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ABSTRACT

Acceleration methods for diffusion models (e.g., token merging or downsam-
pling) typically optimize for synthesis quality under reduced compute, yet they
often ignore the model’s latent discriminative capacity. We revisit token com-
pression with a joint objective and present BiGain, a training-free, plug-and-
play framework that preserves generation quality while markedly improving clas-
sification in accelerated diffusion models. Our key insight is frequency sep-
aration: mapping feature-space signals into a frequency-aware representation
disentangles fine detail from global semantics, enabling compression that re-
spects both generative fidelity and discriminative utility. BiGain reflects this
principle with two frequency-aware operators: (1) Laplacian-gated token merg-
ing, which encourages merges among spectrally smooth tokens while discour-
aging merges of high-contrast tokens, thereby retaining edges and textures; and
(2) Interpolate—Extrapolate KV Downsampling, which downsamples keys/values
via a controllable interextrapolation between nearest and average pooling while
keeping queries intact, thereby conserving attention precision without retraining.
Across DiT- and U-Net-based backbones and multiple datasets of ImageNet-1K,
ImageNet-100, Oxford-IIIT Pets, and COCO-2017, our proposed operators con-
sistently improve the speed—accuracy trade-off for diffusion-based classification,
while maintaining, sometimes even enhancing generation quality under compa-
rable acceleration. For instance, on ImageNet-1K, with a token merging ratio of
70% on Stable Diffusion 2.0, BiGain improves classification accuracy by 7.1%
while also reduces FID for generation by 0.56 (3.1%). Our comprehensive anal-
yses indicate that balanced spectral retention, preserving high-frequency detail
alongside low/mid-frequency semantic content is a reliable design rule for token
compression in diffusion models. To our knowledge, BiGain is the first framework
to jointly study and advance both generation and classification under accelerated
diffusion, offering a practical way to deployable, dual-purpose generative systems.

1 INTRODUCTION

Diffusion models (Ho et al.,|2020; Song et al., 2020; Rombach et al., [2022) have become the back-
bone of modern generative systems, yet their computational footprint during sampling has motivated
a surge of acceleration techniques such as token merging (Bolya et al.,[2023)) and spatial downsam-
pling (Smith et al.,2024). Nearly all of these methods are evaluated (and often tuned) primarily for
generation/synthesis fidelity under reduced compute (e.g., keeping FID or perceptual quality stable
while cutting FLOPs). This single-objective perspective overlooks an increasingly important use
case: the same diffusion backbones are potentially and routinely repurposed for downstream recog-
nition, either through linear probes on intermediate features, feature distillation into smaller clas-
sifiers (Tang et al., 2023} Meng et al.l |2024), or diffusion-based classification protocols (L1 et al.,
2023; |Clark & Jainil 2023). In practice, we observe that accelerations that “barely hurt” generation
can dramatically weaken discriminative performance.

We argue that token compression should be rethought as a joint optimization problem that simul-
taneously safeguards generative fidelity and discriminative utility. Empirically, naive compression
tends to remove precisely those structures that recognition benefits from (edge/texture cues, small
objects, high-contrast boundaries), even when global appearance, and thus visual content remains
complete. This creates a gap between what “looks good” and what “classifies well”. To bridge this
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Figure 1: Impact of token compression on diffusion models as our motivation on COC0O2017 and
ImageNet-100. Left: ToMe (Bolya et al.l [2023) (baseline) vs. Laplacian-Gated Merge (ours) as
the merge ratio increases. Right: ToDo (Smith et al [2024) (baseline) vs. Interpolate—Extrapolate
KV-Downsampling (ours) as the downsample factor grows. Curves report percent change relative to
the uncompressed model (T better; for FID we plot FID%). Blue: classification accuracy. Orange:
generation quality (FID). Baseline compression degrades classification much earlier and faster than
generation, sometimes collapsing at extreme sparsity (e.g., COC0O2017), whereas our frequency-
aware operators consistently curb the classification drop while keeping generation competitive. All
experiments in this figure use Stable Diffusion 2.0.

gap, we seek a compression principle that respects the complementary spectral needs of the two
capabilities instead of privileging only synthesis. As shown in Fig. [T] baseline compression harms
classification accuracy earlier and more sharply than synthesis, sometimes collapsing at extreme
sparsity (e.g., COCO2017), whereas our approach consistently mitigates the accuracy drop while
keeping generation competitive.

In diffusion classifiers, early denoising emphasizes low frequencies and late steps emphasize high
frequencies, and predictions are aggregated across timesteps. Thus token compression must keep
both bands and be temporally consistent to avoid excess Monte-Carlo variance. We therefore use
heuristics that jointly retain high/low frequencies and apply consistent compression schedules across
timesteps. To reflect this, our key insight is frequency separation. Mapping signals of intermedi-
ate features into a frequency-aware representation disentangles high-frequency detail (edges, fine
textures) from low—mid frequency content (shapes, layouts, semantics). This view yields a sim-
ple design rule: balanced spectral retention to preserve the high-frequency components that anchor
recognition while maintaining the low—mid bands that support coherent generation. Guided by this
principle, compression can prune redundancy without disproportionately harming either side.

In this work, we propose BiGain, a training-free, plug-and-play framework composed of two op-
erators. The first, Laplacian-gated token merging, computes local Laplacian magnitudes to guide
merging: it encourages merges among spectrally smooth tokens and discourages merges of detail-
carrying high-contrast tokens. This helps to retain edges and textured micro-structures that clas-
sifiers rely on, yet still collapses redundant flat regions to save compute. Crucially, the operator
is architecture-agnostic and can be inserted at inference time without retraining. Second, Interpo-
late—Extrapolate KV-downsampling targets attention compute by downsampling keys/values with
a controllable interpolation/extrapolation between nearest-neighbor and average pooling (IE-KVD),
while leaving queries intact. Keeping queries at full resolution preserves the model’s ability to local-
ize and attend precisely, whereas the KV shrinkage reduces memory and FLOPs smoothly, allowing
a tunable speed—accuracy trade-off. The two operators are complementary: Laplacian gating bi-
ases compression away from detail tokens, and KV downsampling preserves attentional precision,
together enabling compression that respects both tasks.

Across DiT- and U-Net-based backbones and multiple datasets, BiGain consistently improves the
speed—accuracy trade-off for diffusion-based classification while maintaining generation quality un-
der comparable acceleration, often matching or slightly surpassing the synthesis fidelity of prior
accelerations that do not consider recognition at all. Ablations confirm the necessity of frequency
awareness: removing Laplacian gating disproportionately hurts classification, and downsampling
KV in the frequency domain is necessary for generation. These results suggest that respecting a
balanced spectrum is a robust guiding principle for token compression.

Our contributions of this work are:
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* BiGain reframes token compression for diffusion models as a bi-objective problem and
offers a practical, training-free solution.

* To our knowledge, it is the first framework to jointly study and advance both generation
and classification under acceleration of generative models.

* Beyond throughput and recognition gains, our study provides practical design guidance in
a frequency-aware regime, merges where signals are smooth, downsamples KV while pre-
serving () that informs future compression for deployable, dual-purpose generative models.

2 RELATED WORK

Acceleration of Diffusion Models. The iterative nature of diffusion models has spurred methods
that reduce the number of steps rather than alter the backbone. DDIM (Song et al.| 2020) introduces
non-Markovian sampling to take larger steps, and high-order solvers such as DPM-Solver (Lu et al.,
2022)) further shrink function evaluations while preserving fidelity. Progressive Distillation (Sal-
imans & Hol 2022)) compresses a teacher into a student that matches quality with fewer steps.
These techniques largely treat the denoiser architecture as fixed and are thus orthogonal to our
approach, which targets intra-step compute via token compression. Meanwhile, pruning for diffu-
sion (Zhu et al.| [2024; |Castells et al., [2024; [Fang et al., 2023)) has also been explored. For example,
Diff-Pruning (Fang et al., [2023) uses a Taylor expansion over pruned timesteps, discarding non-
contributory steps and aggregating informative gradients to rank important weights. DiP-GO (Zhu
et al) [2024) casts pruning as subnet search: it builds a SuperNet with backup connections over
similar features and trains a plug-in pruner with tailored losses to identify redundant computation.

Token Reduction for Diffusion. Token reduction addresses the quadratic cost of attention by
removing or merging redundant tokens. TokenLearner (Ryoo et al.| 2021) learns a small set of
summary tokens, while training-free strategies like ToMe (Bolya et al., 2023) greedily merge sim-
ilar tokens with minimal accuracy loss. Recent works adapt these ideas to diffusion backbones:
ToMeSD (Bolya et al., [2023)) merges U-Net tokens at inference to accelerate Stable Diffusion, and
complementary efforts explore structured pruning/sparsity for Diffusion Transformers (Peebles &
Xie| [2023). Prior art primarily optimizes generation speed—quality trade-offs and typically evalu-
ates synthesis metrics; our method is also training-free and drop-in, but is explicitly designed to
preserve generative fidelity and discriminative utility through frequency-aware compression.

Diffusion as a Discriminative Learner, and the Open Gap. Beyond synthesis, diffusion mod-
els provide strong features for recognition (Li et al., [2023; |Clark & Jaini, 2023). Diffusion-
classifier frameworks use a pre-trained denoiser for per-class scoring or for feature extraction with
a lightweight head, yielding competitive image classification (Russakovsky et al., 2015} |Chen et al.,
2023). However, the interaction between foken reduction and discriminative performance has been
largely overlooked: accelerations that barely hurt synthesis can severely degrade classification. Our
work sits at this intersection. We study how token compression affects both capabilities across U-
Net/DiT backbones and introduce a frequency-aware, training-free framework that maintains gener-
ation quality while markedly improving diffusion-based classification.

3 METHODOLOGY

We first revisit token reduction for diffusion models from a bi-objective viewpoint: preserve gen-
erative fidelity and discriminative utility. After reviewing the denoising diffusion setup and the
diffusion-classifier decision rule, we formalize shape-preserving token reduction and introduce
two training-free, plug-in operators that are frequency-aware: (i) Laplacian-gated token merging
(L-GTM) and (ii) Interpolate-Extrapolate KV-downsampling (IE-KVD). Both operators avoid
cross-timestep caching, which is incompatible with diffusion classification, and can be scheduled
across timesteps/layers without retraining.

3.1 PRELIMINARIES

A diffusion model (Ho et al., [2020; Song et al.,|2020) specifies the forward (noising) process
q(x¢ | o) = N(x¢5 Varmo, (1 — ) I), x4 =+ xo+vV1—are, e~N(0,I), (1)
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where x is the real clean data, x; is its noisy version at step ¢, and € is standard Gaussian noise. The

_ t . . _ . .
scalar oy = Hi:l «; defines the cumulative noise schedule: a smaller &; means heavier corruption.
Thus, each x; is a linear combination of the original signal x( and the noise €.

The denoiser €g is trained in the noise-prediction parameterization,
co(xi,c,t) ~e€, L(0) =E[|le —ea(xs,c,1)|3], (2)

where c denotes an optional conditioning variable (e.g., class label or text prompt).

The network eg learns to recover the exact Gaussian noise injected in the forward process. This
training objective is equivalent to maximizing a variational lower bound (ELBO) on the data like-
lihood. It provides two core capabilities: (i) iterative generative sampling by reversing the noising
process, and (ii) per-class scoring for classification by checking which conditioning c yields the
lowest prediction error.

3.1.1 DIFFUSION CLASSIFIER

Decision rule. Given x and class set C, draw a shared Monte Carlo set Syc = {(ts, €5)}5_; for all
classes. Define:

Xy, = /Oy, T+ /1 — ay_ €5, Uz, c;ts, €5) = ||€s — €a(xu,, €, ts‘)H; 3

Here &, and €, are as defined in the diffusion setup above, and €g is the same denoiser evaluated
under class conditioning ¢. Thus £(x, ¢; ts, €5) quantifies how well conditioning on ¢ explains the
corruption realized at (¢, €5 ). The class score and prediction are:

S
L@.e) = §)_l@.citee).  j@) = argmin L(w,c). 4)
s=1 ¢

Sharing (s, €5) across classes yields a paired-difference estimate of the ELBO for logpg(x | ¢)
without changing the decision rule.

Adaptive evaluation (staged pruning). For large |C|, uniform evaluation is costly. We therefore
allocate computation in Nages rounds with cumulative budgets (T, ..., nges) and keep-counts

(K1,...,KnN,.,,..) (also see Appendix : at stage ¢, each surviving class accrues evaluations up

to T3, then only the K; lowest-score classes are retained for the next stage. This staged pruning
discards unlikely classes early and concentrates samples on plausible ones, reducing wall-clock

compute while leaving the final decision arg min, L(x, ¢) unchanged.
3.1.2 ATTENTION AND SHAPE-PRESERVING TOKEN REDUCTION

Let the denoiser operate on N latent tokens X € RV*4 (rows x;). A standard self-attention block
forms:

Q=XW, K=XWg, V=XWy, Attn(X)= softmax(Q—\/Ig)V. (5)

To accelerate while keeping the output length N, we use a shape-preserving reduction M € RY XN

with N’ < N, and, if queries are reduced, an unmerge operator U € RNXN'.

x X=MX, 7 - p(X) XY X e RVX9 (6)
We consider two concrete, training-free instances below.
3.2 BIGAIN: FREQUENCY-AWARE TOKEN COMPRESSION
Our central design rule is balanced spectral retention: preserve high-frequency detail

(edges/textures) and low/mid-frequency content (global semantics). We instantiate this via two com-
plementary operators.
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3.2.1 LAPLACIAN-GATED TOKEN MERGING (L-GTM)

Goal. Merge spectrally smooth tokens while discouraging merges of high-contrast tokens.

Spectral proxy. Reshape X € RV*d to X € RI*XWXC (0 = d) and compute a per-location
frequency magnitude via a spatial Laplacian:

0 1 0
F =Reduce(|X *L|), L= |1 —4 1|, FeR"W. (7)
0 1 0

Here Reduce, is channel-wise aggregation (e.g., mean or ¢3). L denotes the Laplacian kernel, a
finite approximation of the second-order derivatives of features in the spatial dimensions (height
and width). It is used to measure the degree of difference with respect to the local neighborhood.

Gated merging. Let s;; = F;;. In each grid, we take the tokens with the lowest s;; values as the
destination set A (low-frequency anchors), and all remaining tokens as the source set 3. We then
merge the top % most similar source—destination pairs by equal-weight averaging. The resulting
anchors form the reduced sequence X, which defines the merge operator M ; if needed, U restores
shape by broadcasting averaged values back to removed indices. This encourages compression
among spectrally smooth tokens while leaving high-frequency tokens largely intact.

Compute. When M reduces Q, K,V to N’ tokens, attention costs shrink from O(N?d) to
O(N"2d). L-GTM is architecture-agnostic and training-free, we never touch class tokens in DiT
nor time/text conditioning tokens in U-Net cross-attention.

Blockwise ABM (Adaptive Block Merging) — a fast variant. For additional efficiency, we in-
troduce a tiled variant that pools an s x s block ¢ only if ¢(t) = max; j)e; Fij < 7 (with 7 as a
quantile of F'). Pooled tokens are averaged, others are kept verbatim. ABM is a drop-in replacement
for L-GTM in high-resolution stages.

3.2.2 INTERPOLATE-EXTRAPOLATE KV-DOWNSAMPLING (IE-KVD)

Goal. Reduce attention cost by downsampling keys/values while keeping queries intact to preserve
localization and alignment.

Operator. Given a stride s and reduced grid H x W(N =HW <« N ), define a per-site interpola-
tor/extrapolator between nearest and average pooling:

Das(2)]i] = a Znearest(i)] + (1—a) iz > j € Ns(i)Z[j), a€R. (8)
We set K = Dq.s(K) and VvV = D, s(V), while Q remains full-resolution. The attention then
costs O(N Nd) and preserves output length N.

Preserving @ maintains fine-grained receptive fields for every output token, which stabilizes syn-
thesis, and critically retains discriminative cues (edge/texture) in diffusion classification, where per-
token attention precision matters for the MC scoring rule.

3.3 COMPATIBILITY WITH DIFFUSION CLASSIFICATION

Our operators are timestep-local, deterministic given X, and do not rely on cross-timestep caches.
They therefore integrate seamlessly with the diffusion-classifier decision rule in Sec. [3.1.T} all
classes receive identical (g, €5) and identical compression schedules, so the paired-difference es-
timator remains valid. In practice, we reduce per-class FLOPs and improve accuracy relative to
baselines that focus solely on synthesis quality.

4 EXPERIMENTS
4.1 EXPERIMENTAL SETUP

Models. We test our BiGain on two representative diffusion models: Stable Diffusion v2.0 (Rom-
bach et al. 2022)) (UNet-based latent diffusion with text conditioning) and DiT-XL/2 (Peebles &
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Xie, 2022)) (Transformer backbone), using official pretrained weights. Diffusion classifiers require
a noise predictor ég(x¢, ).

Datasets and Metrics. For classification we use comprehensive datasets of ImageNet—1K (Rus-
sakovsky et al.l[2015), ImageNet-100 (Tian et al.,[2020), Oxford-IIIT Pets (Parkhi et al.|
2012), and COC02017 (Lin et al.,|2014). Following [Li et al.| (2023)), we evaluate on a 2,000-image
validation subset for ImageNet-1K (linear cost in |C|); full validation splits are used elsewhere. We
report Top-1 accuracy for single-label datasets and Top-1 precision plus mAP (macro) for multi-label
COCO. For generation we evaluate on COCO2017 captions, ImageNet-100, and ImageNet-1K, re-
porting FID metric. DiT-XL/2 is evaluated only on ImageNet datasets (class-index conditioning, no
free-form prompts), while Stable Diffusion v2.0 is evaluated on all datasets using text class prompts.
Efficiency is reported as sparsity and FLOPs (both total and attention FLOPs).

Implementation Details. Considering the unified timestep policy, also to make generation and
diffusion-classifier settings directly comparable, we apply the same token-reduction policy at every
denoising step t. We do not cache merge pairings or pooling indices across timesteps; all reduc-
tions are recomputed per step and per block. This avoids ¢-dependent artifacts for synthesis and,
because the diffusion classifier is a Monte-Carlo estimator over (¢, €), keeps the schedule temporally
consistent, reducing unnecessary variance.

4.2 COMPARISONS TO THE STATE-OF-THE-ART APPROACHES

Table 1 presents the comparisons with state-of-the-art approaches on Oxford-IIIT Pets using Top-
1 accuracy under ~10% FLOPs reduction. The no-acceleration baseline is 81.03%. Token-
merging/pruning baselines suffer large drops: ToMe (8.07%) and SiTo (12.19%), with pruning
methods DiP-GO (4.50%) and MosaicDiff (3.65%), showing that compression tuned for synthe-
sis often harms recognition. Our Laplacian-gated merging (BiGainry) retains far more accuracy
(78.38%, 2.65% drop), cutting the loss by 40~80% vs. these methods at matched FLOPs. In
the downsampling regime (14.2% FLOPs), ToDo slightly decreases the accuracy (-1.88%), while
our Interpolate—Extrapolate KV-downsampling (BiGainrp) is the best overall (79.90%, only 1.13%
drop), also with much better generation ability than ToDo, as we will discuss later. Overall, BiGain
delivers the strongest classification under comparable compute.

Table 1: Classification accuracy (Acc@1) on Pets dataset under similar FLOPs reduction.

Method Acceleration Type FLOPs Reductiont Acc@1 1 (%) A vs. Baseline |
Baseline (No Accel.) None - 81.03 -

ToMe (Bolya et al.|[2023) Token Merging/Pruning 10% 72.96 1 8.07
DiP-GO (Zhu et al.[[2024) Model Pruning 10% 76.53 1 4.50
SiTo (Zhang et al.|2025) Token Merging/Pruning 7% 68.84 }12.19
MosaicDiff (Guo et al.|[2025) Model Pruning 10% 77.38 13.65
BiGaingy (Ours) Token Merging/Pruning 10% 78.38 1 2.65
ToDo (Smith et al.|[2024) Token Downsampling 14.2% 79.15 } 1.88
BiGaingp (Ours) Token Downsampling 14.2% 79.90 1 1.13

4.3  CLASSIFICATION VS. GENERATION EXPERIMENTS

We report classification and generation comparisons under Token Downsampling in Table[2|(SD-2.0
backbone) and Table |3[ (DiT-XL/2). As shown, our method consistently outperforms the baseline,
and the advantage becomes more pronounced as the downsampling ratio increases. The same trend
holds for generation: with higher downsampling factors, our approach yields increasingly better
results. We further observe (Table [3)) that the ToDo method performs very poorly on the DiT-XL/2
model, whereas our method remains stable and effective on this backbone. Furthermore, with rel-
atively small downsampling (2x), our method surpasses the original unaccelerated model in both
classification and generation.

For Token Merging, classification and generation comparisons are reported in Table[](SD-2.0 back-
bone) and Table [5] (DiT-XL/2). The experimental results mirror those under downsampling: as the
merging ratio increases (i.e., with more aggressive pruning), our method achieves substantially bet-
ter performance than the baseline. In particular, our classification accuracy significantly surpasses
ToMe, while our generation capability also exceeds it. These results highlight the dual advantages
of our approach in both classification and generation.
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Table 2: SD-2.0 Token Downsampling: Classification (Acc@1 on Pets, ImageNet-100/1K; Acc@1
and mAP on COCO-2017) and generation fidelity (FID |) vs. downsampling factor. For classifica-
tion, we fix the interextrapolation factor at 0.9 across all timesteps to ensure stability. For generation,
we linearly vary the factor from 0.8 (early steps) to 1.2 (later steps), shifting emphasis from low- to
high-frequency information. Gray color indicates the same generation results as the above group.

Classification T (TD x) Generation | (TDx)
Method No Accel. 2% 3% 4x 5% 6% 7% 8x No Accel. 2% 3% 4x
Pets
Avg-pooling (baseline) 77.02 7345 7126 69.00 67.56 66.66 65.13 38.50 39.42 39.74
ToDo (Smith et al.}[2024) 81.03 81.30 79.15 7746 7274 66.74 62.87 56.16 35.01 33.52 3238 3148
BiGaingp (Ours) 81.52 7991 78.03 7492 70.86 69.33 66.03 32.19 3044 29.21
ImageNet-100
Avg-pooling (baseline) 58.50 49.52 4554 4096 38.74 38.12 37.40 19.31 23.08 26.59
ToDo (Smith et al.}[2024) 73.12 7230 6496 57.62 4870 4122 37.04 3212 17.64 16.86 1593 15.63
BiGaingp (Ours) 72.88 67.78 61.72 54.48 48.78 45.30 41.90 1646 1546 15.46
COCO-2017
Acc@] Avg-pooling (baseline) 6298 5594 5246 4874 46.88 47.38 46.74 30.52 3592 41.23
Acc@] ToDo (Smith et al.|[2024) 70.84 71.66 6890 65.16 57.70 51.26 48.52 44.40 26.79 2526 23.86 24.10
Acc@] BiGaingp (Ours) 72.04 70.52 67.28 61.98 57.26 54.66 50.72 2429 2317 24.05
mAP Avg-pooling (baseline) 4425 4096 3898 36.89 3577 3579 35.38 30.52 3592 41.23
mAP ToDo (Smith et al.|[2024) 46.01 46.59 4556 44.07 4031 3695 3550 3334 26.79 2526 23.86 24.10
mAP BiGaingp (Ours) 46.97 46.28 44.81 42.54 40.28 38.82 36.93 2429 2317 24.05

Table 3: DiT-XL/2 Token Downsampling: Classification (Acc@1) and generation fidelity (FID J)
vs. downsampling factor. For both classification and generation, we fix the interpolate-extrapolate
factor at 0.1 across all timesteps. TD Factor: Token Downsampling factor.

Classification 1 (TDx) Generation | (TDx)
Method No Accel. 2% 3% 4x 5% No Accel. . 3 4 5%
ImageNet-100
Avg-pooling (baseline) 78.34 61.04 4840  33.26 40.13  33.57 30.25 41.61
ToDo (Smith et al.|[2024) 84.82 69.34  8.46 4.74 3.32 41.37 40.48 190.18  206.52  215.04
BiGaingp (Ours) 7842 61.58 48.72  34.00 40.13 3295 29.87 40.55

4.4 ABLATION

Where to reduceﬂ As shown in Table @ we compare applying token reduction to self-attention
only (SA), self+cross attentions (SA+CA), and
self+cross+MLP (SA+CA+MLP). We find that
SA-only consistently delivers the best qual-
ity—efficiency trade-off: it preserves prompt ad- . | f lobal | .
herence (avoiding CA degradation) and avoids signals outperform global or spectral metrics.

Table 7: Ablation over token scoring heuristics
for Stable Diffusion 2.0. Top-1 accuracy (%) on
Pets dataset across merge ratios. Local Laplacian

compounding bias through MLP compression. __Scoring method 0.7 0.5 0.3

On Pets, SA-only attains the highest accuracy, Global mean deviation ~ 72.96  77.84  79.91

while SA+MLP reduces prompt fidelity and  ¢1-norm 73.02 7711  79.86
SA+CA+MLP further harms fine details. Con- £2-norm 7272 7795  79.61
clusion: we adopt SA-only reduction as default ~ Channel variance 73.04 7795 79.83
for all SD 2.0 experiments. Laplaqan F%lter 01 74.63 78.38 80.40

Laplacian Filter ¢ 7424 77.81 79.80
How to score tokens. As shown in Table DFT spectral centroid 7375 7792 79.10
local frequency cues dominate: Laplacian Fil- DFT amplitude 7310 77776 79.34
ter (£1) is best at all merge ratios, outperform-  Cosine to neighbors 7400 7822 79.56

ing global statistics (norms, channel variance), Cosine to global mean ~ 73.32  77.84  79.83

spectral DFT measures, and cosine similarity by 0.3~1.9%. This supports our frequency-aware de-
sign and motivates using a Laplacian proxy for gated merging. Overall, for SD-2.0, token merging in
SA with Laplacian scoring provides the strongest quality—efficiency trade-off under our ablation pro-
tocol. The detailed mathmatical formulations of these score heuristics can be seen in Appendix[C.2]

!"Unless noted otherwise, ablations are conducted on Oxford-IIIT Pets with identical sampling sched-
ules, classifier settings (for classification ablations), and reduction ratios as in the main results.
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Table 4: SD-2.0 Token Merging: Classification (Acc@1 on Pets, ImageNet-100/1K; Acc@1 and
mAP on COCO-2017) and generation fidelity (FID |) vs. Token Merging Ratio

Classification T (Token Merging Ratio)

Generation | (Token Merging Ratio)

Method No Accel. No Accel.

10%  20%  30%  40% 50%  60% 70% 10% 20% 30% 40%  50% 60%  70%
Pets
ToMe 80.10 79.88 7844 7642 7296 69.93 6576 3505 3530 3571 3626 37.00 37.63 3835
BiGaingy (Ours) 81.03 81.16 81.16 80.40 80.07 7838 76.04 74.63 35.01 3500 3512 3501 3599 3652 3699 37.73
ImageNet-100
ToMe 71.60 6990 6758 65.18 6348 60.70 56.38 4151 41.68 41.82 4202 4215 4221 4258
BiGaingy (Ours) 73.12 71.94 71.62 70.64 68.38 67.24 6520 61.28 41.37 4143  41.64 4155 41.65 41.93 41.86 41.98
ImageNet-1K
ToMe 5550 5425 5235 50.65 4755 4355 3735 17.57  17.66 1774 1774 1783 1797 1842
BiGaingy (Ours) 57.05 57.25 5650 55.80 54.80 5250 49.10 44.50 17.64 17.54 1748 1752 1753 1758 17.69 18.08
COCO0-2017
Acc@] | ToMe 7032 6898 673 6508 6372 5972 5732 2645 2668 2685 27.04 27.15 27.89 29.00

Acc@] | BiGainm 70.84 7196 71.56 70.64 69.20 67.64 6494 61.44 26.79 26.51  26.60 2652 2679 27.00 27.55 28.57

mAP | ToMe 46.04 4535 4450 4343 4282 41.01 40.07 2645 2668 2685 27.04 27.15 27.89 29.00
mAP | BiGainpy 46.01 46.38 46.21 46.05 4550 4494 4398 42.44 26.79 26.51  26.60 2652 2679 27.00 27.55 28.57

Table 5: DiT-XL/2 Token Merging: Classification (Acc@1 on Pets, ImageNet-100/1K; Acc@1 and
mAP on COCO-2017) and generation fidelity (FID |) vs. Token Merging Ratio

Classification T (Token Merging Ratio) Generation | (Token Merging Ratio)

Method  NoAccel. yoq 200, 309%  40%  50%  60% 70% NOACL10g 0% 30%  40%  50%  60%  70%
ImageNet-100
ToMe 8086 7802 753 7138 6824 6206 53.88 4151 4168 4183 4202 4215 4221 4258

BiGainmy 84.82 83.56 822 7992 7738 73.68 68.34 61.76 47.53 41.43 41.61 4156 41.65 4192 41.77 41.89

Table 6: Ablation of token-merging locations in Stable Diffusion 2.0 on Pets. Self-Attention
(SA) is always merged; Cross-Attention (CA) and MLP are toggled. Results reported at merge ratios
r€{0.7,0.5,0.3}. The underlined results indicate the best performance across all configurations.

SA only SA+CA SA+MLP SA+CA+MLP
Method 0.7 0.5 0.3 0.7 0.5 0.3 0.7 0.5 0.3 0.7 0.5 0.3
ToMe (Bolya et al.|2023) 65.76 72.96 7844 61.68 6841 7446 5143 5871 6635 50.86 59.53 66.20
BiGaingy (Ours) 74.63 7838 8040 73.89 78.03 79.56 68.27 7493 7798 68.25 74.84 7795

4.5 ANALYSIS

Further Speedup. Our vanilla Laplacian Merge. Before the Q/K/V projections, we run a 2-D
Laplacian filter on the hidden map to score each token by local frequency (contrast w.r.t. its four
neighbors). We then partition the feature map into s, x s, cells; within each cell, low-frequency
tokens serve as destinations and the remaining source tokens are greedily assigned by cosine similar-
ity. Because merging acts like a low-pass filter that can destroy high-freq detail, we restrict merging

Table 8: Further speedup on SD-2.0 Token Merging: classification performance vs. merge ratio.
Acc@]1 for single-label datasets; Acc@ 1 and mAP for multi-label COCO-2017.

Dataset Method GFLOPs  10%  20% 30% 40% 50% 60% 70%
Laplacian Gated Merge 70499 81.16 81.16 804 80.07 7838 76.04 74.63
Pets Cached Assignment Merge 698.88  80.29 79.97 79.89 79.01 7811 7591 7449
Adaptive Block Merge 695.08 80.40 80.16 79.99 79.18 77.84 7596 74.13
Laplacian Gated Merge 70499 7194 71.62 70.64 6838 6724 6520 61.28
ImageNet-100 Cached Assignment Merge 698.88  71.76 71.16 70.44 69.38 67.78 64.56 61.28
Adaptive Block Merge 695.08 7258 71.94 7058 70.52 68.04 6536 60.98
Laplacian Gated Merge 70499 5725 5650 5580 54.80 5250 49.10 44.50
ImageNet-1K  Cached Assignment Merge 698.88 56.30 56.05 56.05 53.15 5230 4790 44.60
Adaptive Block Merge 695.08 5695 5625 56.00 54.60 5195 4820 44.85
Acc@] | Laplacian Gated Merge 70499 7196 7156 70.64 692 67.64 6494 61.44
Acc@] | Cached Assignment Merge  698.88  71.72  71.40 7022 70.02 6794 64.88 60.88
COCO-2017 Acc@] | Adaptive Block Merge 695.08 71.76 71.44 70.28 69.62 6726 64.70 60.56
mAP | Laplacian Gated Merge 70499 4638 4621 46.05 4550 4494 4398 4244
mAP | Cached Assignment Merge 698.88 4630 4632 4594 4596 45.19 4393 4241
mAP | Adaptive Block Merge 695.08 4635 46.41 4593 4587 45.12 4396 4232
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Figure 2: Visualization of our Laplacian-based frequency heuristic on hidden representations from
Stable Diffusion-2.0. We probe U-Net at the highest-resolution upsampling stage. The visualization
is computed from a noised image without a text prompt, showing the model’s intrinsic frequency-
aware reconstruction dynamics. To reduce variance, we randomly sample 100 independent noise
realizations and visualize the averaged token salience map.

to low-freq tokens only. Two faster variants. (1) Our Cached Assignment Merge: in the highest-
resolution U-Net stages (two Transformer blocks for down sampling and three for up sampling),
compute the merge/unmerge map once in the first attention block and reuse it within the stage. (2)
Our Adaptive Block Merge: after computing Laplacian scores, aggregate them per cell and merge
entire low-frequency cells with no per-token matching, yielding extra speed with minimal accuracy
loss. As shown in Table[8] both variants closely track Laplacian-Gated Merge across 10~70% merge
ratios across different datasets while providing additional FLOPs savings.

Visualization. We compare token-importance
maps for generation and classification to reveal
their different spectral needs. Overall, as shown
in Fig.[2] frequency-aware reduction yields a fa-
vorable bias—variance trade-off: retaining low-
frequency tokens stabilizes classification, while
selectively keeping high-frequency tokens pre- .
serves generation quality, making one heuristic ==
effective for both tasks. To illustrate our Lapla- o2 R D ORE o

cian scoring, we probe SD-2.0 at the highest- Figure 3: Comparison of token merging
resolution upsampling block and visualize pre- schemes. Left: ToMe (Bolya et al.} [2023)); Right:
attention hidden states filtered by a 2-D Lapla- Laplacian-gated token merging (BiGaingy).
cian. Maps are averaged over 100 noise draws Merging is applied with a merge ratio 90% at
without a text prompt to reduce variance, to re- the highest-resolution latent layer of the U-Net
veal the model’s intrinsic frequency sensitivity. transformer in Stable Diffusion 2.0 at denoising
step t = 200. Grayscale indicates merged tokens.

In Fig. 3] we compare ToMe vs. BiGainqy at
90% merge on the highest-resolution U-Net transformer layer at ¢ =200 (grayscale = merged).
Laplacian-gated merging preserves more class-discriminative structure (e.g., the cat’s edges) than
standard ToMe.

5 CONCLUSION

In this work, we revisited token compression for diffusion models as a bi-objective problem, pre-
serving both generative and discriminative abilities, and introduced BiGain, a training-free, cache-
free framework built on two frequency-aware operators: Laplacian-Gated Token Merging (merge
in smooth regions, keep edges) and Interpolate—Extrapolate KV-Downsampling (downsample K/V
with controllable interextrapolation while keeping Q unchanged). Using DiT/U-Net backbones and
multiple datasets, BiGain consistently improves the speed—accuracy trade-off for diffusion-based
classification while maintaining, and sometimes even improving generation quality under compara-
ble compute. Our extensive analyses show a simple design rule: balanced spectral retention of high-
frequency detail and low/mid-frequency semantics enhances gains. While very aggressive sparsity
can still degrade performance, BiGain shifts the Pareto frontier and is deployable as a plug-in.
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ETHICS STATEMENT

This work proposes training-free token compression techniques that reduce the compute and energy
cost of diffusion models. While efficiency has positive environmental benefits, dual-use risks re-
main: faster generation and improved classification can be misused for spam or synthetic media.
We evaluate only on public benchmarks (ImageNet, COCO, Oxford-IIIT Pets) under their licenses,
do not collect personal data, and release no new sensitive datasets. Because compression can subtly
shift model outputs, downstream deployments should re-check safety, bias, and content filters, our
release will include guidance to toxicity and fairness checks and to respect dataset/model licenses.

REPRODUCIBILITY STATEMENT

BiGain is inference-only and requires no training. We will release code, configs, and scripts to repro-
duce all tables/figures, including: (i) exact token-reduction schedules per layer; (ii) implementations
of Laplacian-Gated Merge and Interpolate—Extrapolate KV-Downsampling; (iii) evaluation code for
diffusion classification with fixed seeds, compression settings; (iv) generation metrics (e.g., FID);
(v) prompts/class labels used, data preprocessing, and dataset splits; (vi) environment files with li-
brary versions and hardware notes; and (vii) FLOPs/sparsity accounting. We use official checkpoints
(Stable Diffusion v2.0 and DiT-XL/2) and fix random seeds to ensure run-to-run determinism.
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A THEORY: FREQUENCY-AWARE TOKEN REDUCTION IMPROVES DIFFUSION
CLASSIFICATION VIA VARIANCE CONTROL

Setting. Given an image x and a conditioning ¢ € C, the Diffusion Classifier (DC) scores each
class by the expected /5 noise prediction error,

S(z,c) = Et7e||e—69(mt,c)||;, e =V +1— e,

and predicts é(z) = argmingecc S(z, ¢), using paired sampling of (t,€) across classes. This rule
is the uniform-¢; ELBO surrogate of (Li et al., 2023) and empirically concentrates accuracy at
intermediate timesteps; both the decision rule and the paired-difference rationale.

Paired difference and a tail bound. Fix the true class ¢* and a distractor ¢. For one paired draw
(t, €) define the difference

D(t,e) = lle — ep(z0, )l — lle — eo(ze, )3, w=E[D], o= Var[D].
With N paired draws, Ay = % Zi\il D(t;, €;) concentrates around p > 0 for a consistent classi-

fier, and the one-sided Cantelli inequality yields

~ o?/N
Pr(Ay <0) < ————.
r(Ay <0) < 12+ 02/N
Because the right-hand side is strictly increasing in r = o /u, improving the bound is equivalent to
decreasing r.

A bandwise view. Let {¢;} be an orthonormal 2-D DCT/Fourier basis over the token grid. Ex-
panding the classwise error at (¢, €) produces a band-weighted quadratic form

lle — eo(ze, )2 =Y wilt) [e(k) — & kst e)|,
k

where wy, (t) > 0 reflects the per-band reliability at step ¢. Writing D(t,€) = >, wi(t) Ax(t,€) and
W = Et [wk (t)],

uw= Zwk ks o? = Zw,% aﬁ+22wiwj Cov(A;, Aj).
k k i<j

We will use the standard weak-correlation approximation o2 = Dok wio?, which empirically
matches DC’s paired-difference stability. Low-frequency bands dominate the mean margin g,
whereas high-frequency bands often dominate the variance o.

Local token reduction as a spectral operator. Consider the attention layer and a window W
of tokens. Let z; = s; + n; with structured content s; and zero-mean perturbation n;. A
shape-preserving reduction P maps {z;};cw to a representative and, under a local linearization
of the block, acts as a windowed frequency response Hp(k):

,u’:Zwka(k)uk, o? =~ Zw,%Hp(k)Qa,%.
k k

Average-type reductions behave as local low-pass filters (attenuate large k), while
nearest/selection-type reductions preserve amplitude across bands (and can alias under deci-
mation). This model captures precisely how P reshapes the band-weighted paired statistic.

Main result. Letr = o/pand ' = ¢’/1/, and write the mean and variance changes as

Ap=p—p = Zwk(l — Hp(k)) Ac? =0 -0 = Zwi(l — Hp(k)*)o}.
k k

Since the Cantelli bound is monotone in r, improvement is equivalent to 7’ < r. A short calculation
gives an exact criterion.

13
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Theorem 1 (Spectral margin—variance improvement) The DC tail bound improves after apply-
ing P if and only if

g 2 g 2
Ao? > 2— Ap — — (Ap)?.
Iz K

When Ap/u is small, the first-order sufficient condition
2
Ao? > 20 Ap
I
guarantees v’ < r.

ﬁ <Z e Clearmg denominators and rearrang-

ing yields Ac?u? — 202 Ap+0?(Ap)? > 0, which after d1V1d1ng by p? gives the stated condition;
a first-order expansion in A/ gives the sufficient bound. (|

Proof. The inequality 72 < r2 is equivalent to

Interpretation (spectral balancing). The 1mprovement condltlon in Theorem, depends on two
band-aggregated quantities: the variance shaved off, Ac? = 5 & wi(1 — Hp(k)*)o3, and the mar-
ginlost, Ay = 3", wi(1 — Hp(k))p,. Because different bands contribute dlfferently to these two
terms, achieving 7’ < r requires a frequency-selective (i.e., balanced) response H p: attenuate bands
that disproportionately inflate variance while preserving bands that contribute margin—irrespective
of whether those bands are nominally “low,” “mid,” or “high” frequency. Practically, this means
designing Hp (k) to behave like a bandwise shrinkage rule, with Hp(k) ~ 1 where pj, dominates
oy, (margin-rich bands) and Hp (k) < 1 where cr,% dominates (variance-heavy bands). Such spectral
balancing tightens the Cantelli bound by reducing variance without proportionally erasing discrimi-
native content, and it subsumes low-pass filtering as a special case rather than a requirement.

Assumptions and scope. The derivation relies on a local linearization at the reduced layer and on
a weak cross-band correlation approximation in the paired statistic; both are standard in analyzing
attention-layer perturbations and match the behavior we observe when DC is implemented with
paired sampling. The conclusion is not tied to a particular architecture or to any specific reduction
primitive: it applies to any token-reduction operator whose effect can be summarized by a stable
local response Hp (k) and that is applied identically to all classes and timesteps so that the paired
estimator remains valid.

B IMPLEMENTATION DETAILS

B.1 DATASETS AND EVALUATION PROTOCOLS
B.1.1 DATASET DETAILS

We evaluate on four widely-used benchmarks, summarized in Table E} Following L1 et al.| (2023)),
ImageNet-1K is sub-sampled to 2,000 images for classification to reduce computational cost, while
the full validation set is retained for generation experiments.

Table 9: Dataset statistics with official splits used in our experiments.

Dataset Classes Split # Images (Cls.) # Images (Gen.)
ImageNet-100(Tian et al.|[2020) 100 Val. 5,000 5,000
ImageNet-1K (Russakovsky et al.|[2015) 1,000 Val. 2,000 50,000
Oxford-IIIT Pets (Parkhi et al.||2012) 37 Test 3,669 3,669
COCO-2017 (Lin et al.[[2014) 80 Val. 5,000 5,000

B.1.2 DIFFUSION CLASSIFIER PROTOCOL

Diffusion-classifier. We follow the Diffusion Classifier framework (Li et al.l|2023), which scores
a candidate conditioning ¢ by the expected noise-prediction error E; . ||| — eq (¢, c) %} and selects
the minimizer. This method is training-free, requiring no calibration or finetuning, and enables

14



Under review as a conference paper at ICLR 2026

zero-shot classification directly from pretrained diffusion models. To enable evaluation on large
label spaces, we use adaptive evaluation with staged pruning (detailed in Algorithm [C.I). We adjust
only TrialList and KeepList based on the size of the candidate set.

Table 10: Adaptive diffusion-classifier parameters per dataset. Nygges i the number of prun-
ing stages; TrialList is the cumulative number of Monte Carlo trials per candidate by stage;
KeepList is the number of candidates retained after each stage.

Dataset Niages TrialList KeepList
ImageNet-100 2 [5, 20] [5, 1]
COCO0-2017 2 [5,20] [5, 1]
Oxford-IIIT Pets 2 [5, 20] [5, 1]
ImageNet-1K 3 [5, 20, 100] [50, 10, 1]

For completeness, we also evaluated velocity-prediction flow-matching models (FLUX (Labs et al.,
2025)). Using the FlowMatchEulerDiscreteScheduler to construct affine mappings for
recovering ég and 2y within DDIM, the released FLUX.1-dev checkpoint performed only marginally
better than random guessing under the diffusion-classifier protocol. To avoid adapter-specific con-
founds and ensure a fair comparison, we restrict all evaluations to standard noise-prediction models.

B.2 MODEL CONFIGURATIONS
B.2.1 PROMPT TEMPLATES

For the classification task, following (Li et al., 2023), we use *‘a photo of a {class}’’
for ImageNet and COCO datasets, and ‘‘a photo of a {class}, a type of pet’’
for Oxford-IIIT Pets.

For generation, we use the same templates except for COCO-2017, where we use the official vali-
dation captions.

B.2.2 GENERATION SETUP

We standardize generation across both backbones. For Stable Diffusion 2.0 (UNet) (Rombach et al.|
2021)), we use the EulerDiscreteScheduler with a scaled-linear beta schedule (beta_start 0.00085,
beta_end 0.012, 1,000 training steps, epsilon prediction). For DiT-XL/2-512 (Peebles & Xie| 2023)),
we use the DDIMScheduler with a linear beta schedule (beta_start 0.0001, beta_end 0.02, 1,000
training steps, epsilon prediction). In both cases, we sample for 50 steps at 512x512 resolution.
We apply classifier-free guidance with a scale of 7.5 for Stable Diffusion 2.0 and 4.0 for DiT-XL/2-
512. Unless otherwise stated, all experiments are conducted in FP16 precision. For evaluation, FID
scores are computed using the pyt orch—fid implementation (Seitzer, | 2020).

B.3 TOKEN COMPRESSION
B.3.1 COMPRESSION SETTINGS

Guided by the ablation in Table [6] we apply compression exclusively to self-attention (SA) and
leave cross-attention (CA) and MLP blocks intact to preserve prompt adherence. For merging-based
operators, merging is performed inside each SA block and an explicit unmerge restores the original
sequence length before the residual addition, ensuring dense outputs for downstream modules. For
KV-downsampling operators, only keys and values are subsampled while queries remain full-length,
removing the need for unmerge.

Stable Diffusion 2.0 (U-Net). We insert compression exclusively at the highest-resolution encoder
layers, where the spatial token count, and thus attention cost is maximal. This targets the primary
bottleneck while maintaining quality.

Diffusion Transformer (DiT-XL/2). To assess generality beyond U-Net architectures, we port the
same operators to DiT-XL/2. Specifically, token compression is applied within the first 12 trans-
former blocks, comparing early (blocks 1-6) versus mid-early (blocks 7-12) reduction, while leav-
ing later blocks—where class conditioning and fine structural details consolidate unchanged.
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B.3.2 BASELINE IMPLEMENTATION

For all token compression baselines, we use the official implementations and default parameters
released by the authors, and run them under a common experimental protocol (Sec.[B.1.2} Sec.[B.2.2)
to ensure fair comparison and avoid unintentional re-tuning. The only modification we introduce is
to vary the token reduction ratio, so that each method can be fairly evaluated under different levels
of compression.

B.4 EFFICIENCY EVALUATION

To measure the acceleration effect of our token reduction methods, we evaluate on the official Sta-
ble Diffusion 2.0 implementation released by Stability Al (Rombach et al.| [2021). All experiments
are conducted on a single NVIDIA RTX 4090 GPU in half-precision (f1oat16). We report wall-
clock sampling time per image batch excluding the VAE encoding/decoding overhead, since our
methods target the denoising backbone rather than the autoencoder. FLOPS are measured using
FlopCounterMode from torch.utils.flop_counter (Paszke et al 2019). The corre-
sponding runtime and efficiency results are summarized in Table

Table 11: Stable Diffusion 2.0 efficiency (batch size 4). Wall-clock sampling time per batch
(seconds) excluding VAE encode/decode. All rows use merge ratio r = 0.7.

Method Time | (s/batch) Acceleration T (%) FLOPs | (G)
Baseline (No Accel.) 11.98 - 804.26
SiTo (Zhang et al.,|2025) 8.71 27.30 748.49
ToMe (Smith et al.| [2024) 7.37 38.48 704.87
Laplacian Gated Merge (Ours) 7.37 38.48 704.99
Cached Assignment Merge (Ours) 7.29 39.15 698.88
Adaptive Block Merging (Ours) 7.27 39.32 695.08

C ALGORITHM

C.1 ADAPTIVE DIFFUSION CLASSIFIER

Naive diffusion classification requires evaluating all candidate classes, and thus its cost grows lin-
early with the number of classes. To mitigate this, we adopt the adaptive evaluation strategy in-
troduced in the diffusion-classifier framework (Li et al.| [2023)). At each stage, we allocate a fixed
budget of trials across the remaining classes, discard unlikely candidates based on their average er-
ror, and retain only the most promising ones. This progressive pruning concentrates computation on
high-confidence classes, enabling more fine-grained Monte Carlo error estimation. The procedure
is summarized in Algorithm I

C.2 FREQUENCY-AWARE TOKEN SCORING

Spectral structure of latent features is important for both discriminative and generative ability.
High—frequency tokens encode the information of edges, textures, and small objects, especially
at the late denoise stage, which are indispensable for recognition. However, high-frequency tokens
can also amplify the variance in the diffusion classifier since predictions are aggregated over Monte
Carlo draws of timesteps and noise; excess high—frequency tokens inflate the per—timestep estima-
tion variance. Moreover, different timesteps emphasize different bands, early denoising focuses on
low frequencies (global structure) while later steps emphasize high frequencies (fine detail). There-
fore, the compression schedule should be spectrally balanced and temporally consistent to avoid
injecting avoidable variance across timesteps. The necessity of preserving a balanced spectrum is
confirmed empirically in Table[T2] where discarding either high- or low-frequency tokens severely
harms classification.

Our BiGainty design follows from this principle. Since token merging resembles a local low—pass
filter, we encourage merging only in small, spectrally smooth neighborhoods, where low—frequency
information can be safely aggregated, while protecting detail-rich tokens that anchor class-critical
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Algorithm 1 Diffusion Classifier (Adaptive) (Li et al., 2023)

Require: test image x, conditioning inputs C = {c;}_; (e.g., text embeddings or class in-
dices), number of stages Nges, list KeepList of number of c; to keep after each stage, list
TrialList of number of trials done by each stage

1: Initialize Errors|c;] = list() for each c;
2: Initialize PrevTrials =0 > How many times we’ve tried each remaining element of C so

far

3: forstage i = 1,. .., Nyages do

4 fortrial j =1,...,Triallist[i] — PrevTrials do

5: Sample ¢ ~ [1,1000]

6: Sample € ~ N(0, ])

7 Xt = Vaux + /1 — aze

8 for conditioning c;, € C do

9: Errors[cy).append(||€ — €g(x¢, cx)|?)

10: end for

11: end for

12: C+ argmin > _smean(Errors|cy]) > Keep top KeepListi] conditionings
\3|:K§§pcﬁist[i]

13: PrevIrials = TrialList[f]

14: end for

15: return arg minmean(Errors|c;])
c;eC

Table 12: Classification results on frequency-based KV selection on ImageNet-100. We compare
the standard TODO strategy with frequency-aware variants that select tokens with the highest or
lowest Laplacian scores globally. Retaining only high- or low-frequency tokens severely degrades
classification performance, highlighting the need to preserve a balanced spectrum.

Downsampling strategy Acc@11 KV token sparsity
Todo (Nearest-Neighbor) (Smith et al.}[2024) 72.30 75%
Low-frequency tokens (lowest-laplacian) 45.58 75%
High-frequency tokens (Highest-laplacian) 26.56 75%

microstructures. This balanced policy removes redundancy without sacrificing classification accu-
racy or generation fidelity. Practically, we introduce a set of fast, training-free scoring heuristics
to decide which tokens to preserve (high detail) and which to merge (smooth/redundant), and we
apply them consistently across timesteps so that each per-timestep classifier score remains reliable
and contributes coherently to the Monte Carlo ensemble.

Notation. Let X € R”*WxC denote the hidden feature tensor (height H, width W, channels C)).
For spatial index (i, j), the token (channel vector) is @; ; := X, ;. € RY. The global mean token
is p = o Zle ZZ‘;I xp, 4. For a 3x3 spatial kernel L, (X * L); ; . denotes 2-D convolution
at (4, j) on channel c. Let Ny(4, j) be the (in-bounds) 4-neighborhood of (7, j) (up/down/left/right).
The DFT of ; ; at channel-frequency bin k is &; j  := Zil(wi’ o e 2mi(e=D)(k=1)/C for |
{1,...,C}. We write || - ||, for the vector £, norm, || - || = || - ||2, and (a, b) for the Euclidean
inner product. We compute a scalar score F; ; € R per token, where larger values indicate detail-
rich tokens and smaller values indicate smooth/redundant tokens. We list all functions of different
metrics in Table [I3

For all heuristics except cosine-based ones, larger F; ; indicates stronger local variation and thus
high-frequency detail. In contrast, for cosine similarity scores, smaller values correspond to tokens
that deviate more from their neighbors or the global mean, and are therefore detail-rich.
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Table 13: Formulas of different metrics.

Metric Name Formula
Global mean deviation Fij=lzi; — pll
/1 norm Fij=|lzi
£ norm Fij= |zl )
Channel variance F, ;= % chzl ((:c”)c - % ZS:1($i,j)c’)
0 1 O
Laplacian (£;) Fij=43C (X *L)ij, L=[1 -4 1
0 1 0
Laplacian (¢2) F, ;= \/% SO (X *L)iye)
C -
DFT spectral centroid F;= M
i Eé‘Fl [®4, 5,5
DFT total amplitude Fij=> 1y |®ijkl
Cosine similarity to neighbors F,; = 7\1\14(1@]‘)\ Z(%q)em(i,j) 7”;”:JJHW£;(>IH
Cosine similarity to global mean F; ; = m

C.3 BIGAINTy

Algorithm [2| presents our frequency-aware token merging method. The core innovation lies in us-
ing spectral information to guide merge decisions, ensuring that token reduction preserves both
generative fidelity and discriminative utility. The algorithm first applies a frequency scorer F (de-
fault: Laplacian filtering[C.2)) to identify local frequency content in the spatial feature map. Tokens
with low frequency scores indicate smooth, homogeneous regions amenable to merging, while high
scores correspond to edges, textures, and fine details critical for classification.

The destination selection step partitions the spatial layout into regular grids and identifies the lowest-
frequency token within each grid as a merge destination. This strategy ensures spatial coverage while
directing merging toward spectrally smooth regions. The remaining tokens form a source set, which
is then assigned to destinations via bipartite matching based on cosine similarity. By selecting the
top-r fraction of most similar pairs, the method preserves semantic coherence while respecting the
frequency-based partitioning. After merging and processing through attention layers, an unmerge
operation restores the original sequence length for architectural compatibility.

Algorithm 2 BiGaingy: Frequency-Aware Token Merging

Require: Tokens X € RV*9 merge ratio 7, grid size s, frequency scorer F
1: function BIGAINMERGE(X, 7, s, F)

2: f+ F(X) > Score tokens by frequency content
3: D «+ SelectDestinations( f, s) > Lowest frequency per grid
4 S« {1,...,N}\D > Remaining tokens as sources
5: M <« BipartiteMatch(Xs, Xp, ) > Similarity-based assignment
6: X mereed ¢ Merge(X, M) > Combine assigned tokens
7: Z + Process( X mereed) > Apply attention
8: return Unmerge(Z, M) > Restore dimensions
9: end function

Algorithm [3| presents Adaptive Block Merge (ABM), a computationally efficient variant designed
for high-resolution stages where token count is maximal. Rather than per-token assignment, ABM
operates at block granularity. After computing frequency scores, the feature map is partitioned into
blocks, and blocks are ranked by their frequency content. The lowest-scoring fraction r of blocks
are identified as smooth regions and merged via averaging, while high-frequency blocks remain
intact. This block-level decision reduces computational complexity of bipartite matching, providing
speedup with little accuracy degradation as demonstrated in our Table

18



Under review as a conference paper at ICLR 2026

Algorithm 3 Adaptive Block Merge (ABM): Fast BiGaingy Variant

Require: Tokens X € RV*4 block size b, merge ratio € [0, 1], scorer F
1: function ADAPTIVEBLOCKMERGE(X, b, r, F)

2: f+ F(X) > Compute frequency scores
3: B < BlockPartition( X, b) > Partition into b x b blocks
4: Bimooth < SelectLowestFreq(B, f,r) > Select lowest r fraction blocks
5: X mereed ¢ MergeBlocks (X, Bsmooth) > Average selected blocks
6: Z + Process( X mereed) > Apply attention
7: return RestoreBlocks(Z, Bsmooth ) > Restore dimensions
8: end function

C.4 BIGAINTD

Algorithm @] presents our Interpolate—Extrapolate KV-Downsampling method, which reduces atten-
tion complexity by downsampling keys and values while preserving queries at full resolution. This
asymmetric approach maintains the model’s ability to attend precisely to all spatial positions while
reducing memory and computation. The key innovation is the controllable linear combination of
nearest-neighbor and average pooling, allowing fine-grained control over the frequency-preservation
trade-off.

Here we use the same interpolate—extrapolate operator D,, s as defined in Eq. @ This operator blends
nearest-neighbor sampling (preserving detail) with average pooling (smoothing), controlled by the
parameter o € R. Keys and values are downsampled as K = D, s(K) and V= D, s(V), while
queries remain full resolution.

Algorithm 4 BiGainrp: Interpolate—Extrapolate KV-Downsampling (IE-KVD)

Require: Tokens X € RY*? downsample factor s, interpolation-extrapolation o € R, scorer F
1: function BIGAINDOWNSAMPLE(X, s, «, F)

2: f+ F(X) > Compute frequency scores
3: Q<+~ XWy > Compute queries (full resolution)
4 K+ XWgk,V « XWy > Compute keys and values
5: K <« Interpolate/ExtrapolateDownsample( K, s, o, f) > Downsample K
6: V « Interpolate/ExtrapolateDownsample(V | s, o, f) > Downsample V
7 Z «+ Attention(Q, K, V) > Q at full res, K/V downsampled
8: return Z > Output maintains full resolution
9: end function

D USE OF LARGE LANGUAGE MODELS

We used an LLM to help solely polish the writing of the paper, while all ideas and experiments are
conceived and carried out entirely by the authors.
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