected cumulative
rewards while satisfying constraints:

max
π

V π
r (s) s.t. V π

c (s) ≤ l, (1)

where l represents the cost limit. Note that the cost limit specifies how many violations are allowed
starting from a state s, as any positive value contributes to a violation based on the definition of the
cost function. In other words, we do not permit cost compensation. In offline RL, we assume access
to an available offline dataset D = {(si, ai, ri, ci, s′i)}Ni=1, which consists of N samples containing
both safe and unsafe trajectories, collected using some underlying behavior policy πβ .

2.1 LIMITATIONS OF EXISTING SOLUTIONS

To handle safety constraints, existing approaches often consider solving the following optimization
problem:

max
π

V π
r (s) s.t. V π

c (s) ≤ l, D(π||πβ) ≤ ϵ, (2)

where ϵ > 0, D is some divergence metrics (e.g., KL divergence) used for measuring the distance
between the policy π and behavior policy πβ to prevent the distributional shift from πβ in offline
setting (Lee et al., 2022; Xu et al., 2022; Lin et al., 2023; Zheng et al., 2024). However, this
formulation has several issues. 1). The policy to be optimized aims to maximize the accumulated
reward while maintaining safety in an expected sense. In the unconstrained case, this approach is
well justified, as all states are considered safe. However, in the safe-RL setting, particularly for
safety-critical applications, ensuring safety on average across all states may overlook significant risks
in a few critical states where V π

c (s) > l. These harmful states, though rare, can still cause substantial
damage. For example, in autonomous driving, the system may perform well in common scenarios
such as highway driving or empty streets. However, in rare but critical situations like navigating
a busy intersection or avoiding a pedestrian, the risks are much higher. Simply ensuring safety on
average may overlook these high-risk states, where poor decisions can lead to serious accidents. 2),
the two constraints V π

c (s) ≤ l and D(π||πβ) ≤ ϵ in the optimization problem (2) may not always
be satisfied simultaneously, which means that there is no feasible solution. This issue becomes
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more severe when multiple constraints involving different sets of cost functions are considered. 3)
Enforcing the constraint to control distributional shift may result in a policy that is too close to the
behavior policy for all the states, implying that the learned policy could perform as poorly as the
behavior policy in states where the latter performs badly. This problem is more serious in the offline
safe-RL setting, where an algorithm is trained on a dataset collected by the behavior policy, making
the performance of the learned policy heavily dependent on the quality of the dataset (as shown in
Figure.1).

Figure 2: A MDP example

Consider a simple MDP (Figure 2) with the following determin-
istic reward and cost functions defined for the states: s1, s3, s5
have reward r = 1 and cost c = 0, while s2 and s4 have reward
r = 1 and cost c = 1. The behavior policy πβ is defined as
πβ(s2) = a5, meaning action a5 is chosen at s2. Our goal is to
learn an optimal policy π∗ that reaches s5 with minimal cost vi-
olations. Using the total variation divergence as the divergence
metric, we have D(π||πβ) = 1 − p, assuming π(a5|s2) = p.
First, if we consider s2 as the starting point, it is clear that
the standard optimization problem (2) has no solution when
0 < ϵ < 1 and the cost limit l = 1, as it requires p ≥ 1−ϵ > 0,
and V π

c (s2) = 1 + p ∗ V π
c (s4) > 1 + p. Secondly, while the optimization problem (2) may have

a solution for a larger cost limit l, setting ϵ small enough forces the policy π to choose a5 with a
very high probability, p ≥ 1 − ϵ, which approaches one. As a result, the agent never learns the
optimal action a4. Thus, it is crucial to develop an approach that can distinguish between “good”
states—where the policy satisfies the constraints—and “bad” states—where the policy fails to satisfy
the constraints—and apply different training strategies to address the issues of infeasible solutions
and poor data quality.

3 METHODS

To address these challenges, we first separate the entire state space into safe region (Sπsafe) and unsafe
region (Sπunsafe), which is defined below:

Definition 3.1 The safe region under a policy π is defined as Sπsafe := {s|V π
c (s) ≤ l}, and the unsafe

region is Sπunsafe := S \ Sπsafe.

Then we aim to solve the following problem with separate states into consideration:

If s ∈ Sπsafe : max
π

V π
r (s) If s ∈ Sπunsafe : max

π
−V π

c (s)

s.t. V π
c (s) ≤ l, s.t. D(π||πβ) ≤ ϵ, (3)

D(π||πβ) ≤ ϵ,

The optimization problem (3) distinguishes between states in safe regions and those in unsafe regions,
solving them separately. For states within the safe region, the objective is to maximize rewards while
adhering to the safety constraints. For states in the unsafe region, the focus shifts to minimizing
future constraint violations as much as possible, as the rewards are meaningless when the agent is
in the unsafe region. Although the optimal solution to the optimization problem (3) ensures a high
reward while satisfying the constraints in the safe region and minimizes costs in the unsafe region (by
escaping as quickly as possible), if a solution exists, it does not address issues (2) and (3) mentioned
in Section 2.1. Additionally, learning the value function to determine the safe region for a policy π
requires Monte Carlo estimation through interactions with the environment, which is not feasible in
an offline RL setting. To overcome these challenges, we propose the following optimization problem:

If s ∈ Ssafe : max
π

V π
r (s) If s ∈ Sunsafe : max

π
−V π

c (s)

s.t. V π
c (s) ≤ l, D̄(π||πβ) ≤ ϵ (4)

where Ssafe represents the largest safe region as defined in Definition 3.2, which is the union of all
safe regions and D̄ is a normalized divergence metric considering the state in Ssafe only (details
in Appendix C). Here, we focus on minimizing the distance between the optimized policy and the
behavior policy only for states within the safe region, while excluding behavior regularization for
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unsafe states, which is also a key component for controlling behavior regularization. Any state that
does not belong to this region indicates that no policy can satisfy the constraint. Therefore, the
optimal solution for such states is to find the quickest escape sequence.

Definition 3.2 The largest safe region is defined as Ssafe := {s|V̌c(s) ≤ l}, and the smallest unsafe
region is defined as Sunsafe := S \ Ssafe.

The value function V̌c(s) is the value function under the most conservative policy such that V̌c(s) =
minπ V

π
c (s). Our formulation (Eq. (4)) removes the constraint of controlling the distance from

the behavior policy for states in the unsafe region, as it is unnecessary—no policy can satisfy the
constraint in these states (as shown in Figure 1). Another advantage is that the largest safe region
is easier to learn in the offline safe-RL setting (further discussion in the next section). A similar
formulation can be found in FISOR (Zheng et al., 2024); however, our approach differs in several
key aspects. We remove behavior cloning for states in the largest unsafe region, which is critical
for learning a safe policy, especially when the behavior policy performs poorly in such states. Their
feasible region is defined in terms of the value function for the hard constraint using Hamilton-Jacobi
(HJ) reachability (Bansal et al., 2017) from control theory. However, this formulation applies only to
deterministic systems (which is barely true in most of the RL environments) and cannot be generalized
to problems with a more flexible cost limit l. Additionally, we differ significantly in the practical
implementation of the algorithm, as detailed in Section 4.

In the following theorem, we demonstrate that the optimal solution of the decoupled optimization
problem (4) is superior to the solution of the traditional optimization formulation (2):

Theorem 3.3 For any state s ∈ Ssafe (defined in Definition 3.2), assuming π∗
1 is the optimal solution

to the traditional optimization problem (2) and π∗
2 is the optimal solution to our decoupled behavior-

aware region-based optimization problem (4), with ρ = s, then we have V
π∗
2

r (s) ≥ V
π∗
1

r (s), and
V

π∗
2

c (s) ≤ l. For any state s /∈ Ssafe, with ρ = s, then the optimization traditional problem (2) does
not have a solution, and V

π∗
2

c (s) ≤ V π
c (s) for any other policy π.

The reusts can also be easily generalized to the case when ρ = ∆(Ssafe) and ρ = ∆(Sunsafe). The
detailed proof is deferred to Section (C) in the Appendix due to page limit.

4 ALGORITHM

In this section, we formally introduce the details of our algorithm. Following the standard actor-critic
approach, our algorithm includes five critic networks: Q̂c and V̂c to represent the cost Q-value
function under the most conservative policy; Qπ

r and V π
r to represent the reward Q-value function

under the current policy π; and Qπ
c to represent the cost Q-value function. We also use another actor

neural network zθ to represent the policy. Next, we introduce some key components of our algorithm
(Alg. 1).

Learning the least safe region: Given the offline dataset D, we will use the IQL(Kostrikov et al.,
2022) to learn the value function V̌c(s), and the Q− value function Q̌c(s, a), where V̌c(s) =
mina Q̌c(s, a) with expectile regression:

LV̌c
= E(s,a)∼D

[
Lτ (Q̌c(s, a)− V̌c(s))

]
, (5)

LQ̌c
= E(s,a,s′)∼D

[(
(1− α)c(s, a) + α(c(s, a) + γ · V̌c(s

′))− Q̌c(s, a)
)2]

(6)

where Lτ (u) = |τ−1{u>0}|u2, and 1{·} is the indicator function. For τ ∈ (0.5, 1), this asymmetric
loss places more weight when Q̌c ≤ V̌c. Note that learning V̌c and Q̌c is independent of learning
the agent, which means we can get an accurate estimation V̌c and Q̌c before training. Then the
least(“largest”) safe region can be determined using V̌c and the cost limit l. Eq. (6) is referred to as
the discounted safety Bellman equation (Fisac et al., 2019) and is used in practice (Zheng et al., 2024)
to account for situations where there is a small probability, 1− α, of transitioning to an absorbing
state. The fixed point of the safety Bellman equation can be easily shown to converge to the fixed
point of the Bellman equation as α→ 1.
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Region-Based Risk-Reward Optimization: As shown in the optimization (4), our practical algo-
rithm also considers region-dependent objectives. For states in the safe region, where V̌c(s) ≤ l, we
aim to maximize:

Qπ
r (s, a)

Qπ
c (s, a)

· 1{Qπ
c (s,a)>δ} +Qπ

r (s, a) · 1{Qπ
c (s,a)≤δ}, (7)

where a ∼ π follows the actor network zθ. In the objective in Eq. (7), we penalize the reward
Q-function based on the cost Q-value under the current policy, Qπ

c (s, a), whenever Qπ
c (s, a) > δ.

The threshold δ is used to control potential unsafe actions, and to address estimation errors in critic
networks. We simply set δ as the same as the cost limit l in our simulation. In contrast, we maximize
Qπ

r (s, a) only when Qπ
c (s, a) ≤ δ, because the current policy is considered safe enough. The

intuition behind this design is that the safe and unsafe regions are determined based on the value
function under the most conservative policy. This implies that even starting from states in the safe
region may not guarantee any violations under current policy π. Therefore, we need to be more
cautious when optimizing the objective, a factor that is often overlooked in current literature.

For states in the unsafe region, we only need to train the policy to minimize the constraint Q̌c(s, a)
as much as possible. Now we are ready to introduce our algorithm BARS (Behavior-Aware Region-
based offline Safe RL):

If s ∈ Ssafe : max
π,a∼π

E [Aπ
r (s, a)] If s ∈ Sunsafe : max

π,a∼π
E
[
−Ǎc(s, a)

]
s.t.

∫
{a|Q̌c(s,a)≤l}

π(a|s)da = 1,∀s ∈ Ssafe s.t.
∫
a

π(·|s)da = 1 (8)

D̄(π||πβ) ≤ ϵ,

where Aπ
r (s, a) :=

Qπ
r (s,a)

Qπ
c (s,a)

·1{Qπ
c (s,a)>δ}+Qπ

r (s, a)·1{Qπ
c (s,a)≤δ}, and Ǎc(s, a) = Q̌c(s, a)−V̌c(s).

BARS favors actions that provide cost-aware high rewards while ensuring the agent remains safe and
maintains a small distributional shift from the behavior policy in the safe region. In the unsafe region,
BARS focuses on finding the “least cost escape path” by minimizing the advantage function under
the most conservative policy.

Policy Update:In BARS, we use a diffusion model zθ, as in (Zheng et al., 2024), to parameterize
the policy network πθ. We follow a similar approach to (Zheng et al., 2024; Hansen-Estruch
et al., 2023; Kang et al., 2024), considering a weighted loss to train the actor. However, our loss
function is behavior-aware and region-based, incorporating the formulation in Eq. (8). Specifically,
optimizing the policy in the safe region is achieved by minimizing the diffusion training loss for
the behavior policy πβ : minθ Et,(s,a),z

[
∥z − zθ(at, s, t)∥22

]
with the augmentation weight function

wsafe(s, a) = exp(µ1A
π
r (s, a) · 1{Q̌c(s,a)≤l}) as:

min
θ
Lsafe
z (θ) := min

θ
Et∼U([0,T ]),z∼N (0,I),(s,a)∼D

[
wsafe(s, a) · ∥z − zθ(at, s, t)∥22

]
, (9)

where at = αta + σtz is the noisy action that satisfies the forward transition distribution
N (at|αta, σ

2
t I) in the diffusion model, and αt and σt are human-designed noise schedules.

Similarly, optimizing the policy in the unsafe region without considering the distributional shift can
be obtained by minimizing:

min
θ
Lunsafe
z (θ) =: min

θ
E(s,a∼πθ)[exp(−µ2Ǎc(s, a))], (10)

where a ∼ πθ can be obtained after obtaining θ by solvoing the diffusion ODEs/SDEs(Song et al.,
2020).

Remark 4.1 To further improve the performance of BARS, we found it beneficial to incorporate an
additional loss term, D(πt∥πt−k), into Lunsafe

z (θ) at iteration t after Ktrust training steps, where k
specifies how often we update the target policy, and we simply set Ktrust be the half of total training
steps. This term helps ensure that the updated policy does not deviate significantly from the previous
policy (as the trust region in TRPO (Schulman et al., 2015)) when a sufficiently good and safe policy
has already been learned. Consequently, we propose a modified loss function for the unsafe region:

min
θ
Lunsafe
z (θ) =: min

θ
E(s,a∼πθ)[exp(−µ2Ǎc(s, a)) · ∥zθ(at, s, t)− z′(at, s, t)∥22], (11)
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where z′ is the copy of the policy network πt−k. An ablation study comparing the results with and
without the restrictions on the update can be found in Section 5.1. Note that z′ does not represent
the behavior policy πβ . Thus, this regularization technique aligns with our motivation and remains
consistent with the optimization problem in Eq.(4).

Finally, combining the two loss functions above, we have the following weighted loss:

min
θ
Lz(θ) := min

θ
(b1 · Lsafe

z (θ) + b2 · Lunsafe
z (θ)), (12)

where b1 > 0, b2 > 0 are used to control the trade-off between two losses.

Update reward/cost Q functions under the current policy: The cost and reward Q−value functions
Qπ

c and Qπ
r are trained by minimizing the standard bellman loss using the offline dataset:

LQπ
r
= E(s,a,s′)∼D,a′∼πθ

[
(r(s, a) + γ ·Qπ

r (s
′, a′)−Qπ

r (s, a))
2
]

(13)

LQπ
c
= E(s,a,s′)∼D,a′∼πθ

[
(c(s, a) + γ ·Qπ

c (s
′, a′)−Qπ

c (s, a))
2
]

(14)

The full pseudo-code of BARS is presented in Algorithm 1.

Algorithm 1 BARS (Behavior-Aware Region-based offline Safe RL)
1: Initialization:

offline dataset: D, threshold: δ, trust episode: Ktrust, cost limit: l;
initialize networks: V̌c, Q̌c, Qr, Qc, zθ, hyper-parameters: µ1, µ2, b1, b2, k;

2: Determine the largest feasible region:
3: for each gradient step do
4: Update V̌c using Eq. (5).
5: Update Q̌c using Eq. (6).
6: end for
7: Safe Region: S1 = {s|V̂c(s) ≤ l, Q̂c(s, a) ≤ l}.
8: Unsafe Region: S2 = {s|V̂c(s) > l}.
9: for each iteration do

10: Learning critic networks:
11: Update Qr using Eq. (13).
12: Update Qc using Eq. (14).
13: Policy Update:
14: If s ∈ S1 then Calculate loss Lsafe

z (θ) using Eq. (9).
15: If s ∈ S2 :
16: If iteration ≤ Ktrust then calculate loss Lunsafe

z (θ) using Eq. (10).
17: If iteration > Ktrust then calculate loss Lunsafe

z (θ) using Eq. (11).
18: Calculate the policy loss for the offline dataset D using Eq. (12).
19: Update policy zθ. Set z′ ← zθ every k episode.
20: end for

5 EXPERIMENTS

Evaluation Setups. We conduct extensive evaluations using Safety-Gymnasium tasks from the DSRL
(Liu et al., 2023a) benchmark, enabling us to assess the performance of our algorithm compared
to state-of-the-art offline safe reinforcement learning methods. Additionally, to better illustrate the
advantage of BARS under different data quality conditions which has never been investigated in
safe offline RL literature, we compare BARS with other baselines in three distinct scenarios: (1)
high-quality offline dataset ( predominately safe data), (2) medium-quality offline dataset (balanced
safe and unsafe data), and (3) low-quality offline dataset (predominately unsafe data). To implement
these scenarios, we create three data distributions by selectively sampling the original safe data
and duplicating the unsafe data, resulting in safe-to-unsafe data ratios of 8 : 1, 1 : 1, and 1 : 3,
respectively. We employ normalized return and normalized cost as evaluation metrics; further details
are provided in Appendix D.4. Notably, a normalized cost below 1 signifies safety. Following the
principles of DSRL, safety is prioritized as the primary criterion for evaluation. The objective is to
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Table 1: Normalized DSRL benchmark results. ↑ means the higher the better. ↓ means the lower the better.
Each value is averaged over 20 evaluation episodes. Gray: Unsafe agents. Bold: Safe agents whose normalized
cost is smaller than 1. Blue: Safe agents with the highest reward.

BC-safe CPQ COptiDICE FISOR BARS(ours)
Task reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓

CarButton1 0.006 0.49 0.49 26.65 -0.09 4.41 -0.11 0.73 -0.04 0.51
CarButton2 -0.03 1.1 0.20 32.59 -0.02 3.76 -0.001 0.83 -0.04 0.27
CarGoal1 0.15 0.82 0.60 4.87 0.47 1.68 0.42 1.63 0.38 0.48
CarGoal2 0.10 3.67 0.18 4.09 0.12 1.76 0.03 0.24 0.07 0.44
CarPush1 0.18 0.82 0.10 5.21 0.23 1.54 0.24 1.61 0.18 0.47
CarPush2 0.08 1.43 0.07 13.76 0.16 9.38 0.10 1.21 0.148 0.61

AntVelocity 0.88 0.4 -1.01 0 0.99 11.75 0.89 0.003 0.928 0.211
HalfCheetah 0.83 0.04 0.675 14.85 0.61 0 0.89 0 0.966 0.08
SwimmerVel 0.48 0.7 0.001 0 0.7 36.3 -0.04 0.31 -0.05 0.125

Average 0.297 1.052 0.145 11.3 0.35 7.84 0.268 0.72 0.282 0.35

achieve higher rewards while ensuring strict adherence to safety standards. To accurately simulate
safety-critical scenarios, we impose stricter safety regulations. Specifically, the cost limit for all the
Safety-Gymnasium tasks is set as 10.

Baselines. We compare our algorithm with the following baselines: CPQ(Xu et al., 2022): Designate
actions outside the data distribution as unsafe and update the reward critic with safe state-action pairs;
COptiDICE(Lee et al. (2022)): Estimates the stationary distribution corrections for the optimal policy
in terms of returns with an upper bound on costs; FISOR(Zheng et al. (2024)): Learn the feasible
region to maximize rewards within it while minimizing constraint violations in the unfeasible region.

Main Results on the original dataset. The experimental results on the original dataset (Liu et al.,
2023a) are shown in Table 1. Our algorithm consistently achieves a safe policy across all tasks and
obtains the highest reward in most environments. While FISOR1 also ensures safety across tasks and
achieves higher rewards in some cases; CPQ and COptiDICE fail to learn a safe policy in almost all
tasks. We can observe that our algorithm is comparable to the state-of-the-art algorithm.

Main Results Across Datasets of Varying Qualities. As shown in Table 2, under different dataset
distributions, none of the existing state-of-the-art methods can consistently ensure a safe policy as the
data ratio varies, even slightly. Our algorithm is the only one capable of maintaining a safe policy
across all tasks, regardless of data distribution variations, while also achieving the highest overall
rewards in every data ratio scenario. This highlights the robustness and adaptability of our approach,
demonstrating its effectiveness in environments where the proportion of safe to unsafe data fluctuates
significantly. These results also validate our findings regarding the existing challenges in offline safe
RL and emphasize the importance of a behavior-aware, region-based policy.

5.1 ABLATION STUDY

Different Cost Limits. To demonstrate the ability of BARS to perform well even under different
cost limits, we evaluate BARS on CarGoal2 with cost limits of 10, 20, and 40. As shown in Table 3,
BARS is able to achieve higher rewards as the cost limit increases. BARS proves more adaptable to
practical situations by adjusting the cost limit, as a higher limit allows the agent greater freedom to
explore higher-reward policies.

Safe offline RL with new Data Collection. To further investigate the issue of data quality in safe
offline RL and verify BARS’s ability to train a behavior-aware, region-based policy, we design a
new experimental setting where the agent is allowed to collect a new dataset during training. This
setting has significant practical value, as it reflects a scenario where a policy is initially trained on
a given dataset (maybe not good) but can further improve its performance by collecting additional
data when the policy is deemed safe enough for exploration. In this experiment, we first train BARS
for 2e5 steps using a dataset randomly selected from the original offline dataset (with a safe-to-

1The results are obtained using the official code published by the FISOR authors: https://github.
com/ZhengYinan-AIR/FISOR. Unfortunately, we were unable to reproduce the exact results reported
in the original paper for some environments. However, our results are still comparable with those reported
(0.30, 0.35).
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Table 2: Normalized DSRL benchmark results with Data Vaires. ↑ means the higher the better. ↓ means the
lower the better. Each value is averaged over 20 evaluation episodes. Gray: Unsafe agents. Bold: Safe agents
whose normalized cost is smaller than 1. Blue: Safe agents with the highest reward.

Data Ratio CPQ COptiDICE FISOR BARS(ours)
Task Safe Unsafe reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓

8 1 0.25 46.3 0.04 2.7 0.01 1.12 -0.15 0.535
CarButton1 1 1 0.03 22.3 -0.09 0.86 0.01 1.045 -0.07 0.565

1 3 0.10 44.4 -0.23 1.38 -0.09 1.455 -0.25 0.1
8 1 0.21 50.08 -0.02 0.93 0.0083 1.23 -0.10 0.34

CarButton2 1 1 0.04 39.40 -0.12 3.65 -0.02 1.75 -0.08 0.63
1 3 0.11 27.01 -0.29 3.54 -0.006 2.655 -0.25 0.56
8 1 0.21 3.05 0.36 3 0.458 1.505 0.35 0.52

CarGoal1 1 1 0.25 5.92 0.26 1.48 0.165 0.75 0.21 0.16
1 3 0.59 3.995 0.22 2.01 0.183 1.505 0.08 0.21
8 1 0.001 6.84 0.24 3.23 0.03 0.355 0.03 0.505

CarGoal2 1 1 0.004 4.97 0.14 2.16 0.06 2.49 0.002 0.71
1 3 0.24 20.07 0.08 1.97 0.14 2.08 0.001 0.685
8 1 0.28 1.21 0.23 2.165 0.27 0.54 0.18 0.53

CarPush1 1 1 -0.02 0.085 0.22 1.26 0.27 2.12 0.11 0.54
1 3 -0.01 7.49 0.25 3.60 0.20 1.67 0.10 0.43
8 1 -0.04 17.395 0.05 2.42 0.07 0.24 0.12 0.56

CarPush2 1 1 0.04 9.95 0.11 4.91 0.08 1.82 0.01 0.41
1 3 0.04 34.88 0.15 4.99 -0.01 1.355 0.004 0.49
8 1 -1.012 0 0.96 3.285 0.88 0 0.96 0.32

AntVelocity 1 1 -1.011 0 0.99 13.99 0.78 0 0.81 0.045
1 3 -1.011 0 0.97 11.62 0.77 0 0.71 0.047
8 1 0.019 0.215 0.51 0 0.87 0 0.88 0.005

HalfCheetah 1 1 -0.19 0 0.50 0 0.83 0 0.88 0
1 3 -0.25 0 0.46 0 0.84 0 0.86 0.005
8 1 0.002 0 0.48 5.4 -0.06 0.125 -0.05 0.86

SwimmerVel 1 1 0.1 1.35 0.50 15.1 0.312 1.24 -0.03 0.54
1 3 0.03 1.02 -0.05 1.465 0.33 2.185 -0.04 0.705

Average — — -0.03 12.88 0.26 3.59 0.27 1.08 0.195 0.407

Table 3: Various cost limit for CarGoal2 task. Each value is averaged over 20 evaluation episodes under cost
limit 10, 20 and 40.

cost limit 10 cost limit 20 cost limit 40
Methods reward ↑ cost ↓ reward ↑ cost ↓ reward ↑ cost ↓
BARS 0.07 0.44 0.10 0.24 0.20 0.75

unsafe ratio of 1 : 1), We then use the trained policy to collect a new dataset(First-Collected) and
continue training the policy for another 2e5 steps, then repeat this process to collect another new
dataset(Second-Collected) and train for an additional 2e5 steps to assess performance improvement.
It is clear to observe that the mean episode cost drops dramatically (from 69.72 to 7.45) even after
one new collection(Figure 3(c)), which implies that the policy is already safe enough for further
exploration. Besides, we report the performance of BARS w/wo new data collection after training for
4e5, 6e5 steps in Figure 3(a,b). We can observe that allowing new data collection during learning
can gradually further improve performance. The reward is increased by 72% after training for 4e5
steps and is increased by 26% after training for 6e5 steps while all the policies are ensured to be safe.
Detailed experiment settings are available in Section E in the Appendix.

Adding Restrictions when Updating the Policy for States in the Unsafe Region. As discussed
in Section 1, adding the restriction when updating the policy for states in the unsafe region can
restrict the policy from diverging from too much. In this section, we evaluate BARS’s performance
by conducting experiments both with and without the additional loss term detailed in Eq. (11). The
experimental results in Table 4 demonstrate that adding the policy restriction term can help boost the
reward. Note that without adding this regularization, BARS can still ensure a safe policy.
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Figure 3: (a), (b): Normalized reward and cost during training on CarPush 1; (c): The average cost per
episode (cost limit l = 10): the original dataset has a safe-to-unsafe ratio of 1 : 1. The first-collected
dataset is generated using the policy after training for 2e5 steps, while the second-collected dataset is
generated using the policy after training for 4e5 steps.

Table 4: Restriction Update Result

w/o policy restriction with policy restriction
Task reward ↑ cost ↓ reward ↑ cost ↓

SwimmerVel -0.06 0.02 -0.05 0.125
AntVel 0.75 0.01 0.928 0.211

HalfCheetah 0.36 0 0.966 0.08

6 RELATED WORK

In offline safe RL, primal-dual-based approaches are the most commonly used (Tessler et al., 2018;
Chow et al., 2017; Ding et al., 2020; Efroni et al., 2020; Wei et al., 2022a; Fujimoto et al., 2019;
Kumar et al., 2019). CPQ (Xu et al., 2022) employs a VAE to detect and penalize out-of-distribution
(OOD) actions based on their associated costs. COptiDICE (Lee et al., 2022), an extension of
OptiDICE (Lee et al., 2021), integrates safety constraints and derives a safe policy from the stationary
distribution of the optimal policy. Other methods, such as applying decision transformers (Chen et al.,
2021) or diffuser models (Janner et al., 2022), have been used to study safe offline RL, though they
tend to be computationally inefficient. FISOR (Zheng et al., 2024) decouples the process of satisfying
safety constraints from reward maximization, leveraging a diffusion model for policy generation.
VOCE (Guan et al., 2024) addresses extrapolation errors caused by OOD actions by estimating both
cost and reward Q-values in a pessimistic manner. Additionally, some works (Yang et al., 2023;
Wabersich et al., 2023; Kim et al., 2024) draw from control theory to enforce state-wise constraints.
More discussions on the related work can be found in Section A in the Appendix.

7 CONCLUSION

We propose BARS, a novel algorithm that tackles the existing issues of applying behavior regulariza-
tion in offline safe RL. We demonstrate that directly applying it in offline safe RL often leads to issues
such as policy infeasibility and the risk of imitating poor or unsafe behavior. BARS addresses these
challenges by distinguishing between safe and unsafe states and applying region-specific, selective
behavior regularization to optimize the policy accordingly. Extensive experiments demonstrate
that BARS significantly outperforms several state-of-the-art baselines in both rewards and safety,
particularly when the behavior policy is far from optimal. Even in scenarios where the dataset quality
is low, BARS continues to perform robustly, while other baselines fail to maintain safe policies across
environments. This highlights BARS’s potential to resolve a previously overlooked issue in offline
safe RL and provide a framework for safer and more effective policy learning.
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A MORE RELATED WORKS

Safe RL has attracted great attention recently, both in online setting (Efroni et al., 2020; Liu et al.,
2021; Bura et al., 2022; Wei et al., 2022b;a; 2024a; Müller et al., 2023; Germano et al., 2023; Ding
et al., 2024; Müller et al., 2024) and offline setting (Wu et al., 2021; Chen et al., 2021; Lee et al.,
2022; Liu et al., 2023b; Xu et al., 2022; Guan et al., 2024; Zheng et al., 2024; Hong and Tewari,
2024).

In theoretical offline RL, certain assumptions about the ratio between the state-action occupancy
distribution of a policy π and the dataset distribution µ are necessary to prove convergence. This
ratio is represented by wπ = dπ/µ. A commonly used assumption is that the ℓ∞ concentrability
Cπ

ℓ∞
, defined as the infinite norm of wπ, is bounded for all policies (Liu et al., 2019; Chen and

Jiang, 2019; Wang et al., 2019; Liao et al., 2022; Zhang et al., 2020). However, this assumption
is difficult to satisfy, particularly in offline safe RL, as it requires the dataset to adequately cover
all unsafe state-action pairs. To address this, recent works (Rashidinejad et al., 2021; Zhan et al.,
2022; Chen and Jiang, 2022; Xie et al., 2021; Uehara and Sun, 2021) introduce pessimism to reduce
the requirement to only the best-covered policy. Zhu et al. (2023) further relaxes this assumption
by introducing ℓ2 concentrability, which is always bounded by ℓ∞. While existing offline safe RL
studies (Hong et al., 2024; Le et al., 2019) still require coverage for all policies, a recent work Wei
et al. (2024b) relaxes this assumption to single-policy coverage.

Deep offline safe RL algorithms (Lee et al., 2022; Liu et al., 2023b; Xu et al., 2022; Chen et al., 2021;
Zheng et al., 2024) have shown strong empirical performance but usually lack theoretical guarantees.
As we mentioned in the introduction, balancing generalization with preventing undesirable behaviors
from out-of-distribution actions is a key challenge in offline RL. A straightforward approach is
to directly constrain the learned policy to align with the behavior policy used to collect the data
set (Fujimoto et al., 2019; Kumar et al., 2019; Fujimoto and Gu, 2021; Wu et al., 2019). Other
methods address this by making conservative estimates of future rewards through a lower bound
on the true value function (Kumar et al., 2020; Yu et al., 2021) or by penalizing out-of-distribution
(OOD) actions to control distributional shift (Kostrikov et al., 2021; Lyu et al., 2022). Model-based
approaches often handle uncertainty by using ensembles, penalizing actions with high variability
across models and promoting those that show consistency (Janner et al., 2019; Kidambi et al., 2020).
Recently, some studies have explored the use of expressive diffusion models for policy learning to
capture more complex distributions, achieving impressive results (Janner et al., 2022; Lu et al., 2023;
Hansen-Estruch et al., 2023; Zheng et al., 2024).

B MORE DISCUSSIONS ON THE COMPARISON BETWEEN BARS AND FISOR

Our formulation is inspired by FISOR (Zheng et al., 2024), which proposes a feasibility-guided diffu-
sion model for offline safe RL. However, our formulation differs from FISOR in several significant
ways:

• To the best of our knowledge, this is the first paper to address the issue that using behavior
regularization constraints in safe RL can lead to infeasible solutions, particularly when multiple
constraints are involved. Moreover, adding behavior regularization may result in the learned policy
imitating the behavior policy, even in states where the behavior policy performs poorly or is unsafe.
This issue is not limited to FISOR; almost all existing algorithms fail to account for this problem
and cannot reliably guarantee a safe policy when the behavior policy is suboptimal, as demonstrated
in Table 2.

• FISOR addresses only the “hard constraint” setting, where the cost value function represents the
maximum constraint violation (largest state-wise cost) in the trajectory. This greatly limits the
generalization of their approach to other scenarios where a cost limit is considered. Since ristrictly
control the hard constraint on some dangerous states can also be done by adding a large penalty to
the reward function for such states to avoid a unsafe policy. In contrast, BARS can handle a wide
range of constraints, offering flexibility by adjusting the constraint limit in the algorithm.

• FISOR (Zheng et al., 2024) defines the feasible region using the value function for the hard
constraint based on Hamilton-Jacobi (HJ) reachability (Bansal et al., 2017) from control theory.
However, the formulation in FISOR applies only to deterministic systems, which is rarely the case
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in most RL environments, and cannot be generalized to problems with more flexible cost limits.
The Bellman equation used in FISOR to train the value function no longer holds in stochastic
systems.

• FISOR optimizes the policy by maximizing the value function to achieve the highest reward without
considering constraints, which overlooks the fact that such a policy may not be safe. In contrast, we
propose a “Region-Based Risk-Reward Optimization” in Eq.(7), which accounts for potential errors
in value function estimation (likely to be true in practice) and directly optimizes the policy based
on the current policy. This approach enables BARS to avoid potential unsafe actions effectively.

C PROOF OF THEOREM 3.3

For any state s ∈ S, define the standard optimization problem as:

max
π

V π
r (s) s.t. V π

c (s) ≤ l, D(π||πβ) ≤ ϵ, (15)

Our decoupled behavior-aware, region-based formulation is:

If s ∈ Ssafe : max
π

V π
r (s); If s ∈ Sunsafe : max

π
(−V π

c (s))

s.t. V π
c (s) ≤ l, D̄(π||πβ) ≤ ϵ, (16)

where we consider the KL divergence as the normalized distance metric D̄, which is defined as: D̄ :=∑
s∈Ssafe

∫
a
π(a|s) log

( π(a|s)
πβ(a|s)

)
da. Here, we focus on minimizing the distance between the optimized

policy and the behavior policy only for states within the safe region, while excluding behavior
regularization for unsafe states. Let π∗

1 be the optional solution of the optimization problem (15), and
π∗
2 be the optimal solution of the decoupled optimization problem (16). To show that π∗

2 dominates
π∗
1 , we will show that π∗

1 is a feasible solution to the optimization problem (16). First, for any
s ∈ Ssafe, we have that V π∗

1
c (s) ≤ l,D(π∗

1 ||πβ) ≤ ϵ according to the constraints in (15). Since we
have

ϵ ≥ D(π∗
1 ||πβ) =

∑
s∈S

∫
a

π∗
1(a|s) log

(π∗
1(a|s)

πβ(a|s)
)
da

=
∑

s∈Ssafe

∫
a

π∗
1(a|s) log

(π∗
1(a|s)

πβ(a|s)
)
da+

∑
s∈Sunsafe

∫
a

π∗
1(a|s) log

(π∗
1(a|s)

πβ(a|s)
)
da

≥
∑

s∈Ssafe

∫
a

π∗
1(a|s) log

(π∗
1(a|s)

πβ(a|s)
)
da.

Thus, π∗
1 is also a feasible solution to the optimization problem (16) as well. Therefore we have

V
π∗
2

r (s) ≥ V
π∗
1

r (s). For the case when s /∈ Ssafe, the optimization problem (15) does not have a
solution. V π∗

2
c is the smallest cumulative cost we can have.

D EXPERIMENTAL DETAILS

D.1 REACH-AVOID TASK

The experimental setup illustrated in Figure 1, as adapted from the toy case experiment discussed in
(Zheng et al., 2024), entails an agent tasked with navigating towards a goal while circumventing a
hazard located at the center of the map. The state space of the agent is defined as S := (x, y, v, θ),
where x and y are the agent’s coordinates, v represents the initial velocity, and θ the direction of
movement. The action space is designated as A := (v̄, θ̄), with v̄ denoting acceleration and θ̄ angular
acceleration. The reward function r evaluates performance by measuring the change in distance to
the target between consecutive time steps. To encourage the agent to reach the goal location, we
assign a substantial reward when the agent successfully arrives at the goal. The cost function h is
expressed as:

h := Rhazard − dhazard
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In this expression, Rhazard represents the radius of the hazard, set to 0.8 in this implementation, and
dhazard denotes the distance between the agent and the hazard. A negative or zero value of h indicates
a collision with the hazard, signaling a breach of safety. The compliance measure c is then defined as
c := 1{h≤0}, which assesses the agent’s adherence to safety protocols during navigation.

To gather sufficient data, we first allow the agent to interact with the showcase environment and train
it using the TD3-Lag algorithm, as modified by (Fujimoto et al., 2018). Once the agent is well-trained,
it is deployed to collect expert data. Additionally, we run a random policy to accumulate a large
number of unsafe or low-quality data samples. These random policy samples are then combined
with the expert data to generate three distinct categories of offline datasets: high-quality, with a
safe-to-unsafe ratio of 19:1; medium-quality, with a ratio of 10:1; and low-quality, with a ratio of 5:1.
The distribution of the collected data is illustrated in Figure 4, where the regions with higher data
concentration, particularly around hazard zones for the low-quality dataset, are highlighted in bright
colors.

Figure 4: Data Distribution for High/Medium/Low Quality Offline Dataset

To more effectively demonstrate BARS’s advantages across varying data quality scenarios (results
in Table 2), we compared BARS with other baseline methods on Safety-Gymnasium tasks under
three distinct data conditions: (1) a high-quality offline dataset predominantly composed of safe
data, (2) a medium-quality offline dataset with a balanced mix of safe and unsafe data, and (3) a
low-quality offline dataset largely consisting of unsafe data. To establish these scenarios, we created
three different data distributions by selectively sampling the existing safe data and augmenting the
unsafe data at the beginning of training. This approach resulted in safe-to-unsafe data ratios of 8:1,
1:1, and 1:3, respectively, with the exact data quantities shown in Table 5.

D.2 STARTING FROM UNSAFE REGION IN THE TOY EXAMPLE

Figure 5 illustrates that if the agent starts in a hazardous region (unsafe region), BARS can still learn
a reasonable policy that reaches the destination while escaping the hazardous region as quickly as
possible with a lower cost than FISOR.

Figure 5: Starting at Unsafe Region
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Table 5: Summary of Simulation Data Samples

Data Ratio Dataset
Task Safe Unsafe Number of Safe Samples Number of Unsafe Samples

8 1 1,600,000 200,000
CarButton1 1 1 1,600,000 1,600,000

1 3 1,600,000 4,800,000
8 1 1,600,000 200,000

CarButton2 1 1 1,600,000 1,600,000
1 3 1,600,000 4,800,000
8 1 560,000 70,000

CarGoal1 1 1 560,000 560,000
1 3 560,000 1,680,000
8 1 1,600,000 200,000

CarGoal2 1 1 1,600,000 1,600,000
1 3 1,600,000 4,800,000
8 1 1,200,000 150,000

CarPush1 1 1 1,200,000 1,200,000
1 3 1,200,000 3,600,000
8 1 1,600,000 200,000

CarPush2 1 1 1,600,000 1,600,000
1 3 1,600,000 4,800,000
8 1 1,600,000 200,000

AntVelocity 1 1 1,600,000 1,600,000
1 3 1,600,000 4,800,000
8 1 1,600,000 200,000

HalfCheetah 1 1 1,600,000 1,600,000
1 3 1,600,000 4,800,000
8 1 1,200,000 150,000

SwimmerVel 1 1 1,200,000 1,200,000
1 3 1,200,000 3,600,000

D.3 SAFETY-GYMNASIUM

Safety-Gymnasium (Ray et al., 2019; Ji et al., 2023) is a highly modular and easily customizable
benchmark environment library, built on MuJoCo, and designed to support research in Safe RL. The
four distinct agents are “Car,” “Ant,” “HalfCheetah,” and “Swimmer,” while the tasks associated with
these agents are “Button,” “Goal,” “Push,” and “Vel.” The numbers "1" and "2" indicate the difficulty
levels of these tasks. Figure 6 provides visualizations of all the tasks.

D.4 EVALUATION METRICS

We employ normalized reward and cost as comparison metrics as proposed by (Liu et al., 2023a). Let
rmax(M) and rmin(M) represent the maximum and minimum empirical reward returns for task M;
detail values can be found in Table 6, respectively. The normalized reward is calculated as follows:

Rnormalized =
Rπ − rmin(M)

rmax(M)− rmin(M)
,

where Rπ indicates the evaluated reward return of policy π. In contrast, normalized cost is defined
using a different formula to enhance result differentiation. It is computed based on the ratio between
the evaluated cost return Cπ and the cost limit l :

Cnormalized =
Cπ + ϵ

l + ϵ
,

where ϵ is a positive number to ensure numerical stability if the cost limit l is 0. Note that the cost
return and the cost limit are always non-negative. Therefore, both Cnormalized and Rnormalized fall within
the range [0,1], where a lower cost is preferable and a higher reward is more desirable.
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Figure 6: Safety-Gymnasium Visualization Overview

Table 6: Exact value for rmax and rmin

Task rmax rmin

CarButton1 44.42 0.0028
CarButton2 41.99 0.0017
CarGoal1 39.90 0.012
CarGoal2 28.90 0.001
CarPush1 16.30 0.013
CarPush2 15.14 0.0002

AntVel 2976.27 6.15
HalfCheetah 2806.93 5.75
SwimmerVel 238.95 0.071

D.5 HYPERPARAMETERS

The entire training process for each task was conducted on a single RTX-4090 GPU, taking ap-
proximately two hours per task. All hyperparameters used in the experiments are detailed in Table
7.

Training Details We structured our training process into a two-stage approach to enhance efficiency.
In the first stage, we train and save the critical components, Q̌c and V̌c. In the second stage, we
load these pre-trained components and proceed to update Qr, Qc, and zθ. This bifurcated training
strategy significantly reduces the overall time required for model convergence. Throughout the
training process, we employ the Adam optimizer and opt not to use weight decay regularization to
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Figure 7: Training Process with New Dataset Collection

avoid potential negative impacts on training dynamics. Different tasks require different parameters.
For the loss weight controller b1, b2, in simpler task environments ("AntVel" and "HalfCheetah")
where learning a safe policy is easier, we prioritize maximizing rewards by setting b1 = 3, b2 = 1.
Conversely, in more complex environments where learning a safe policy is challenging, we adjust the
parameters to b1 = 1, b2 = 3 to emphasize safety. Additionally, we introduce an extra loss term as
detailed in Eq. (11), and update the reference network z′ every k = 5 steps.

Table 7: Hyperparameters of BARS
Parameter Value

Activation function ReLU
Expectile τ 0.9
Discount factor γ 0.99
Soft update factor 0.001
α 0.99
Temperature µ1 3
Temperature µ2 5
Safe Loss Control b1 1
Unsafe Loss Control b2 3
Number of times Gaussian noise is added T 5
Number of action candidates N 16
Diffusion Model DDPM (Hansen-Estruch et al., 2023)
Ktrust 5e5
Training steps 1e6
k 5

E ABLATION STUDIES

E.1 COLLECT NEW DATA TO IMPROVE POLICY GRADUALLY

In this section, we outline the methodology for collecting new data using a pre-trained policy. Initially,
we use the dataset from (Liu et al., 2023a) to randomly select a mini dataset for training our first
agent, π1, for 2e5 steps as a safe policy. Following this, we transition from an offline setting to an
online environment for collecting new data. In this online mode, the agent interacts directly with the
environment, executing the learned policy while observing rewards and any violations of predefined
costs. These new data samples are then used to further train the policy for another 2e5 steps. We
repeat this process for additional training rounds. In the experiment, we select a dataset for CarPush1,
which includes 600,000 data samples, distributed across 600 trajectories, each containing 1,000
steps. Each data collection process is conducted using a high-performance RTX-4090 GPU, taking
approximately 3 hours to gather a complete dataset for each task. The exact process is detailed in
Figure 7.

F LIMITATIONS AND DISCUSSIONS

A limitation of BARS is its applicability to non-region-based safe offline RL approaches. Our
method removes the behavior regularization for states in the unsafe region. However, for settings
that allow cancellation of the cost (e.g., where both positive and negative costs are permitted), it
becomes challenging to define well-separated safe and unsafe regions. Thus, addressing the behavior
regularization issue in such cases requires further consideration.
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G LEARNING CURVES

The learning curves for the experiments reported in Table 1 are shown in Figure 8.

Figure 8: Learning Curves
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