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Abstract

Recent advances in 2D image generation have achieved remarkable quality, largely driven by
the capacity of diffusion models and the availability of large-scale datasets. However, direct 3D
generation is still constrained by the scarcity and lower fidelity of 3D datasets. In this paper,
we introduce Zero-1-to-G, a novel approach that addresses this problem by enabling direct
single-view generation on Gaussian splats using pretrained 2D diffusion models. Our key
insight is that Gaussian splats, a 3D representation, can be decomposed into multi-view images
encoding different attributes. This reframes the challenging task of direct 3D generation within
a 2D diffusion framework, allowing us to leverage the rich priors of pretrained 2D diffusion
models. To incorporate 3D awareness, we introduce cross-view and cross-attribute attention
layers, which capture complex correlations and enforce 3D consistency across generated splats.
This makes Zero-1-to-G the first direct image-to-3D generative model to effectively utilize
pretrained 2D diffusion priors, enabling efficient training and improved generalization to
unseen objects. Extensive experiments on both synthetic and in-the-wild datasets demonstrate
superior performance in 3D object generation, offering a new approach to high-quality 3D
generation. Project page: https://mengxuyigit.github.io/projects/zero-1-to-G/

1 Introduction

Single image to 3D generation is a pivotal challenge in computer vision and graphics, supporting various
downstream applications such as virtual reality and gaming technologies. A primary difficulty lies in managing
the uncertainty of unseen regions, as these areas represent a conditional distribution based on the visible
portions of a 3D object. Recent advancements in diffusion models ( , ; , )
have demonstrated significant efficacy in capturing complex data distributions within images and videos,
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Figure 1: Zero-1-to-G tackles direct Gaussian splat generation from single images. By using pretrained 2D
diffusion models, we are able to generalize to in-the-wild objects.

prompting researchers to harness these models for single image to 3D generation. Early efforts distilled 3D
neural fields from pretrained 2D diffusion models via score distillation (Poole et al., 2022; Wang et al., 2023).
However, these approaches necessitate per-scene optimization, which is time-consuming and susceptible to
multi-faced Janus problems. Subsequent research achieved feed-forward generation by fine-tuning pretrained
models to generate multi-view images of the same object (Liu et al., 2023b; Shi et al., 2023a; Long et al,,
2023; Liu et al., 2023¢) and enabling indirect 3D generation through sparse-view reconstruction models (I.i
et al., 2023; Tang et al., 2024; Xu et al., 2024), and Cat3D (Gao et al., 2024) further extends sparse view
generation to dense view generation for better reconstruction. Although these two-stage methods enhance
quality and efficiency, they often yield poor geometric fidelity and blurry renderings due to inconsistencies
in multi-view images. To circumvent these limitations, recent methodologies have trained diffusion models
directly on 3D representations (Liu et al., 2023d; Chen et al., 2023a; Zhang et al., 2024a; He et al.; 2024;
Nichol et al., 2022), thereby eliminating the reliance on multi-view images. However, direct 3D generation
techniques necessitate training from scratch, requiring substantial computational resources and large 3D
datasets, which remain scarce—three orders of magnitude less prevalent than 2D data.

In this paper, we propose a novel approach for direct 3D generation that unites the strengths of both worlds:
it leverages the expressive power of 2D diffusion networks while maintaining the 3D structural consistency
required for accurate 3D generation. Our key contribution is bridging the gap between Gaussian splats and
natural images typically used in 2D generation tasks. While the original Gaussian splats consist of 14-channel
images encoding various attributes, we decompose each of them into multiple 3-channel attribute images while
preserving its 3D information (Sec. 3.1) This decomposition also enables efficient latent diffusion training by
projecting the splatter images into the latent space of a pretrained VAE, making our method directly generate
3D structures within a pretrained 2D diffusion framework. To further align the latent space of pretrained
VAE for efficient 3D information reconstruction, we fine-tune the VAE decoder to address the domain gap
between splatter images and natural images, as we observed that splatter image quality is highly sensitive to
pixel-level variations (Sec. 3.2). To ensure consistency among all the generated images representing different
attributes under different views, we introduce multi-view attention layers and multi-attribute attention layers
respectively into the Stable Diffusion for information exchange (Sec. 3.3).

It is important to note that, although we generate multiview splatter images, our method produces more
structurally consistent and higher-quality results compared to traditional two-stage multiview 3D generation
approaches. In two-stage methods (Xu ct al., 2024; Tang ot al., 2024), strong pixel-level consistency is
required in the first stage to ensure accurate reconstruction in the second stage, which is often difficult to
achieve. Moreover, the first stage operates independently of the second, lacking coordination between the two,
thereby exacerbating inconsistencies. In contrast, our approach directly generates the final 3D representation
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in a single stage, eliminating the need for pixel-level correspondence between multiview splatter images. Since
splatter images can contain redundant information, and their spatial positions do not necessarily map to the
final 3D positions, this single-stage process offers greater flexibility and robustness, ensuring a more consistent
final 3D structure.

By leveraging pretrained 2D diffusion priors, our method not only improves training efficiency compared to
existing 3D generation methods (Tab.2) but also exhibit strong diversity (Fig.12) and generalizes better to
in-the-wild data (Fig.5) and real-world data (Fig.10). Overall, our contributions can be summarized as below:

o We present Zero-1-to-G, a novel direct 3D generative model for Gaussian splats that achieves excellent

3D consistency, diversity and superior rendering quality.
e We observe that Gaussian splats, as a 3D representation, can be decomposed into a set of 2D images

of different views and attributes, making them inherently compatible with 2D image generation

frameworks.
e Through decomposition and transformation of splatter images, we use 2D diffusion models for direct

3D generation with proper fine-tuning, unleash the power of pretrained 2D diffusion for training
efficiently and better generalization towards in-the-wild data.

2 Related Works

To tame 2D diffusion for 3D generation, it is important to verify that 2D diffusion contains 3D priors.
Based on that, 3D diffusion is approached via two different ways: distilling 3D representation by
optimization, or generate multi-view images as an intermediate step. While they benefit from the
pretrained 2D diffusion prior, they are not as consistent as direct 3D generation, which in turn has its
own limitations. Therefore we would like to combine the good of both worlds to achieve both efficiency
and consistency in 3D generation. At the end, we have discussed some concurrent works that also use 2D
diffusion for direct 3D generation, which have similar pipelines but are different in high-level motivations
and inplementations.

Rich 3D Priors in Pretrained 2D Diffusion Pretrained 2D diffusion models ( ) trained
on Internet-scale datasets exhibit a certain level of 3D understanding,. ( ) demonstrated their
capability to capture viewpoint changes and fine-tuned them on large 3D multi-view datasets for novel view
synthesis. Other works extend their utility beyond natural images to generate 3D-aware outputs such as
depth and normals ( ); ( ); ( ); ( ). Following this
line of works that adapt 2D diffusion priors for 3D-aware image prediction, our method leverages pretrained
2D diffusion models to generate Gaussian splats as splatter images, improving the generalization ability of
direct 3D generation.

Optimization-based 3D Generation via Distillation Dreamfusion ( , ) and subsequent
works ( , ; ; , ) utilize a pretrained text-to-image diffusion model
to optimize a 3D representation through score distillation. DreamGaussian ( , ) significantly

reduces training time by optimizing Gaussian splats. However, score distillation-based methods still require
minutes of optimization per scene, as they must compare renderings with diffusion outputs from various
viewpoints, which limits their generation speed. Additionally, these methods lack a clear understanding of
geometry and viewpoint, resulting in multi-face problems.

Two-stage 3D Generation via Multi-view Diffusion Researchers have opted to train reconstruction-
based models for highly efficient 3D generation ( , ; ;

; , ). LRM ( , ) and TrlpOSR ( , ) 1ntroduced
a transformer based model that directly output a triplane from a single image. The model is trained on
million-scale data by comparing the renderings of the triplane with ground truth using regression-based
loss. TriplaneGaussian ( , ) further used a hybrid triplane-Gaussian representation to greatly
accelerate the rendering of the generated 3D assets. However, the main drawback of regression-based methods
is their failure to account for the uncertainty in single-view to 3D generation. GECO ( , )
attempts to address this issue by distilling knowledge from multi-view diffusion models into a feedforward
model. CRM ( , ) introduces a geometric prior by employing two separate diffusion models
to generate orthographic RGB images and Canonical Coordinate Maps, which are then fused into a triplane
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representation using a convolutional UNet to produce the final textured mesh. Nonetheless, their results
remain limited by the quality of the generated multi-view images.

One-stage (Direct) 3D Generation via 3D Diffusion Significant efforts have been made to directly train
diffusion models on various 3D representations, including point clouds ( ; , ;
, ; , ), meshes ( , ), and neural ﬁelds ( ,

, ; , ; , ). However, these methods are typically constralned
to category-level datasets and often struggle to generate high-quality assets. More recent approaches have
begun encodlng 3D assets into more compact latent representatlons ( , ;

; ; , ), enabhng d1ffus1on models to be
trained more eﬂimently and enhancmg generahzatlon Capablhtles Despite these advancements, direct 3D
generative models are still primarily trained on synthetic 3D datasets like Objaverse ( , ),
which may hinder their ability to effectively handle more in-the-wild inputs.

More closely related to our work are GVGen ( , ) and GaussianCube ( , ), which
also train diffusion models to generate Gaussian splats. Different from our method of leveraging 2D diffusion
prior, they learn a latent space from scratch by directly encoding a structured volume of Gaussian splats,
limiting their generalization ability.

Direct 3D Generation via 2D Diffusion Several works ( , ; , ; ,
) also find the potential of tuning 2D diffusion to acquire 3D understanding and propose methods of

generating 3D with 2D diffusion models. Specifically, Omage ( , ) uses a 12-channel UV atlas,
requiring training from scratch without leveraging pretrained 2D diffusion priors, limiting its generalization
ability. On the other hand, GIMDiffusion ( , ) decomposes the UV atlas into separate

geometry maps and albedo textures to match the 3-channel output, but the use of pretraiend 2D diffusion
models are limited to albedo generation. Still, both approaches focus on text-to-3D generation while we focus
more on single-view image-to-3D reconstruction, and their reliance on mesh representations limits flexibility
to model real-world data containing complex backgrounds, while our approach offers greater adaptability to
diverse scenarios. While both our method and ( ) adopt 3D Gaussian Splatting as the final
representation, our approaches differ significantly in both design and motivation. At the design level,

( ) uses a 2D diffusion model to predict latents for only RGB and depth, then extends the decoder
to infer all Gaussian attributes from these two modalities. On the other hand, we directly predict latents for
each individual Gaussian attribute and adopt a cross-domain mechanism to ensure their consistency, and keep
the decoder architecture unchanged to largely preserve the pretrained latent space. These different design
choices stem from different motivations. Our insight is that each individual Gaussian attribute image exhibits
structural similarities to natural RGB images, which motivates our method to treat each attribute image
as the generation target, enabling the 2D diffusion model to leverage its strong prior across all attribute
domains. The decoder then processes these attribute images just like standard RGB images. On the other
hand, ( ) relies more heavily on the decoder to interpret and reconstruct all Gaussian attributes,
placing less emphasis on adapting the diffusion prior for understanding these domains.

3 Methods

Our method Zero-1-to-G is a single stage direct 3D generation: given single view input I, Zero-1-to-G
generates the corresponding 3D representation z, where z = {z;|i = 1, ..., N} multiple Splatter Images under
N camera views.

To harness the power of large-scale pretrained 2D diffusion models for direct 3D generation, we represent
each 3D object as a set of multi-view Splatter Images ( , ). In Sec. 3.1, we detail our
decomposition process, converting each multi-view splatter image into five 2D attribute images corresponding
to RGB color, scale, rotation, opacity, and position. This decomposition allows us to effectively leverage the
priors of 2D pretrained diffusion models to learn the underlying 3D object distribution (Sec. 3.3). Furthermore,
we fine-tune the VAE decoder to enhance the rendering quality of the decoded Splatter Images (Sec. 3.2).
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Figure 2: The pipeline of Zero-1-to-G. During training, we fine-tune both the VAE decoder (Sec. 3.2) and
the denoising UNet (Sec. 3.3) of Stable Diffusion. At inference time, given a single view input of the target
object, each component in the splatter image is generated by conditioning the camera view and the attribute
switcher. The generated set of splatter image components can be directly fused into Gaussian splats (Sec. 3.1).
Here we show splatter images of 3 views for better illustration, while our main experiments are conducted
with 6 views.

3.1 Data Curation: Splatter Attribute Images

Gaussian splats can be rearranged into H x W grids, called Splatter Images (Szymanowicz et al., 2023), with
14 channels stacking five Gaussian attributes. Each attribute has a defined physical meaning and a degree of
freedom of either 1 or 3, allowing representation as 3-channel RGB images. Thus, a Splatter Image can be
decomposed into multiple attribute images, as detailed in Appendix A.1. An example of this transformation
is shown in Fig.2, where each attribute image resembles a stylized RGB image. We further assessed the
reconstruction fidelity on attribute images using a pretrained VAE, leading to our key observation that all
attribute images are well modeled within the distribution of the pretrained 2D diffusion models, enabling
their use for generating Splatter Images.

To train our generative model, we require high-quality ground-truth Splatter Images. Direct optimization
per object introduces high-frequency artifacts due to the independent nature of Gaussian points, which
pretrained VAEs struggle to reconstruct. Instead, we train a reconstruction network to generate smooth,
well-regularized Splatter Images, avoiding artifacts while maintaining efficiency and scalability. This approach
is significantly more effective than per-scene fitting, ensuring high-fidelity, diffusion-compatible representations
for 3D generation.

3.2 Latent-space Alignment: VAE Decoder Fine-tuning

The pretrained VAE of Stable Diffusion is trained to reconstruct visually appealing images, though human
eyes can hardly differentiate, and the 2D reconstruction metric is also good, there might be huge errors when
rendering in 3D (Fig.7). While directly utilizing this VAE can reconstruct visually appealing Splatter Images,
it does not guarantee high-quality RGB renderings and they often exhibit noticeable artifacts (Fig.8). These
artifacts arise from two main factors: (1) each pixel in the splatter image corresponds to a Gaussian splat,
meaning that even minor changes in pixel values can significantly affect the final rendering, and (2) Splatter
Images contain high-frequency details that are challenging for the VAE to recover accurately. Therefore, we
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Figure 3: VAE encoding and decoding comparison with per-scene optimized splatters and feed-forward
predicted splatters.

need to finetune the VAE to make it aware of the 3D information. The question is: shall we finetune the
whole VAE or only the decoder? To better preserve the original latent space in order to use the pretrained 2D
diffusion model, we want to make minimal changes to the original latent distribution. Since the reconstruction
results are quite good in the view of 2D space, we decided to only finetune the decoder of VAE to increase
the accuracy in recovering the 3D information. Therefore, we finetuned the VAE to suit our specific use case
scenario, while preserving its strong encoding ability. This practice is also proven effective in image and video
diffusion models. For example, Stable Diffusion fine-tunes its VAEs on human image datasets to improve
facial reconstruction, and video diffusion models (Blattmann et al.; 2023) fine-tune VAE decoders to enhance
temporal consistency. Likewise, our fine-tuning enhances the VAE’s understanding of 3D information in
Splatter Images, ensuring high-fidelity reconstruction and rendering.

Specifically, the rendering loss used for VAE decoder finetuning comprises two components: MSE loss and
LPIPS loss, defined as follows:

Ly, = Lvse + Lrpips
The overall objective function of decoder finetuning is defined as:

Edecoder = ‘Csplatter + Enormal + L:rgb + Emask (1)

where Lgplatter denotes the reconstruction loss of splatter image itself, while Lpormal, Lrgb and Liask are all
about the renderings of the reconstructed splatter, denoting cosine similarity loss of rendered normals, the
sum of all losses of rendered images, and the binary cross-entropy loss of the rendered masks.

3.3 Retargeting 2D Diffusion Output

With the decomposition discussed in Sec 3.1, we are ready to learn a 3D generative model with 2D diffusion
framework by generating Gaussian splats represented by a set of multi-view attribute images. Specifically, the
generation target of each object is sampled from a distribution p(z), which is modeled as a joint distribution
of K splatter images under fixed camera views and N splatter attributes under each camera view. With the
fixed camera viewpoints {71, s, -+ , 7k } and condition input image y, the object is modeled as:

p(z) = p(ET O lY) = Poos, op, se. vot, rab ({Zpos - 2oy - 2e" 20t 20y } | )

where {pos, op, sc,rot,rgb} are the N = 5 attributes of the splatter image.

To control which attribute and which camera view of the splatter images to generate, we need to incoporate
both attribute condition and camera condition in addition, and we achieve this by concatenating 1-D
embedding to the original time embedding during the diffusion process.

To further ensure the consistency among the generated attribute images of all camera views and all attributes,
we insert additional attention layers into the pretrained diffusion UNet blocks to model the joint distribution of
both camera views and Gaussian attributes of our decomposed Splatter Images. Please refer to Appendix A.1.3
for detailed implementation of multi-view attention and multi-attribute attention.
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Training Loss During training, we organize each view and attribute of a splatter image within the batch
dimension and apply independently sampled Gaussian noise. In each attention block, we alternately apply
multi-view attention and multi-attribute attention to enhance the model’s ability to learn complex correlations.

) )7

The forward process of our diffusion model is directly extended from the original DDPM (
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k, 1:K,1:N k,m k, 1:K,1:N
po(zgt ) |2y ) = N (251 p (2 1), 07)

The definition of the Gaussian mean for the reverse process is defined as:

kn 1:K,1:N 1 k,n Bt k,n 1:K,1:N
0 = (o) = @l )

The corresponding loss function for multi-view and multi-domain modeling is as follows:

k, 1:K,1:N
t= Et,xéliK*l‘m,k,n,eu:K.l:N) {He(k’n) - 6((7 " (Zg )7t)||§]

n)

where €™ is the Gaussian noise added to attribute n for the k-th view, and e‘(gk is the model’s noise

prediction for attribute n in the k-th view.

4 Experiments

4.1 Implementation Details

Dataset We train on the G-buffer Objaverse ( , ) dataset, which consists of approximately
262,000 objects sourced from Objaverse ( , ). Each object in the dataset is rendered from
38 viewpoints, with additional normal and depth renderings provided. For generating the ground truth
splatter images, we use the first viewpoint as the input condition, along with five additional views at the
same elevation and azimuth angles of 30°, 90°, 180°, 270°, and 330° to comprehensively cover the full 360
degrees. We only use the RGB and normal renderings for the supervision of decoder finetuning and Gaussian
Splats prediction model.

Model Training and Inference We initialize our model from Stable Diffusion Image Variations. Following
Wonder3D ( , ), our training includes two stages. In the first stage, we only train multi-view
attention, and in the second stage, we add one more cross-domain attention layer for training, and together
fine-tune the multi-view attention layer learned in the first stage. For the first stage, we use a batch size of 64
on 4 NVIDIA 140 GPUs for 13k iterations, which takes about 1 day. For the second stage, we use a batch
size of 64 on 8 NVIDIA L40 GPUs for 30k iterations, which takes about 2 days. For decoder fine-tuning, we
use a total batch size of 64 on 8 NVIDIA L40 GPUs for 20k iterations. The second stage of training takes
about 2 days. During inference, we use cfg = 3.5 and our method can generate Gaussian splats per object in
8.7 seconds on a single NVIDIA L40 GPU.
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4.2 Evaluation Protocol

Dataset and Metrics Following prior works ( , , ), we conduct quantitative
comparisons using the Google Scanned Objects (GSO) dataset ( , ). Specifically, we utilize
a randomly selected subset of 30 objects from the GSO dataset, including a variety of everyday items and
animals, as in SyncDreamer ( , ). For each object, a conditioning image is rendered at a
resolution of 512 x 512 with an elevation angle of 10°. Evaluation images are then generated at evenly spaced
30° azimuthal intervals around the object, keeping the elevation constant.

To assess the quality of novel view synthesis, we report stan-

dard metrics such as PSNR, SSIM ( ) ), and Training Efficiency: Time vs Metrics
LPIPS ( , ). Additionally, we evaluate the ge- ® P amory
ometry of our generated outputs using Chamfer Distance (CD). ® ours : olen
Please refer to Table 1 for details. i TR, InstanMesh
(Xu et al., 2024)

Beyond the GSO dataset, we also evaluate our approach on "
in-the-wild images to demonstrate its robustness and general- § (Tung et 2024
izability (Figure 5). v a1
Baselines We compare our methods against several recent ap- "
proaches across different categories. For reconstruction-based & poot e g
methods, we include TriplaneGS ( , ) and Tri- s S SN S SN S S
poSR ( , ). In the realm of direct 3D gener- Training Time (GPU days)
ation, we compare with LN3Diff ( , ). Finally, for
two-stage methods transitioning from single-image to multi-view Figure 4: Model performance v.s. training
to 3D, we include InstantMesh ( , ) and LGM ( resources: highlighting our method’s supe-

7 ). rior training efficiency and accuracy.
4.3 Results

Qualitative Comparison Figure 5 showcases rendering results of Zero-1-to-G compared to several baselines
on in-the-wild inputs. Two-stage methods such as LGM ( , ) and InstantMesh ( ,

) often suffer from quality and consistency issues due to their reliance on multi-view image generation.
LGM frequently produces overly smooth textures with artifacts (e.g., blue backgrounds in the first and
third examples) and inconsistent 3D Gaussians with “floaters” (fourth and fifth examples). InstantMesh
generates more consistent outputs but exhibits noticeable smoothness and grid-like texture artifacts due
to its reconstruction process. Both methods are ultimately constrained by the limitations of their multi-
view generation stage, leading to flawed geometry and inconsistencies (e.g., the last example). In contrast,
our method directly operates in 3D space and leverages pretrained 2D diffusion priors, enabling accurate
geometry and consistent renderings. Another direct image-to-3D method, LN3Diff ( , ), struggles
to capture fine-grained textures and tends to produce oversmoothed geometry. This is likely due to its
training-from-scratch strategy, which limits generalization and performance on unseen real-world objects.
Our approach, benefiting from one-stage direct generation and rich 2D priors, achieves higher fidelity in both
geometry and texture, particularly on in-the-wild inputs (Figure 5) and real-world data with background
clutter (Figure 10).

Quantitative Comparison The quantitative results on the GSO dataset, presented in Table 1, show that
Zero-1-to-G consistently outperforms all baselines across all metrics. Reconstruction-based methods, like
TriplaneGaussian and TripoSR, struggle with sharp predictions for unseen regions due to their deterministic
nature. Two-stage methods, such as InstantMesh, perform reasonably well but are still limited by sparse
multi-view images. Direct 3D methods like LN3Diff underperform due to the lack of pretrained priors.

Training Efficiency By leveraging pretrained diffusion priors, our method reduces training time and resource
requirements. We complete training in just 3 days using only 8 NVIDIA L40 GPUs, which is more efficient
compared to previous two-stage and direct 3D generation methods, as detailed in Table 2. This efficiency
highlights the advantage of integrating 2D priors for direct 3D generation, reducing the need for extensive
computational resources.
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Figure 5: Qualitative comparison with, LGM, InstantMesh, LN3Diff on in-the-wild input images.

Table 1: Quantitative comparison between our methods and other baselines on the GSO dataset.

Methods PSNR 1+ SSIM 1t LPIPS | CD |
TriplaneGS 17.80 0.811 0.216 0.0440
TripoSR 17.32 0.804 0.217 0.0423
LGM 17.01 0.793 0.199 0.0621
InstantMesh 18.15 0.810 0.179 0.0419
LN3Diff 16.30 0.786 0.241 0.0637
CRM 16.10 0.818 0.208 0.0423

Ours (10 steps) 19.03 0.812 0.182 0.0396
Ours (35 steps)  19.40 0.818 0.178  0.0390

4.4 Ablation Study

VAE Decoder Finetuning Without fine-tuning VAE decoder, although the decoded splatter image visually
looks identical to the original input (Fig.9), the renderings exhibit noticeable artifacts (Fig.6). Since each
pixel represents a Gaussian splat and the decoder cannot capture high-frequency areas, well-reconstructed
splatter images don’t necessarily ensure good renderings. Fig.6 full model shows the effectiveness of preserving
high-frequency 3D information in splatter images by finetuning the decoder.

Cross-attribute Attention We can see from Figure 6, if we don’t use cross-attribute attention, the
renderings of the Gaussian splats have many floaters and the textures become blurry, this is because that
different attributes of the same Gaussian splat are not well aligned.



Published in Transactions on Machine Learning Research (09/2025)

Table 2: Comparison of training efficiency with other baseline methods. For LGM and InstantMesh,
we only count the reconstruction part (indicated by t), since their multi-view diffusion module
directly take pretrained models, otherwise more time and resources are needed to the multi-view

generation part.

Methods Training Time | GPUs |
LGM 4 days 32 * A100 (80G)
InstantMesh t 12 days 16 * H800 (80G)
LN3Diff 7 days 8 * A100 (80G)
Ours 3 days 8 * L40 (48G)
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Figure 6: Ablation study on GSO dataset.
No Diffusion Prior The use of diffusion prior is essential in our model. To verify this, we conducted training
with the same StableDiffusion UNet architecture but using random initialization, and we also added the

same cross-view attention layers to the UNet as in our method. We can see that without using the prior, the
training of the model cannot converge to meaningful results using the same data and training iterations.

Number of Views and Resolutions of the Generated Splatters Since our method generates 3D
Gaussians through multi-view splatter images, the quality of the resulting representation can be influenced
by two main factors: 1) the total number of views in the multi-view splatters, and 2)the resolution of each
view. While increasing the number of Gaussian splats can enhance the expressiveness of the 3D Gaussian

10
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Table 3: Ablation study on module design, inference with GSO dataset.

Model Components PSNR 1+ SSIM 1t LPIPS |
w/o diffusion prior 9.39 0.592 0.722
w/o decoder fine-tuning 17.13 0.775 0.272
w/o cross-attribute attention 17.26 0.767 0.237
Full Model 19.40 0.818 0.178

representation, it may also introduce redundancy and cross-view inconsistency in the absence of a proper
pruning strategy during the feedforward generation. Such issues can lead to degradation in rendering quality.

To ensure fair and controlled comparisons across all ablation settings, we reduced the training configuration
by limiting both the dataset size and the training iterations. It is important to note that the results in this
ablation study are intended solely to analyze the effect of view count and resolution on splatter quality within
our method. These models are not fully trained and should not be directly compared against other baselines.

Specifically, we used a subset of 26,000 objects from the full dataset and trained for 20,000 iterations for
both Stage 1 (multi-view training) and Stage 2 (multi-domain training), using batch sizes of 128 and 64,
respectively.

For evaluation, we used classifier-free guidance with CFG=3.0 and 30 denoising steps on the GSO dataset.
The results are reported in Table 4.

We observed that higher-resolution splatters (256 x 256) indeed lead to sharper and more detailed textures in
the rendered Gaussian splats. However, they also occasionally introduce more floaters around the objects,
particularly for objects with thin structures. This artifact appears to stem from non-foreground Gaussians
with relatively high opacity. Although the higher-resolution setting tends to yield more visual artifacts within
the same training budget and results in a negative impact on quantitative metrics, we found that extending
the training time helps mitigate this issue to some extent. This suggests that with sufficient training, using
higher-resolution splatter images has the potential to significantly improve rendering quality.

Looking ahead, it is worth exploring strategies for both training and inference with higher-resolution splatters.
A more stable and efficient training scheme could involve progressive resolution scaling: starting with low-
resolution splatters to capture geometry and coarse textures, then gradually increasing the resolution to
refine fine-grained details and sharp structures. On the inference side, the main challenge lies in efficiency,
as higher resolutions substantially increase runtime. To address this, one promising direction is to adopt
diffusion distillation strategies such as in ( , ), which can distill model knowledge and enable
inference in one diffusion step. Together, these strategies highlight promising future directions for advancing
high-resolution splatter image generation.

Table 4: Quantitative comparison on the number of views and resolutions in the generated splatters.

Splatters Size (VxHxW) PSNR 1 SSIM 1 LPIPS | Inference Speed(s) |

4x128x128 18.02 0.832 0.191 6.59
6x128x128 18.21 0.832 0.189 8.46
4x256x256 13.92 0.726 0.434 17.92

5 Conclusion

In this work, we introduce a novel framework that leverages 2D diffusion priors for direct 3D generation by
decomposing Gaussian splats into multi-view attribute images. This decomposition preserves the full 3D
structure while efficiently mapping it to 2D images, enabling fine-tuning of pretrained Stable Diffusion models
with cross-view and cross-attribute attention layers. Our approach significantly reduces computational costs
compared to other direct 3D generation methods. By bypassing the stringent requirement for multi-view image
consistency in two-stage approaches, we generate more accurate 3D geometry and produce higher-quality
renderings through a single-stage diffusion process. Furthermore, our method exhibits stronger generalization
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capabilities than existing direct 3D generation techniques due to the use of diffusion priors, offering a more
efficient and scalable solution for 3D content creation.

Limitations & Future Works Despite achieving superior reconstruction metrics and strong generalization
to in-the-wild data, our method has some limitations. First, our inference speed is not as fast as regression
models, as each splatter must be generated through diffusion. A potential improvement would be to integrate
a dlffusmn distillation ( , ; ; , ) to reduce denoising steps. Second,
we do not currently disentangle material and hghtlng condltlons leading to highlights and reflections being
baked into the Gaussian splat texture. Future work could address this by incorporating inverse rendering to
better predict non-Lambertian surfaces.

Broader Impact Statement

This work advances conditional generation of 3D assets from single images, which may benefit applications
such as game design, movie production, and virtual reality by reducing manual modeling effort. However, the
ability to generate 3D objects from real images also raises concerns about potential misuse in replicating
humans or copyrighted content without consent. Our study is conducted on publicly available object datasets,
and we encourage responsible use of this technology in practice.
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A Appendix

A.1 Implementation Details
A.1.1 Splatter Image Transformation

Each attribute, except opacity, possesses three degree-of-freedoms, which align gracefully with the 3 channels
of the RGB space. The following illustrates the detailed operations to convert each attribute into an RGB
image

¢ RGB: the RGB attribute naturally lies in the RGB space, no conversion is needed.

o Position: We normalize the 3D object in the bounding box [—1, 1] and use the 3D coordinates
of each Gaussian as position attribute.

e Scale: The raw scale value spans from le—15 to le—2, so directly converting the 3D scale to
RGB space using the min-max value for the whole dataset will result in most regions being
zeros due to the significant difference in power. The value distribution also does not match the
normal distribution, making it difficult for diffusion models to learn effectively. We thus convert
the raw scale values to log-space and clamp the minimum values to —10, as we found Gaussian
splats with scales smaller 1e—10 will have negligible effects on the final rendering.

¢ Rotation: We first convert the 4-dimensional quaternion to 3-dimensional axis angle, then
normalize it to [—1, 1].

¢ Opacity: We directly duplicate the single channel to 3 channels, and average the predicted
3-channel image to get the final opacity prediction.

To obtain the final 3D representation from the decomposed attribute images, we first revert each attribute
to its original scale and number of channels, then concatenate all attributes channel-wise to form a single
splatter image per view. To fuse the multi-view splatter images, we take the union of all Gaussians across
views. While this may introduce overlapping Gaussians corresponding to the same 3D region, our method
does not require explicit pixel-level correspondence across views.

A.1.2 VAE Decoder Finetuning

We use two toy examples—a 2D natural image and a Splatter image—to demonstrate the necessity of
fine-tuning the VAE decoder for preserving high-quality rendering of Splatter images.

When reconstructing 2D natural images with a VAE, the visual quality is generally acceptable, but the
pixel-space error is significant, as shown in Fig.7. While this error is tolerable for 2D reconstruction, it leads
to noticeable artifacts when propagated to 3D. Fig.8 illustrates the issue with reconstructed Splatter images
using the same pretrained VAE, where the reconstruction of the position attribute (pos) is notably inaccurate
due to the VAE not being trained for 3D-aware images with high-frequency details.

Therefore, fine-tuning the VAE decoder is essential for accurate reconstruction of 3D-aware images. To
preserve the pretrained latent space distribution and minimize changes to maintain compatibility with the
2D diffusion model, we freeze the VAE encoder and fine-tune only the decoder with an additional rendering
loss, as described in Eq.1.

A.1.3 UNet Fine-tuning

We fine-tune the UNet by inserting additional attention layers: multi-view attention and multi-attribute
attention. When fine-tuning the StableDiffusion UNet, for both stages, we use a constant learning rate of
le—4 with a warmup of the first 100 steps. We use the Adam optimizer for both stages and the betas are set
to (0.9,0.999). For classifier-free guidance, we drop the condition image with a probability of 0.1.
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Modeling Multi-View Distribution Prior works have approached multi-view diffusion either by reshaping

the batch dimension into a token dimension and applying self-attention (Shi et al., 2023b; Liu et al., 2023¢;
Long et al., 2023; Liu et al., 2024), or by spatially concatenating multi-view images to form a larger image,
which directly maps the latent distribution to a multi-view distribution (Shi et al., 2023a). We choose

the former approach for its flexibility in reshaping data for both cross-view and cross-attribute attention
mechanisms. This design allows for efficient information exchange among different views, where tokens
corresponding to the same attribute from different views are concatenated for self-attention. This facilitates
our model’s ability to learn a consistent multi-view distribution for each Gaussian attribute.

Ay | LT 2 ach
dud e
Figure 7: Error map of 2D image reconstruction

using pretrained VAE of Stable Diffusion. Figure 8: Rendering results of Splatter image recon-
struction using pretrained VAE of Stable Diffusion.

Modeling Multi-Attribute Distribution Similar to (Long et al., 2023), we utilize an attribute switcher
to specify which attribute the network should generate. To maintain consistency across generated images
that represent different attributes of the same object, we employ an attention mechanism to capture the
interactions between images taken from the same viewpoint but corresponding to different attributes.

Specifically, we introduce additional self-attention modules to model the cross-attribute correlations, where
tokens representing all attributes from the same viewpoint are combined and processed using standard scaled
dot-product attention.

More visualizations on ablation in Figure 9 shows the splatter image visualization of ablation study. We
can see that without cross-attribute attention, there are obvious misalignments of different domains of the
splatter images. Without decoder fine-tuning, although the splatter image is visually good, the rendering
is not satisfying because Gaussian splats are sensitive to the value changes in the pixels. Fine-tuning the
decoder can greatly improve the rendering quality.

Statistics of Learned Latent Distribution To evaluate the effectiveness of our method in accurately
learning the underlying latent distribution of splatter images through fine-tuning from a pretrained 2D diffusion
model, we computed the sample mean (u) and standard deviation (o) of the ground truth splatters and
compared them to those of the generated samples on the validation set after stage 2 training (cross-attribute
attention). The comparison was conducted at a splatter resolution of 6 x 128 x 128.

Table 5 presents the comparison of the latent statistics across different attributes. These results demonstrate
that, even without explicit normalization of the latent space, our model is able to learn distinct and meaningful
latent distributions for each attribute domain. This suggests that the model successfully aligns latent statistics
in a data-driven manner during training.

To further quantify the similarity between the latent distributions of the ground truth and generated splatters,
we computed the Bhattacharyya distance between the corresponding Gaussian distributions (parameterized
by their means and standard deviations). The results are presented in Table 6.

These results validate that the learned latent distributions closely align with the ground truth, further
confirming the model’s effective convergence. While our approach does not require explicit latent normalization,
this remains a promising avenue for future improvement, particularly for stabilizing training or adapting to
novel domains.

A.1.4 Splatter Image Reconstruction Network

To obtain the splatter image ground truth for our training, as mentioned in Sec. 3.1, we fine-tune LGM (Tang
et al., 2024) to take as input 6 multi-view renderings of the G-Objaverse dataset and output splatter images
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Figure 9: Splatter visualization of ablation study.
Table 5: Comparison of latent statistics (mean and standard deviation) between inference results and ground
truth splatters for each attribute.

Attribute | Inference Ground Truth
os w: [0.5278, 0.5149, 0.5039] | p: [0.5238, 0.5055, 0.5012]
p o: [0.1476, 0.1610, 0.1377] | o : [0.1495, 0.1639, 0.1398]
. w: [0.1996, 0.1991, 0.1997] w: [0.2056, 0.2056, 0.2056]
opacity
o : [0.3685, 0.3701, 0.3682] | o : [0.3741, 0.3741, 0.3741]
w: [0.0003, 0.5513, 0.5742] w: [0.0000, 0.5359, 0.5589]
scale
o : [0.0036, 0.1066, 0.0994] | o : [0.0000, 0.1070, 0.1017]
. w: [0.7119, 0.5185, 0.3040] w: [0.7094, 0.5191, 0.2995]
rotation
o : [0.0637, 0.0332, 0.0785] | o : [0.0670, 0.0353, 0.0808]
w: [0.5956, 0.5792, 0.5764] w: [0.5832, 0.5678, 0.5699]
rgbs
o : [0.1760, 0.1777, 0.1875] | o : [0.1746, 0.1754, 0.1837]

of 2D Gaussian splatting (Huang et al.,

2024). The training objective is to compare the splatter renderings

with ground truth images using MSE and LPIPS loss. We also use cosine similarity loss between ground truth
normals and rendered normals. We fine-tune LGM for 30k iterations with a batch size of 32 on 8 NVIDIA
L40 GPUS, which takes about 1 day.
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Table 6: Bhattacharyya distance between the ground truth and inference Gaussian distributions for each
attribute. *Note: The first channel of the scale attribute is excluded from rendering and analysis.

Attribute | Bhattacharyya Distance|

pos 0.000246
opacity 0.000084
scale 0.001860
rotation 0.000798
rgbs 0.000491

A.2 More Results

Results on Real-world Datasets Benefit from the flexibility of Gaussian Splats, our method could
be further extended to generate real-world scenes with backgrounds, which cannot be achieved by our
concurrent methods using mesh-based representations. Below shows our testing results on real-world dataset
MVImagenet Yu et al. (2023), which included diverse categories of different objects.

Input Rendering results of generated 3DGS Input Rendering results of generated 3DGS

Figure 10: RGB and normal renderings of more examples on MVImgNet dataset.

More examples More RGB and normal renderings can be found in Figure 11 and Figure 10.

Diversity Since we model the unseen viewpoints with diffusion models, our results can generate diverse
results given the same input Figure 12.

A.3 Limitations and Future works

While our method demonstrates strong generalization and consistency across a wide range of examples, we
also observe certain limitations that point to promising directions for future improvement. One notable
failure case occurs in the generation of fine facial details, particularly when synthesizing novel views of human
characters. For instance, in Figure 12, the generated front view of the girl character wearing blue clothing
appears less consistent with the input view, especially in facial features.

We attribute this issue to limitations in the VAE used to encode the input image. Our method leverages a
pretrained VAE from an earlier version of Stable Diffusion to extract latent features as conditioning input.
However, these earlier VAEs are known to inadequately capture fine-grained facial details, which can lead to
degraded performance in view synthesis tasks requiring high facial fidelity. Recent works have addressed this
shortcoming by fine-tuning the Stable Diffusion VAE with additional facial-focused datasets and perceptual
reconstruction losses, resulting in significantly better detail preservation for human faces.
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Figure 11: RGB and normal renderings of more examples on in-the-wild and GSO datasets.

While adopting such enhanced VAE models could mitigate these failures, doing so may also reduce the
model’s ability to generalize across diverse object categories and styles. In this work, we intentionally chose
to initialize from a baseline Stable Diffusion model to preserve broad generalization, which we believe is
essential for our multiview synthesis framework to be effective across heterogeneous object domains.
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