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Abstract

Space grounding refers to localizing spatial
references expressed through natural language
instructions. Traditional methods often fail
to account for complex reasoning—such as
distance, geometry, and inter-object relation-
ships—while vision-language models (VLMs),
despite strong reasoning abilities, struggle to
produce fine-grained outputs. To overcome
these limitations, we propose C2F-SPACE, a
novel coarse-to-fine space-grounding frame-
work that performs coarse reasoning via
propose-validate VLM prompting and refines
predictions through superpixel-wise residual
learning for precise local geometric reasoning.
Our evaluations demonstrate that C2F-SPACE
significantly outperforms three state-of-the-art
baselines in both success rate and intersection-
over-union on a new superpixel-level space-
grounding benchmark.

1 Introduction

Space grounding refers to the process of mapping
linguistic expressions to spatial regions within an
environment (Kim et al., 2024). The process often
requires complex spatial reasoning that accounts
for distance, geometry, and inter-object relation-
ships, which have yet to be thoroughly investi-
gated. Fig. 1 illustrates a representative example
in a robotic pick-and-place scenario, where a hu-
man provides an instruction: “Place the spoon to
the right of the cupcake at twice the distance be-
tween the cup and the pizza.” The interpretation
of this instruction requires not only estimating the
distance, but also reasoning about proportional re-
lationships to determine the target position among
candidates located twice that distance to the right
of the cupcake.

Early approaches link simple spatial expressions
(e.g., ‘near’) to a limited category of segments (e.g.,
‘next to the stop’) (Jain et al., 2023). Subsequent ap-
proaches support compositional expressions (Zhao
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Figure 1: Illustration of the two-stage space grounding
result produced by the proposed C2F-SPACE. The grid-
guided prompt enables the VLM to generate a coarse
region proposal (e.g., an ellipsoid) through spatially mul-
tiplicative reasoning. A superpixel-based enhancement
process then refines this proposal into a fine-grained
spatial mask.

et al., 2023; Gkanatsios et al., 2023). Recently, Kim
et al. (2024) introduce a probabilistic update mech-
anism to resolve the ambiguity in compositional
expressions. Despite these advances, their gener-
alization remains limited due to the small scale of
annotated datasets.

With advances in large language models (LLMs)
and vision-language models (VLMs), researchers
begin leveraging large pre-trained models for en-
hanced spatial reasoning. Notable examples in-
clude ROBOPOINT (Yuan et al., 2025), which
fine-tunes a VLM to localize target regions as
coarse point sets, and recent VLMs, such as
Molmo (Deitke et al., 2025) and Gemini 2.5 (Co-
manici et al., 2025), demonstrate zero-shot 2D
point grounding (Cheng et al., 2025). Neverthe-
less, the coarse, point-level nature of these outputs
often lack the rigorous spatial precision required
for downstream applications, particularly in fine-
grained robotic manipulation. While visual prompt-



ing methods provide more granular guidance and

complement traditional text prompts (Shtedritski

et al., 2023; Cai et al., 2024), they mostly perform
forward reasoning without validation.

Therefore, we propose C2F-SPACE, a novel
coarse-to-fine space-grounding framework with
spatio-semantic validation for complex instruc-
tions. Our method is a two-stage framework; the
first stage enables a VLM to propose and vali-
date regional candidates using a grid-inpainted im-
age prompting, while the second stage refines the
coarse outcome to precisely fit into the environment
via super-pixelization.

We evaluate C2F-SPACE against baselines on
a space-grounding benchmark comprising 350
problems, including instructions with (i) single-
hop space reasoning with unique references, (ii)
single-hop space reasoning with non-unique ref-
erences, and (iii) multi-hop space reasoning with
unique/non-unique references. Our results show
that C2F-SPACE significantly improves the ground-
ing performance of o4-mini (OpenAl, 2025), out-
performing baselines such as CLIPORT (Shridhar
et al., 2022), LINGO-Space (Kim et al., 2024), and
ROBOPOINT (Yuan et al., 2025).

Our key contributions are as follows:

* We introduce a propose-validate prompting
framework for a VLM that progressively per-
forms coarse spatial reasoning to ground a natural
language command.

* We provide a superpixel-based module to refine
the output of the reasoning stage that allows fine,
pixel-level refinements for a candidate solution,
accounting for local object context.

* We introduce a space-grounding benchmark of
350 examples consisting of diverse challenging
instructions, and conduct extensive comparisons
with state-of-the-art baselines.

2 Related Work

Space grounding: Traditional approaches man-
ually link each predicate in a fixed set to vari-
ous representations, such as potential fields (Stopp
et al., 1994) or fuzzy spatial membership func-
tions (Bloch and Saffiotti, 2003; Tan et al., 2014).
Deep learning-based methods emerge and predict
pixel coordinates or pixel-level probability maps
for placement (Venkatesh et al., 2021; Mees et al.,
2020; Shridhar et al., 2022). Moreover, researchers
explore modeling the space as probabilistic pa-
rameterizations, such as Gaussian mixture mod-

els (Zhao et al., 2023) or Boltzmann energy func-
tions (Gkanatsios et al., 2023). Notably, LINGO-
Space (Kim et al., 2024) models the space using
a Bayesian update of polar distributions to under-
stand spatiotemporal descriptions.

As VLMs prove effective on a wide range of

robotic tasks (Brohan et al., 2023; Shah et al.,
2023), researchers have begun applying VLMs
to space grounding. These models enable direct
prediction of goal points grounded by robotic in-
structions in images. RoboPoint (Yuan et al., 2025)
predicts 2D keypoints via fine-tuning on spatial
phrases, enabling the model to translate relational
commands into precise points. Recent VLMs, such
as Molmo (Deitke et al., 2025) and Gemini 2.5 (Co-
manici et al., 2025), show a zero-shot point pre-
diction from language instructions. However, their
point-based outputs remain coarse and lack fine-
grained spatial precision. Our method uses learning-
based superpixel refinement to precisely refine the
parameterized canonical region within the target
space.
Spatial reasoning with VLMs: VLMs provide
open-world multimodal understanding, making
them applicable to a broad range of downstream
tasks, such as image-text retrieval (Chen et al.,
2023), zero-shot visual question answering (Li
et al., 2023), and segmentation (Lai et al., 2024).
However, early VLMs fail spatial reasoning since
they behave as a bag-of-tokens, which lose posi-
tional detail (Yuksekgonul et al., 2023; Li et al.,
2024; Chen et al., 2024). To overcome the limi-
tation, recent approaches integrate depth features
into VLMs to provide scale cues (Cheng et al.,
2024). Furthermore, fine-tuning VLMs using ex-
tensive spatial relation annotations improves rea-
soning over complex object interactions in diverse
scenes (Yuan et al., 2025; Song et al., 2025). Our
method guides the VLM with structured visual and
textual prompts, enhancing its spatial reasoning to
predict the target space described by the instruc-
tion.

3 Methodology

We introduce C2F-SPACE, a hierarchical space-
grounding method that combines grid-guided VLM
prompting with superpixel-based refinement.

3.1 Overview

Consider an input instruction A and an input RGB
image I € Z3*H*W containing N objects, where
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Figure 2: (a) Overall framework of C2F-SPACE. Given an instruction A and an image I, the object identification
module first obtains object masks M, . The space-reasoning module iteratively proposes a candidate region Ma,
and the subsequent space-refinement module adjusts this proposal to produce the high-precision region M. (b)
Space-reasoning module in detail. At each iteration k, the textual prompt generator constructs an instruction-specific
textual prompt u,?, while the visual prompt generator creates a grid-guided visual prompt V,g. Next, the region
proposer predicts an elliptical region through the prompts. Two validators then assess the proposal: the physical
validator rejects regions that collide with objects, and the semantic validator checks consistency with the spatial
instruction. Validation feedback (green “Yes” / red “No”) drives an iterative refinement loop; once both validators
accept the region, the system forwards M to the space-refinement stage.

H and W denote the image height and width, re-
spectively. Our goal is to predict a space mask (i.e.,
segment) M, € ZH*W that corresponds to A. As
shown in Fig. 2 (top), inference proceeds in three
steps: 1) object identification, 2) space reasoning,
and 3) space refinement. This modular design im-
proves grounding accuracy and reliability while
mitigating hallucinations in the VLM.

In detail, the object-identification step extracts a
unified mask M, covering all objects in the im-
age. The space-reasoning step then infers a canoni-
cal region My € ZHXW leveraging a grid-guided
visual-text prompt, and iteratively refines it until
the region satisfies both physical and semantic con-
straints with respect to M, and A. Finally, the
space-refinement step locally adapts the canonical
region to precisely fit the environment using super-
pixels.

The grid guidance helps the VLM distinguish
low or texture free space lacking distinctive fea-
tures while maintaining semantic consistency with
the instruction. Superpixel-based refinement re-
duces computational cost and enhances alignment

with spatio-semantic pixel distribution compared
to pixel-level refinement. We describe each compo-
nent in detail below.

3.2 Open-set Object Identification

Prior to grounding, we construct a joint object
mask M,, , = M, U...U M,,, where each
M,, € ZH*W denotes the binary mask of the
i-th object. We use the constructed mask in the
validation process of the space-reasoning step. As
our focus is on space grounding without prior ob-
ject knowledge, we employ Grounded-SAM (Ren
et al., 2024), an open-set object-mask identifier that
first detects object bounding boxes using Ground-
ing DINO (Liu et al., 2024), and then extracts the
corresponding masks using SAM (Kirillov et al.,
2023), conditioned on the detected boxes.

3.3 Grid-guided Space Reasoning

This step guides the VLM to propose a canoni-
cal region My maximizing its reasoning capabil-
ity. Fig. 2 (bottom) illustrates the iterative reason-
ing and validation process. At each iteration, the
prompt generator creates a visual prompt ! for



grid-based guidance and a text prompt v to in-
terpret the instruction A. Feeding these concate-
nated prompts into the VLM yields M ellipses
€1, ...,em], where each ¢; represents a proposed
region. Note that M typically ranges from one to
two depending on the VLM output. Then, we com-
bine ellipses to form the predicted region M.

To validate M A, we introduce two validators: a

physical validator to assess feasibility for object
placement, and a semantic validator to ensure con-
sistency with the instruction A. We detail each com-
ponent below.
1) Prompt generator: At each iteration &, our gen-
erator produces a novel grid-guided visual prompts
vl by overlaying a grid 1814 € Z3*H*W onto the
input image I, providing explicit visual cues. We
draw the grid 7Y in black with a thickness of 1.4
pixels at 100 DPI and 100-pixel intervals, regard-
less of the size of the image. In the grid, we also
display axis tick values and labels (e.g., “x axis”) to
support reasoning about direction and distance. The
grid remains on the top layer throughout all itera-
tions. We define the initial prompt as v = I 1819,
where @ denotes the overlay operation. From the
second iteration (k¢ > (), we additionally over-
lay the latest predicted region M, as red pixels:
viio=1& I e M.

Alongside, the generator produces a text prompt

V,? using an LLM to guide the VLM in decompos-
ing the grounding process while interpreting the
visual prompt Vlg. The prompt includes (i) object
guidance—identifying instruction-relevant objects
and their spatial extent based on A, (ii) region guid-
ance—prompting the VLM to output region coor-
dinates, and (iii) collision-free guidance—ensuring
predicted coordinates avoid object overlap. From
iteration k£ > 0, the prompt also incorporates the
feedback from the validators, enabling the VLM to
refine proposals based on prior errors. Note that the
VLM may return coordinates for multiple ellipses
(see the prompt detail in Appendix B).
2) VLM-based region proposer: Upon receiving
the two prompts I/i and V{C\, the VLM predicts a
unified region M € ZH*W consisting of canon-
ical region proposals, represented as ellipses. We
parameterize each ellipse €; using its center coor-
dinates, semi-axis lengths, and rotation angle, ex-
tracted directly from the VLM’s structured output
via a text-to-ellipse conversion. Given these param-
eters, we generate individual elliptical masks and
combine them to form a final region Ma through
logical union.

3) Physical & semantic validators: To ensure that
the proposed region M satisfies both the phys-
ical and semantic requirements of the instruction
A, we conduct a two-stage validation at each itera-
tion. The first stage checks the physical validity of
the proposed region mask. In the case where My
intersects with the joint object mask M, ., we fur-
ther assess whether the intersection supports valid
placements (e.g., “on the dish” or “in the basket”).
Otherwise, we regard M A is suitable for placement
actions.

For the further assessment, we issue another
VLM query with a validation prompt consisting
of a visual prompt y,ﬁ’phy =T®I¥9g My anda
text prompt u,i\’p " that asks whether placing an ob-
ject at My is physically feasible, yielding a binary
response.

For semantic validation, we reuse the visual
prompt ;™™ (= ™) and provide a semantic
text prompt y,?’sem, asking whether M satisfies
the spatial semantics of A. To improve accuracy,
we instruct the VLM to decompose compositional
instructions and validate each sub-component in-
dividually within V,i\’sem. If My passes both val-
idations or if the process reaches the maximum
number of iterations, we return it; otherwise, we
return to the prompt generation step.

3.4 Superpixel-based space refinement

We locally adapt the coarse canonical region Mo
to the fine-grained structure of the surrounding en-
vironment as well as free space, we predict the final
manipulation region M, by modeling its resid-
ual. We particularly introduce a residual learning
module by decomposing the instructed region as
My = M AP Mrﬁidual where Mrﬁid“al captures
local refinements over the superpixel space. To sim-
plify learning, we approximate this decomposition
in the logit space as

In = aly + (1 — o)l (1)

where [, } A, and lfSid”al denote the superpixel-
wise logits of M, M A, and Mﬂ\“id“al, respec-
tively; o € [0, 1] is a scaling factor and |[5| = L
with L denoting the number of superpixels. We de-
scribe superpixel generation and logit estimation
below.

To compute Iy for the predicted region Ma,
we generate superpixels from the grayscale image
I8 ¢ RTXW ysing SLIC (Achanta et al., 2019).
We then assign a pseudo logit to each superpixel in
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Figure 3: Example data sample and prediction results from our space grounding benchmark. Starting from the left,
each instruction and image pair illustrates single-hop space reasoning with unique references, single-hop space
reasoning with non-unique references, and multi-hop space reasoning with unique/non-unique references cases.
The blue regions in the top row indicate the superpixel-level ground-truth labeled by a human. In the bottom row,
the green regions show the canonical region proposed by the VLM, and the red regions show the final predictions

refined by the superpixel-level refinement module.
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where ./\;tj\ represents a center-distance weighted
value for each ellipse; pixels farther from the cen-
ter of each ellipse have smaller values. We then

compute the pseudo-logit value Ix by averaging the
pixel values within each superpixel.

To model the residual lfSid“al, we construct a su-
perpixel graph where each node represents a super-
pixel and each edge connects adjacent superpixels.
Node features consist of the mean, minimum, and
maximum values within each superpixel in /8%
and M », along with a binary indicator specifying
whether the instruction A requires distance reason-
ing, identified by the LLM.

We use a graph neural network, GPS (Rampasek
et al., 2022), to predict the superpixel-wise residual
logit lffSid“al. To supervise it, we compute a focal
loss of the predicted probabilities p = o(ly) €
R% given the ground-truth space labels, where o
is the sigmoid function. Finally, we project the
superpixel-wise probabilities p back to the pixel
space and binarize it, resulting in the final refined
region M.

4 Experimental Setup

Our experiments aim to measure performance im-
provements in space grounding tasks that require
reasoning.

4.1 Benchmark description

We introduce a superpixel-level space ground-
ing benchmark consisting of real-world scene im-
ages, natural language instructions in English, and
human-annotated ground-truth labels. We capture
tabletop scenes that may include containers holding
other objects, as well as multiple identical items.
The instructions cover nine types of spatial rela-
tions: ‘left, ‘right,” ‘above,” ‘below,” ‘near,” ‘far,
‘inside,” ‘outside,” and ‘along the direction of.” We
annotate the ground-truth labels at the superpixel
level rather than the pixel level. We collected the
data with approval from the institutional review
board (IRB).

We categorize the instructions into three types
based on the number of reasoning hops and the
uniqueness of reference objects, as illustrated in
Fig. 3: (i) single-hop space reasoning with unique
references, (ii) single-hop space reasoning with
non-unique references, and (iii) multi-hop space
reasoning with unique/non-unique references

The first category, single-hop space reasoning



with unique references, includes instructions in-
volving one to four spatial expressions with clearly
identifiable reference objects. These cases require
only directly interpreting spatial terms and locating
reference objects.

The second category, single-hop space reasoning
with non-unique references, includes instructions
that require resolving ambiguous references. These
ambiguities often arise in scenes with multiple visu-
ally similar objects, as shown in the middle column
of Fig. 3.

The third category, multi-hop space reasoning
with unique/non-unique references, involves multi-
hop inference. The model needs to understand the
distance between two objects and apply that dis-
tance relative to another reference object, often re-
quiring multiplicative reasoning. For example, the
instruction “above the inhaler and as far away from
the inhaler as the thermometer is from the mobile
phone,” belongs to the multi-hop spatial reasoning
category.

The benchmark contains a total of 350 samples,
which are split into 200 for training, 50 for val-
idation, and 100 for testing. The validation and
test sets maintain a balanced distribution across the
three instruction categories by design.

We evaluate the performance of our method and
baselines using two metrics. The first is the success
rate, which considers a prediction successful if ei-
ther the maximum-probability point or the centroid
of the predicted mask lies within the ground-truth
region. However, the success rate is a binary indica-
tor and therefore cannot capture the quality of the
predicted mask in finer detail. For example, even
if the predicted mask covers only a small portion
of the ground-truth area, the success rate remains
the same as long as the maximum-probability point
falls inside the ground truth. To address this lim-
itation, we additionally measure the intersection
over union (IoU) between the predicted and ground-
truth masks in pixel space, which reflects how well
the predicted region overlaps with the true target
area.

4.2 Baseline Methods

We evaluate three space-grounding baselines:

* CLIPORT (Shridhar et al., 2022): A language-
conditioned imitation learning approach for pick-
and-place manipulation that predicts a pixel lo-
cation based on the CLIP (Radford et al., 2021)
image and language encoding. Note that we dis-
able its rotational augmentation and extende the

loss function to accept a mask as ground truth.

* LINGO-Space (Kim et al., 2024): A probabilis-
tic space-grounding method that incrementally
estimates spatial distributions based on compos-
ite referring expressions using configurable polar
distributions. We extend the loss function to use
a mask as a ground truth instead of a point.

¢ ROBOPOINT (Yuan et al., 2025): A VLM fine-
tuned with synthetic instructions to predict key-
point affordances from language, including spa-
tial instructions. ROBOPOINT predicts multiple
points as an output for space grounding. Follow-
ing the original paper (Yuan et al., 2025), we use
the pre-trained model without modification and
measure the success rate as the ratio of predicted
points that fall inside the ground truth mask. We
do not measure IoU for ROBOPOINT.

We apply Otsu’s thresholding to convert a pre-
dicted probability into a binary mask for both our
model and all baselines, except RoboPoint, since
spatial regions tend to exhibit low confidence, mak-
ing it difficult to select a universal threshold across
different cases. We repeat the experiment twice for
each methods.

5 [Evaluation

We analyze the performance of our method and
baselines on the superpixel-based space-grounding
benchmark. As shown in Fig. 4, our method con-
sistently outperforms all baselines in both success
rate and IoU across all instruction categories.

Even in the single-hop space reasoning with
unique references cases—where all baselines
achieve their highest performance—the success
rate reaches only 47.1%. Their performance drops
even further in more challenging scenarios such
as non-unique references and multi-hop reasoning.
LINGO-Space, the strongest among the baselines,
loses 21.3% and 30.5% in success rate for these cat-
egories, respectively. Since the LLM-based parser
of LINGO-SPACE relies solely on the instruction
without understanding the scene, it fails to resolve
ambiguous references or handle multi-step rea-
soning. CLIPORT does not separate spatial rela-
tionships from reference objects, which leads to
frequent failures even in relatively simple cases.
ROBOPOINT also performs poorly on specific re-
lations like “far”” and multi-hop reasoning, as its
dataset does not cover such relations.

Our method, C2F-SPACE, uses the reasoning
capabilities of the VLM and achieves over 50%
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Figure 4: Performance comparison in terms of success rate [%] (left) and Intersection over Union (IoU) (right). The
‘Total’ denotes the average across three instruction categories. The error bar denotes standard deviation.

higher success rates than the best-performing
baseline, LINGO-Space. C2F-SPACE accurately
grounds ambiguous reference expressions, such as
“a yellow block near to the leftmost blue block,” and
reaches a success rate of 84.9% in the non-unique
references category. It also correctly interprets nu-
merical relations and relative distances, achieving
66.7% success on multi-hop spatial reasoning.

In terms of IoU, C2F-SPACE significantly out-
performs all baselines, achieving an average score
of 0.361 across categories—more than twice that of
the second-best baseline, CLIPORT (0.160). This
task is fundamentally different from typical object
segmentation, as space grounding lacks clear object
boundaries. As a result, even semantically correct
predictions can yield lower IoU scores. As illus-
trated in the third column of Fig. 3, the IoU can
remain relatively low (e.g., 0.411), even when the
grounded region is reasonable. Given this inherent
difficulty, C2F-SPACE achieves notably high IoU
by refining a coarse canonical region into a fine-
grained, superpixel-based space. As shown in the
first and second columns of Fig. 3, the refinement
module effectively captures object boundaries, con-
tributing to the improved spatial precision.

We conduct ablation studies to evaluate the im-
pact of the superpixel-level refinement. The success
rate remains comparable with or without this refine-
ment, as shown in Fig. 5, indicating that reasoning
primarily relies on the VLM module. Including
the superpixel-level refinement improves IoU by
more than threefold, resulting in the highest IoU
among all baselines. As shown in the bottom rows
of Fig. 3, the refinement module adjust the predic-
tion without overlapping the objects.

We further analyze the importance of each com-
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Figure 5: Success rate [%] and IoU with and without
the superpixel-based space refinement module.
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Figure 6: Ablation results on the component of the grid-
guided space reasoning module.

ponent of the grid-guided space reasoning module,
focusing on the grid-based visual prompt and the
validation. As shown in Fig. 6, removing the vali-
dation step and its corresponding iteration causes
a slight performance drop of about 2% in success
rate. However, removing the visual prompting with
the grid results in a significant drop of 14.6%, and



eliminating both the visual prompting and valida-
tion leads to an additional 4.5% decrease. These
results highlight the critical role of grid-guided vi-
sual prompting in applying the VLM for effective
space grounding by providing essential visual guid-
ance.

6 Conclusion

We proposed C2F-SPACE, a two-stage space-
grounding framework that combines a VLM with
a superpixel-level refinement module to identify
regions that are both physically feasible and se-
mantically consistent with the input instruction.
Our method first uses the VLM to globally pre-
dict a coarse region based on the novel propose-
validate prompting technique. Then, it locally re-
fines this coarse prediction into a precise region
using superpixel-level decisions. This design al-
lows for both accurate localization and robust gen-
eralization across complex spatial expressions. Ex-
perimental results on our new benchmark show
that superpixel-based refinement significantly im-
proves IoU without reducing the success rate. In
addition, the propose-validate prompt, combined
with the grid inpainting, plays a key role in guiding
the prediction process. Overall, C2F-SPACE out-
performs existing baselines in grounding accuracy,
demonstrating its effectiveness in resolving spatial
references within complex scenes and instructions.

Limitations

While C2F-SPACE effectively refines spatial pre-
dictions from VLMs, it inherently depends on the
quality of the initial coarse prediction. When the
VLM produces a significantly misplaced region, the
refinement stage often fails to recover the correct
target, as it operates based on the initial estimate.
This reliance on the VLM’s spatial reasoning lim-
its the system’s ability to correct large errors. This
large initial error may lead to task failure or un-
safe behavior in real-world robotics. Future work
could incorporate residual correction policies or
multi-stage validation mechanisms that use addi-
tional context to revise poor initial predictions more
robustly.
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A Implementation Details

Open-set object identification. We use Grounded-
SAM with Grounding DINO-B with a visual back-
bone SWIN-B and a text backbone BERT-base-
uncased and SAM with a visual backbone VIT-B.
We prompt the Grounding DINO with texts ‘object,
objects’ to extract the bounding boxes.

Grid-guided space reasoning. We use ‘04-mini-
2025-04-16’ for whole tasks. We retry execution
when an error occurs on the API side, such as when
the parsing result is missing.

Superpixel-based space refinement. We de-
velop on the GPS model using the open-source
code (https://github.com/vijaydwivedi75/
lrgb). We use scikit-image (van der Walt et al.,
2014) for generating superpixels, following the im-
plementation of GPS. The number of total param-
eters is about 0.1M and takes less than an hour
for data pre-processing and training on a single
NVIDIA RTX 3090 GPU. The hyperparameters
are as follows.

epoch 50
learning rate le-4

o 0.1

# of layers 2

# of heads 4

hidden dimension | 64

SLIC compactness | 10

Table 1: Hyperparameters for superpixel-based space
refinement module

Baselines. In the case of CLIPORT, we set the

pick position at the center of the image, as we fo-
cus solely on the placing task during training. For
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LINGO-SPACE, we use GroundingDINO and o4-

mini to ground objects in the scene and to pro-

vide additional annotations for the ground-truth

reference objects. Rather than detecting objects,

we ground them to better assist human annotators

in identifying the reference objects. The detailed

information about the baselines is as below.

e CLIPORT (Apache-2.0 license): https://
github.com/cliport/cliport

* LINGO-Space (MIT license): https://github.
com/rirolab/LINGO-Space

* ROBOPOINT (Apache-2.0 license ): https:
//github.com/wentaoyuan/RoboPoint
(checkpoint: https://huggingface.co/
wentao-yuan/robopoint-vi-vicuna-vi.
5-13b)

B Full Prompt Examples

First, we identify the instruction categories using
the prompt shown in Fig. 7. We then use the iden-
tified category as part of the node features in the
superpixel-based space refinement module.

Parse a given instruction and classity it into one

of the following categories: "simple", "multiple
instances", or "multi-hop".

- **simple**: The instruction refers to objects with
unambiguous and unique presence in the scene.

# Steps

1. Analyze the given instruction to identify all the
objects it refers to.

2. Cross-reference these objects with the provided
list of objects in the scene.

3. Classify the instruction based on the following
criteria:

- **gimple**: All referenced objects appear
uniquely as singular instances.

# Output Format

The output should be in a structured response
indicating:

- ’Instruction type’: One of "simple", "
Instances", or "multi-hop".

- "Reason’: A brief justification based on object
presence or relational dependency.

multiple

# Examples

**Example 1:%*

Input: Instruction: "Between basket and tray and
nearer to the tray"

Output:
Instruction type: simple
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Reason: The instruction refers to a basket and a
tray, each uniquely present in the scene.

Figure 7: Instruction category identification prompt

Based on the identified instruction category, we

decide whether to add additional explanation or not.

The main region-proposal text prompt for £ = 0 is
as follows.

Generate the center coordinates and semi-axes
lengths of elliptical region in an image based
on the provided image, and spatial instructions.
Generate small but accurate regions.

You will be provided with an overhead image of
a table containing various objects, and spatial
instructions. Your task is to determine suitable
center coordinates and semi-axes lengths, ensuring
they satisfy the spatial instructions, maintain
specified bounds, and avoid collisions with objects,
except as noted.

Image: The image is an overhead image of the
table with various objects on it. The image has also
been overlaied with a grid to aid you in co-relating
the object extent coordinates with the image.
Origin (0,0) is at the top-left corner of the image, X
increasing to the right and Y increasing downward.

# Spatial Instructions and Collision Avoidance

- *¥*General Rules**:

- Values for X should be between 0 and 1280, and
Y between 0 and 720.

- The elliptical region should be generated in
collision-free spaces and should maintain distance
from the object boundaries.

# Steps

1. **Extract Information**: Identify relevant
objects and their extents from the image and
spatial instructions.

2. **Generate Regions**: Use the spatial region
generation guidance to determine appropriate
coordinates for the regions.

3. **Ensure Collision-Free Placement**: Verify
that the generated coordinates are free from
collision, following collision avoidance principles.

# Output Format

The "center_coordinates" should be a list of cen-
ter coordinates in the form of [[X1, Y1]]. The
"semi_axes_lengths" should be the lengths of semi-
major and semi-minor axes in the form of [[a, b]],
a >=b. The "angle" should be the tilted angle of
the ellipse in degrees.

Figure 8: Region proposal prompt for k = 0
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When k > 0, the textual prompt is as follows.

Improve the center coordinates and the semi-axes
lengths of the elliptical region based on the
judgment made by the validator and adhere to the
guidelines provided.

You will be provided with an image containing
a red elliptical region, spatial instructions,
previously generated center point coordinates and
previously generated semi-axes lengths for that
region, and judgments from a validator, ensuring
they satisfy the spatial instructions, maintain
specified bounds, and avoid collisions with objects,
except as noted.

Image: The image is an overhead image of the
table with various objects on it. The image has
also been overlaied with a grid to aid you in
co-relating the object extent coordinates. (0,0) at
the top-left corner of the image, X increasing to
the right and Y increasing downward. The red
elliptical region shows previous decision.

# Spatial Instructions and Collision Avoidance

- **General Rules**:

- Values for X should be between 0 and 1280, and
Y between 0 and 720.

- elliptical region should be generated in collision-
free spaces and should maintain distance from the
object boundaries.

- If moving the region, then make sure that the
region is not overlapping with some other object
after movement. If you think it will collide, then
also reduce semi-axes lengths of the region.

- Predict relative movement of the prediction (e.g.
move -30 pixels in X direction), and then generate
the final region based on it.

# Output Format

The "center_coordinates" should be a list of list
coordinates in the form of [[X1, Y1]] ensuring
‘X is between 0 and 1280 and ‘Y is between 0
and 720. The "semi_axes_lengths" should be the
lengths of semi-major and semi-minor axes in the
form of [[a, b]], a >=b. The "angle" should be the
tilted angle of the ellipse in degrees.

Figure 9: Region proposal prompt for k& > 0

The prompt for physical validation is as follows.

You are a collision validator. You will be provided
with a spatial instruction and an image containing
a red elliptical region. Analyze the image and
answer the following questions about the red
elliptical region, providing detailed reasoning for
each response, followed by a pass/fail conclusion
for each question.




# Image

- The image is an overhead image of the table with
various objects on it. The image has also been
overlaied with a grid. Origin (0,0) is at the top-left
corner of the image, X increasing to the right and
Y increasing downward.

- On the image is also the red elliptical region.

The grid will help you give accurate judgments to
correct the location/size of the red elliptical region
if it is in collision.

# Judgment Guidelines

- For each question, judge the prediction. Then,
justify your judgment.

- Do not include any suggestions for improvement
in your response.

# Questions to be answered:

1. **Collision Check**: Assess the objects with
which overlapping/collision is allowed out of all
the objects in the list. If the objects with which the
region overlaps is allowed, then answer as "pass",
else, "fail".

Answer each question by referencing the image
and spatial instruction. After your reasoning for
each question, include a "pass" or "fail" judgment
for clear assessment.

Figure 10: Physical validator prompt

The prompt for semantic validation is as shown in
Fig. 11.

You are a spatial validator. You will be provided
with a spatial instruction and an image containing
a red elliptical region. Analyze the image and
answer the following questions about the region,
providing detailed reasoning for each response,
followed by a pass/fail conclusion for each
question. The region has already gone through
a collision test and it has been verified that it is
not in collision with any object that it should not
collide with.

# Judgment Guidelines

- For each question, judge the prediction. Then,
justify your judgment.

- Consider the distance properly. Unless a specific
axis is mentioned, interpret the distance as the
general square root distance between objects,
considering a center coordinate or boundary.

- When projecting the distance, consider the
object extents to avoid collision and to maintain
appropriate spacing.

- Do not include any suggestions for improvement
in your response.

# How to check if red region is satisfying the
instruction:
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1) **Break the instruction into multiple seg-
ments.**

- Example 1:

- Instruction: "To the right of the tray with edible
items and below the spectacles."

- Segments: [right of the tray with edible items,
below the spectacles]

- Example 2:

- Instruction: "left and blue cloth and far from the
marker"

- Segments: [left of the blue cloth, far from the
marker]

2) ** Spatial validation of the red elliptical region
for each segment **: For each segment, check if
the position of the red elliptical region is satifying
each segment. Make use of the spatial guidelines
to check validity of position of red elliptical
region with each segment. Keep in mind that the
segments are not individual instructions. They are
dependant on the segments before and after them.
Example: If the instruction is "right of the
strawberry and between carrot and banana".
segments will be: [right of strawberry, between
carrot and banana]. Now, when you check for
between carrot and banana, keep in mind the
previous segment. The red elliptical region might
not be directly in between the carrot and banana,
as right of strawberry also has to be satisfied.

3) If the object being referred to in the instruction
has multiple instances in the image, then carefully
check if the red elliptical region is following the
spatial instruction using the correct instance of the
object.

# Questions to be answered:

1. **Spatial Compliance**: Determine whether
the elliptical region is according to the spatial
instruction provided. Describe your reasoning. Use
the "spatial guidelines" to come to a conclusion.

Answer each question by referencing the image,
spatial instruction and objects extents. After your
reasoning for each question, include a "pass" or
"fail" judgment for clear assessment.

Figure 11: Semantic validator prompt

C Data collection

Experienced research assistants who were famil-
iar with the robot and the application domain per-
formed the annotations. All annotators were male,
aged between 23 and 28 years. These research as-
sistants collected the data as part of their regular
duties, and we did not recruit any external anno-
tators. We provided the annotators with detailed



instructions, including full information about the
application domain and the intended use of the data
(i.e., training a space grounding model). Each an-
notator gave informed consent before every data
collection session. To avoid fatigue, no one worked
for more than 90 minutes in a single sitting, and
each person participated in only one sitting per
day. A second annotator, possibly supported by a
grammar-checking Al tool, reviewed the instruc-
tions and checked for grammatical consistency.
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