
C2F-SPACE: Coarse-to-Fine Space Grounding for Spatial Instructions
using Vision-Language Models

Anonymous ACL submission

Abstract001

Space grounding refers to localizing spatial002
references expressed through natural language003
instructions. Traditional methods often fail004
to account for complex reasoning—such as005
distance, geometry, and inter-object relation-006
ships—while vision-language models (VLMs),007
despite strong reasoning abilities, struggle to008
produce fine-grained outputs. To overcome009
these limitations, we propose C2F-SPACE, a010
novel coarse-to-fine space-grounding frame-011
work that performs coarse reasoning via012
propose-validate VLM prompting and refines013
predictions through superpixel-wise residual014
learning for precise local geometric reasoning.015
Our evaluations demonstrate that C2F-SPACE016
significantly outperforms three state-of-the-art017
baselines in both success rate and intersection-018
over-union on a new superpixel-level space-019
grounding benchmark.020

1 Introduction021

Space grounding refers to the process of mapping022

linguistic expressions to spatial regions within an023

environment (Kim et al., 2024). The process often024

requires complex spatial reasoning that accounts025

for distance, geometry, and inter-object relation-026

ships, which have yet to be thoroughly investi-027

gated. Fig. 1 illustrates a representative example028

in a robotic pick-and-place scenario, where a hu-029

man provides an instruction: “Place the spoon to030

the right of the cupcake at twice the distance be-031

tween the cup and the pizza.” The interpretation032

of this instruction requires not only estimating the033

distance, but also reasoning about proportional re-034

lationships to determine the target position among035

candidates located twice that distance to the right036

of the cupcake.037

Early approaches link simple spatial expressions038

(e.g., ‘near’) to a limited category of segments (e.g.,039

‘next to the stop’) (Jain et al., 2023). Subsequent ap-040

proaches support compositional expressions (Zhao041

Place the spoon to the right of the cupcake
at twice the distance between the cup and the pizza.

Stage 1: Space reasoning with 
physical & semantic validators

Stage 2: Superpixel based 
space refinement

: Refined region: Canonical region

Figure 1: Illustration of the two-stage space grounding
result produced by the proposed C2F-SPACE. The grid-
guided prompt enables the VLM to generate a coarse
region proposal (e.g., an ellipsoid) through spatially mul-
tiplicative reasoning. A superpixel-based enhancement
process then refines this proposal into a fine-grained
spatial mask.

et al., 2023; Gkanatsios et al., 2023). Recently, Kim 042

et al. (2024) introduce a probabilistic update mech- 043

anism to resolve the ambiguity in compositional 044

expressions. Despite these advances, their gener- 045

alization remains limited due to the small scale of 046

annotated datasets. 047

With advances in large language models (LLMs) 048

and vision-language models (VLMs), researchers 049

begin leveraging large pre-trained models for en- 050

hanced spatial reasoning. Notable examples in- 051

clude ROBOPOINT (Yuan et al., 2025), which 052

fine-tunes a VLM to localize target regions as 053

coarse point sets, and recent VLMs, such as 054

Molmo (Deitke et al., 2025) and Gemini 2.5 (Co- 055

manici et al., 2025), demonstrate zero-shot 2D 056

point grounding (Cheng et al., 2025). Neverthe- 057

less, the coarse, point-level nature of these outputs 058

often lack the rigorous spatial precision required 059

for downstream applications, particularly in fine- 060

grained robotic manipulation. While visual prompt- 061
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ing methods provide more granular guidance and062

complement traditional text prompts (Shtedritski063

et al., 2023; Cai et al., 2024), they mostly perform064

forward reasoning without validation.065

Therefore, we propose C2F-SPACE, a novel066

coarse-to-fine space-grounding framework with067

spatio-semantic validation for complex instruc-068

tions. Our method is a two-stage framework; the069

first stage enables a VLM to propose and vali-070

date regional candidates using a grid-inpainted im-071

age prompting, while the second stage refines the072

coarse outcome to precisely fit into the environment073

via super-pixelization.074

We evaluate C2F-SPACE against baselines on075

a space-grounding benchmark comprising 350076

problems, including instructions with (i) single-077

hop space reasoning with unique references, (ii)078

single-hop space reasoning with non-unique ref-079

erences, and (iii) multi-hop space reasoning with080

unique/non-unique references. Our results show081

that C2F-SPACE significantly improves the ground-082

ing performance of o4-mini (OpenAI, 2025), out-083

performing baselines such as CLIPORT (Shridhar084

et al., 2022), LINGO-Space (Kim et al., 2024), and085

ROBOPOINT (Yuan et al., 2025).086

Our key contributions are as follows:087

• We introduce a propose-validate prompting088

framework for a VLM that progressively per-089

forms coarse spatial reasoning to ground a natural090

language command.091

• We provide a superpixel-based module to refine092

the output of the reasoning stage that allows fine,093

pixel-level refinements for a candidate solution,094

accounting for local object context.095

• We introduce a space-grounding benchmark of096

350 examples consisting of diverse challenging097

instructions, and conduct extensive comparisons098

with state-of-the-art baselines.099

2 Related Work100

Space grounding: Traditional approaches man-101

ually link each predicate in a fixed set to vari-102

ous representations, such as potential fields (Stopp103

et al., 1994) or fuzzy spatial membership func-104

tions (Bloch and Saffiotti, 2003; Tan et al., 2014).105

Deep learning-based methods emerge and predict106

pixel coordinates or pixel-level probability maps107

for placement (Venkatesh et al., 2021; Mees et al.,108

2020; Shridhar et al., 2022). Moreover, researchers109

explore modeling the space as probabilistic pa-110

rameterizations, such as Gaussian mixture mod-111

els (Zhao et al., 2023) or Boltzmann energy func- 112

tions (Gkanatsios et al., 2023). Notably, LINGO- 113

Space (Kim et al., 2024) models the space using 114

a Bayesian update of polar distributions to under- 115

stand spatiotemporal descriptions. 116

As VLMs prove effective on a wide range of 117

robotic tasks (Brohan et al., 2023; Shah et al., 118

2023), researchers have begun applying VLMs 119

to space grounding. These models enable direct 120

prediction of goal points grounded by robotic in- 121

structions in images. RoboPoint (Yuan et al., 2025) 122

predicts 2D keypoints via fine-tuning on spatial 123

phrases, enabling the model to translate relational 124

commands into precise points. Recent VLMs, such 125

as Molmo (Deitke et al., 2025) and Gemini 2.5 (Co- 126

manici et al., 2025), show a zero-shot point pre- 127

diction from language instructions. However, their 128

point-based outputs remain coarse and lack fine- 129

grained spatial precision. Our method uses learning- 130

based superpixel refinement to precisely refine the 131

parameterized canonical region within the target 132

space. 133

Spatial reasoning with VLMs: VLMs provide 134

open-world multimodal understanding, making 135

them applicable to a broad range of downstream 136

tasks, such as image-text retrieval (Chen et al., 137

2023), zero-shot visual question answering (Li 138

et al., 2023), and segmentation (Lai et al., 2024). 139

However, early VLMs fail spatial reasoning since 140

they behave as a bag-of-tokens, which lose posi- 141

tional detail (Yuksekgonul et al., 2023; Li et al., 142

2024; Chen et al., 2024). To overcome the limi- 143

tation, recent approaches integrate depth features 144

into VLMs to provide scale cues (Cheng et al., 145

2024). Furthermore, fine-tuning VLMs using ex- 146

tensive spatial relation annotations improves rea- 147

soning over complex object interactions in diverse 148

scenes (Yuan et al., 2025; Song et al., 2025). Our 149

method guides the VLM with structured visual and 150

textual prompts, enhancing its spatial reasoning to 151

predict the target space described by the instruc- 152

tion. 153

3 Methodology 154

We introduce C2F-SPACE, a hierarchical space- 155

grounding method that combines grid-guided VLM 156

prompting with superpixel-based refinement. 157

3.1 Overview 158

Consider an input instruction Λ and an input RGB 159

image I ∈ Z3×H×W containing N objects, where 160
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Figure 2: (a) Overall framework of C2F-SPACE. Given an instruction Λ and an image I , the object identification
module first obtains object masks Mo1:N . The space-reasoning module iteratively proposes a candidate region M̃Λ,
and the subsequent space-refinement module adjusts this proposal to produce the high-precision region MΛ. (b)
Space-reasoning module in detail. At each iteration k, the textual prompt generator constructs an instruction-specific
textual prompt νΛk , while the visual prompt generator creates a grid-guided visual prompt νIk . Next, the region
proposer predicts an elliptical region through the prompts. Two validators then assess the proposal: the physical
validator rejects regions that collide with objects, and the semantic validator checks consistency with the spatial
instruction. Validation feedback (green “Yes” / red “No”) drives an iterative refinement loop; once both validators
accept the region, the system forwards M̃Λ to the space-refinement stage.

H and W denote the image height and width, re-161

spectively. Our goal is to predict a space mask (i.e.,162

segment) MΛ ∈ ZH×W that corresponds to Λ. As163

shown in Fig. 2 (top), inference proceeds in three164

steps: 1) object identification, 2) space reasoning,165

and 3) space refinement. This modular design im-166

proves grounding accuracy and reliability while167

mitigating hallucinations in the VLM.168

In detail, the object-identification step extracts a169

unified mask Mo1:N covering all objects in the im-170

age. The space-reasoning step then infers a canoni-171

cal region M̃Λ ∈ ZH×W leveraging a grid-guided172

visual-text prompt, and iteratively refines it until173

the region satisfies both physical and semantic con-174

straints with respect to Mo1:N and Λ. Finally, the175

space-refinement step locally adapts the canonical176

region to precisely fit the environment using super-177

pixels.178

The grid guidance helps the VLM distinguish179

low or texture free space lacking distinctive fea-180

tures while maintaining semantic consistency with181

the instruction. Superpixel-based refinement re-182

duces computational cost and enhances alignment183

with spatio-semantic pixel distribution compared 184

to pixel-level refinement. We describe each compo- 185

nent in detail below. 186

3.2 Open-set Object Identification 187

Prior to grounding, we construct a joint object 188

mask Mo1:N = Mo1 ∪ ... ∪ MoN , where each 189

Moi ∈ ZH×W denotes the binary mask of the 190

i-th object. We use the constructed mask in the 191

validation process of the space-reasoning step. As 192

our focus is on space grounding without prior ob- 193

ject knowledge, we employ Grounded-SAM (Ren 194

et al., 2024), an open-set object-mask identifier that 195

first detects object bounding boxes using Ground- 196

ing DINO (Liu et al., 2024), and then extracts the 197

corresponding masks using SAM (Kirillov et al., 198

2023), conditioned on the detected boxes. 199

3.3 Grid-guided Space Reasoning 200

This step guides the VLM to propose a canoni- 201

cal region M̃Λ maximizing its reasoning capabil- 202

ity. Fig. 2 (bottom) illustrates the iterative reason- 203

ing and validation process. At each iteration, the 204

prompt generator creates a visual prompt νI for 205
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grid-based guidance and a text prompt νT to in-206

terpret the instruction Λ. Feeding these concate-207

nated prompts into the VLM yields M ellipses208

[ε1, ..., εM ], where each εj represents a proposed209

region. Note that M typically ranges from one to210

two depending on the VLM output. Then, we com-211

bine ellipses to form the predicted region M̃Λ.212

To validate M̃Λ, we introduce two validators: a213

physical validator to assess feasibility for object214

placement, and a semantic validator to ensure con-215

sistency with the instruction Λ. We detail each com-216

ponent below.217

1) Prompt generator: At each iteration k, our gen-218

erator produces a novel grid-guided visual prompts219

νIk by overlaying a grid Igrid ∈ Z3×H×W onto the220

input image I , providing explicit visual cues. We221

draw the grid Igrid in black with a thickness of 1.4222

pixels at 100 DPI and 100-pixel intervals, regard-223

less of the size of the image. In the grid, we also224

display axis tick values and labels (e.g., “x axis”) to225

support reasoning about direction and distance. The226

grid remains on the top layer throughout all itera-227

tions. We define the initial prompt as νI0 = I⊕Igrid,228

where ⊕ denotes the overlay operation. From the229

second iteration (k > 0), we additionally over-230

lay the latest predicted region M̃Λ as red pixels:231

νIk>0 = I ⊕ Igrid ⊕ M̃Λ.232

Alongside, the generator produces a text prompt233

νΛk using an LLM to guide the VLM in decompos-234

ing the grounding process while interpreting the235

visual prompt νIk . The prompt includes (i) object236

guidance—identifying instruction-relevant objects237

and their spatial extent based on Λ, (ii) region guid-238

ance—prompting the VLM to output region coor-239

dinates, and (iii) collision-free guidance—ensuring240

predicted coordinates avoid object overlap. From241

iteration k > 0, the prompt also incorporates the242

feedback from the validators, enabling the VLM to243

refine proposals based on prior errors. Note that the244

VLM may return coordinates for multiple ellipses245

(see the prompt detail in Appendix B).246

2) VLM-based region proposer: Upon receiving247

the two prompts νIk and νΛk , the VLM predicts a248

unified region M̃Λ ∈ ZH×W consisting of canon-249

ical region proposals, represented as ellipses. We250

parameterize each ellipse εj using its center coor-251

dinates, semi-axis lengths, and rotation angle, ex-252

tracted directly from the VLM’s structured output253

via a text-to-ellipse conversion. Given these param-254

eters, we generate individual elliptical masks and255

combine them to form a final region M̃Λ through256

logical union.257

3) Physical & semantic validators: To ensure that 258

the proposed region M̃Λ satisfies both the phys- 259

ical and semantic requirements of the instruction 260

Λ, we conduct a two-stage validation at each itera- 261

tion. The first stage checks the physical validity of 262

the proposed region mask. In the case where M̃Λ 263

intersects with the joint object mask Mo1:N , we fur- 264

ther assess whether the intersection supports valid 265

placements (e.g., “on the dish” or “in the basket”). 266

Otherwise, we regard M̃Λ is suitable for placement 267

actions. 268

For the further assessment, we issue another 269

VLM query with a validation prompt consisting 270

of a visual prompt νI,phy
k = I ⊕ Igrid ⊕ M̃Λ and a 271

text prompt νΛ,phy
k that asks whether placing an ob- 272

ject at M̃Λ is physically feasible, yielding a binary 273

response. 274

For semantic validation, we reuse the visual 275

prompt νI,sem
k (= ν

I,phy
k ) and provide a semantic 276

text prompt νΛ,sem
k , asking whether M̃Λ satisfies 277

the spatial semantics of Λ. To improve accuracy, 278

we instruct the VLM to decompose compositional 279

instructions and validate each sub-component in- 280

dividually within νΛ,sem
k . If M̃Λ passes both val- 281

idations or if the process reaches the maximum 282

number of iterations, we return it; otherwise, we 283

return to the prompt generation step. 284

3.4 Superpixel-based space refinement 285

We locally adapt the coarse canonical region M̃Λ 286

to the fine-grained structure of the surrounding en- 287

vironment as well as free space, we predict the final 288

manipulation region MΛ by modeling its resid- 289

ual. We particularly introduce a residual learning 290

module by decomposing the instructed region as 291

MΛ = M̃Λ ⊕Mresidual
Λ where Mresidual

Λ captures 292

local refinements over the superpixel space. To sim- 293

plify learning, we approximate this decomposition 294

in the logit space as 295

lΛ = αl̃Λ + (1− α)lresidual
Λ , (1) 296

where lΛ, l̃Λ, and lresidual
Λ denote the superpixel- 297

wise logits of MΛ, M̃Λ, and Mresidual
Λ , respec- 298

tively; α ∈ [0, 1] is a scaling factor and |lΛ| = L 299

with L denoting the number of superpixels. We de- 300

scribe superpixel generation and logit estimation 301

below. 302

To compute l̃Λ for the predicted region M̃Λ, 303

we generate superpixels from the grayscale image 304

Igray ∈ RH×W using SLIC (Achanta et al., 2019). 305

We then assign a pseudo logit to each superpixel in 306
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Left and below the left tray

Ground-truth

Above the inhaler and
as far away from the inhaler as the

thermometer is from the mobile phone

Single-Hop / Unique References Single-Hop / Non-Unique References Multi-Hop / Mixed References

Final region

Between the basket, banana
and the pink bottle

Canonical region

Figure 3: Example data sample and prediction results from our space grounding benchmark. Starting from the left,
each instruction and image pair illustrates single-hop space reasoning with unique references, single-hop space
reasoning with non-unique references, and multi-hop space reasoning with unique/non-unique references cases.
The blue regions in the top row indicate the superpixel-level ground-truth labeled by a human. In the bottom row,
the green regions show the canonical region proposed by the VLM, and the red regions show the final predictions
refined by the superpixel-level refinement module.

two steps:307

M̃Λ
smoothing−−−−−−→ M̃′

Λ
aggregation−−−−−−−→ l̃Λ, (2)308

where M̃′
Λ represents a center-distance weighted309

value for each ellipse; pixels farther from the cen-310

ter of each ellipse have smaller values. We then311

compute the pseudo-logit value l̃Λ by averaging the312

pixel values within each superpixel.313

To model the residual lresidual
Λ , we construct a su-314

perpixel graph where each node represents a super-315

pixel and each edge connects adjacent superpixels.316

Node features consist of the mean, minimum, and317

maximum values within each superpixel in Igray318

and M̃Λ, along with a binary indicator specifying319

whether the instruction Λ requires distance reason-320

ing, identified by the LLM.321

We use a graph neural network, GPS (Rampášek322

et al., 2022), to predict the superpixel-wise residual323

logit lresidual
Λ . To supervise it, we compute a focal324

loss of the predicted probabilities p = σ(lΛ) ∈325

RL given the ground-truth space labels, where σ326

is the sigmoid function. Finally, we project the327

superpixel-wise probabilities p back to the pixel328

space and binarize it, resulting in the final refined329

region MΛ.330

4 Experimental Setup 331

Our experiments aim to measure performance im- 332

provements in space grounding tasks that require 333

reasoning. 334

4.1 Benchmark description 335

We introduce a superpixel-level space ground- 336

ing benchmark consisting of real-world scene im- 337

ages, natural language instructions in English, and 338

human-annotated ground-truth labels. We capture 339

tabletop scenes that may include containers holding 340

other objects, as well as multiple identical items. 341

The instructions cover nine types of spatial rela- 342

tions: ‘left,’ ‘right,’ ‘above,’ ‘below,’ ‘near,’ ‘far,’ 343

‘inside,’ ‘outside,’ and ‘along the direction of.’ We 344

annotate the ground-truth labels at the superpixel 345

level rather than the pixel level. We collected the 346

data with approval from the institutional review 347

board (IRB). 348

We categorize the instructions into three types 349

based on the number of reasoning hops and the 350

uniqueness of reference objects, as illustrated in 351

Fig. 3: (i) single-hop space reasoning with unique 352

references, (ii) single-hop space reasoning with 353

non-unique references, and (iii) multi-hop space 354

reasoning with unique/non-unique references 355

The first category, single-hop space reasoning 356
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with unique references, includes instructions in-357

volving one to four spatial expressions with clearly358

identifiable reference objects. These cases require359

only directly interpreting spatial terms and locating360

reference objects.361

The second category, single-hop space reasoning362

with non-unique references, includes instructions363

that require resolving ambiguous references. These364

ambiguities often arise in scenes with multiple visu-365

ally similar objects, as shown in the middle column366

of Fig. 3.367

The third category, multi-hop space reasoning368

with unique/non-unique references, involves multi-369

hop inference. The model needs to understand the370

distance between two objects and apply that dis-371

tance relative to another reference object, often re-372

quiring multiplicative reasoning. For example, the373

instruction “above the inhaler and as far away from374

the inhaler as the thermometer is from the mobile375

phone,” belongs to the multi-hop spatial reasoning376

category.377

The benchmark contains a total of 350 samples,378

which are split into 200 for training, 50 for val-379

idation, and 100 for testing. The validation and380

test sets maintain a balanced distribution across the381

three instruction categories by design.382

We evaluate the performance of our method and383

baselines using two metrics. The first is the success384

rate, which considers a prediction successful if ei-385

ther the maximum-probability point or the centroid386

of the predicted mask lies within the ground-truth387

region. However, the success rate is a binary indica-388

tor and therefore cannot capture the quality of the389

predicted mask in finer detail. For example, even390

if the predicted mask covers only a small portion391

of the ground-truth area, the success rate remains392

the same as long as the maximum-probability point393

falls inside the ground truth. To address this lim-394

itation, we additionally measure the intersection395

over union (IoU) between the predicted and ground-396

truth masks in pixel space, which reflects how well397

the predicted region overlaps with the true target398

area.399

4.2 Baseline Methods400

We evaluate three space-grounding baselines:401

• CLIPORT (Shridhar et al., 2022): A language-402

conditioned imitation learning approach for pick-403

and-place manipulation that predicts a pixel lo-404

cation based on the CLIP (Radford et al., 2021)405

image and language encoding. Note that we dis-406

able its rotational augmentation and extende the407

loss function to accept a mask as ground truth. 408

• LINGO-Space (Kim et al., 2024): A probabilis- 409

tic space-grounding method that incrementally 410

estimates spatial distributions based on compos- 411

ite referring expressions using configurable polar 412

distributions. We extend the loss function to use 413

a mask as a ground truth instead of a point. 414

• ROBOPOINT (Yuan et al., 2025): A VLM fine- 415

tuned with synthetic instructions to predict key- 416

point affordances from language, including spa- 417

tial instructions. ROBOPOINT predicts multiple 418

points as an output for space grounding. Follow- 419

ing the original paper (Yuan et al., 2025), we use 420

the pre-trained model without modification and 421

measure the success rate as the ratio of predicted 422

points that fall inside the ground truth mask. We 423

do not measure IoU for ROBOPOINT. 424

We apply Otsu’s thresholding to convert a pre- 425

dicted probability into a binary mask for both our 426

model and all baselines, except RoboPoint, since 427

spatial regions tend to exhibit low confidence, mak- 428

ing it difficult to select a universal threshold across 429

different cases. We repeat the experiment twice for 430

each methods. 431

5 Evaluation 432

We analyze the performance of our method and 433

baselines on the superpixel-based space-grounding 434

benchmark. As shown in Fig. 4, our method con- 435

sistently outperforms all baselines in both success 436

rate and IoU across all instruction categories. 437

Even in the single-hop space reasoning with 438

unique references cases—where all baselines 439

achieve their highest performance—the success 440

rate reaches only 47.1%. Their performance drops 441

even further in more challenging scenarios such 442

as non-unique references and multi-hop reasoning. 443

LINGO-Space, the strongest among the baselines, 444

loses 21.3% and 30.5% in success rate for these cat- 445

egories, respectively. Since the LLM-based parser 446

of LINGO-SPACE relies solely on the instruction 447

without understanding the scene, it fails to resolve 448

ambiguous references or handle multi-step rea- 449

soning. CLIPORT does not separate spatial rela- 450

tionships from reference objects, which leads to 451

frequent failures even in relatively simple cases. 452

ROBOPOINT also performs poorly on specific re- 453

lations like “far” and multi-hop reasoning, as its 454

dataset does not cover such relations. 455

Our method, C2F-SPACE, uses the reasoning 456

capabilities of the VLM and achieves over 50% 457
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Figure 4: Performance comparison in terms of success rate [%] (left) and Intersection over Union (IoU) (right). The
‘Total’ denotes the average across three instruction categories. The error bar denotes standard deviation.

higher success rates than the best-performing458

baseline, LINGO-Space. C2F-SPACE accurately459

grounds ambiguous reference expressions, such as460

“a yellow block near to the leftmost blue block,” and461

reaches a success rate of 84.9% in the non-unique462

references category. It also correctly interprets nu-463

merical relations and relative distances, achieving464

66.7% success on multi-hop spatial reasoning.465

In terms of IoU, C2F-SPACE significantly out-466

performs all baselines, achieving an average score467

of 0.361 across categories—more than twice that of468

the second-best baseline, CLIPORT (0.160). This469

task is fundamentally different from typical object470

segmentation, as space grounding lacks clear object471

boundaries. As a result, even semantically correct472

predictions can yield lower IoU scores. As illus-473

trated in the third column of Fig. 3, the IoU can474

remain relatively low (e.g., 0.411), even when the475

grounded region is reasonable. Given this inherent476

difficulty, C2F-SPACE achieves notably high IoU477

by refining a coarse canonical region into a fine-478

grained, superpixel-based space. As shown in the479

first and second columns of Fig. 3, the refinement480

module effectively captures object boundaries, con-481

tributing to the improved spatial precision.482

We conduct ablation studies to evaluate the im-483

pact of the superpixel-level refinement. The success484

rate remains comparable with or without this refine-485

ment, as shown in Fig. 5, indicating that reasoning486

primarily relies on the VLM module. Including487

the superpixel-level refinement improves IoU by488

more than threefold, resulting in the highest IoU489

among all baselines. As shown in the bottom rows490

of Fig. 3, the refinement module adjust the predic-491

tion without overlapping the objects.492

We further analyze the importance of each com-493
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Figure 5: Success rate [%] and IoU with and without
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Figure 6: Ablation results on the component of the grid-
guided space reasoning module.

ponent of the grid-guided space reasoning module, 494

focusing on the grid-based visual prompt and the 495

validation. As shown in Fig. 6, removing the vali- 496

dation step and its corresponding iteration causes 497

a slight performance drop of about 2% in success 498

rate. However, removing the visual prompting with 499

the grid results in a significant drop of 14.6%, and 500
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eliminating both the visual prompting and valida-501

tion leads to an additional 4.5% decrease. These502

results highlight the critical role of grid-guided vi-503

sual prompting in applying the VLM for effective504

space grounding by providing essential visual guid-505

ance.506

6 Conclusion507

We proposed C2F-SPACE, a two-stage space-508

grounding framework that combines a VLM with509

a superpixel-level refinement module to identify510

regions that are both physically feasible and se-511

mantically consistent with the input instruction.512

Our method first uses the VLM to globally pre-513

dict a coarse region based on the novel propose-514

validate prompting technique. Then, it locally re-515

fines this coarse prediction into a precise region516

using superpixel-level decisions. This design al-517

lows for both accurate localization and robust gen-518

eralization across complex spatial expressions. Ex-519

perimental results on our new benchmark show520

that superpixel-based refinement significantly im-521

proves IoU without reducing the success rate. In522

addition, the propose-validate prompt, combined523

with the grid inpainting, plays a key role in guiding524

the prediction process. Overall, C2F-SPACE out-525

performs existing baselines in grounding accuracy,526

demonstrating its effectiveness in resolving spatial527

references within complex scenes and instructions.528

Limitations529

While C2F-SPACE effectively refines spatial pre-530

dictions from VLMs, it inherently depends on the531

quality of the initial coarse prediction. When the532

VLM produces a significantly misplaced region, the533

refinement stage often fails to recover the correct534

target, as it operates based on the initial estimate.535

This reliance on the VLM’s spatial reasoning lim-536

its the system’s ability to correct large errors. This537

large initial error may lead to task failure or un-538

safe behavior in real-world robotics. Future work539

could incorporate residual correction policies or540

multi-stage validation mechanisms that use addi-541

tional context to revise poor initial predictions more542

robustly.543
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A Implementation Details736

Open-set object identification. We use Grounded-737

SAM with Grounding DINO-B with a visual back-738

bone SWIN-B and a text backbone BERT-base-739

uncased and SAM with a visual backbone VIT-B.740

We prompt the Grounding DINO with texts ‘object,741

objects’ to extract the bounding boxes.742

Grid-guided space reasoning. We use ‘o4-mini-743

2025-04-16’ for whole tasks. We retry execution744

when an error occurs on the API side, such as when745

the parsing result is missing.746

Superpixel-based space refinement. We de-747

velop on the GPS model using the open-source748

code (https://github.com/vijaydwivedi75/749

lrgb). We use scikit-image (van der Walt et al.,750

2014) for generating superpixels, following the im-751

plementation of GPS. The number of total param-752

eters is about 0.1M and takes less than an hour753

for data pre-processing and training on a single754

NVIDIA RTX 3090 GPU. The hyperparameters755

are as follows.756

epoch 50
learning rate 1e-4

α 0.1
# of layers 2
# of heads 4

hidden dimension 64
SLIC compactness 10

Table 1: Hyperparameters for superpixel-based space
refinement module

Baselines. In the case of CLIPORT, we set the757

pick position at the center of the image, as we fo-758

cus solely on the placing task during training. For759

LINGO-SPACE, we use GroundingDINO and o4- 760

mini to ground objects in the scene and to pro- 761

vide additional annotations for the ground-truth 762

reference objects. Rather than detecting objects, 763

we ground them to better assist human annotators 764

in identifying the reference objects. The detailed 765

information about the baselines is as below. 766

• CLIPORT (Apache-2.0 license): https:// 767

github.com/cliport/cliport 768

• LINGO-Space (MIT license): https://github. 769

com/rirolab/LINGO-Space 770

• ROBOPOINT (Apache-2.0 license ): https: 771

//github.com/wentaoyuan/RoboPoint 772

(checkpoint: https://huggingface.co/ 773

wentao-yuan/robopoint-v1-vicuna-v1. 774

5-13b) 775

B Full Prompt Examples 776

First, we identify the instruction categories using 777

the prompt shown in Fig. 7. We then use the iden- 778

tified category as part of the node features in the 779

superpixel-based space refinement module. 780

Parse a given instruction and classify it into one
of the following categories: "simple", "multiple
instances", or "multi-hop".

- **simple**: The instruction refers to objects with
unambiguous and unique presence in the scene.
...

# Steps
1. Analyze the given instruction to identify all the
objects it refers to.
2. Cross-reference these objects with the provided
list of objects in the scene.
3. Classify the instruction based on the following
criteria:
- **simple**: All referenced objects appear
uniquely as singular instances.
...

# Output Format
The output should be in a structured response
indicating:
- ’Instruction type’: One of "simple", "multiple
Instances", or "multi-hop".
- ’Reason’: A brief justification based on object
presence or relational dependency.

# Examples
**Example 1:**
Input: Instruction: "Between basket and tray and
nearer to the tray"

Output:
Instruction type: simple

781
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Reason: The instruction refers to a basket and a
tray, each uniquely present in the scene.
...

782

Figure 7: Instruction category identification prompt

Based on the identified instruction category, we783

decide whether to add additional explanation or not.784

The main region-proposal text prompt for k = 0 is785

as follows.786

Generate the center coordinates and semi-axes
lengths of elliptical region in an image based
on the provided image, and spatial instructions.
Generate small but accurate regions.

You will be provided with an overhead image of
a table containing various objects, and spatial
instructions. Your task is to determine suitable
center coordinates and semi-axes lengths, ensuring
they satisfy the spatial instructions, maintain
specified bounds, and avoid collisions with objects,
except as noted.

Image: The image is an overhead image of the
table with various objects on it. The image has also
been overlaied with a grid to aid you in co-relating
the object extent coordinates with the image.
Origin (0,0) is at the top-left corner of the image, X
increasing to the right and Y increasing downward.

# Spatial Instructions and Collision Avoidance
- **General Rules**:
- Values for X should be between 0 and 1280, and
Y between 0 and 720.
- The elliptical region should be generated in
collision-free spaces and should maintain distance
from the object boundaries.

# Steps
1. **Extract Information**: Identify relevant
objects and their extents from the image and
spatial instructions.
2. **Generate Regions**: Use the spatial region
generation guidance to determine appropriate
coordinates for the regions.
3. **Ensure Collision-Free Placement**: Verify
that the generated coordinates are free from
collision, following collision avoidance principles.

# Output Format
The "center_coordinates" should be a list of cen-
ter coordinates in the form of [[X1, Y1]]. The
"semi_axes_lengths" should be the lengths of semi-
major and semi-minor axes in the form of [[a, b]],
a >= b. The "angle" should be the tilted angle of
the ellipse in degrees.

787

Figure 8: Region proposal prompt for k = 0

When k > 0, the textual prompt is as follows. 788

Improve the center coordinates and the semi-axes
lengths of the elliptical region based on the
judgment made by the validator and adhere to the
guidelines provided.

You will be provided with an image containing
a red elliptical region, spatial instructions,
previously generated center point coordinates and
previously generated semi-axes lengths for that
region, and judgments from a validator, ensuring
they satisfy the spatial instructions, maintain
specified bounds, and avoid collisions with objects,
except as noted.

Image: The image is an overhead image of the
table with various objects on it. The image has
also been overlaied with a grid to aid you in
co-relating the object extent coordinates. (0,0) at
the top-left corner of the image, X increasing to
the right and Y increasing downward. The red
elliptical region shows previous decision.

# Spatial Instructions and Collision Avoidance
- **General Rules**:
- Values for X should be between 0 and 1280, and
Y between 0 and 720.
- elliptical region should be generated in collision-
free spaces and should maintain distance from the
object boundaries.
- If moving the region, then make sure that the
region is not overlapping with some other object
after movement. If you think it will collide, then
also reduce semi-axes lengths of the region.
- Predict relative movement of the prediction (e.g.
move -30 pixels in X direction), and then generate
the final region based on it.

# Output Format
The "center_coordinates" should be a list of list
coordinates in the form of [[X1, Y1]] ensuring
‘X‘ is between 0 and 1280 and ‘Y‘ is between 0
and 720. The "semi_axes_lengths" should be the
lengths of semi-major and semi-minor axes in the
form of [[a, b]], a >= b. The "angle" should be the
tilted angle of the ellipse in degrees.

789

Figure 9: Region proposal prompt for k > 0

The prompt for physical validation is as follows. 790

You are a collision validator. You will be provided
with a spatial instruction and an image containing
a red elliptical region. Analyze the image and
answer the following questions about the red
elliptical region, providing detailed reasoning for
each response, followed by a pass/fail conclusion
for each question.

791
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# Image
- The image is an overhead image of the table with
various objects on it. The image has also been
overlaied with a grid. Origin (0,0) is at the top-left
corner of the image, X increasing to the right and
Y increasing downward.
- On the image is also the red elliptical region.
The grid will help you give accurate judgments to
correct the location/size of the red elliptical region
if it is in collision.

# Judgment Guidelines
- For each question, judge the prediction. Then,
justify your judgment.
- Do not include any suggestions for improvement
in your response.

# Questions to be answered:
1. **Collision Check**: Assess the objects with
which overlapping/collision is allowed out of all
the objects in the list. If the objects with which the
region overlaps is allowed, then answer as "pass",
else, "fail".

Answer each question by referencing the image
and spatial instruction. After your reasoning for
each question, include a "pass" or "fail" judgment
for clear assessment.

792

Figure 10: Physical validator prompt

The prompt for semantic validation is as shown in793

Fig. 11.794

You are a spatial validator. You will be provided
with a spatial instruction and an image containing
a red elliptical region. Analyze the image and
answer the following questions about the region,
providing detailed reasoning for each response,
followed by a pass/fail conclusion for each
question. The region has already gone through
a collision test and it has been verified that it is
not in collision with any object that it should not
collide with.

# Judgment Guidelines
- For each question, judge the prediction. Then,
justify your judgment.
- Consider the distance properly. Unless a specific
axis is mentioned, interpret the distance as the
general square root distance between objects,
considering a center coordinate or boundary.
- When projecting the distance, consider the
object extents to avoid collision and to maintain
appropriate spacing.
- Do not include any suggestions for improvement
in your response.

# How to check if red region is satisfying the
instruction:

795

1) **Break the instruction into multiple seg-
ments.**
- Example 1:
- Instruction: "To the right of the tray with edible
items and below the spectacles."
- Segments: [right of the tray with edible items,
below the spectacles]

- Example 2:
- Instruction: "left and blue cloth and far from the
marker"
- Segments: [left of the blue cloth, far from the
marker]

2) ** Spatial validation of the red elliptical region
for each segment **: For each segment, check if
the position of the red elliptical region is satifying
each segment. Make use of the spatial guidelines
to check validity of position of red elliptical
region with each segment. Keep in mind that the
segments are not individual instructions. They are
dependant on the segments before and after them.
Example: If the instruction is "right of the
strawberry and between carrot and banana".
segments will be: [right of strawberry, between
carrot and banana]. Now, when you check for
between carrot and banana, keep in mind the
previous segment. The red elliptical region might
not be directly in between the carrot and banana,
as right of strawberry also has to be satisfied.

3) If the object being referred to in the instruction
has multiple instances in the image, then carefully
check if the red elliptical region is following the
spatial instruction using the correct instance of the
object.

# Questions to be answered:
1. **Spatial Compliance**: Determine whether
the elliptical region is according to the spatial
instruction provided. Describe your reasoning. Use
the "spatial guidelines" to come to a conclusion.

Answer each question by referencing the image,
spatial instruction and objects extents. After your
reasoning for each question, include a "pass" or
"fail" judgment for clear assessment.

796

Figure 11: Semantic validator prompt

C Data collection 797

Experienced research assistants who were famil- 798

iar with the robot and the application domain per- 799

formed the annotations. All annotators were male, 800

aged between 23 and 28 years. These research as- 801

sistants collected the data as part of their regular 802

duties, and we did not recruit any external anno- 803

tators. We provided the annotators with detailed 804
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instructions, including full information about the805

application domain and the intended use of the data806

(i.e., training a space grounding model). Each an-807

notator gave informed consent before every data808

collection session. To avoid fatigue, no one worked809

for more than 90 minutes in a single sitting, and810

each person participated in only one sitting per811

day. A second annotator, possibly supported by a812

grammar-checking AI tool, reviewed the instruc-813

tions and checked for grammatical consistency.814
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