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When Federated Recommendation Meets Cold-Start Problem:
Separating Item Attributes and User Interactions

Anonymous Author(s)

ABSTRACT
Federated recommendation systems usually trains a global model on
the server without direct access to users’ private data on their own
devices. However, this separation of the recommendation model
and users’ private data poses a challenge in providing quality ser-
vice, particularly when it comes to new items, namely cold-start
recommendations in federated settings. This paper introduces a
novel method called Item-aligned Federated Aggregation (IFedRec)
to address this challenge. It is the first research work in federated
recommendation to specifically study the cold-start scenario. The
proposed method learns two sets of item representations by lever-
aging item attributes and interaction records simultaneously. Addi-
tionally, an item representation alignment mechanism is designed
to align two item representations and learn the meta attribute net-
work at the server within a federated learning framework. Experi-
ments on four benchmark datasets demonstrate IFedRec’s superior
performance for cold-start scenarios. Furthermore, we also verify
IFedRec owns good robustness when the system faces limited client
participation and noise injection, which brings promising practi-
cal application potential in privacy-protection enhanced federated
recommendation systems. The implementation code is available1.

Relevance Statement: This paper aims to address the challenge of
conducting cold-start items recommendation to users in federated
recommendations, which alignswith the scope of the user-modeling
and recommendation track.
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Figure 1: Three cold-start recommendation systems compar-
ison. The centralized method (a) saves raw item attributes
on the server but exposes private user interaction records.
Traditional FedRecSys (b) secures the interaction records but
exposes the item attributes to the clients. Our IFedRec (c) can
protect these two types of security-sensitive information.

Cold-start is a long-standing challenge in the recommendation
system research [36]. It demands the system’s capability to infer
recommendations for new items. To solve the cold-start issue, it
is crucial to integrate the raw item attributes into the model for
offering beneficial information, which have been verified as an
effective scheme [7, 15, 33] in the centralized recommendation ser-
vice setting. Generally, the service provider can collect all the users’
personal data (e.g., interaction records) and the items’ raw attributes
for model construction, as shown in Figure 1 (a). By learning the
correlations between item attributes and user interaction records,
the system can make predictions for the new items.

However, with the serious social concerns about the exploitation
of user privacy [25, 30], developing recommendation models while
protecting user’s private data from being leaked has attracted in-
creasing attention. As an emerging privacy-preserving recommen-
dation framework, Federated Recommendation System (FedRec-
Sys) [6, 22, 24] deploys individual models on the devices (clients),
and a server can optimize a common model by commanding the
local model parameter aggregation and distribution. Privacy can be
guaranteed as users preserve private data locally, which prevents
accessibility from the server or other users. Although impressive
progress has been shown [34, 35], there is still a lack of solutions
for cold-start recommendation models under the federated setting.

Given the remarkable success of cold-start recommendationmod-
els in the centralized setting, the intuitive idea to develop the fed-
erated version is to deploy the centralized model on each device,
that is, each client downloads all the raw item attributes from the
server and trains the local model with personal interaction records,
as shown in Figure 1 (b). However, the dissemination of raw item
attributes outside of the service provider poses a significant risk
to the system. Firstly, the raw item attributes are crafted carefully
with expert effort, and the disclosure can lead to substantial damage
to commercial properties. Moreover, publicly available raw item
attributes are susceptible to malicious usage and may incur hostile
adversarial attacks [17, 37]. Hence, it is crucial to preserve the raw
item attributes on the server. The challenge of constructing a cold-
start FedRecSys lies in how to promote the system learning while

1
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preserving the security of private interaction data on the client and
the raw item attributes on the server.

In this paper, we present a novel Item-aligned Federated aggrega-
tion framework for cold-start Recommendation (IFedRec), which
is the first effort to achieve cold items recommendation in federated
setting. To realize the cold-start FedRecSys while preserving user
data and raw item attributes safely, we propose a coherent learning
process for two item representations from the client and server.
The client maintains item embeddings based on user interaction
records capturing user preferences, while the server incorporates
a meta attribute network to represent item attributes using raw
item attributes. We also devise an item representation alignment
mechanism to bridge the connection between item attributes and
user preferences, enabling cold-start recommendation. Figure 1
(c) demonstrates how our IFedRec framework effectively executes
cold-item recommendation by leveraging item attributes, while
simultaneously ensuring the security of private interaction data
and raw item attributes, preventing their exposure.

To implement the idea, we develop a two-phase learning frame-
work, i.e., learning on warm items and inference on cold items. In
the learning phase, the server aggregates the local item embeddings
to achieve the global one, which is then used as supervision to
train the meta attribute network on the server. For each client, the
local model training is carlibrated by minimizing the distance be-
tween local item embedding and item attribute representation from
the server. This mechanism injects the attribute information into
the recommendation model, which enhances item representation
learning and promotes recommendation prediction. In the infer-
ence phase, the server learns the attribute representations for cold
items. Each client can then utilized these attribute representations
along with the user-specific recommendation models to make per-
sonalized recommendations. We integrate our framework into two
representative FedRecSys, which gain significant performance im-
provement than the original version when dealing with cold-start
scenarios. Our IFedRec achieves the state-of-the-art performance
on four cold-start recommendation datasets, outperforming both
federated and centralized baselines across comprehensive metrics.
Moreover, we empirically demonstrate the robustness of IFedRec
even when only a few clients participate in each communication
round, which indicates its potential for practical application. Ad-
ditionally, by integrating the local differential privacy technique,
our IFedRec strikes a balance between model performance and sys-
tem noise injection, which sheds lights on the privacy-protection
enhanced FedRecSys construction.

In summary, ourmain contributions are listed as follows,

• We present a novel framework, IFedRec, to the best knowledge
of the authors, it is the first effort to solve the cold-start rec-
ommendation under the federated setting where there are no
interactions for the new items.

• Our method achieves state-of-the-art performance in extensive
experiments and in-depth analysis supports the significance of
cold items recommendation.

• The proposed item semantic alignment mechanism can be easily
integrated into existing federated recommendation frameworks
for cold-start recommendation performance improvement.

2 RELATEDWORK
2.1 Cold-Start Recommendation
Cold-start recommendation research focuses on addressing the chal-
lenge of providing quality recommendation service for new items
[38]. Several approaches have been proposed to tackle this issue, in-
cluding collaborative filtering techniques [5, 32, 38], content-based
methods [11, 27] and the hybrid models [4]. Collaborative filter-
ing methods infer the item similarities based on historical user
interactions and identify items that tend to be consumed together.
Content-based methods leverage the item attributes to understand
the item characteristics so that the system can analyze the correla-
tions between new items and existing items and make recommen-
dations. Hybrid models combine both collaborative filtering and
content-based methods, which extract meaningful features from
item attributes and integrate them into the collaborative filtering
framework to discover the correlations with user interactions.

2.2 Federated Recommendation System
Federated Recommendation (FedRec) has recently drawn wide-
spread attention due to the urgency of user privacy protection. Gen-
erally, each user is regarded as a client who trains a recommendation
model with locally reserved private data, and a server coordinates
the collaborative optimization among all clients by aggregating
the model parameters. Various recommendation benchmark ar-
chitectures have been adapted to the federated recommendation
frameworks [3, 9, 10, 18, 20, 23, 35, 37]. However, existing FedRec
models focus on recommending items with historical interactions,
and the cold-start recommendation has rarely been studied. After
thorough investigation, we found that only one FedRec model [28]
is proposed for the item cold-start recommendation, which still
depends on a small number of interactions of the new items. In this
paper, we explore the setting that the system recommends the new
items without any interactions, which is rather challenging and
realistic in practical applications.

3 PRELIMINARY
Federated Cold-Start Recommendation. LetU denote the user
set with 𝑛 = |U| users. I𝑤𝑎𝑟𝑚 represents the warm item set that
has been interacted by users, and I𝑐𝑜𝑙𝑑 is the cold item set whose
items have never been interacted by any users. Given the item
attribute matrixX𝑤𝑎𝑟𝑚 and each user’s interaction recordsY𝑤𝑎𝑟𝑚

𝑢 ,
federated cold-start recommendation aims to a recommendation
model F\ , so that the system can make recommendations for each
user about the cold items based on the item attribute matrix X𝑐𝑜𝑙𝑑 .
Mathematically, the prediction could be formulated as follows,

Y𝑐𝑜𝑙𝑑
𝑢 = F\ (X𝑐𝑜𝑙𝑑 ) (1)

Particularly, F\ consists of three modules, i.e., an item embedding
module P, a user embedding module Q and a rating prediction
module S, and let \ := (𝑝, 𝑞, 𝑠) denote the model parameters.

4 METHODOLOGY
In this section, we begin by introducing the overall framework of
the proposed method. We then delve into the details of the learning
phase workflow and summarize it as an optimization algorithm.

2
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Figure 2: The framework of IFedRec. During the learning phase, the client uploads the item embedding to the server for
global aggregation, and other recommendation modules are preserved locally to capture user personalization. On the server
side, we elaborate a meta attribute network to learn item attribute representation based on raw item attributes. Besides, an
item representation alignment mechanism is developed to align two item representations, i.e., L𝑔𝑙𝑜𝑏𝑎𝑙 and R. During the
inference phase, the server first learns the cold item attribute representation, and then each client can make personalized
recommendations by integrating it with locally preserved recommendation modules.

Furthermore, we demonstrate the application of the inference phase
specifically for recommending cold items. Finally, we present our
IFedRec that enhances privacy protection by incorporating the local
Differential Privacy technique.
4.1 Framework Overview
Introducing raw item attributes is crucial to achieve cold-start rec-
ommendation. However, simply utilizing the raw item attributes
to learn item embeddings may risk commercial property damage
and lead to adversarial attack to the FedRecSys. In this context, we
develop a novel Item-aligned Federated aggregation for cold-start
Recommendation (IFedRec) model, whose overall framework is
illustrated in Figure 2. We elaborate two phases to firstly model the
item information and then utilize the trained model to infer the cold
start items. During the learning phase, each client trains a rec-
ommendation model locally, and the server learns a meta attribute
network globally. We present an item representation alignment
mechanism to align two item representations, so that the system
can learn enhanced item representation and achieve cold-start rec-
ommendation. During the inference phase, the server first learns
the cold item attribute representation, and then each user can make
a prediction using it with the help of locally preserved personalized
recommendation modules.
4.2 Learning on the Warm Items
To achieve a model that can make recommendations on new items,
we first train the model on the warm items based on the user
interaction records and raw item attributes. To be specific, we
alternately perform the following two steps: First, the server trains
the global meta attribute network M𝜙 with the item attributes.

Second, each client 𝑢 updates the local recommendation model
F\𝑢 with the historical interaction records. Meanwhile, an item
representation alignment mechanism is introduced to align item
attribute representation from the server and item embedding from
the client. Next we detail the two steps below.

4.2.1 Global meta attribute network learning. Under the federated
learning optimization framework, the server is responsible for coor-
dinating all clients to train a globally shared model. In our method,
we regard the item embedding module P as the shared component,
which is learned from user interactions. Both user embedding and
rating prediction modules are regarded as private components and
preserved locally. Once the clients have completed the local model
training, they upload the item embeddings to server. Then, the
server aggregates all received item embeddings into a global one,
which depicts the common item characteristics derived from user
preferences. Particularly, we adopt the naive average aggregation
formulation due to its simplicity and no additional computational
overhead, which is as follows,

𝑝 :=
1
𝑛

𝑛∑︁
𝑖=1

𝑝𝑢 (2)

where 𝑝𝑢 denotes the item embedding parameter of client 𝑢 and
𝑛 is the total number of clients. Other weight-based aggregation
methods [16, 19] are also promising for better performance. After
aggregation, the global item embedding would be distributed to
clients so that the common item characteristics can be exchanged
among clients.

Generally, the server holds rich attributes of items, including
both warm items and cold items. The item attribute information

3
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can be used to bridge the connection between items, which paves
the way to cold item recommendation. Specifically, we propose a
meta attribute networkM𝜙 to learn the item representation based
on item attributes and deploy it on the server. Compared with the
on-device deployment, we preserve the raw item attributes on the
service provider, which guarantees the data safety from exposure
and alleviates the potential damage of malicious utilization. Partic-
ularly, We formulate the learning ofM𝜙 as,

𝑟𝑣 :=M𝜙 (𝑥𝑣) (3)

where 𝜙 is the model parameter. The 𝑥𝑣 and 𝑟𝑣 are the attribute and
learned representation of item 𝑣 , respectively.
Item embedding alignment.We regard the global item embed-
ding 𝑝 as the supervision to train the meta attribute networkM𝜙 ,
so that we can construct the connection between the item attributes
and the user interaction records with item embedding as the in-
termediary. Then, for the cold items, which have only attribute
information, our method can calculate the attribute representation
and make recommendations for them. Particularly, considering the
properties of the regression task, we adopt the mean square error
as the loss function and formulate it as,

L(𝑝;𝜙) := 1
𝑚

𝑚∑︁
𝑣=1
(𝑟𝑣 − 𝑝 (𝑣))2 (4)

where𝑚 is the number of warm items. 𝑟𝑣 and 𝑝 (𝑣) are the learned
attribute representation and global item embedding of item 𝑣 .

Based on the loss L in Eq. (4), we update the meta attribute
network parameter 𝜙 via stochastic gradient descent algorithm and
the 𝑡-th update step is,

𝜙𝑡 := 𝜙𝑡−1 − 𝛾𝜕𝜙𝑡−1L(𝑝;𝜙) (5)

where 𝛾 is the parameter update learning rate.

4.2.2 Local recommendation model update. Based on the recom-
mendation model F\ , where \ := (𝑝, 𝑞, 𝑠), we formulate the model
prediction of user 𝑢 about item 𝑣 as,

Ŷ𝑢𝑣 := S(P𝑣,Q𝑢 ) (6)

where P𝑣 and Q𝑢 denote the embedding of item 𝑣 and user 𝑢,
respectively. Particularly, we discuss the typical implicit feedback
recommendation task, i.e.,Y𝑢𝑣 = 1 if there is an interaction between
user 𝑢 and item 𝑣 ; otherwiseY𝑢𝑣 = 0. With the binary-value nature
of implicit feedback, we define the recommendation loss of user 𝑢
as the binary cross-entropy loss,
L𝑢 (Y𝑢𝑣 ;\𝑢 ) := −

∑︁
(𝑢,𝑣) ∈𝐷𝑢

log Ŷ𝑢𝑣 −
∑︁

(𝑢,𝑣′ ) ∈𝐷−𝑢
log(1 − Ŷ𝑢𝑣′ ) (7)

where D−𝑢 is the negative samples set of user 𝑢. It is worth noting
that other loss metrics can also be adopted, and here we take the
binary cross-entropy loss as an example. To construct D−𝑢 con-
veniently, we first count all the uninteracted items of user 𝑢 as,

I−𝑢 := I𝑤𝑎𝑟𝑚\I𝑢 (8)
where I𝑢 is the interacted warm items set of user 𝑢. Then, we
uniformly sample negative items from I−𝑢 by setting the sampling
ratio based on the user’s interacted item amount.
Item attribute representation alignment. For the local recom-
mendation model, it learns a unique item embedding for each item,
which depicts the item characteristic. Meanwhile, the server can
learn the latent representation based on the raw item attribute,

which is effective complementary information that can be further
used to enhance client model training leading to a more compre-
hensive local item embedding.

To this end, we propose to align the local item embeddingmodule
with the global learned item attribute representation. Particularly,
we regard the item attribute representation as a regularization term
to enrich the recommendation model supervision information, and
reformulate the local model training loss as,

L𝑡𝑜𝑡𝑎𝑙 := L𝑢 (Y𝑢𝑣 ;\𝑢 ) + _R(𝑝𝑢 , 𝑟 ) (9)

where 𝑝𝑢 is the item embedding module parameter of user 𝑢 and
𝑟 denotes the item attribute representation learned by raw item
attributes on the server side.

Based on the local training loss L𝑡𝑜𝑡𝑎𝑙 , we can update the rec-
ommendation model parameter \𝑢 via stochastic gradient descent
algorithm. Notably, we adopt the alternative update method to up-
date different modules, i.e., first update the locally preserved user
embedding module Q and rating prediction module S to adapt the
recommendation model with the global item embedding, and then
update the local item embedding P with the tuned Q and S. The
𝑡-th update step is formulated as,

(𝑞𝑡𝑢 , 𝑠𝑡𝑢 ) := (𝑞𝑡−1𝑢 , 𝑠𝑡−1𝑢 ) − [1𝜕(𝑞𝑡−1𝑢 ,𝑠𝑡−1𝑢 )L𝑡𝑜𝑡𝑎𝑙
𝑝𝑡𝑢 := 𝑝𝑡−1𝑢 − [2𝜕𝑝𝑡−1𝑢

L𝑡𝑜𝑡𝑎𝑙
(10)

where [1 and [2 are the parameter update learning rate for modules
Q and S, and module P, respectively.

4.2.3 Overall optimization objective. Under the FL setting, we re-
gard each user as a client 𝑢, who trains a local recommendation
model F\ based on private dataset 𝐷𝑢 . To sum up, we formulate
the proposed IFedRec as the below bi-level optimization problem,

min
{𝑝𝑢 ,𝑞𝑢 ,𝑠𝑢 }𝑛𝑢=1

𝑛∑︁
𝑢=1
L𝑢 (Y𝑢 ;𝑝𝑢 , 𝑞𝑢 , 𝑠𝑢 ) + _R(𝑝𝑢 , 𝑟 )

𝑠 .𝑡 . 𝑟 :=M𝜙 (X𝑤𝑎𝑟𝑚)
(11)

where 𝑛 is the number of clients. The L𝑢 is the supervised loss of
the 𝑢-th client. 𝑝𝑢 , 𝑞𝑢 , and 𝑠𝑢 are item embedding, user embedding,
and rating prediction module parameters, respectively. R(·, ·) is the
regularization term and _ is the regularization coefficient. The 𝑟
is learned by the meta attribute networkM𝜙 with item attributes
X𝑤𝑎𝑟𝑚 as input. Particularly, we aggregate the clients’ item em-
beddings to achieve global item embedding 𝑝 and take it as the
supervision to optimize the meta attribute network on the server.

4.2.4 Algorithm. We summarize the optimization procedure on the
warm items set into Algorithm 1. The optimization objective can
be solved with multiple communication rounds between the server
and clients. Initially, the server initializes the global shared item
embedding module parameter 𝑝 and the meta attribute network
parameter 𝜙 (lines 1-2). In each round, the server first updates the
meta attribute networkM𝜙 with the global item embedding 𝑝 as
supervision, and then compute the item attributes representation
𝑟 with the updatedM𝜙 (lines 4-8). Then, the server samples some
clients to participate in the current round’s training and aggregates
the global item embedding 𝑝 with received updated ones from
clients (lines 9-13). For each client, it first initializes the recommen-
dation model F\ with the distributed global item embedding and
the latest user embedding and rating prediction parameter (lines

4
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Algorithm 1 Item-Guided Federated Aggregation for Cold-Start
Recommendation - Learning on the Warm Items
ServerExecute:
1: Initialize item embedding module parameter
2: Initialize meta attribute network parameter
3: for each round 𝑡 = 1, 2, ... do
4: for 𝑒 from 1 to 𝐸1 do
5: Compute L(𝑝𝑡 ;𝜙) with Eq. (4)
6: Update 𝜙𝑡 with Eq. (5)
7: end for
8: Compute warm items representation 𝑟𝑡𝑤𝑎𝑟𝑚 with Eq. (3)
9: 𝑆𝑡 ← (select a client subset randomly from all 𝑛 clients

with sampling ratio 𝛼)
10: for each client 𝑢 ∈ 𝑆𝑡 in parallel do
11: 𝑝𝑡+1𝑢 ← ClientUpdate(𝑡,𝑢, 𝑝𝑡 , 𝑟𝑡𝑤𝑎𝑟𝑚)
12: end for
13: Aggregate global item embedding 𝑝𝑡+1 with Eq. (2)
14: end for
ClientUpdate(𝒕, 𝒖, 𝒑, 𝒓 ):
1: Initialize 𝑝𝑢 with 𝑝

2: if 𝑡 = 1 then
3: Initialize user embedding module parameter 𝑞𝑢
4: Initialize rating prediction module parameter 𝑠𝑢
5: else
6: Initialize 𝑞𝑢 and 𝑠𝑢 with the latest updates
7: Count all uninteracted items set I−𝑢 with Eq. (8)
8: Sample negative feedback 𝐷−𝑢 from I−

𝑖
9: B ← (split 𝐷𝑢 ∪ 𝐷−𝑢 into batches of size 𝐵)
10: for 𝑒 from 1 to 𝐸2 do
11: for batch 𝑏 ∈ B do
12: Compute 𝐿𝑡𝑜𝑡𝑎𝑙 with Eq. (9)
13: Update (𝑝𝑢 , 𝑞𝑢 , 𝑠𝑢 ) with Eq. (10)
14: end for
15: end for
16: Return 𝑝𝑢 to server

1-6). Then, the client prepares the local training dataset by sampling
negative items and divides it into batches (lines 7-9). Finally, the
client updates the recommendation model and uploads the latest
item embedding to the server (lines 10-16).

4.3 Inference on the Cold Items
During the learning phase, the system is optimized with the warm
items and the learned model can be used for inferring cold item
recommendations. When new items I𝑐𝑜𝑙𝑑 come, the server first cal-
culates the item representation 𝑟𝑐𝑜𝑙𝑑 via the meta attribute network.
Then, the clients can combine 𝑟𝑐𝑜𝑙𝑑 with the locally preserved user
embedding Q and rating prediction module S to make personalized
recommendations. We summarize the procedure in Algorithm 2.

4.4 Privacy-Protection Enhanced IFedRec with
Local Differential Privacy

To further enhance the privacy-protection, we can integrate privacy-
preserving techniques into FL optimization framework, such as
Differential Privacy [8] and Homomorphic Encryption [2], and the

Algorithm 2 Item-Guided Federated Aggregation for Cold-Start
Recommendation - Inference on the Cold Items
1: Compute cold items representation 𝑟𝑐𝑜𝑙𝑑 with Eq. (3)
2: for each client in parallel do
3: Construct recommendation model with the latest Q and S
4: Assign P with 𝑟𝑐𝑜𝑙𝑑
5: Make cold items recommendation with Eq. (2)
6: end for

key idea is to prevent the server from inferring the client private
information through the received model parameters. In our method,
each client uploads the item embedding module to the server for
exchanging common information, which may be maliciously used
to infer sensitive user information. To handle the issue, we present a
privacy-protection enhanced IFedRec by equipping it with the local
Differential Privacy technique. Particularly, each client 𝑢 adds a
zero-mean Laplacian noise to the item embedding before uploaded
to the server, which can be formulated as,

𝑝𝑢 = 𝑝𝑢 + 𝐿𝑎𝑝𝑙𝑎𝑐𝑒 (0, 𝛿) (12)

where 𝛿 is the noise strength. As a result, the server receives an
encrypted item embedding from clients, which reduces the risk of
user privacy exposure.

5 EXPERIMENT
In this section, we conduct experiments to evaluate our method
and explore the following research questions:
Q1: How does IFedRec perform comparedwith the federatedmodels
and the state-of-the-art centralized models?
Q2: Why does IFedRec work well on cold-item recommendation?
Q3: How do the key hyper-parameters impact the performance?
Q4: How well does IFedRec converge w.r.t. the client’s amount?
Q5: How does IFedRec perform under noise injection?

5.1 Datasets
We evaluate the proposed IFedRec on two cold-start recommenda-
tion benchmark datasets, i.e., CiteULike [29] and XING [1], which
have rich item attribute information. Particularly, we extract three
dataset subsets from the original XING dataset according to user
amount and mark them as XING-5000, XING-10000 and XING-
20000, respectively. For a fair comparison, we follow the warm
items and cold items division of [39]. For CiteULike, we select 80%
items as the warm items, which serve as the training set to learn
the model, and keep the other items as cold items. Then, we sample
30% items from the cold items as the validation set and take the
remaining cold items as the test set. For three XING datasets, we
divide the training set (warm items), validation set and test set (cold
items) according to the ratio of 6:1:3. The dataset statistics and more
descriptions about the datasets can be found in Appendix A.

5.2 Experimental Setup
Evaluation metrics. We adopt three ranking metrics to evalu-
ate model performance, i.e., Precision@k, Recall@k and NDCG@k,
which are common used evaluation metrics [7, 13, 39]. Particularly,
we report results of 𝑘 = {20, 50, 100} in this paper.
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Methods Metrics CiteULike XING-5000 XING-10000 XING-20000
@20 @50 @100 @20 @50 @100 @20 @50 @100 @20 @50 @100

FedRec

FedMVMF
Recall 6.18 14.34 24.97 1.96 2.70 3.81 0.96 2.61 4.50 0.77 2.42 4.59

Precision 1.57 1.48 1.30 0.77 0.46 0.36 0.52 0.55 0.48 0.51 0.66 0.62
NDCG 5.55 10.04 14.42 2.60 1.78 1.98 1.02 1.85 2.43 0.65 1.50 2.39

CS_FedNCF
Recall 1.49 3.83 7.21 0.22 2.37 3.15 0.44 0.77 1.51 0.16 1.21 1.72

Precision 0.37 0.39 0.36 0.14 0.41 0.29 0.24 0.17 0.17 0.10 0.33 0.23
NDCG 1.76 3.16 4.38 0.26 0.96 1.20 0.37 0.42 0.67 0.16 0.67 0.93

CS_PFedRec
Recall 1.37 2.66 4.67 0.13 0.54 1.54 0.29 2.10 2.42 0.16 1.21 1.72

Precision 0.33 0.25 0.24 0.09 0.13 0.18 0.19 0.44 0.26 0.19 0.33 0.23
NDCG 1.40 1.92 2.54 0.15 0.34 0.93 0.35 1.02 0.99 0.16 0.67 0.93

FedVBPR
Recall 18.73 29.88 39.55 2.03 3.02 3.63 0.42 0.82 1.26 0.40 1.35 1.86

Precision 3.75 2.46 1.66 0.78 0.56 0.36 0.24 0.19 0.14 0.27 0.36 0.24
NDCG 13.24 16.07 17.91 0.95 1.37 1.41 0.35 0.48 0.57 0.32 0.74 0.98

FedDCN
Recall 1.42 3.57 6.59 0.32 0.65 1.14 0.43 0.83 1.52 0.24 0.80 1.43

Precision 0.35 0.38 0.35 0.17 0.15 0.13 0.22 0.19 0.17 0.14 0.18 0.16
NDCG 1.10 2.44 3.60 0.27 0.46 0.66 0.51 0.46 0.66 0.21 0.46 0.64

Ours

IFedNCF
Recall 42.32 59.92 72.89 23.48 42.05 55.45 26.97 41.57 55.37 26.36 41.44 54.48

Precision 9.70 5.80 3.65 13.66 9.55 6.37 14.38 9.02 6.06 16.25 10.23 6.75
NDCG 34.29 37.61 38.74 20.93 27.41 29.46 21.65 24.66 27.02 21.99 25.30 27.22

IPFedRec
Recall 41.51 59.63 72.71 21.77 37.30 53.18 25.92 40.33 54.64 24.67 40.07 53.58

Precision 9.48 5.81 3.67 12.75 8.76 6.12 13.84 8.77 5.97 15.29 9.92 6.66
NDCG 33.48 37.69 39.07 19.74 24.77 28.34 20.66 23.90 26.52 20.53 24.49 26.91

Table 1: Experimental results of the federated baselines and our method on four datasets. “FedRec” denotes the federated
baselines and “Ours” represents that we integrate two state-of-the-art federated models into our framework. Particularly, we
report the results in units of 1e-2 and the best results are bold.

Baselines. We consider two branches of baselines: federated cold-
start recommendation methods and centralized cold-start recom-
mendation methods. For federated methods, we compare with the
federatedmulti-viewmatrix factorization framework FedMVMF [10],
and we adapt two state-of-the-art FedRec models [22, 35] into
the cold-start setting (CS_FedNCF and CS_PFedRec). Besides, we
choose two representative content enhanced centralized recom-
mendation model, i.e., VBPR [12] and DCN [31], and construct
the federated version (FedVBPR and FedDCN) for a more com-
prehensive comparison. For centralized methods, we survey the
recent cold-start recommendation papers and take two latest mod-
els (Heater [39] and GAR [7]) as our baselines. Besides, we also
adapt two representative recommendation architectures [13, 14]
into the cold-start setting (CS_NCF and CS_MF). More details about
baselines can be found in Appendix B.
Implementation details.We implement the proposedmethodwith
Pytorch framework [21]. Specifically, we integrate two state-of-the-
art federated recommendation methods into our framework, named
IFedNCF and IPFedRec, respectively. Detailed implementation and
parameter configurations are summarized in Appendix C.

5.3 Comparison Analysis with Baselines (Q1)
We compare the model performance with federated baselines and
centralized baselines, and then analyze the experimental results.
Compared with federated cold-start baselines. As shown in
Table 1, we have two observations:

First, our method consistently performs much better than
all federated baselines. Particularly, FedMVMF, CS_FedNCF, Fed-
VBPR and FedDCN achieve better performance than CS_PFedRec.
Recall the optimization procedure of these methods, it utilizes both
the user-item interaction information and the item attribute in-
formation during model’s training phase, indicating that the item

attribute is essential for cold items recommendation. In contrast,
CS_PFedRec only takes item attribute as the similarity measure
to obtain cold item embedding, performs poorly in cold items rec-
ommendation. In our method, the proposed item representation
alignment mechanism bridges the connection between attribute
representation learned from raw attributes and the item embedding
learned from interaction records during optimization. As a result,
it facilitates the meta attribute network learning latent item repre-
sentation that depicts user preferences, and the informative item
representation is beneficial for cold item recommendation.

Second, integrating existing FedRec architectures into our
proposed IFedRec framework (IFedNCF and IPFedRec) achieves
outstanding performance improvement in all settings. Our
method is a general cold-start FedRec framework, which can be eas-
ily instantiated with existing FedRec architectures. Compared with
the vanilla FedNCF and PFedRec, our IFedNCF and IPFedRec de-
ploy the meta attribute network on the server side and add an extra
item embedding regularization term on the local model’s training,
which does not change the recommendation model architecture
and introduce no extra computational overhead for clients.
Compared with centralized cold-start baselines. In addition to
the federated baselines, we also conduct experiments to compare
our model’s performance against centralized baselines. From the
Table 2, we can see that our IFedRec achieves better perfor-
mance than the centralized baselines on all datasets. Taking
Heater as an example, the performance gain (@20) of our method
on the CiteULike dataset are 13.86%, 8.74% and 9.34% on three eval-
uation metrics, respectively. A similar performance gain trend is
also shown in other three datasets. We analyze the reason from two
aspects: First, for centralized models, all users share the same mod-
ule parameters in the system. In comparison, our method preserves
user embedding and rating prediction modules as personalized
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Methods Metrics CiteULike XING-5000 XING-10000 XING-20000
@20 @50 @100 @20 @50 @100 @20 @50 @100 @20 @50 @100

CenRec

Heater
Recall 37.17 55.13 68.52 14.51 16.09 18.16 16.60 19.48 22.48 16.94 19.74 22.55

Precision 8.92 5.50 3.52 5.70 2.69 1.60 8.73 4.19 2.44 8.86 4.21 2.43
NDCG 31.36 35.95 37.68 8.97 7.78 7.48 14.00 12.06 11.13 13.18 11.32 10.66

GAR
Recall 5.45 8.81 13.07 1.44 3.22 5.49 0.74 3.38 6.16 0.85 2.87 6.11

Precision 1.42 0.91 0.66 0.69 0.55 0.46 0.37 0.67 0.62 0.45 0.51 0.39
NDCG 3.43 4.42 5.48 0.89 1.57 2.32 0.80 1.86 2.87 0.85 2.02 2.97

CS_NCF
Recall 29.41 46.43 61.85 18.42 32.03 45.19 21.80 35.26 47.54 19.65 33.00 45.98

Precision 7.06 4.70 3.18 10.76 7.49 5.28 11.72 7.68 5.22 12.09 8.09 5.65
NDCG 24.93 30.52 33.71 16.38 20.85 23.88 17.58 20.98 23.32 15.91 19.76 22.72

CS_MF
Recall 1.01 2.30 4.32 0.48 1.04 1.99 0.36 0.89 1.78 0.41 0.93 1.73

Precision 0.25 0.24 0.23 0.24 0.22 0.22 0.20 0.32 0.40 0.26 0.24 0.22
NDCG 0.87 1.62 2.59 0.36 0.59 0.97 0.30 0.54 0.88 0.35 0.58 0.87

Ours

IFedNCF
Recall 42.32 59.92 72.89 23.48 42.05 55.45 26.97 41.57 55.37 26.36 41.44 54.48

Precision 9.70 5.80 3.65 13.66 9.55 6.37 14.38 9.02 6.06 16.25 10.23 6.75
NDCG 34.29 37.61 38.74 20.93 27.41 29.46 21.65 24.66 27.02 21.99 25.30 27.22

IPFedRec
Recall 41.51 59.63 72.71 21.77 37.30 53.18 25.92 40.33 54.64 24.67 40.07 53.58

Precision 9.48 5.81 3.67 12.75 8.76 6.12 13.84 8.77 5.97 15.29 9.92 6.66
NDCG 33.48 37.69 39.07 19.74 24.77 28.34 20.66 23.90 26.52 20.53 24.49 26.91

Table 2: Experimental results of the centralized baselines and our method on four datasets. “CenRec" denotes the centralized
baseline sand “Ours” represents that we integrate two state-of-the-art federated models into our framework. Particularly, we
report the results in units of 1e-2 and the best results are bold.

Methods CiteULike XING-5000 XING-10000 XING-20000
Recall Precision NDCG Recall Precision NDCG Recall Precision NDCG Recall Precision NDCG

IFedNCF 42.32 9.70 34.29 23.48 13.66 20.93 26.97 14.38 21.65 26.36 16.25 21.99
w/ LAN 38.73 9.01 31.60 1.59 0.67 0.85 0.86 0.47 0.79 1.54 0.91 1.35
w/o ISAM 0.85 0.22 0.79 0.55 0.17 0.25 0.32 0.19 0.27 0.25 0.15 0.20
IPFedRec 41.51 9.48 33.48 21.77 12.75 19.74 25.92 13.84 20.66 24.67 15.29 20.53
w/ LAN 38.73 8.93 31.27 2.00 0.77 0.95 0.58 0.36 0.53 0.18 0.10 0.12
w/o ISAM 1.05 0.26 1.03 0.27 0.15 0.21 0.42 0.24 0.38 0.46 0.27 0.39

Table 3: Ablation study for IFedRec on four datasets. “w/ LAN” denotes that we deploy the local attribute network on the client.
“w/o IRAM" means to remove the item representation alignment mechanism from our method. We show the results in the
units of 1e-2 on @20 metrics.

components, which is helpful in capturing user preferences and
promoting personalized recommendations. Second, compared with
centralizedmodels, there aremore parameters in ourmethod, which
enables the system to possess a stronger representation capacity,
allowing it to better capture complex patterns and features present
in the data and achieve better performance.

5.4 Ablation Studies (Q2)
We design model variants to explore the effectiveness of the key
modules in our method. For a thorough analysis, we conduct ex-
periments based on IFedNCF and IPFedRec on four datasets and
report the results of @20 on three metrics.
Integrate the attribute network into the local recommendation
model. To give a more thorough understanding for the cold-start
federated recommendation model construction, we build a model
variant by deploying the attribute network on each client, named
“w/ LAN”. Particularly, the local recommendation model replace the
item embedding module with the attribute network which takes
the item attributes as input. As shown in Table 3, we can see that
our method achieves superior performance than the model variant.
Compared with it, our IFedRec learns two item representations
which enhance the system’s ability to identify different items. By
effectively learning the item representations, the system can better

understand the inherent item characteristics, such as item simi-
larities and item-item relationships, which in turn lead to more
accurate recommendations that align with users’ preferences. In ad-
dition, our IFedRec maintains the raw item attributes on the server
to avert the potential damage from malicious exploitation.
Remove the item representation alignment mechanism from
IFedRec. To verify the efficacy of our proposed item representa-
tion alignment mechanism for the cold-start recommendation, we
construct a variant “w/o IRAM” by removing it from our method.
Hence, the learning process of the model is modified as: First, the
system optimizes a federated recommendation model whose on-
device model is trained with only the recommendation loss. Second,
the attribute network on the server is initialized with random pa-
rameters and never updated. As in Table 3, removing the item
representation alignment mechanism from our method degrades
the performance significantly. In our method, by aligning two item
representations, the client achieves a more comprehensive item em-
bedding enhanced with attribute representation, which promotes
local recommendation model training. Besides, the meta attribute
network trained with the item embedding can absorb the user pref-
erences towards items, facilitating the cold item recommendation.
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Figure 3: Impact of the regularization coefficient. The hor-
izontal axis is the value of the regularization coefficient _,
and the vertical axis is the Recall metric.
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Figure 4: Impact of themeta attribute network training epoch.
The horizontal axis is the value of meta attribute network
training epoch 𝐸1, and the vertical axis is the Recall@20.
5.5 Impact of Hyper-parameters (Q3)
In this section, we study the impact of two key hyper-parameters
of IFedRec: the coefficient _ of item attribute representation reg-
ularization on the client and the training epochs 𝐸1 of the meta
attribute network on the server. Particularly, we take the CiteULike
dataset as an example and conduct experiments based on IFedNCF
and IPFedRec. Due to limited space, we summarize the results in the
main text and detailed configurations can be found in Appendix D.
Regularization coefficient _. As shown in Figure 3, we can see
that: The performance change trends of IFedNCF and IPFedRec are
similar, i.e., as the coefficient increases, the performance first gets
better and then decreases. When the regularization coefficient is
large, the local recommendation model is injected with too much
globally learned item attribute representation information, which
interferes with the local model’s learning from user preference.
As a result, the local item embedding is biased and cannot well
characterize user personalization, which leads to a decrease in
model performance. The optimal regularization coefficient values
for IFedNCF and IPFedRec appear in 1.0 and 10.0, respectively.
Meta attribute network training epoch 𝑬1. As shown in Figure 4,
we find that the performance of IFedNCF is slightly improved as the
server training epochs increase. For the IPFedRec, the model gets
the best performance when 𝐸1 = 1. Hence, one-step optimization
is enough to achieve satisfactory performance, which is efficient
without much computational overhead.

5.6 Convergence with Clients Amount (Q4)
In this section, we investigate the convergence of our proposed
IFedRec. Due to limited space, here we summarize the results and
conclusions briefly and more details can be found in Appendix E.
As shown in Figure 5, our method can achieve outstanding per-
formance at a small sampling ratio, e.g., IPFedRec gets 0.4035 on
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Figure 5: Convergence analysis about the client amount par-
ticipated in each communication round. The horizontal axis
is the client sampling ratio, and the left vertical axis is the
number of communication rounds, the right vertical axis is
model performance on three metrics.

Methods Metrics Noise strength 𝛿

0 0.1 0.2 0.3 0.4 0.5

IFedNCF
Recall 42.32 41.81 41.87 41.23 41.09 40.84
Precision 9.70 9.66 9.59 9.32 9.08 8.79
NDCG 34.29 33.83 33.62 33.15 33.16 32.86

IPFedRec
Recall 41.51 41.10 40.48 40.11 40.57 39.52
Precision 9.48 9.49 9.31 9.49 9.45 9.03
NDCG 33.48 33.50 33.30 32.68 32.13 31.49

Table 4: Results of privacy-protection IFedRec with various
Laplacian noise strength 𝝀.

Recall@20, which also outperforms other baselines. On the other
hand, more clients participating in a communication round would
accelerate model convergence. In summary, IFedRec supports the
FedRec system to optimize with insufficient client participation,
which is common in physical scenarios.

5.7 Privacy-Protection Enhanced IFedRec (Q5)
In this section, we investigate the performance of our IFedRec
enhanced with the local Differential Privacy technique. Particularly,
we set the Laplacian noise strength from 0.1 to 0.5 with an interval
of 0.1 and also conduct the experiment on the CiteULike dataset.
We give the experimental results of IFedNCF and IPFedRec of @20
on three metrics. As shown in Table 4, model performance degrades
as the noise strength 𝛿 increases, while the performance drop is
slight if 𝛿 is not too large. Hence, a moderate noise strength, e.g., 0.2
is desirable to achieve a good trade-off between model performance
and privacy protection ability.

6 CONCLUSION
In this paper, we introduce IFedRec, the first effort that addresses
the new items recommendation scenario in the federated setting.
Our two-phase learning framework enables the learning of two
item representations to protect private user interaction data while
preserving item attributes on the server. The proposed item repre-
sentation alignment mechanismmaintains the correlations between
item attributes and user preferences. Then, the cold item could be in-
ferred by the item representations learned by the server. Extensive
experiments and in-depth analysis demonstrate the remarkable per-
formance improvement of our model compared to state-of-the-art
baselines, particularly in learning cold items. As a general cold-
start recommendation framework, IFedRec can be easily combined
with existing techniques to explore additional scenarios, such as
recommendation diversity and fair recommendation.
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A DATESETS
We introduce the datasets below and the detailed statistics are
summarized in Table 5.

CiteULike is collected from an article recommendation service
platform, where the registered users create personal citation li-
braries recording interested articles. There are 5, 551 users, 16, 980
articles and 204, 986 user-article interactions in the dataset. Each
article has a title and abstract, which can be utilized as the auxiliary
item information. Following the preprocess procedure of [26, 39],
we first calculate the tf-idf to generate an 8, 000 dimension attribute
vector for each item, and then utilize SVD to reduce the dimensions
to 300. Hence, we obtain a 16, 980 × 300 item attribute matrix X.

XING is collected from the ACM RecSys 2017 Challenge, which
has 106, 881 users, 20, 519 items and 4, 306, 183 user-item interac-
tions. Each item has a 2, 738-dimensional attribute. Particularly, we
conduct three subsets by sampling different user population sizes,
i.e., 5, 000, 10, 000 and 20, 000. The items amount of three subset are
18, 769, 20, 256 and 20, 510, and the total interactions are 191, 603,
383, 156 and 768, 471, respectively.

B BASELINES
We introduce the details about baselines as follows:

• Heater [39]: This method first pretrains a collaborative filter-
ing model with user-item rating information to obtain user em-
bedding and item embedding. Then, it trains a recommenda-
tion model based on user/item attributes by regularizing the
distance between pretrained user/item embedding and learned
latent user/item representation.

• GAR [7]: This method presents a generative adversarial recom-
mendation model architecture. A generator takes item attributes
as input and learns the latent item representation, and a recom-
mender takes the pretrained embeddings as input and predicts
rating. The model is optimized by an adversarial loss between
the generator and recommender.

• CS_NCF: We replace the item embedding module of NCF [13]
with a one-layer MLP to learn latent item representation with
item attributes and keep other details unchanged. When new
items come, each user makes recommendations with their raw
attributes based on the trained model.

• CS_MF: We first train MF [14] with the warm items. For the cold
item, we find the top-k similar warm items by calculating the
item-item attribute similarity, and then take the averaged trained
top-k warm item embeddings as the cold item representation to
make a prediction based on the trained user embeddings.

• FedMVMF [10]: This is a matrix factorization method based on
multiple data sources, i.e., user-item interaction information and
item attribute information. Particularly, each user maintains the
user embedding locally and other model parameters are updated
on the server.

• CS_FedNCF: We adapt the FedNCF [22] into cold-start setting by
replacing the item embedding module with a one-layer MLP and
keep other details unchanged. The cold item recommendation
method is the same as used in CS_NCF.

• CS_PFedRec: We first train PFedRec [35] with the warm items.
For the cold items, we adopt the same prediction method as in
CS_MF.

• FedVBPR: VBPR model [12] is a content enhanced recommen-
dation model, which integrates the visual item features into the
model to heighten the collaborative filtering framework. We
adapt it into the federated learning framework and obtain Fed-
VBPR.
• FedDCN: DCN is a deep and cross network architecture, which

can capture the complex interactions across multiple item fea-
tures. We adapt it into the federated learning framework and
obtain FedDCN.

C IMPLEMENTATION DETAILS
For a fair comparison, we set the latent representation dimension as
200 and the mini-batch size as 256 for all methods. For the learning
rate hyper-parameter, we tune it via grid search on the validation
set. Besides, we resample negative items in each epoch/round and
set the sampling ratio as 5 for all methods. For our method, we
instantiate IFedRec with two representative FedRec architectures,
i.e., FedNCF and PFedRec, and obtain IFedNCF and IPFedRec, re-
spectively. For IFedNCF, we take a two-layer MLP as the rating
prediction module. For IPFedRec, we set a one-layer MLP as the
rating prediction module following the original paper. On the server
side, we deploy a one-layer MLP as the meta attribute network,
whose input dimension is the same as the item attribute size and the
out dimension is 200. Notably, two centralized baselines Heater and
GAR require the pretrained collaborative filtering representations
as model input. Hence, we train a matrix factorization model with a
latent factor of 200. We report the average results of five repetitions
for all experiments.

D HYPER-PARAMETER ANALYSIS DETAILS
D.1 Regularization term coefficient _
During the training phase, we add the item attribute semantic rep-
resentation as the regularization term of the local recommendation
model by minimizing the distance between it and the local item
embedding. According to the validation set performance, we set
the regularization term coefficient values on IFedNCF with {0.1, 0.2,
0.4, 0.6, 0.8, 1.0, 5.0, 10.0}, and on IPFedRec with {0.1, 0.5, 1.0, 5.0,
10.0, 15.0, 20.0, 30.0}. For conciseness, we only report the results on
metric Recall because the patterns on the other two metrics show
similar results as Recall.

D.2 Meta attribute network training epoch 𝐸1
On the server side, we deploy a meta attribute network, which takes
raw item attributes as input and learns the item latent representa-
tion with the global item embedding as supervision. Particularly,
we set the Meta attribute network training epochs from 1 to 10 with
an interval of 1. For brevity, we report the results on Recall@20.

E CONVERGENCEWITH CLIENTS AMOUNT
DETAILS

We take the CiteULike dataset as an example to conduct experi-
ments. In federated optimization, there is a trade-off between model
convergence efficiency and the client’s amount of participation in
each communication round. Generally, the larger the number of
clients sampled in a training round, the faster the federated model
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Training Validation Test
#users #items #interactions sparsity #users #items #interactions #users #items #interactions

CiteULike 5,551 13,584 164,210 0.22% 5,551 1,018 13,037 5,551 2,378 27,739
XING-5000 5,000 11,261 117,608 0.21% 5,000 1,878 56,465 5,000 5,630 17,530
XING-10000 10,000 12,153 230,765 0.19% 10,000 2,027 110,731 10,000 6,076 41,660
XING-20000 20,000 12,306 444,199 0.18% 20,000 2,051 251,735 20,000 6,153 72,537

Table 5: Statistics of four cold-start recommendation datasets. The items are divided into three subsets, where items in the
training set are warm items and others are cold items.

converges. In practical scenarios, due to communication overhead
and client computation power limitations, the server usually can
only collect a limited number of clients each time to train the model.
Especially in the recommendation scenario, the number of clients
is large, and it is more difficult to collect enough clients for model

training, which poses a challenge for the FedRec system to train the
model with limited clients. To this end, we conduct experiments to
simulate the setting. Particularly, we constrain the client sampling
ratio in each communication round from 0.1 to 0.5 with an interval
of 0.1.
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