
Towards Reliable Proof Generation with LLMs:
A Neuro-Symbolic Approach

Anonymous ACL submission

Abstract001

Large language models (LLMs) struggle with002
formal domains that require rigorous logical de-003
duction and symbolic reasoning, such as math-004
ematical proof generation. We propose a neuro-005
symbolic approach that combines LLMs’ gen-006
erative strengths with structured components007
to overcome this challenge. As a proof-of-008
concept, we focus on geometry problems. Our009
approach is two-fold: (1) We retrieve analo-010
gous problems and use their proofs to guide011
the LLM, and (2) a formal verifier evaluates012
the generated proofs and provides feedback,013
helping the model fix incorrect proofs.014

We demonstrate that our method significantly015
improves proof accuracy for OpenAI’s o1016
model (58%-70% improvement); both analo-017
gous problems and the verifier’s feedback con-018
tribute to these gains. More broadly, shifting019
to LLMs that generate provably correct con-020
clusions could dramatically improve their re-021
liability, accuracy and consistency, unlocking022
complex tasks and critical real-world applica-023
tions that require trustworthiness.024

1 Introduction025

Despite their remarkable performance across a026

wide range of tasks, LLMs still struggle in formal027

domains such as mathematical proofs. This stems028

primarily from their inherent architecture, which029

relies on probabilistic sequence generation based030

on patterns learned from vast textual datasets.031

Mathematical proofs demand rigorous logical032

deduction, symbolic manipulation, and an under-033

standing of abstract concepts that go beyond sta-034

tistical correlations in language. The requirement035

for absolute truth and the absence of ambiguity in036

mathematical reasoning present a significant chal-037

lenge for models trained to generate plausible text038

rather than formally valid inferences (Singh et al.,039

2024; Pan et al., 2025).040

In addition, the often lengthy nature of proofs041

necessitates a level of sustained logical coherence042

and hierarchical reasoning that is hard for current 043

LLMs. Recent work has shown that altering even 044

superficial aspects of mathematical problems re- 045

sults in significant performance drops (Mirzadeh 046

et al., 2024), suggesting that their success often 047

hinges on pattern matching rather than genuine 048

mathematical reasoning. 049

Enabling LLMs to generate rigorous and veri- 050

fiable proofs can dramatically boost LLMs’ reli- 051

ability, accuracy and consistency, unlocking ap- 052

plications in mathematics, science and education 053

(Welleck et al., 2022; Gupta et al., 2025; Kumar 054

et al., 2023), as well as many safety-critical and 055

security-critical tasks. 056

In this work, we introduce a neuro-symbolic ap- 057

proach that combines the generative strengths of 058

LLMs with two complementary structured compo- 059

nents: (1) analogical guidance and (2) symbolic 060

verification. See Figure 1 for an illustration. 061

The first component retrieves analogous prob- 062

lems and their proofs to guide the model. This is 063

inspired by both cognitive science, where analogy 064

is recognized as a fundamental mechanism under- 065

lying human problem-solving and generalization 066

(Gentner, 1983; Holyoak and Thagard, 1996), and 067

by a recent work showing that when LLMs solve 068

grade-school math word problems, asking them to 069

think of analogous problems and their solutions 070

can significantly improve performance (Yasunaga 071

et al., 2023). In our setting, proofs for analogous 072

problems both provide a better starting point for 073

constructing a new proof, and also allow us to iden- 074

tify the most relevant theorems to show the model, 075

substantially reducing costs. 076

To complement this, our second component em- 077

ploys a symbolic verifier that checks the generated 078

proofs and provides structured feedback. This feed- 079

back drives an iterative loop, enabling the model to 080

revise its output until a valid proof is obtained. 081

As a proof of concept, we focus on Euclidean 082

geometry – a domain that is symbolic, verifiable, 083
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Figure 1: Our neuro-symbolic approach. Given a target problem from the FormalGeo-7k dataset, we first convert
it into an abstract form by replacing entity names (e.g., lines, angles) and specific numeric values with placeholders
( §3.1). We then retrieve structurally similar problems from the abstracted dataset by computing Jaccard similarity
over key formal components: construction (entities and geometric relations), conditions (e.g., angle equalities,
segment lengths), and goal (the conclusion to be proven). This is based on the observation that structurally similar
problems often share proof patterns ( §3.2). The retrieved problems, along with their corresponding formal proofs,
are presented to an LLM as in-context examples, together with the available theorems from the Geometry Theorem
Dictionary, to guide proof generation for the target problem ( §3.3). Finally, a symbolic verifier iteratively checks
the generated proof and provides feedback until a correct proof is produced or a retry limit is reached ( §3.4).

and rich in structural analogies. Note that our pri-084

mary objective in this paper is to evaluate whether085

our symbolic augmentations can improve the proof-086

generation capabilities of general-purpose LLMs.087

As such, while geometry is the domain we test our088

ideas in, our focus is not on competing with state-089

of-the-art, specialized geometry solvers. Rather,090

we wish to quantify the gains enabled by our091

method. Our main contributions are:092

• We propose a neuro-symbolic system that aids093

LLMs in proof generation by providing ana-094

logical guidance and verification feedback.095

• We design a symbolic verifier tailored to ge-096

ometry proofs with expressive feedback. In097

contrast to other works, we evaluate the entire098

proof, not just the final numeric answer.099

• Our method significantly improves proof accu-100

racy, achieving gains of 58%–70% over Ope-101

nAI’s o1 model. Both analogical guidance102

and the verifier contribute to performance.103

• Our method reduces costs via focused context104

construction, reducing the theorem dictionary105

from 18K to just 2.5K tokens on average.106

• We will release code and data, including the107

evaluation scripts and processed data used in108

our experiments1.109

1URL redacted, will be available upon publication.

2 Problem Formulation 110

We demonstrate our ideas in the domain of Eu- 111

clidean geometry. Our input is a geometry prob- 112

lem, described in both natural language and via 113

a formal representation. The description includes 114

the geometric entities involved (e.g., lines, angles), 115

their relationships (e.g., perpendicular, collinear), 116

and measurements or algebraic expressions over 117

them. We also receive a goal, some quantity to be 118

determined (e.g., the length of a line). In addition, 119

the model has access to a dictionary of theorems 120

that may be used in the proof. 121

The output is a formal proof that derives the goal 122

from the given conditions and theorems, along with 123

the final, numeric answer. The proof consists of 124

steps, each applying a specific theorem from the 125

dictionary. See Figure 2 for an example. 126

3 Approach 127

Our goal is to develop a system that assists LLMs 128

in proof generation. As a proof of concept, we 129

focus on geometry problems from the FormalGeo- 130

7k dataset (Zhang et al., 2023), containing 6,981 131

SAT-level Euclidean geometry problems2. 132

2Available at https://github.com/FormalGeo/
FormalGeo under the MIT License. Used here solely for
non-commercial academic research.
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parallel_property_alternate_interior_angle(AB,CD): 
{
    1: {
      premises: 
ParallelBetweenLine(AB,CD)&Line(AD),
      conclusions: Equal(MeasureOfAngle(BAD), …)

        },
    2: { ... }, 
    …
},
angle_addition(ABC, CBD): { 
      1: { …},
  …
}, 
…

Theorem Dictionary (GDL):Problem:

Description: “∠ABC=40°, CD||AB, 
       BC is perpendicular to AC. 
       Find the measure of ∠ECD”

Construction: 
Shape(CA,AB,BC), Shape(EC,CD) …

Construction (extended):
Shape(AB,BC,CA), Shape(BC,CA,AB) …

Conditions:
Equal(MeasureOfAngle(ABC),40),
ParallelBetweenLine(CD,AB) …

● Goal: Value(MeasureOfAngle(ECD))Answer: 50
Proof: 
1) parallel_property_alternate_interior_angle(1,CD,AB) 
2) angle_addition(1,ECD,DCB)
3) adjacent_complementary_angle(1,ECB,BCA)

Figure 2: An example problem from FormalGeo-7k. Left: Problem inputs, including a natural language description
and formal representations – construction (entities and relations), extended construction (inferred based on extension
rules), conditions, and goal. The input also includes a numeric answer (or expression) and a formal proof, composed
of steps, each invoking a theorem from the dictionary. Right: The Theorem Dictionary. Theorems include variation
id, arguments, premises and conclusions. The full dataset also includes diagrams, but we do not use them, as a recent
work (Zhang et al., 2024) showed that multimodal LLMs often struggle with the visual aspects of math problems.

Our approach is two-fold (see Figure 1). Given133

a target problem, we first build on the insight that134

structurally similar problems often admit similar135

proofs. We abstract all problems in the dataset136

(§3.1), retrieve analogous problems (similar to the137

target on an abstract level, §3.2), and use the top-138

ranked analogies and their corresponding proofs139

as few-shot examples (§3.3). Next, we employ a140

symbolic verifier that iteratively provides feedback141

on the validity of the generated proofs (§3.4).142

3.1 Problem Abstraction143

Analogous problems share a similar underlying144

structure, but could differ on surface-level de-145

tails such as entity names or measurements. To146

identify such problems, the pipeline first ab-147

stracts the target problem and all problems in148

the dataset. We chose a very simple abstrac-149

tion schema: entity names are replaced with150

“<word>” and numbers with “<num>”. For exam-151

ple, “Equal(MeasureOfAngle(ABC),40)” becomes152

“Equal(MeasureOfAngle(<word>), <num>)”. This153

process is applied to the formal representations of154

construction, conditions, and goal. Exploring more155

nuanced abstraction schemas (e.g., ones that keep156

information about shared symbols between words)157

is left for future work.158

3.2 Analogous Problems Retrieval 159

Our goal in this section is to retrieve problems 160

whose (known) proof is similar to the (unknown) 161

target proof. We conjecture that providing the 162

model with these proof examples in context will 163

improve its ability to generate a correct proof. 164

Our underlying working hypothesis is that simi- 165

lar problems often yield similar proofs. More con- 166

cretely, we posit we can identify problems with 167

potentially useful proofs by finding analogous prob- 168

lems (i.e., problems which are structurally similar 169

to the target problem). To do this, we train a re- 170

gressor to predict proof similarity between two 171

problems, based on their structural similarity. 172

Dataset and Training. For each pair of abstracted 173

problems, we compute the Jaccard similarity over 174

the multi-sets of construction and condition rep- 175

resentations. We define goal similarity as 1 if the 176

goals match exactly and 0 otherwise. These three 177

features form the input to our model. Abstract 178

proof similarity, computed again via Jaccard simi- 179

larity, serves as the label. 180

The dataset contains ∼ 24.4M problem pairs (all 181

combinations of 6,981 problems). Proof similarity 182

scores are binned into five intervals of width 0.2. 183

As the distribution is highly imbalanced, with 88% 184
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k Analogy Random
Coverage ↑ Theorems ↓ Coverage ↑ Theorems ↓

20 88% 11.06 62% 32.92

50 93% 18.57 79% 49.87

100 96% 26.66 88% 66.98

150 98% 31.96 92% 82.82

Table 1: Average number of problems whose entire
proof was covered by the union of theorems from their
top-k analogies vs. random problems, over 100 random
target problems (20 per level, 1–5). Analogies consis-
tently achieve higher coverage despite fewer theorems.

of pairs in the first bin (0-0.2), we down-sample185

all bins to the size of the smallest (131K, 0.8-1),186

yielding a balanced dataset of 655K pairs. We split187

the data into 90% training and 10% evaluation.188

We train a simple three-layer neural network189

using mean squared error (MSE) loss and the Adam190

optimizer, with a learning rate of 0.001, batch size191

of 32, and 10 epochs. See Appendix A for details.192

Evaluation. Note that for our use case, we are193

only interested in whether we can predict very194

high proof similarity. We select all pairs with pre-195

dicted similarity above 0.95 and measure the frac-196

tion whose ground-truth proof similarity is in the197

top two bins. While only 1.28% of pairs exceed198

this threshold, 71% of our predictions do.199

We are encouraged by the results, which confirm200

that our regressor can identify proofs similar to201

the (unknown) target proof, based on the target202

problem’s description alone.203

3.3 LLM Proof Generation204

We use a few-shot prompt (in-context learning)205

that begins with the target problem, including its206

textual description, construction, conditions and207

goal. This is followed by the top analogous prob-208

lems selected using the regressor from Section 3.2,209

along with their full proofs and numeric answers.210

Additionally, the LLM is given a theorem dictio-211

nary, which defines geometry theorems in terms212

of formal premises and conclusions (see Figure 2).213

The LLM’s task is to generate a correct proof, us-214

ing only the theorems from the dictionary. See215

Appendix B for the prompt.216

One challenge we encountered is that the full217

theorem dictionary contains 196 theorems (234 in-218

cluding variations), resulting in a large token count219

and, consequently, high costs. This also limits220

scalability, as adding more theorems would further221

increase the input size. 222

To address this problem, we propose a more effi- 223

cient approach. We have just shown that analogous 224

problems tend to have similar proofs; thus, we test 225

whether we could similarly narrow down the dic- 226

tionary to include only theorems used in analogous 227

proofs. This reduction not only reduces costs, but 228

also narrows the search space, helping the model 229

focus on more relevant theorems. 230

To evaluate the effectiveness of this approach, 231

we measure the extent to which the narrowed-down 232

dictionary still captures all the theorems needed for 233

the proof of the target problem. We sample 100 234

problems (20 from each level 1-5) and evaluate how 235

many of their target proofs are completely covered 236

using theorems from their top-k similar problems 237

(retrieved with the regressor of Section 3.2), and 238

compare to a random set of k problems. 239

Note that even if a proof of a problem includes a 240

theorem not present in its analogous set, it might 241

still be possible to construct a valid proof using only 242

the covered theorems. Therefore, our coverage 243

metric is a conservative estimate of effectiveness. 244

See Table 1 for results. Theorems from analo- 245

gous problems consistently outperform the baseline 246

of theorems from random k problems, providing 247

higher coverage despite lower number of theorems. 248

A larger k increases coverage but also expands the 249

input; we find that k = 100 offers a good trade-off, 250

achieving coverage of 96% with only 26.66 theo- 251

rems on average, that is 13.6% of the full dictionary. 252

Exploring other values of k is left for future work. 253

3.4 Verifier Iterative Feedback 254

We next endow the LLM with an external verifier 255

that can guide it through a feedback loop. This is in- 256

spired by similar efforts showing that code-writing 257

LLMs can improve with iterative corrections (Peng 258

et al., 2025; Palavalli and Santolucito, 2024). Af- 259

ter each attempt to produce a proof, the verifier 260

provides natural-language feedback, specifying the 261

first error found in the proof. The LLM incorpo- 262

rates it into its context for the next iteration. The 263

loop continues until the proof is verified or the max- 264

imum number of retries is reached (see Section 4). 265

The verifier is a symbolic reasoning system ca- 266

pable of performing both formal logic checks and 267

algebraic reasoning. Internally, it encodes proof 268

steps and geometric constraints as logical formu- 269

las and algebraic expressions, and evaluates them 270

using satisfiability modulo theories (SMT). 271

Importantly, the verifier does not know the so- 272
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lution. Instead, it assesses whether the numerical273

answer is entailed by the constraints imposed by274

the proof. If the proof is valid and the answer can275

indeed be inferred from it, the proof is accepted.276

Error tiers. To analyze where the LLM struggles,277

we define three verifier-identified error tiers:278

1. Theorem call syntax violation: Syntax errors.279

Common issues include undefined theorems280

or incorrect argument signatures.281

2. Premise violation: Theorem calls that rely on282

premises that have not been derived from the283

problem description or preceding proof steps.284

Feedback identifies the missing premise and285

lists all premises derived so far.286

3. Goal not reached: The proof contains no er-287

rors but does not reach the goal. Feedback288

indicates that either (1) the proof is undercon-289

strained and multiple solutions exist, or (2)290

that the (unique) solution derived by the veri-291

fier differs from the LLM’s answer.292

See Appendix C for examples of error messages293

from the different tiers.294

Implementation details. To identify tier-1 errors,295

we extended the implementation of Zhang et al.296

(2023). To identify tier-2 and tier-3 errors we use297

the Z3 Theorem Prover (De Moura and Bjørner,298

2008), a state-of-the-art SMT solver, that encodes299

algebraic constraints derived from geometric prop-300

erties and verifies their logical consistency.301

We also augment Z3 with symbolic workarounds302

for trigonometric functions it does not natively sup-303

port. See Appendix C for more details.304

4 Experimental Setup305

We evaluate the performance of our method on the306

FormalGeo-7K dataset. Our main research ques-307

tions are as follows:308

RQ1: Does our method lead to a higher rate of309

correct proofs generated by the LLM?310

RQ2 (Ablation): What is the individual contribu-311

tion of different components in our method?312

A Note on Baselines for Comparison. Our
main goal is to assess whether our symbolic
augmentations (analogy guidance and veri-
fication) can improve the ability of existing
LLMs to generate formal proofs. Conse-
quently, our focus is not on competing with
specialized geometry solvers, but on quanti-
fying the gains introduced by our method.

313

We now share details on our experimental setup. 314

Input problems. We randomly sample 10 prob- 315

lems for each difficulty level from 1 to 5 from the 316

FormalGeo-7K dataset, resulting in a total of 50 317

problems. Levels correspond to the number of steps 318

in the ground-truth proof. 319

Base model. We use OpenAI’s o1 model with 320

the default parameters as our base model. o1 is 321

a state-of-the-art LLM known for its capabilities 322

in mathematical reasoning, proof generation, and 323

complex problem-solving (Jaech et al., 2024). We 324

experimented with several models, including GPT- 325

4, GPT-4o-mini, and GPT-4o (Achiam et al., 2023; 326

Hurst et al., 2024), and observed that these models 327

tend to produce proofs with a significant number of 328

syntax errors. o1 consistently outperformed them, 329

making it the strongest baseline for our task. We 330

leave the evaluation of additional base models for 331

future work. 332

Few-shot variants. 333

• Analogy-based: We provide k similar (analo- 334

gous) problems and their proofs as few-shot 335

examples, along with an abridged theorem 336

dictionary which includes only theorems from 337

the proofs of similar problems (Section 3.3). 338

• Base model (non-analogy): We provide k 339

random problems and their proofs as few-shot 340

examples, along with the complete dictionary. 341

A note about k. In our preliminary exploration, no 342

model was able to correctly follow the proof format 343

with zero-shot prompts (unsurprisingly). We have 344

found that k = 5 works well in practice; testing the 345

effect of k in more depth is left for future work. 346

Feedback iterations and multiple runs. As out- 347

lined in Section 3.4, we integrate the LLM into a 348

feedback loop guided by a verifier, allowing the 349

LLM up to five iterations (retries following feed- 350

back) per run. In addition, since LLMs sometimes 351

get stuck (even with feedback), we allow start- 352

ing from scratch up to three times per problem 353

(i.e., three separate runs, with the default – and 354

unchangeable – temperature parameter set to 1). 355

Metric. We report the fraction of problems for 356

which the model produces a correct proof, for the 357

following settings: 358

• First run, no retries (%): The model pro- 359

duces a correct proof on its first attempt. 360

• First run, with retries (%): Any of m retries 361

(following feedback) in the first run succeeds. 362

• Multiple runs, with retries (%): Any at- 363

tempt across n independent runs (each with 364

up to m retries) succeeds. 365
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Figure 3: % correct proofs per level of difficulty (50
samples, 10 per level). Our analogy-based method out-
performs the o1 base model (non-analogy) in all settings.
Analogy retrieval, verifier feedback, and multiple runs
each significantly contributes to performance. Our full
pipeline (blue triangle) outperforms the baseline in ev-
ery level, reaching an average aggregated accuracy of
80%. Even without multiple runs (blue square), perfor-
mance remains strong at 68%, far exceeding the 10% of
the base model baseline (red hollow circle).

Of course, more runs and retries increase costs;366

for our use case, we found that allowing a maxi-367

mum of m = 5 and n = 3 offers a good tradeoff368

between performance and budget. We assess the369

effect of retries and runs in the next section.370

5 Results371

Figure 3 shows the results for the different settings.372

5.1 RQ1: Performance gains of our approach.373

We start by comparing our full pipeline (blue trian-374

gle: analogy + verifier, multiple runs with retries),375

to the most basic baseline (red hollow circle: non-376

analogy, no verifier, first run, no retries). Our full377

pipeline consistently outperforms the baseline at378

every level, achieving an average aggregated accu-379

racy of 80%. In contrast, the base model achieves380

an average of only 10% (with 0% accuracy on lev-381

els 3 and above). This difference is statistically382

significant with p =5.82e-11 in the McNemar test383

at the 0.05 level (our method solved all problems384

the base model did, plus 35 others).385

To isolate the contribution of multiple runs, we386

also evaluated our model after a single run (blue387

square). This setting also substantially outper-388

formed the base-model baseline, achieving an over-389

all accuracy of 68%, with p =3.73e-09 in the Mc-390

Nemar test at the 0.05 level. Thus, we conclude that 391

our method significantly boosts the base model’s 392

success rate in generating correct proofs, even with- 393

out multiple runs. 394

5.2 RQ2: Ablations. 395

We now assess the contribution of the different 396

components of our pipeline: The analogy retrieval, 397

the verifier, and the multiple runs. 398

Analogy retrieval. To measure the effect of anal- 399

ogy retrieval, we compare our method to the base 400

model (non-analogy), under the same three settings: 401

(1) first run, no retries, (2) first run, with retries 402

(verifier), (3) multiple runs, with retries (verifier). 403

In setting (1) our method achieved an overall 404

accuracy of 48%, substantially outperforming the 405

baseline’s 10% (blue circle vs. red hollow circle), 406

p =3.81e-06 in the McNemar test at the 0.05 level. 407

In setting (2), our method achieved 68% overall 408

accuracy, while the base model reaches 38% (blue 409

square vs. red hollow square), p =6.10e-05 in the 410

McNemar test at the 0.05 level. In setting (3) we 411

observe a 80% overall accuracy for our method vs. 412

52% for the base model (blue triangle vs. red hol- 413

low triangle). This improvement is also statistically 414

significant, with p =1.22e-04 in the McNemar test 415

at the 0.05 level. That is, analogy retrieval boosts 416

model performance across all settings. 417

Verifier feedback. We now measure the impact 418

of retries following feedback. As shown in Fig- 419

ure 3, allowing retries consistently improves results 420

across all difficulty levels. For our analogy-based 421

method, retries (blue square) yields an average gain 422

of additional 20% over no retries (blue circle), with 423

gains ranging from 10% to 30% at different levels. 424

The improvement is even more pronounced for the 425

base model (red hollow square vs. red hollow cir- 426

cle), where verifier feedback results in an average 427

gain of 28%, ranging from 10% to 40% per level. 428

Multiple runs. In RQ1, we evaluated the effect 429

of multiple runs when comparing our full method 430

to the base model. We now analyze the impact of 431

multiple runs for the same method (blue triangle 432

vs. square, red hollow triangle vs. square). We 433

find that additional runs improve performance for 434

both our method and the base model. Notably, 435

for our method multiple runs help more on harder 436

problems (gains of 20-30% for levels 4-5), where 437

the potential for improvement is greater. 438

To conclude, our method outperforms the base- 439

line across all settings, with each component con- 440
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Figure 4: Average number of retries (top) and runs
(bottom) per problem by difficulty level. The dashed
line represents maximum allowed. Our analogy-based
method consistently outperforms the base model, with
fewer retries and runs across all levels.

tributing to performance. Although the verifier441

alone does enhance the base model’s results, anal-442

ogy retrieval supplies stronger initial proof candi-443

dates for the verifier to correct.444

5.3 Further analysis.445

Effect of m and n parameters. Figure 4 shows446

the average number of retries (top) and runs (bot-447

tom) per problem by difficulty level. Dashed line448

represents maximum allowed, but the method stops449

early if it reaches a valid proof. Our method con-450

sistently requires fewer retries and runs than the451

base model across all levels. On average, it uses452

4.6 retries and 1.58 runs per problem, compared to453

8.92 retries and 2.12 runs for the base model.454

Proof accuracy given correct answers. We con-455

sider a numeric answer to be correct if it is correct456

in at least one retry across runs. By this definition,457

our full pipeline solved 100% of problems (50).458

Among these, it generated correct proofs for 40459

problems (80% success rate). In contrast, the base460

model (multiple runs, retries) produced 45 correct461

answers (90%), with only 26 correct proofs (57.7%462

success rate, compared to 52% on all problems).463

Interestingly, while the base model often finds464

Figure 5: Error distribution by tier for our method vs.
the base model. Our method reduces errors across all
tiers, with tier-1 errors being most frequent in both.

the right answer, it fails to support it with a cor- 465

rect proof. We conjecture that the model often has 466

some notion of the correct proof but struggles to 467

precisely phrase it. By providing relevant proofs 468

from analogous problems, our method helps the 469

model close this gap, which is crucial for trustwor- 470

thy systems. Notably, our method also improves 471

the overall accuracy in finding the correct numeri- 472

cal answer (100% vs. 90%). 473

Stability of results. Our evaluation was conducted 474

on a set of 50 problems (10 per difficulty level 1-5). 475

To assess the stability of our results, we sample 476

an additional 10 problems per level and rerun our 477

method. Due to its high cost, we do not repeat 478

this for the base-model baseline.3 We observe that 479

overall accuracy varies by only 3% per level on 480

average, and conclude the results are stable. See 481

Appendix D for per-level differences. 482

5.4 Error Analysis 483

As detailed in Section 3.4, we categorize verifier 484

errors into three tiers. Figure 5 shows their distri- 485

bution across difficulty levels. 486

As expected, our method yields fewer errors than 487

the base model across all tiers and levels. Tier-1 488

3The baseline includes the entire theorem dictionary in the
prompt, leading to high API call costs.
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syntax errors are the most prevalent. These are fol-489

lowed by tier-3, where the proof fails to conclude490

the goal. Tier-2 – calling a theorem without satis-491

fying one of the premises, are the least common.492

This trend holds for the base model as well. As493

noted in Section 3.4, tier-1 errors are frequent but494

easily resolved by the LLM after feedback.495

6 Related Work496

Neural Models for Proof Generation. Some prior497

work used LLMs to directly generate logical or498

mathematical proofs (Tafjord et al., 2020; Kazemi499

et al., 2022; Yue et al., 2023). In contrast, we do not500

train the LLM, but guide it by retrieving analogous501

problems and using their formal proofs to guide the502

proof generation.503

Neuro-symbolic Methods. Neuro-symbolic ap-504

proaches combine LLMs with symbolic tools. This505

strategy has been shown to be effective for some506

structured tasks (Szeider, 2024; Régin et al., 2024;507

Mittal et al., 2024; Wu and Mitra, 2024). Auto-508

formalization methods (Song et al., 2024; Alhessi509

et al., 2025) such as LINC (Olausson et al., 2023)510

translate natural language into first-order logic us-511

ing an LLM, followed by a symbolic theorem512

prover. We note that the focus of these works is on513

logical reasoning, and they are not readily equipped514

to handle the mathematical or algebraic elements515

within proofs.516

One work in the domain of geometry is Alpha-517

Geometry (Trinh et al., 2024), which combines518

symbolic deduction with a language model trained519

on 100M synthetic geometry examples to generate520

machine-verifiable proofs. In contrast, our method521

does not require training.522

Analogical Reasoning. LLMs have been studied523

for analogical reasoning in diverse domains, includ-524

ing word analogies, narratives and processes, and525

visual scenarios. For a comprehensive dataset sur-526

vey, see Sultan et al. (2024). However, relatively527

few works have explored analogical reasoning in528

mathematics. The most relevant to our work is529

Yasunaga et al. (2023), who propose analogical530

prompting as an alternative to chain-of-thought, re-531

lying on analogies generated by the model itself. In532

contrast, we retrieve structurally similar problems533

with verified proofs, without requiring the model534

to generate (potential incorrect) solutions itself.535

Zhou et al. (2025) approach analogical reason-536

ing as a self-supervised learning task, fine-tuning537

models to transfer solutions between structurally538

similar problems. The model is trained to solve 539

a target problem conditioned on the solution to a 540

related source problem, learning abstract transfor- 541

mation patterns from many pairs. In contrast, our 542

method requires no additional training and operates 543

entirely at inference time. 544

In another work, Lee et al. (2025) generate in- 545

context examples for math word problems by creat- 546

ing numerical variants of the target problem. These 547

examples are automatically created, unlabeled, and 548

include only the problems, without solutions. In 549

contrast, our focus is on generating formal mathe- 550

matical proofs. Thus, in our setting altering numer- 551

ical values offers virtually no benefits. 552

7 Conclusions and Future Work 553

We introduced a neuro-symbolic approach for 554

proof generation, coupling LLMs with retrieval 555

of analogous proofs and symbolic verification. The 556

analogies help guide the LLM, and the verifier pro- 557

vides feedback on the generated proofs. 558

We test our ideas in the domain of Euclidean 559

geometry. Our experiments on the FormalGeo- 560

7k dataset show that our method significantly im- 561

proves proof correctness over the base model, with 562

each component contributing to performance gains. 563

Our method also reduces costs by narrowing down 564

the theorem dictionary using the analogous proofs. 565

These results demonstrate the potential of neuro- 566

symbolic methods for mathematical reasoning. 567

In the future, we plan to extend our approach be- 568

yond geometry to other areas, where automated 569

proof verification could help validate complex 570

derivations and ensure the consistency of mod- 571

els. We also see an interesting use case in educa- 572

tion, where analogical retrieval can surface similar 573

solved problems to guide students, and a symbolic 574

verifier can offer targeted hints and feedback. 575

We also aim to explore more expressive forms of 576

formal verification, such as model checking with 577

temporal logics (LTL and CTL), enabling reason- 578

ing about dynamic systems that evolve over time, 579

as well as more sophisticated mechanisms for anal- 580

ogy retrieval and structural similarity. 581

We hope this work inspires future research on 582

neuro-symbolic systems that combine the flexibil- 583

ity of LLMs with the precision of formal reasoning. 584

Our approach could provide a scalable blueprint 585

for building reliable AI systems in STEM domains 586

where correctness is crucial, allowing deployment 587

in complex safety- and security-critical systems. 588
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Ethical Considerations589

Dataset. To protect privacy and ensure proper590

anonymization, we removed the names of individ-591

ual annotators from the subset of problems used in592

our experiments and shared on GitHub.593

Use of AI Assistants. We used GPT-4o and Claude594

3.5 Sonnet for coding assistance, and GPT-4o for595

writing and rephrasing. We reviewed and edited596

all of the outputs to ensure they aligned with our597

design goals and preserved our original intent.598

Limitations599

General Limitations.600

• Generalization beyond geometry. Our ex-601

periments focus on Euclidean geometry, and602

results may differ in other formal domains,603

which may involve different proof structures,604

theorem types, or symbolic representations.605

While our pipeline is designed to be adaptable606

to any domain that supports SMT-based verifi-607

cation, further evaluation is needed to confirm608

its effectiveness beyond geometry.609

Analogy Retrieval Limitations.610

• Abstraction schema for analogy retrieval.611

We use a simple abstraction method that re-612

places entity names and numbers with place-613

holders. While effective in many cases, this614

schema may miss deeper structural nuances or615

semantic relationships, leading to suboptimal616

or misleading analogies.617

Verifier Limitations.618

• No support for inverse trigonometric. A619

key limitation of our verification system is620

that the Z3 theorem prover does not support621

inverse trigonometric functions. While we im-622

plemented workarounds for direct functions623

such as sine and cosine, the system cannot624

verify cases requiring inverse operations (e.g.,625

computing θ from cos(θ) = 0.5). This lim-626

its our ability to validate proofs where angle627

measures must be derived from trigonomet-628

ric values. Future work could address this629

by integrating custom decision procedures for630

inverse trigonometric reasoning.631

LLM Limitations.632

• No access to diagrams. Our LLM uses only633

formal and textual descriptions, without vi-634

sual inputs. Although our dataset includes635

rich symbolic annotations, covering geomet- 636

ric entities, relationships, constructions, and 637

extended conditions, some errors arise due 638

to the system’s lack of access to visual dia- 639

grams. For instance, when reasoning about 640

arcs, the model may incorrectly infer that 641

BOD + BOA = AOD instead of the cor- 642

rect relation BOD = BOA + AOD. Such 643

mistakes are less frequent in reasoning about 644

line, where properties like collinearity are ex- 645

plicitly annotated. In some cases, ambiguity 646

in notation further complicates interpretation; 647

for example, the angle name ̸ DOB could 648

refer to the angle itself or its complement, de- 649

pending on context. 650

On the other hand, we note that a recent work 651

(Zhang et al., 2024) has shown that multi- 652

modal LLMs often struggle with the visual 653

aspects of math problems, often performing 654

better without the images. 655

• Closed LLM Dependency (OpenAI o1). 656

While this model delivers strong performance 657

and is widely adopted, its architecture, train- 658

ing data, and training methodology are pro- 659

prietary. It is also subject to deprecation or 660

access restrictions, limiting transparency and 661

long-term reliability. 662

• LLMs are sensitive to prompt phrasing. 663

LLMs are sometimes sensitive to small 664

changes to the prompts. 665
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A Analogous Problems Retrieval803

We trained a neural network to predict proof sim-804

ilarity between two problems, using the Jaccard805

similarity of their proofs as the target. The model806

inputs a 3D feature vector capturing structural and807

semantic similarities: (1) Jaccard over abstract con-808

structions, (2) Jaccard over abstract conditions, and809

(3) goal similarity – computed from abstracted810

problem representations. The model has three811

fully connected layers: 3→128 (ReLU), 128→64812

(ReLU), and 64→1 (linear). It was trained for 10813

epochs with batch size 32 using MSE loss and the814

Adam optimizer (learning rate 0.001).815

B LLM Proof Generation816

See Figure 6 for the system prompt provided to817

the LLM (OpenAI’s o1 model), and Figure 7 for818

few-shot examples of analogous problems and their819

solutions (including proof, and answer).820

C Verifier Implementation Details821

Geometric reasoning module. We represent822

each problem state using a structured system of823

Python classes that encodes geometric facts, such824

as point orderings, segment lengths, and angle rela-825

tionships. To enhance robustness and flexibility, we826

apply normalization procedures that map geometric827

objects to canonical, direction-agnostic forms. For828

example, treating ̸ ABC and ̸ CBA as equivalent.829

Algebraic constraint solver. We use the Z3 The-830

orem Prover, a state-of-the-art SMT solver, to rep-831

resent and enforce algebraic constraints implied by832

geometric statements. When a proof step estab-833

lishes a fact like collinearity of points A, B, C, and834

D, the system automatically generates angle equal-835

ity constraints (e.g., ̸ XAB = ̸ XAC = ̸ XAD836

for any reference point X).837

Handling of Trigonometric Expressions. Z3 838

does not natively support trigonometric functions. 839

To work around this limitation, we: 840

• Introduce symbolic variables for trigonomet- 841

ric expressions (e.g., cos_ABC). 842

• Add angles referenced by trigonometric terms 843

to the system’s internal constraint graph. 844

• Evaluate goals involving trigonometric expres- 845

sions either by matching against known values 846

or by reasoning symbolically if exact evalua- 847

tion is not possible. 848

Verifier Examples Figure 8 presents a represen- 849

tative example of error outputted by the verifier, 850

from each error tier. 851

D Stability of Results 852

Figure 9 shows the performance of our method on 853

both the original 50 samples and the extended set 854

of 100 samples, broken down by level. As shown, 855

performance remains unchanged in levels 2, 3, and 856

5, while levels 1 show 5% difference, and level 857

4 4 show a 10% difference. Overall, the average 858

difference across levels is 3%. We conclude our 859

results are stable. 860
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You are a mathematician expert in solving geometry problems.
Your task is to solve Problem B by constructing the correct sequence of theorems (THEOREM_SEQUENCE) to form its proof.

Inputs:
You are given:
Problem B, which you need to solve.
Five analogous problems (A1, A2, A3, A4, A5) that have similar proof structures. These are provided to help guide your
approach to solving Problem B.
Geometry Theorem Dictionary (GDL): A dictionary containing various geometry theorems, each with its premise and
conclusion. All theorems in the THEOREM_SEQUENCE must be selected from this dictionary.
GDL_DICTIONARY:
{GDL}
For each problem, you are provided the following data:
DESCRIPTION: A textual description of the problem.
CONSTRUCTION_CDL: The problem’s construction in Condition Declaration Language (CDL).
TEXT_CDL: The text of the problem in CDL.
GOAL_CDL: The goal of the problem in CDL.
CONSTRUCTION_CDL_EXTENDED: An extended version of CONSTRUCTION_CDL.
SYMBOLS_AND_VALUES: Symbols with corresponding values, in the format (predicate;symbol;value).
EQUATIONS: Equations related to solving the problem, in the format (equation).
GOAL_SYMBOL: The symbol you are trying to solve for, in the format (symbol).
ANSWER: The calculated final answer, in the format (answer).
THEOREM_SEQUENCE: The sequence of theorems used in the proof, formatted as:
step_id <step_id>; <theorem>; <premise>; <conclusion>
step_id <step_id>; <theorem>; <premise>; <conclusion>

Your Task:
You need to solve Problem B by constructing the correct THEOREM_SEQUENCE, which should consist of theorems from the
GDL. Ensure that each selected theorem logically follows the previous one and contributes to the goal of solving Problem B.

Output Format:
Your response must contain the following:
EQUATIONS: <equation> <equation> ...
GOAL_SYMBOL: <symbol>
ANSWER: <answer>
THEOREM_SEQUENCE:
<step_id>; <theorem>; <premise>; <conclusion>
<step_id>; <theorem>; <premise>; <conclusion>

Important Notes for the THEOREM_SEQUENCE:
Do not include the words "theorem", "premise", or "conclusion". Your sequence should only contain the step ID, theorem name,
premise, and conclusion.
Use the exact theorem names and formats provided in the GDL.
Start with step_id = 1 and increment sequentially.
When referring to angles, use three letters (e.g., ABC for the angle at B). Be mindful of the order, as ABC is different from
ACB. For polygons, list all distinct points in clockwise or counterclockwise order. For example, a polygon with points FGE can
also be referred to as GEF or EFG.

Example of Correct THEOREM_SEQUENCE Format:
1; angle_addition(1,BFE,EFG);
Angle(BFE)&Angle(EFG)&Angle(BFG);
["Equal(MeasureOfAngle(BFG),Add(MeasureOfAngle(BFE),MeasureOfAngle(EFG)))"]
2; triangle_property_angle_sum(1,DFC); Polygon(DFC);
["Equal(Add(MeasureOfAngle(DFC),MeasureOfAngle(FCD),MeasureOfAngle(CDF)),180)"]

Reminder:
Ensure that the theorems you select come from the GDL, follow the correct format, and use the proper arguments (e.g., angle
order and polygon points). Also, pay attention to the specific variation of the theorem (e.g., 1 for the first variation, 2 for the
second, etc.).

Figure 6: System prompt given to the o1 LLM for generating a geometry proof for a target problem B. The model
is provided with all details about the task, as well as a Geometry Theorem Dictionary (GDL) and five analogous
problems (A1–A5), which are supplied as few-shot examples (see Figure 7).
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Inputs for Problem A1:
DESCRIPTION:
As shown in the diagram, Div(LengthOfLine(AD)=LengthOfLine(DF)), Div(LengthOfLine(DF)=LengthOfLine(FB)), AG=15,
DE is parallel to BC, DE is parallel to FG, FG || BC. Find the length of line CE.

CONSTRUCTION_CDL:
Shape(AD,DE,EA), ...
Collinear(ADFB), ...

TEXT_CDL:
Equal(Div(LengthOfLine(AD),LengthOfLine(DF)),3/2), ...
ParallelBetweenLine(DE,BC), ...

GOAL_CDL:
Value(LengthOfLine(CE))

CONSTRUCTION_CDL_EXTENDED:
Shape(DE,EA,AD), ...
Collinear(BFDA), ...
Point(A), ...
Line(AB), ...
Angle(ADF), ...
Polygon(ADE), ...
ParallelBetweenLine(CB,ED), ...

SYMBOLS_AND_VALUES:
LengthOfLine(AG);ll_ag;15, ...

Outputs for Problem A1:
EQUATIONS:
ll_ad/ll_df - 3/2, ...

GOAL_SYMBOL:
ll_ce

ANSWER:
9

THEOREM_SEQUENCE:
...

Inputs for Problem A2:
...

Inputs for Problem A3:
...

Inputs for Problem A4:
...

Inputs for Problem A5:
...

Outputs for Problem B:

Figure 7: Few-shot prompt shown to the o1 LLM, consisting of five analogous problems (A1–A5) along with their
inputs and solutions – including the final answer and theorem sequence used in the proof. Note: “...” indicates
omitted content for brevity.
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Tier 1 (Syntax Violation)

Theorem: parallel_property_ipsilateral_internal_angle(1,GA,HD)
You output the following premises: ParallelBetweenLine(GA,HD)&Line(AD)
But the correct premises: ParallelBetweenLine(GA,HD)&Line(GH)

Tier 2 (Premise Violation)

- Error: You tried to use theorem: right_triangle_judgment_angle(1,BCD);
Polygon(BCD)&Equal(MeasureOfAngle(BCD),90);[’RightTriangle(BCD)’]

Missing premise: Angle measure 90° for triangle BCD is not established in the
premise.
Details: Premise provided: Polygon(BCD)&Equal(MeasureOfAngle(BCD),90)
- Available premises:
Perpendicular Lines: AD, BD
Collinear Points: ADC
Polygons: ABC, ABD, ACB, ADB, BCD, BDC
- Theorems related to the goal:
Step 1 - right_triangle_judgment_angle(1, BCD): RightTriangle(BCD)
- Solver constraints directly related to this goal:
|AB| = y
Please fix the proof.

Tier 3 (Goal Not Reached)

- Goal: measure of angle ADB
- Model answer: 55.0
- Error: Your proof doesn’t uniquely determine the value. You need to use additional
theorems to constrain the value.
- Available premises:
Collinear Points: AOB, BCD
Cocircular Points: A on circle O, AB on circle O, ABC on circle O, AC on circle O,
B on circle O, BC on circle O, C on circle O
Circles: O center: O
Circle Diameters: AB diameter of O
Tangent Lines: DA tangent to O
Polygons: ABD, ADB, ADCO, BCO, BOC, COAD, DCOA, OADC
- Theorems related to the goal: None found that constrain this goal
- Solver constraints directly related to this goal: ̸ ADB ≤ 180, ̸ ADB > 0,
̸ ADC = ̸ ADB

Figure 8: Examples of verifier errors across three tiers. Tier 1: syntax violations in theorem calls. Tier 2: missing
or undefined premises. Tier 3: under-constrained reasoning that fails to derive the goal.
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Figure 9: Accuracy remains stable when increasing the sample size from 50 to 100 (10 additional problems per
level), with an average variation of only 3% per level. Per-level differences range from 0% (levels 2, 3, and 5) to 5%
(level 1), and 10% (level 4). We conclude our results are stable.
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