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Abstract—Driving pattern recognition based on features, such
as GPS, gear, and speed information, is essential to develop intel-
ligent transportation systems. However, it is usually expensive
and labor intensive to collect a large amount of labeled driv-
ing data from real-world driving scenes. The lack of a labeled
data problem in a driving scene substantially hinders the driving
pattern recognition accuracy. To handle the scarcity of labeled
data, we have developed a novel discriminative transfer learning
method for driving pattern recognition to leverage knowledge
from related scenes with labeled data to improve recognition
performance in unlabeled scenes. Note that data from different
scenes may have different distributions, which is a major bottle-
neck limiting the performance of transfer learning. To address
this issue, the proposed method adopts a discriminative distribu-
tion matching scheme with the aid of pseudolabels in unlabeled
scenes. It is able to reduce the intraclass distribution disagree-
ment for the same driving pattern among labeled and unlabeled
scenes while increasing the interclass distance among different
patterns. Pseudolabels in unlabeled scenes are updated iteratively
via an ensemble strategy that preserves the data structure while
enhancing the model robustness. To evaluate the performance of
the proposed method, we conducted comprehensive experiments
on real-world parking lot datasets. The results show that the
proposed method can substantially outperform state-of-the-art
methods in driving pattern recognition.

Index Terms—Driving pattern recognition, interclass separabil-
ity, intraclass compactness, maximum mean discrepancy (MMD),
transfer learning.
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I. INTRODUCTION

ECENTLY, driving pattern recognition, that is, identi-

fying specific movements of cars, such as driving in a
lane, turning left, parking, etc., has been extensively studied
given its critical importance for self-driving vehicles and intel-
ligent transportation systems [1]. The driving status, such as
GPS, gear, and speed information, is important and can be
used for driving pattern recognition, but it may be highly vari-
able depending on driving scenes such as different parking
lots in Fig. 1. Hence, massive labeled data are often required
for accurate driving pattern recognition. However, it is almost
impossible to collect sufficient labeled driving data from every
driving scene in practice. Consequently, driving pattern recog-
nition for unlabeled scenes becomes a challenging problem of
central importance. It is generally assumed that each driving
pattern, such as turning left should be highly correlated across
related scenes, despite their large disagreements in distribution.
Thus, driving information learned from labeled scenes can be
helpful for general driving pattern recognition. Motivated by
the success of transfer learning [2], [3], which infers labels in
an unlabeled target domain by leveraging knowledge from aux-
iliary domains, we focus on effectively using information from
labeled driving scenes to enhance driving pattern recognition
for the myriad of the unlabeled scene.

As previously mentioned, an obvious obstacle for transfer
learning efficacy is the distribution discrepancy among data
collected from different scenes. Consider parking lot data! as
an example, where a dataset records vehicle statuses from dif-
ferent parking lots at different instants. As shown in Fig. 1,
there are many types of parking lots with varying structures,
and driving data considerably vary due to different road lay-
outs and other conditions. To illustrate this point, Fig. 2 was
generated by the random selection of 10000 samples from
different parking lots, and shows the distributions of two
important features, namely, vehicle speed and steering wheel
angle, to perform pattern recognition on an identical scenario
of driving along a straight line. The data distribution and
feature values poorly agree, showing the diversity of driving
features according to the scene, which is one of the major
bottlenecks that hinders transfer learning.

Successful transfer learning highly depends on reduc-
ing discrepancy in data distributions for the same driving
pattern appearing in different scenes while preserving the

IThe parking lot data were collected by China Automotive Technology and
Research Center Company Ltd.
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Fig. 1. Different driving scenes (e.g., parking lots with varying structures).
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Fig. 2. Distributions of (a) vehicle speed and (b) steering wheel angle

according to two parking lots are different.

original data structure. Several methods have been recently
proposed to discover common feature representations while
preserving important properties from original data over differ-
ent domains [4]-[9]. However, these methods consider global
distributions across all the samples, failing to account for the
group structure belonging to different labels [10], [11]. In addi-
tion, it is not possible to evaluate intraclass disagreement in
distributions for an unlabeled target domain unless pseudola-
bels are assigned, for which pseudolabels have been commonly
employed. Pseudolabels are usually generated using conven-
tional classifiers beforehand to guide data preprocessing for
transfer learning [12]-[17], while the generated pseudolabels
are not updated during transference. Moreover, these meth-
ods mainly consider the intraclass discrepancy, neglecting
the dispersion across classes. In many challenging real prob-
lems, the performance of these classifiers is unsatisfactory
and unreliable pseudolabels are thereby obtained, given the
large discrepancy in distributions, undermining the effective-
ness of transfer learning. A more suitable approach should
gradually refine the pseudolabels by incorporating knowl-
edge from labeled domains along with the transfer learning
process. The refined labels may then provide more accurate
group information in the target domain, enhancing the transfer
learning efficacy.

To tackle all these issues and improve the transfer learning
performance, we developed the proposed framework, discrim-
inative transfer learning (DTL). The source and target data
are projected onto a common space via discriminative transfer
matching to enhance intraclass compactness, that is, affinity
within the same class, and interclass separability, that is, dis-
persion among different classes. And then the majority voting
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method is used to iteratively refine the pseudolabels of target
data. The proposed framework is illustrated in Fig. 3. The main
contributions of this article can be summarized as follows.

1) DTL develops a novel transfer learning technique to
address the driving pattern recognition problem for
unlabeled scenes.

2) The proposed method incorporates the discriminative
distribution matching which enhances intraclass com-
pactness and interclass separability to reduce the dis-
crepancy in distributions, that is, one of the bottleneck
problems of transfer learning.

3) DTL iteratively refines the pseudolabels using an ensem-
ble classifier to preserve the original data structure and
enhance the DTL.

The remainder of this article is organized as follows.
First, we briefly review the related work in Section II. The
detailed design and implementation of DTL are provided
in Sections Il and IV, respectively. Section V presents the
performance of DTL compared to state-of-the-art methods.
Finally, we draw conclusions in Section VI.

II. RELATED WORK

As we intend to apply transfer learning to driving pattern
recognition, we briefly discuss the existing related methods.

Transfer learning [2] is inspired by the human ability to
apply previous knowledge in different situations to solve
new problems. It has achieved remarkable success in a wide
range of applications, including text sentiment classification
[18], [19]; image classification [20]-[23]; human activity clas-
sification [24], [25]; software defect classification [26]; and
multilanguage text classification [27], [28]. Compared to tradi-
tional learning, transfer learning has a bottleneck regarding the
discrepancy in data distributions between the source and target
domains. Consider driving pattern recognition as an example.
The driving status data are recorded in various scenes and
under distinct conditions, usually leading to distinct data distri-
butions. Thus, transfer learning should reduce the discrepancy
among data distributions.

Remarkable research efforts have been devoted to unify
data representation from different domains and thus improve
the agreement among distributions while preserving impor-
tant properties from the original data. For instance, the
discriminative deep multimetric learning method [29] jointly
learns multiple neural networks to characterize the correlation
among different domains. Sharable and individual multi-
view metric learning [30] seeks for an individual distance
metric for each view and a shared representation for dif-
ferent views. Note that these two methods were developed
based on supervised information of similar and distinct
pairs. Transfer component analysis (TCA) [4] learns the
transfer components across domains using the maximum
mean discrepancy (MMD) [31], [32], a common measure
of the difference among domains. Transfer joint matching
(TIM) [5] aims to enhance the agreement in data distri-
butions by jointly matching features and reweighting the
instances across domains. Geodesic flow kernel (GFK) [6]
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Fig. 3. Framework of the proposed DTL method. Source and target data can be projected onto a common space by the discriminative distribution matching,
which can reduce the MMD within classes, increase the distance across classes, and preserve the local manifold structure. Then, the majority voting classification

based on source data can be used to iteratively refine the labels of target data.

exploits low-dimensional structures and integrates different
domains. Correlation alignment (CORAL) [7] minimizes the
domain shift by aligning the second-order statistics from
source to target distributions. Moreover, landmarks-based ker-
nelized subspace alignment (LSA) [8] aims to select impor-
tant landmarks in data and perform subspace alignment for
interdomain discrepancy reduction. Domain adaptive neural
networks (DANNS) [9] use simple neural-network models for
domain adaptation in object recognition. They incorporate the
MMD as regularization in the supervised learning process to
reduce distribution disagreement between the source domains
and target domain in the latent space. Although these trans-
fer learning methods focus on enhancing the agreement in
global data distributions between the source domains and tar-
get domain, they neglected the group structure and mixed data
of different labels, leading to the global domain shift [10], [11].

According to [33], features from data samples with the
same label across different domains should lie on a com-
mon subspace, called latent space or submanifold. Therefore,
the agreement in intraclass distributions should be enforced
for data from different domains to prevent the global domain
shift. To this end, pseudolabels of samples in the target
domain can be defined. Existing methods often rely on pseu-
dolabels obtained by conventional classifiers. For instance,
joint distribution adaptation (JDA) [12] and balanced distri-
bution adaptation (BDA) [13] jointly adopt both the marginal
and conditional distributions based on predicted pseudolabels.
Adaptation regularization-based transfer learning (ARTL) [14]
employs the MMD as a distance measure to perform marginal
distribution adaptation. Manifold embedded distribution align-
ment (MEDA) [15] learns dynamic distribution alignment to
quantitatively account for marginal and conditional distribu-
tions. Joint geometric and statistical alignment (JGSA) [16]
projects source and target domain data onto two subspaces,
where the geometric shift and distribution shift are simultane-
ously reduced. Stratified transfer learning (STL) [17] obtains

pseudolabels for the target domain via majority voting. They
generate pseudolabels before transfer learning, completely
relying on conventional classifiers employed before data adap-
tation between different domains. The moving semantic trans-
fer network (MSTN) [34] employs the AlexNet architecture
while the centroid alignment is performed for deep features to
reduce the discrepancy between the source domain and target
domain.

However, these methods mainly consider the intraclass dis-
crepancy, neglecting the dispersion across classes. The joint
and discriminative domain adaptation (JDDA) method [35]
takes advantage of the ResNet architecture, and focuses on
the intraclass compactness and interclass separability of the
source domains only. As both the source domains and tar-
get domain are expected for domain adaptation, the adequate
data alignment could further improve learning efficacy. The
consideration motivates the proposed DTL to alternatively
and iteratively update pseudolabels and adapt inter- and intra-
MMD on both the source and target domains to obtain better
transfer learning performance.

IIT. DRIVING PATTERN RECOGNITION

In this section, we introduce the proposed DTL framework.
First, we define the problem and describe the main idea of
DTL. Then, the three major steps of DTL are detailed, namely,
discriminative distribution matching, pseudolabel prediction,
and iterative refinement.

A. Problem Statement

DTL transfers knowledge from labeled samples in a source
domain to identify the patterns among samples in a target
domain without label information. More specifically, domain
D is composed of an m-dimensional feature space X and
C-cardinality label set ), where x € X is a sample and
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TABLE I
NOTATION
Symbol Definition
Ds, Dy source and target domains
Mg, Nt number of source and target samples
n=ns+ne total number of samples
n(©) number of samples from c-th class
n(e:v) number of samples from c-th and v-th classes
m,C number of shared features and classes

k number of subspace bases

B, a regularization parameters
X5 € RMXns source data matrix
X € RmXnt target data matrix
A € RmXE transformation matrix
H e R"*™ centering matrix
X e Rrmxn () data matrix of c-th class

MO e R X
x(ev) c Rmxn((””)
e ¢ Rn(c'v) xn(e:v)

intra-class MMD matrix of c-th class

data matrix of c-th and v-th classes, v # ¢

inter-class MMD matrix, v # ¢
L graph Laplacian matrix

y € Y is its label. For domain D, task 7T is learning clas-
sifier f(-) based on X and ). Given a labeled source domain
Dy = {(X1,¥1), ..., (Xn;, Yn,)} and an unlabeled target domain
Dy = {Xn,+1s - Xn,+n,}, We can form the source and tar-
get data matrices, Xy = [X],...,X,] € R™ and X; =
[(Xp,41s - - Xny4n,] € R, respectively. For n = ng + ny,
X = [X; X;] € R™*" is the data matrix combining all the sam-
ples in both the source and target domains. Assume that the
feature and label spaces of the source and target domains are
the same, that is, Xy = A} and ), = ), but their distributions
differ. The goal is to learn classifier f(-) for the unlabeled data
in target domain D; based on information in source domain
D by matching the distributions between the domains. Table I
shows the notation adopted throughout this article.

B. Proposed DTL Framework

As shown in Fig. 3, the proposed DTL alternatively and
iteratively updates the feature transformation and pseudola-
bels. Specifically, the intraclass discrepancy in distributions
is minimized, whereas the interclass discrepancy is maxi-
mized, and the pseudolabels are refined throughout learning.
The proposed iterative strategy provides adaptive refinement
of data distributions and pseudolabels to eventually achieve
accurate classification in the target domain. The major steps
of DTL are detailed in the remainder of this section.

1) Discriminative Distribution Matching: We aim to reduce
the discrepancy between domain distributions by feature trans-
formation A, such that the joint expectations of the source and
target domains suitably agree afterward. To reduce the dis-
crepancy, we adopt the MMD [31], [32], which retrieves the
distance between expectations of samples from the source and
target domains in k-dimensional embedding as a distance mea-
sure between distributions. We further modify the MMD into
two measures, namely, intra-MMD and inter-MMD, to fur-
ther restrict the transformation, such that the intraclass and
interclass distances can be minimized and maximized, respec-
tively. In addition, a regularization term is included to ensure
that the transformation preserves locality from the original
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domains. As the labels for the target domain are unknown,
we use pseudolabels, as detailed in the following section.
Intra-MMD: The intraclass MMD is defined as

gintra
2
|1 K 1 K
= 2 AT )L ATy
e=1"  xeD© ' xeD
c
= > @XM x)T4) (1)
c=1
where
1 (©)
W, X, Xj € Dy
1 ()
@ Xi: Xj € Dy
(©) ngony ’
(M )U - 1 X; € DA(-C) X; € D[(C) (2)
n§c)n§c) ’ X; (S 'D§C), X; € Dfe)
0, otherwise

and tr(-) denotes the trace. D§C) ={x;:X; € Ds Ay =c}is
the set of samples belonging to class ¢ in the source data, y;
is the true label of Xx; in the source domain, and n§“) = |DS(C) |.
Correspondingly, D\ = {x; : x; € D; A §; = c} is the set
of samples belonging to class c in the target data, y; is the
predicted pseudolabel of x; in the target domain, and nt(c) =
D1, X© e DEUDE. For n© = n{?+n®, x© ¢ Rmxn

A € R™k i the transformation matrix and MMD matrix
M© e R1>1 includes the class information. By min-
imizing (1), the intraclass distributions across domains are
clustered under the new representation, A7 X(©.

Inter-MMD: The interclass MMD is defined as

einter
C C | 1 i
_ r 1 N
_Z Z n© Z A X; e Z A .
c=1v=1,v#c x,eD© D)
C C !
£ £ o) o
c=1v=1,v#c
where
1
non© - Xi, Xj € D)
(c,v) T Xis Xj € DW
ars )i/ = -1 X; € ’D(c)’ X; € A (4)
"0 | xj € DO, x; € DY)
0, otherwise.
DO = (x; : x; € (DyUDJ A {yi = cU3P; = c}} is the

set of samples belonging to class ¢ in the source and target
domains, y; is the true label of x;, ; is the pseudolabel of x;,
and n© = |D©|. Correspondingly, D" = {x; : x; € {D; U
Dy} A{yj = vUYj = v}} is the set of samples belonging to class
v,n") = |D(V) |, and XV e DOUDWY For n@") = p'© +n("),
X e Rm”  Magrix T e RIxnY includes the
interclass information. Note that by maximizing (3) such that
—Linter 1S minimized, the distributions among different classes
are maximally separated.
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Regularization Term: Locality preserving regularization
ensures that two data points, X; and X;, that are close to each
other in the feature space remain close after transformation.
This is also known as the local invariance assumption [36]
and has been studied intensively in manifold learning. In addi-
tion, it has been successfully applied in diverse fields, such as
semisupervised learning [37] and matrix factorization [38].

Like other studies [15], we model the local structure of
the feature space by constructing a e-nearest neighbor (NN)
graph representing the n instances as vertices. The graph is
constructed by assigning edges between each instance and
its e-nearest instances. Edge weights are computed by adopt-
ing the heat kernel with self-tuning for parameter o [39]. Let
W represent the constructed graph. Each weight w;; is com-
puted as = w;; = exp([—I|x; —xj||2]/cr) only if an edge is
assigned between instances X; and x;. Otherwise, w;; = 0.
Then, regularization can be formulated as

n
> wij|ATxi — ATxj[3 = w(ATXLXT A).
ij=1

)

L = D — W is the graph Laplacian of W, where D = [d; ;] is a
diagonal matrix with each diagonal element being computed
by the corresponding column sum of W. To formulate both
W and L, it is not necessary to know the label information
of the instances, and therefore all instances X = [X;, X;] in
the feature space can be included. Minimizing (5) enforces
optimality of A to preserve the local geometric structure, that
is, mappings A”x; and Aij should be close to each other
if x; and x; are similar. Furthermore, (5) becomes a convex
optimization problem if L is a positive-semidefinite matrix.
During the calculation of W, we set w;; = w;; for W to be
symmetrical, guaranteeing that graph Laplacian matrix L is
positive semidefinite. Regularization term £re; is given by
lreg = tr(ATXLX" A). (6)
Now, we can incorporate data fidelity and smoothness reg-
ularization terms to formulate the proposed transfer learning
model. Like in [4], orthogonal constraint ATXHXTA = I
is introduced to eliminate the redundancy in transformation,
where H = I — (1/n)1 is the centering matrix

HEH Lintra — @linter + Blreg

st. ATXHXTA =1 (7)

(a) Original dataset and data transformation with (b) traditional distribution matching and (c) proposed discriminative matching.

where « and § are parameters that balance the contributions of
their corresponding terms. This model can learn the optimal
mapping function A that can identify and utilize the corre-
lations among labels while preserving the local geometric
structure among instances in the feature space. Therefore, the
proposed algorithm is expected to be useful for label prediction
during transfer learning.

A comparison with the existing matching methods is shown
in Fig. 4. Unlike the traditional distribution alignment meth-
ods that only match the source and target distributions within
classes, our method can increase the distance across different
classes.

2) Pseudolabel Prediction: At each iteration, classification
is performed on data after feature transformation A is fixed.
In addition, we update the pseudolabels for the target domain
by integrating the classification results from various classi-
fiers trained on the source domain via majority voting. It is
expected that majority voting improves reliability to achieve
better results compared to the use of individual classifiers, as
numerically justified in Section V.

Let 3;(j =ng+1,..., ny+n;) denote the result of majority
voting classification on x; and f.(j) denote the pseudolabel
prediction of the jth sample by the rth classifier, f.(-). Then

)A’j:{

where r € {1,2,...,R} denotes the index of the clas-
sifier. We can use any type of classifier in the proposed
framework. In this article, we adopted the widely used 1-
NN [40], support vector machine (SVM) [41], and random
forest (RF) [42] as classifiers given their effectiveness and
ease of implementation.

3) Iterative Refinement: With the updated pseudolabels,
DTL determines a new feature transformation to reduce the
intra-MMD and increase the inter-MMD. The corresponding
dataflow is illustrated in Fig. 3, where the feature transforma-
tion and pseudolabels are alternatively updated to refine the
results until convergence.

majority(f;(j), ), if majority holds
-1, otherwise

®

IV. TRANSFER LEARNING ALGORITHM
A. Proposed DTL Algorithm

At each iteration, the data transformation to minimize the
discrepancy in data distributions should be determined. It is
formulated as the optimization problem in (7). In this section,
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Algorithm 1: DTL for Driving Pattern Recognition

Input : Source domain Dy = {(x;, y/)}~,}, target domain
D, = {{Xf}j;::: ,}» parameters « and f.
Output: Predicted labels of target data.

1 Train several classifiers on D;, and obtain majority
voting result to initialize pseudo-labels {)Az] }7;::11 of
target data in D; by Eq. (8).

2 repeat

3 | Construct intra-MMD matrices M(© using Eq. (2).

4 Construct inter-MMD matrices I'(*) using Eq. (4).

5 Solve generalized eigendecomposition in Eq. (12)

and select the k smallest eigenvectors to construct

adaptation matrix A.

6 Train several classifiers on {(A”x;, yi)}?;l and obtain

the majority voting result to update pseudo-labels

~ :+ x+ 1 .
{y/}j'?:n::’_l of target data {ATXj};l:n:l+1 using Eq. (8).

7 until convergence;
8 Return target labels.

we derive the numerical algorithm to solve this optimization
problem.
The objective function in (7) can be written as

C
T
Ztr(ATX(C)M(C) (X(C)) A) + ptr(ATXLX" A)

c=1
C C
e Y tr(ATX(C'V)F(C’V)(X<C’V))TA). 9)
c=1v=1,v#c

Equation (9) can be rewritten as tr(AT®A), where © is
given by

C
0= ZX(C)M(C) XNT 4+ pxLxT

c=1

C C
—a) Y xenpEn e,

c=1v=1,v#c

(10)

According to the constrained optimization, ¢ =

diag(e1, ..., ¢) € Rk is the Lagrange multiplier, and we
derive the Lagrange function for (7) as
c
O =w(ATOA) + Y tr((I —ATXHX"A)®). (1]
c=1
Setting  (00/0A) = 0, we obtain generalized
eigendecomposition
C
OA = <ZXHXT>A®. (12)
c=1

Finally, the problem of finding optimal adaptation matrix A is
reduced to solving (12) for the k smallest eigenvectors. The
procedure adopted by DTL is described in Algorithm 1.
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B. Complexity Analysis

Most of the computational burden of DTL comes from three
operations: 1) MMD matrix construction (lines 3 and 4 in
Algorithm 1); 2) eigendecomposition (line 5 in Algorithm 1);
and 3) the ensemble classifier (line 6 in Algorithm 1). To
construct the intra-MMD and inter-MMD matrices, the com-
plexity is O(C(©)? + C*(n“)?). As n© < n©Y) it can
be reduced to O(C*(n“")?). For solving eigendecomposi-
tion, we should calculate matrix ®, and the complexity is
OmC ()% +mC%(n'“")2 + mn?), which can be reduced to
O(mC? ()2 4-mn?). The complexity of eigendecomposition
per iteration is O(m3). In our experiments, 1-NN, SVM, and
RF were used as pseudolabel classifiers. Their complexities are
O(mn), On?), and O(mnt), respectively, where ¢ is the depth
of the tree. Therefore, the overall computational complexity
of Algorithm 1 is O(t (mC*(n“)? +mn® + n® +m> + mnr)),
where 7 is the number of iterations.

V. EXPERIMENTS AND EVALUATION

We conducted extensive experiments on driving pattern
recognition to evaluate the proposed DTL approach.

A. Data Preparation

We applied the proposed DTL to identify driving patterns in
different parking lot scenes. The detailed data collection and
preprocessing steps are summarized in the following.

1) Data Collection: The driving data were collected from
different parking lots with distinct structures and road con-
ditions. Each vehicle for data acquisition was equipped with
several sensors, as shown in Fig. 5. The data attributes include
Frame ID, Turn Light, Vehicle Speed, Steering Wheel, Brake,
Brake Information, Engine Speed, Accelerated Speed, Gear,
Mileage, Oil Consumption, Date Time, Longitude, Latitude,
Altitude, Angle, and GPS Speed. We aimed to recognize the
16 different driving patterns listed in Table II. Five datasets
were collected from five parking lots A—E collecting 10047,
9157, 8924, 9765, and 8436 samples, respectively. As shown
in Fig. 1, different parking lots have very different data dis-
tributions, increasing the divergence between the source and
target domains.

2) Data Preprocessing: Based on the original data, we
performed preprocessing before adapting the proposed DTL
framework for driving pattern recognition. From 36 attributes
in the original data, we selected 13 while removing those
highly correlated among all instances in one or more domains,
as they do not add discriminative information. Then, the
selected attributes were encoded for subsequent processing.
For instance, character attributes, such as Gear with possible
states D, N, N/A, and R, were represented using one-hot encod-
ing. Featurewise normalization was then performed for each
dataset individually. The datasets from different parking lots
have distinct distributions, as shown in Fig. 2. Hence, each
dataset from one parking lot was considered as belonging to
one scene (domain).

To investigate more detailed information during knowledge
transfer for driving scenes, we applied DTL to two scenar-
ios, either one or multiple source domains. We use notation
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Frame ID: 12580

Date Time: 2018-8-11-6
Relative Times: 408s
Longitude: 121.16
Latitude: 31.28
Altitude: §

Mileage: 1000(km)
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Fig. 5. Driving status features.
TABLE II
DRIVING PATTERNS IN PARKING LOT DATASETS
Class Pattern
1 Driving in lane outside parking lot
2 Going straight at intersection outside parking lot
3 Turning left at intersection outside parking lot
4 Turning right at intersection outside parking lot
5 Entering parking lot
6 Driving in lane looking for parking spot
7 Going straight at intersection looking for parking spot
8 Turning left at intersection looking for parking spot
9 Turning right at intersection looking for parking spot
10 Parking
11 Leaving parking spot
12 Driving in lane looking for exit
13 Going straight at intersection looking for exit
14 Turning left at intersection looking for exit
15 Turning right at intersection looking for exit
16 Leaving parking lot

A — B to indicate labeling of the driving scene in domain B
using labeled domain A. We conducted 19 learning tasks, with
16 having one source domain and three having four source
domains.

B. Comparison Methods

We compared the proposed DTL approach to 17 classifiers.

1) 1-NN [40] assigns each testing sample to the class most
common via its NN.

2) SVM [41] divides the samples of the separate categories
by a clear margin that is as wide as possible.

3) RF [42] is an ensemble learning method which con-
structs a multitude of decision trees and outputs the class
with the individual trees.

4) TCA [4] learns the transfer components across domains
using MMD, then data distributions in different domains
are close to each other.

5) GFK [6] exploits low-dimensional structures and
changes the geometric and statistical properties from the
source to the target domain.

6) JDA [12] aims to jointly adapt both the marginal distri-
bution and conditional distribution in a dimensionality
reduction procedure.

7) TIM [5] aims to enhance the agreement in data distribu-
tions by jointly matching features and reweighting the
instances across domains.

8) ARTL [14] employs the MMD as distance measure to
perform marginal distribution adaptation.

9) CORAL [7] minimizes the domain shift by align-
ing the second-order statistics from source and target
distributions.

10) LSA [8] aims to select important landmarks and per-
form subspace alignment for reducing interdomain
discrepancy.

11) JGSA [16] projects all data to two subspaces, where the

geometric shift and distribution shift are simultaneously

reduced.

BDA [13] can adaptively leverage the importance of the

marginal and conditional distribution discrepancies.

13) STL [17] obtains pseudolabels for the target domain via
majority voting and then performs intraclass knowledge
transfer.

14) MEDA [15] learns dynamic distribution alignment to
quantitatively account for marginal and conditional
distributions.

15) DANNs [9] uses simple neural-network models for
domain adaptation in object recognition.

16) MSTN [34] employs the AlexNet architecture while the
centroid alignment is performed for deep features.

17) The instance-based JDDA method [35] takes advantage
of the ResNet architecture.

The 1-NN, SVM, and RF classifiers can be considered as con-

ventional methods, whereas the others are transfer learning

approaches. They aim to reduce the difference between the
source and target domains. Then, they train the classifier on
the labeled source data, and test it on the unlabeled target data.

The codes for the comparison methods are available online.

12)

C. Evaluation

Under our experimental setup, the optimal parameters can-
not be obtained using cross-validation, as labeled and unla-
beled data are sampled from different distributions. Thus, we
evaluated all methods by heuristically searching the parameter
space for the optimal settings and report the best results for
each method. We used the widely used classification accuracy
on test data as evaluation measure [6], [4]

|Xj : XjG’D,/\j\Jijﬂ

Accuracy = (13)

|Xj LXj € 'Dt|
where D; is the set of test data, y; is the truth label of xj,
and y; is the label predicted by the classification algorithm.
We executed each algorithm ten times with different random
initializations and obtained the average results.

D. Results and Analysis

1) Effectiveness of Intraclass and Interclass Transference:
To verify the effectiveness of DTL from the distribution
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Fig. 6. (a) Intra-MMD and (b) inter-MMD of all samples on the dataset
ACDE — B.

distance, we compared it to nine methods that can reduce
the MMD between source and target domains. Take the
ACDE — B dataset as an example. The intra-MMD and
inter-MMD of all methods are shown in Fig. 6. In addition, the
t-distributed stochastic neighbor embedding of all data points
before and after transformation is depicted in Fig. 7(a) and (b),
respectively. “o” and “+4” represent data from ACDE and
B, and different colors represent different classes. Points in
the same class from different domains become closer after
transformation. Compared with other methods, DTL can sub-
stantially reduce the discrepancy between the source and target
domains, and increase the interclass distance, because DTL
reduces the difference within each category and iteratively
refines the pseudolabels using the ensemble strategy.

To illustrate the interclass discrepancy reduction using DTL,
the intra-MMD and accuracy are listed in Table III. Most
intra-MMD values are reduced by DTL, and the classifica-
tion performance improves. In addition, the inter-MMD for
TCA, JDA, STL, and DTL is shown in Fig. 8. Compared
with other methods, most of the values of DTL increase.
By iteratively updating the pseudolabels using the ensem-
ble method, DTL can reduce the intraclass divergence and
increase the interclass distance at every iteration to improve
the classification performance.

To verify the effectiveness of DTL by embedding similarity,
we computed the 10-NN similarity matrix on embedding A7X
obtained from DTL. To better demonstrate the results, we only
selected four classes and 25 samples per domain. The first 100
samples and the last 100 samples comprised the source and
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Fig. 7. (a) Data visualization before transformation (intra-MMD, 10.3; inter-
MMD, 1.6). (b) Data visualization after transformation (intra-MMD, 0.3; inter-
MMD, 253.3) on the dataset ACDE — B. “o” and “+” represent the source
and target domains, respectively, different colors represent different categories.

target domains, respectively. We also constructed the similarity
matrices for TCA, JDA, and STL using their optimal param-
eter settings. The similarity matrices are depicted in Fig. 9,
where the diagonal and anti-diagonal blocks indicate intraclass
similarity within and across domains, respectively, whereas
the other blocks indicate interclass similarity. DTL achieves
higher intraclass and lower interclass similarity both within
and across domains.

2) Parameter Sensitivity: The DTL approach involves
three model parameters: 1) number k of subspace bases;
2) Laplacian regularization parameter S; and 3) interclass
regularization parameter «. We conducted a sensitivity anal-
ysis to validate the DTL optimal performance under sev-
eral parameter values. We randomly selected A — D,
D — B, and ACDE — B to illustrate the parameter sen-
sitivity analysis. We observed similar trends on all other
datasets but do not report their results here due to space
constraints.

Hyperparameter tuning is commonly needed in many other
state-of-the-art methods. For instance, JDA [12] and STL [17]
used as benchmarks in this article have parameters (fsubspace
bases and regularization parameters) that need to be adjusted
in order to achieve optimal performance. Similar to the com-
pared methods, we ran DTL while varying k, 8, and «, and
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TABLE III
INTRA-MMD AND ACCURACY (%, IN PARENTHESES) FROM ORIGINAL AND TRANSFORMED SPACES ON THE DATASET ACDE — B WITH 16 CLASSES

Class Original TCA JDA TIM ARTL JGSA BDA STL MEDA DANN DTL
T 1.66 (100) | 0.00 (100) | 0.01 (76) | 0.I5 (/1) | 0.00 (71) | 0.00(76) | 0.02 (76) | 0.74 (100) | 0.00 (29) | 0.01 (73) | 0.04 (88)
2 9.66 (55) 0.05 (90) | 0.64 (100) | 2.84 (100) | 0.74 (99) 2.05(91) | 1.70 (100) | 0.20 (100) | 0.02 (98) | 0.02(100) | 0.10 (100)
3 1.52 (17) 0.02 (61) 0.59 (12) 0.30 (46) 0.36 (0) 0.06 (34) 0.07 (32) 1.13 (5) 0.50 (0) 0.40(0) 0.14 (12)
4 0.04 (86) 0.00 (43) | 0.01 (100) | 0.14 (79) 0.02 (0) 0.03 (93) 0.01 (36) 1.47 (71) 0.13 (0) 0.13 (0) 0.04 (71)
5 4.46 (65) 0.01 (56) 1.70 (74) 0.71 (76) 0.00 (63) 0.04 (57) 4.50 (66) 1.50 (71) | 0.00 (60) | 0.00 (68) | 0.03 (74)
6 0.57 (30) 0.00 (65) 0.05 (78) 0.21 (83) 0.00 (43) 0.11 (43) 0.12 (52) 0.93 (65) | 0.00 (65) | 0.00(65) 0.03 (65)
7 433 (97) | 0.34 (100) | 0.06 (96) 8.23 (95) | 1.43 (100) | 0.13 (97) 0.14 (97) 0.02 (95) | 0.17 (99) | 0.16 (96) | 0.05 (100)
8 0.13 (67) | 0.00 (100) | 0.01 (89) 0.06 (89) 0.01 (78) 0.01 (89) 0.03 (89) 0.81 (89) | 0.00 (44) | 0.00 (79) | 0.08 (89)
9 0.18 (55) 0.01 (0) 0.01 (77) 0.98 (80) 0.33 (0) 0.01 (100) | 0.00 (84) 1.44 (80) 1.02 (0) 0.94 (0) 0.02 (89)
10 0.06 (63) 0.00 (83) 0.02 (89) 1.67 91) 0.01 (40) | 0.04 (100) | 0.12 (83) 1.04 (79) | 0.00 (58) | 0.00(65) 0.04 (81)
11 3.52 (93) 0.03 (89) 1.31 (86) 1.14 93) 0.00 (82) 0.63 91) 0.67 (96) 1.71 (88) | 0.00 (67) | 0.00 (74) | 0.14 (93)
2 TO8 (66) | 144 (92) | 1.05(83) | 221(67) | 169 (75 | 217 (72) | 017 (72) | 0.14 (71) | 0.10 (34 | 0.11 (92) | 0.20 (9%
13 8.93 (44) 0.06 (50) 0.01 (79) 3.89 (79) 0.55 (56) 0.45 (63) 0.04 (86) 0.05 (80) | 0.01 (64) | 0.01(62) 0.04 (77)
4 0.07 (19) | 0.00(25) | 0.00(13) | 1.02(19 | 00I(0) | 0.09 (36) | 0.0I B31) | 0.8 (13) | 0.04 (0) | 0.04(0) | 0.02 (44
15 102 (55 | 0.00(65) | 0.02(75) | 17205 | 003(0) | 0.04©5 | 002(95) | 091 (75 | 0.16(0) | 0.17(©) | 0.11 (70)
16 0.04 (16) 0.00 (20) 0.01 (48) 0.16 (48) 0.00 (28) 0.01 (44) 0.01 (44) 1.46 (20) | 0.00 (20) | 0.00 (20) | 0.06 (20)
Average | 2.39 (58) 0.12 (65) 0.34 (73) 1.59 (75) 0.33 (46) 0.37 (74) 0.48 (71) 0.86 (69) | 0.13 (43) | 0.12 (50) | 0.07 (76)
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Fig. 8. Inter-MMD for 16 classes obtained from (a) TCA, (b) JDA, (c) STL, and (d) DTL on the dataset ACDE — B.

obtained the classification accuracy according to the different
values, as shown in Fig. 10. To demonstrate that our model
can achieve optimal performance under varying parameter val-
ues, the best results of other comparison methods are depicted
as dashed lines. From Fig. 10(a), we chose k € [8, 13] for
our experiments. Fig. 10(b) shows the classification accuracy
according to the Laplacian parameter §, where the Laplacian

constraint results useful to retain the local manifold struc-
ture in DTL, and our model generally outperforms the other
methods in a wide range 8 € [10~°,1071]. Fig. 10(c) shows
the classification accuracy according to interclass regulariza-
tion parameter v, where the inter-MMD should be increased.
Again, our model outperforms the comparison methods in a
wide range o € [1077,1072].
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Fig. 9. Similarity matrices obtained from (a) TCA, (b) JDA, (c) STL, and (d) DTL embeddings on the dataset ACDE — B.

90 90

90
<80 <80 ,/”a”’Aa_—_*%\\§e”’A&\\\* 80 4/,4r//’/e\\\\x
Sk I o 9 - 3
" /\ 5 /./\\ \570”/‘\\~
© y © P . & z ®
5 * * > 602 i i * * * 5 * * * *
3 o0 // S 3 8% \*
< < 55 <
) — 50
T |
40 40
4 7 10 13 0 10° 10° 10* 10° 102 107 107 10® 10° 10* 10% 102
k 3 N
(a) (b) ()
—*-A-D-%-D-B-©-ACDE-B

Fig. 10. Parameter sensitivity of DTL on three datasets (dashed lines indicate the best results from comparison methods). (a) isubspace bases k. (b) Laplacian

regularization parameter S. (c) Interclass regularization parameter «.

We expect it is possible to perform hyperparameter tuning
for the proposed method given a real-word dataset. Similar
to the setup in our experiments, we should be able to tune
the hyperparameters based on the performance in the source
domain. A similar strategy has also been applied to adjust
hyperparameters in [34] and [43]. For example, we com-
pare the parameter sensitivity of k from A to other domains
A — B,A — C, and A — D. As shown in Fig. 11, we
observe the trends of performance in the source and target
domains with respect to different hyperparameter selections
are consistent with each other, we are comfortable to use val-
idation performance in the source domain as an indicator of
performance in the target domain in the hyperparameter tuning
process.

3) Algorithm Convergence: To investigate the convergence
of the proposed DTL algorithm, we calculated the MMD
according to the number of iterations, as shown in Fig. 12.
The results were obtained from the A — D, D — B, and
ACDE — B datasets. As the number of iterations increases,
the MMD decreases, and accuracy increases. Hence, DTL
exhibits good stability after a few iterations, suggesting its
fast convergence.

4) Time Complexity: We verified the time complexity by
running the evaluated transfer learning methods on the park-
ing lot datasets A — D, D — B, and ACDE — B. The
running time and accuracy results are listed in Table IV.
Among all comparison methods, the running times of TCA,
GFK, CORAL, LSA, and STL are relatively short, but their
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TABLE IV
RUNNING TIME (S) AND ACCURACY (%) OF DTL AND COMPARISON TRANSFER LEARNING METHODS ON THREE DATASETS

Dataset
A—D D — B ACDE — B
Method | Runtime | Accuracy | Runtime | Accuracy | Runtime | Accuracy
TCA 5.9 44.1 5.4 44.0 16.4 74.9
GFK 3.1 19.5 2.4 31.6 12.1 57.0
JDA 5092.3 49.3 5078.0 47.7 20082.2 81.9
TIM 32335 449 3203.0 473 12043.6 81.8
ARTL 1565.9 58.0 1562.4 42.8 6102.6 66.8
CORAL 156.9 333 151.7 37.1 631.3 68.6
LSA 2.5 39.7 1.9 37.9 8.5 66.7
JGSA 7361.1 559 7343.3 51.1 28336.9 79.3
BDA 2649.3 61.8 2639.7 42.8 12031.3 76.3
STL 192.7 30.8 187.4 46.8 870.2 78.5
MEDA 5878.2 43.3 5859.0 439 25253.8 67.8
DANN 1659.3 35.1 1650.0 432 7653.6 66.6
MSTN 1780.4 39.9 1893.6 429 6777.4 64.7
JDDA 408.6 38.1 417.6 48.2 620.8 62.6
DTL 5192.1 71.9 5180.8 57.1 201323 83.8

performance is not satisfactory. In contrast, JDA, TIM, JGSA,
and BDA exhibit higher performance than the other compari-
son methods, but they are slow. A predominant computational
cost in JDA, TIM, JGSA, BDA, and the proposed DTL is
eigendecomposition, whose respective complexity is O(n),
O@?), 02n?), O(m?), and O(m>). In the experiment datasets,
m is much smaller than n, and hence the computational time
for DTL eigendecomposition is short. Although DTL is time
consuming, it retrieves better results than the comparison
methods.

5) Learning Tasks: The classification results of DTL, the
three conventional classifiers individually (I-NN, SVM, and
RF), and the 12 transfer learning methods on the 19 learning
tasks are listed in Table V. DTL achieves substantially higher

performance than the other methods. The average classifica-
tion accuracy of DTL is 64.8%, representing a performance
improvement of 8.7% compared to the best evaluated method.

The performance of the 1-NN, SVM, and RF classifiers
is not satisfactory, because we cannot directly apply them
from the source to the target domain. TCA, GFK, TIM,
CORAL, and LSA neglect the intraclass affinity, thus under-
mining performance. Although JDA, ARTL, BDA, and MEDA
use pseudolabels for the target data, their initialization has a
great influence on the results. JGSA does not perform well due
to the two subspaces. The majority voting among classifiers
can also improve performance. As the pseudolabel is not iter-
atively updated via majority voting after the first round, STL
cannot achieve high performance. In contrast, DTL refines
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TABLE V
CLASSIFICATION ACCURACY (%) OF DRIVING PATTERN RECOGNITION ON PARKING LOT DATASETS

Task I-NN | SVM | RF | TCA | GFK | JDA | TIM | ARTL | CORAL | LSA | JGSA | BDA | STL | MEDA | DANN | MSTN | JDDA | DTL

A — B(l) 522 588 | 40.5 | 554 | 504 | 649 | 50.0 50.3 44.4 454 60.5 594 | 642 478 49.5 442 46.2 67.8

A—=CQ 29.2 432 | 45.6 | 479 | 284 | 547 | 529 53.5 34.2 44.4 56.2 60.5 | 40.8 412 35.3 443 43.8 63.8

A — D@3) 20.2 279 | 299 | 44.1 195 | 493 | 449 58.0 33.3 39.7 55.9 61.8 | 30.8 43.3 35.1 39.9 38.1 71.9

A— E@4) 5044 | 584 | 58.0 | 59.6 | 45.1 | 74.5 | 704 533 50.2 52.0 73.2 704 | 63.6 57.9 57.0 50.1 559 75.0

B — A(5) 49.2 544 1 395 | 541 | 428 | 53.0 | 49.2 54.5 50.3 47.0 433 573 | 56.2 45.2 53.8 47.2 54.6 61.0

B — C(6) 56.0 644 | 565 | 65.1 | 49.8 | 62.7 | 59.7 50.3 51.2 55.8 60.3 61.8 | 60.4 59.3 50.4 50.4 56.8 68.1

B — D(7) 39.4 415 | 432 | 438 | 31.8 | 549 | 49.0 46.0 23.3 30.1 55.3 564 | 46.6 399 37.8 41.7 45.2 64.4

B — E®) 30.8 32.5 195 | 41.0 | 263 | 46.1 | 33.7 47.6 23.0 21.1 52.6 50.5 | 393 354 30.8 37.1 32.1 517

C = A©9) 25.1 327 | 285 | 41.8 193 | 541 | 58.1 54.0 389 41.0 60.7 59.6 | 355 377 39.2 439 46.5 60.5

C' — B(10) 49.6 604.6 | 40.8 | 592 | 47.8 | 618 | 56.6 50.0 50.5 55.8 60.6 60.2 | 559 55.0 50.6 53.8 52.8 69.1

C — D(11) 44.2 455 | 403 | 49.7 | 39.0 | 494 | 50.0 50.1 33.9 41.6 | 582 55.8 | 46.9 50.4 543 46.1 53.0 68.7

C — E(12) 19.2 383 | 22.1 | 442 19.0 | 50.6 | 37.5 48.9 35.1 35.0 47.3 538 | 25.1 39.6 26.7 36.3 47.5 55.6

D — A(13) 21.6 400 | 54.8 | 457 198 | 489 | 50.1 40.4 42.6 51.6 53.5 46.1 | 42.6 51.0 428 524 46.0 60.8

D — B(14) 36.7 40.1 | 522 | 44.0 | 31.6 | 477 | 473 42.8 37.1 379 51.1 428 | 46.8 439 432 429 48.2 571

D — C(15) 434 462 | 46.7 | 48.7 | 420 | 53.6 | 57.3 493 44.0 50.2 50.1 59.7 | 457 56.4 472 50.7 48.0 61.8

D — E(16) 37.1 472 | 47.7 | 53.1 342 | 60.8 | 62.4 65.3 39.8 50.2 56.0 62.8 | 46.6 43.0 47.5 533 49.4 65.9

ACDE — B(17) | 68.1 733 | 82.8 | 749 | 57.0 | 81.9 | 8I1.8 66.8 68.6 66.7 79.3 76.3 | 78.5 67.8 66.6 64.7 62.6 83.8

ABDE — C(18) | 35.0 41.1 | 399 | 604 | 254 | 69.4 | 68.3 60.5 56.4 58.0 62.8 69.8 | 40.2 44.0 40.7 55.9 61.0 72.5

ABCE — D(19) | 26.0 333 1296 | 476 | 172 | 58.6 | 54.8 354 589 54.2 51.0 674 | 339 374 33.1 54.2 584 76.5

Average 38.6 46.5 | 43.0 | 51.6 | 340 | 57.8 | 544 54.4 429 46.0 57.3 59.6 | 470 472 443 47.8 49.8 64.8
TABLE VI

CLASSIFICATION ACCURACY (%) OF DRIVING PATTERN RECOGNITION ON PARKING LOT DATASETS FOR DTL WITH DIFFERENT CLASSIFIERS

Task DTL-only 1-NN | DTL-only SVM | DTL-only RF | DTL

A — B(1) 59.3 63.8 62.8 67.8
A—CQ2) 55.3 59.8 58.8 63.8

A — D(@3) 65.9 65.1 64.0 71.9
A— E@4) 69.0 71.5 70.0 75.0

B — A(5) 57.0 57.5 57.1 61.0

B — C(6) 60.1 67.1 64.1 68.1

B — D(7) 58.8 61.4 60.4 64.4

B — E8) 47.7 50.7 46.3 51.7

C — A©9) 55.9 56.6 56.5 60.5

C — B(10) 64.7 65.1 64.9 69.1

C — D(11) 60.7 64.1 63.5 68.7

C — E(12) 45.8 51.5 51.6 55.6

D — A(13) 53.2 56.2 54.8 60.8

D — B(14) 51.8 52.8 51.3 57.1

D — C(15) 56.2 56.7 57.0 61.8

D — E(16) 58.0 62.7 61.2 65.9
ACDE — B(17) 75.8 80.8 78.9 83.8
ABDE — C(18) 65.5 69.5 68.5 72.5
ABCE — D(19) 72.3 72.5 71.5 76.5
Average 59.6 62.4 61.2 64.8

pseudolabels and achieves much better results. Hence, DTL
can construct a more effective and robust representation for
cross-domain driving pattern recognition.

We also observed that the performance of some meth-
ods such as DANN becomes worse when using multiple
source domains (ABCE — D) together than single source
domain A — D. The degradation might be caused by the
distinct data distributions among different domains, since
the larger distribution discrepancy is, the worse knowledge
transfer efficacy should be expected in transfer learning.
DANN only considers the MMD between the source domains
(A, B, C, and E) and target domain (D), hence the dis-
tributions in source domains are not aligned. Compared
with single source domain, multiple source domains may
bring confusion which leads to worse performance. While
for our model, the labels available in source domains
and pseudolabels in the target domain are used to well
align all the different domains, which seems beneficial in
knowledge transferring, as demonstrated by the experimental
results.

6) Effectiveness of Majority Voting Strategy: We also eval-
uated the effectiveness of the majority voting strategy by
employing weighted 1-NN, SVM, and RF as candidate clas-
sifiers. When multiple classifiers have different classification
results, the ensemble approach failed to get a unified label.
In this article, we simply adopted the result of the SVM
method as the final result due to its superior performance on
the parking lot dataset. Table VI lists the classification accu-
racy obtained by integrating the three classifiers using majority
voting and that obtained from each individual classifier after
feature transformation.

Compared with the results of 1-NN, SVM, and RF in
Table V, the performance improves after feature transforma-
tion. Hence, feature transformation effectively narrows the gap
between domains. After feature transformation, using SVM
alone in the proposed DTL outperforms the use of either
1-NN or RF on average. Moreover, the integrated classifiers
consistently achieve better results than any of the three clas-
sifiers independently in all tested scenarios, demonstrating the
effectiveness of the majority voting strategy.
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VI. CONCLUSION

In this article, we have proposed a driving pattern recog-
nition method based on DTL. It aims to adjust intraclass
and interclass distributions through an iterative ensemble pro-
cedure to enhance the compactness (i.e., reduce intraclass
discrepancy) and separability (i.e., increase interclass distance)
of transfer learning. Extensive experiments show that DTL is
effective and robust for driving pattern recognition and can
significantly outperform various state-of-the-art methods on
parking lot datasets. We mainly focused on the transfer learn-
ing framework for driving pattern recognition in this article.
More effective ensemble methods can be considered to inte-
grate classification results from different classifiers and further
improve the recognition accuracy, which will be one of our
future works.
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