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Abstract

The study of topological properties in data and their application to machine learning
is a growing research area. While most methods operate in Euclidean space,
alternative topologies (e.g., hyperbolic embeddings for recommender systems)
often yield superior performance. However, real-world data sets lack a known
intrinsic topology, which requires manual specification. We propose a novel method
for inferring the underlying topological structure through joint optimization of a
learnable distance matrix and embedding. Our approach combines the learning
of neural networks with a differentiable Isomap implementation, enabling end-
to-end optimization of both the metric and mapping. Experiments on synthetic
non-Euclidean datasets demonstrate accurate topology recovery, suggesting broader
applicability to real-world problems with unknown geometric structure, a claim we
preliminarily validate on the MNIST dataset.

1 Introduction

The performance of machine learning models is profoundly influenced by the underlying geometry of
their input data. Traditional linear dimensionality reduction techniques, such as Principal Component
Analysis (PCA) and classical Multidimensional Scaling (MDS), are well-established for finding
low-dimensional projections [1]. However, these methods fundamentally assume that the data lie in a
linear subspace, an assumption that proves inadequate for many real-world datasets with a nonlinear
structure.

This limitation spurred the development of non-linear manifold learning. Pioneering work, such
as Isomap [2], extended MDS by preserving estimated geodesic distances rather than Euclidean
distances, with the aim of uncovering the intrinsic geometry of the data. More recently, research
has recognized that many datasets inherently exhibit non-Euclidean geometry, leading to techniques
that explicitly model data as lying on Riemannian manifolds with specific curvature [3]. In addition,
there are tools for working with persistent homologies in data with fewer assumptions [4] mainly for
feature engineering. In practice, hyperbolic geometry has proven powerful in representing hierarchical
structures [5, 6], while spherical geometries effectively model directional data [7, 8], with applications
ranging from NLP to computer vision and recommender systems [9, 10].

Despite these advances, a significant limitation persists across both classical and modern approaches:
they typically presuppose a specific geometry (e.g., Euclidean, hyperbolic, spherical) or rely on
a strong prior. Critically, algorithms such as Isomap and UMAP rely on the assumption that
local Euclidean distances accurately reflect the true intrinsic metric. While this may hold in local
neighborhoods, the accumulation of these assumptions during the construction of a global embedding
(e.g., through non-differentiable shortest-path algorithms) can yield an incorrect global geometry.
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Non-Euclidean geometry presents a core challenge: How can we learn geometry without being
constrained by such initial assumptions, especially for data with complex or composite structures?

Traditionally, the problem of defining a "good" geometry is approached in an unsupervised manner,
based on statistical properties such as geodesic preservation. In this paper, we argue for a fundamen-
tally different, task-driven answer: a good geometry is one that directly maximizes the performance
of a downstream machine learning model. This simple yet powerful definition shifts the objective
from unsupervised reconstruction to supervised performance. However, it introduces a complex
optimization problem involving non-differentiable operations, such as graph construction and spectral
embedding.

To solve this, we introduce a novel, fully differentiable pipeline for task-oriented geometry learning.
Our key innovation is a method that enables gradients from a downstream task loss to propagate
through a differentiable manifold learning algorithm, thereby optimizing the underlying distance
matrix directly. Our contributions are:

• A framework for end-to-end differentiable topology learning that addresses the challenge of
gradient-based optimization through discrete operations, notably shortest-path calculation.

• A pipeline that integrates intrinsic dimensionality estimation with a differentiable Isomap al-
gorithm for direct distance matrix optimization via gradient flow, enabling joint optimization
of a neural network and the manifold mapping.

• An out-of-sample extension framework, ensuring practical applicability to real-world ML
tasks.

Code and data to reproduce all experiments are available in the GitHub repository: https://
github.com/ITMO-NSS-team/NEGEL2025_manifolds

2 Proposed approach

Problem statement. We consider a dataset residing in an arbitrary space X ⊂ RD. We assume the
data are not uniformly distributed but instead lie on an underlying manifold of intrinsic dimensionality
d < D. Our goal is to learn an immersion map ϕ : RD → R to use local coordinates, so the learning
process has the following form:

ϕ∗ = min
fk∈H,ϕ∈Φ

L(fk(ϕk(x)), y) (1)

We make several assumptions in the hypothesis space form. The first is that the model space H
and the immersion map space Φ are parametrized. The model space is simply a neural network
architecture, and the immersion in our case is isometric immersion, which is thus parameterized
by the distance matrix. The loss function L and the target space Y, y ∈ Y are determined by the
machine learning problem; we just assume that they are correct.

To talk about the "true" geometry, we also assume that the probe could not be solved using the
hypothesis space H̄ in global coordinates in space X , where a bar means that only the input layer
size is adjusted from d to D. That is, we assume that for some constant M , the following holds:

f∗ = min
fk∈H̄

L(x, y) > M ̸= 0 (2)

To illustrate the core principle, we consider a simple linear model applied to a circle classification
problem as shown in Fig. 1.

All subfigures in Fig. 1 show a 2D Isomap projection. Left projection using the standard Euclidean
distance in the original R2 space, which merely rescales the input features. Middle and right
projections obtained while optimizing the distance matrix. The projection on the right closely recovers
the ideal polar coordinate representation, which linearizes the problem. The model architecture and
the Isomap algorithm remain unchanged — the only difference is the distance matrix. Our algorithm
optimizes this matrix to enhance performance on the downstream task (in this case, minimizing
binary cross-entropy).
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Figure 1: Impact of the distance matrix on feature generation via Isomap for the circles dataset.

Differentiable Isomap. We propose a method for intrinsic topology discovery based on the joint
optimization of a distance matrix that represents data global geometry for immersion, and a compact
neural network for the downstream task whose degrees of freedom align with the intrinsic dimension-
ality of the underlying topology. The core of our approach is a fully differentiable Isomap pipeline
that enables the end-to-end gradient-based optimization of the topological representation of the data.

Traditional Isomap consists of three steps: (1) neighborhood graph construction, (2) geodesic distance
computation via shortest-path algorithms, and (3) low-dimensional embedding via Multidimensional
Scaling (MDS). The non-differentiability of the graph construction and shortest-path calculations
presents a fundamental barrier to learning the distance metric from data. We introduce a differentiable
variant of Isomap that overcomes this by making each component amenable to gradient-based
optimization.

Our method integrates these components into an end-to-end differentiable pipeline:

1. Parameterize the distance matrix D(θ) with learnable parameters θ;

2. Construct a k-nearest neighbor graph from D(θ);

3. Compute differentiable shortest paths to obtain geodesic distances D(θ);
4. Apply differentiable MDS to obtain low-dimensional embeddings X(θ);

5. Optimize parameters θ to minimize a task-specific loss function L(X(θ)).

The gradient flow of our pipeline is illustrated in Fig. 2. The forward pass (solid arrows) transforms
learnable parameters θ into a low-dimensional embedding X(θ) through a sequence of differentiable
operations. The backward pass (dashed red arrows) propagates gradients of a task-specific loss L
back through the pipeline to update the parameters θ, enabling the joint learning of the distance
metric and the intrinsic data geometry.

Figure 2: End-to-end differentiable pipeline for joint metric learning and intrinsic topology search.

The overall optimization objective is formalized as:

θ∗ = argmin
θ
L(X(D(D(θ)))) , (3)

where the loss function L can be designed for various applications such as reconstruction error,
classification accuracy, or topological preservation.
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2.1 Intrinsic topology dimensionality estimation

A critical prerequisite for our differentiable Isomap approach is an estimate of the intrinsic dimension-
ality d of the underlying data manifold. To address this, we employ a robust multiscale local principal
component analysis (PCA) method to automatically estimate d prior to the topology search phase.

The core principle is that within a sufficiently small neighborhood on a smooth manifold, the data
lies approximately on a d-dimensional linear tangent space. Our algorithm, detailed in Algorithm 1,
operates as follows:

1. For a set of landmark points {xi}Ni=1 sampled from the dataset, a local neighborhoodN (xi)
of k nearest neighbors is identified.

2. PCA is performed on each centered neighborhood X̃local = Xlocal − X̄local.

3. The local intrinsic dimensionality at xi is determined by analyzing the spectrum of eigenval-
ues λ1 ≥ λ2 ≥ . . . ≥ λn from the covariance matrix of X̃local.

We introduce a curvature-aware criterion to distinguish significant dimensions from noise. Rather
than using a fixed variance explained threshold, which can be sensitive to the choice of neighborhood
size, we detect the point at which the eigenvalue spectrum exhibits a significant drop, indicating the
transition from signal to noise. The local dimension di is estimated as:

di = max {k ∈ [1, n] |λk > τ · λk−1} , (4)

where τ is a curvature threshold parameter (typically set to 0.2), this method is particularly effective
for manifolds with non-uniform curvature, as it adapts to local geometric properties.

The global intrinsic dimensionality d for the topology search is then set to the mode of distribution of
local estimates {di}: d = mode

d′

(
{di}Ni=1

)
This estimate d, is later used to configure the target dimensionality of the differentiable MDS step in
our Isomap pipeline, thus closing the loop for a fully automated topology discovery framework.

2.2 Inference implementation

The out-of-sample extension for projecting new data points onto the learned Isomap manifold rep-
resents a critical challenge in manifold learning applications. Three distinct methodologies were
implemented and evaluated for this purpose: optimized Kernel Ridge Regression (KRR), ensemble
K-Nearest Neighbors (KNN), and Random Forest regression.
– Optimized kernel ridge regression (KRR) [11] represents a kernel-based regularized ap-
proach that constructs a global mapping function from the original feature space to the Isomap
coordinates. It was chosen as the closest method to Isomap to try to mimic it.
– Ensemble K-nearest neighbors regression combines multiple KNN regressors with differ-
ent neighborhood sizes (k = 5, 10, 15, 20). It was chosen to try to preserve the local structure.
– Random Forest regression [12] was chosen as a machine learning method to avoid any prelim-
inary assumptions.

The quality estimation for each method and the selection of the preferred option are described in
Section 3.3.

3 Experimental results

3.1 Experimental setup

All experiments were carried out on a workstation equipped with a NVIDIA GeForce RTX 4080
GPU, highlighting the computational efficiency and practical accessibility of our approach. The core
framework was implemented in PyTorch. Dataset descriptions and corresponding train/test splits
are provided in the following sections. All hyperparameters are detailed in the accompanying code
repository.
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3.2 Synthetic non-Euclidean manifolds

For validation on synthetic manifolds, we generated a diverse set of analytically defined geometries.
This collection includes both classic benchmarks from manifold learning and novel constructions
designed to test specific topological properties. The target functions for our tasks are defined by the
intrinsic parameters of the manifolds (e.g., polar or toroidal coordinates), creating problems that are
inherently non-Euclidean and cannot be optimally solved in the ambient space; however, they become
tractable when the intrinsic coordinates are recovered.

The implemented manifolds were generated programmatically and can be categorized as follows:

— Classic Benchmark Manifolds: This includes well-known structures such as Swiss roll, the Swiss
roll with a hole, S-curve, torus, sphere, and helicoid. These serve as standard tests for topological
inference algorithms.
— Constant Curvature Surfaces: We include fundamental non-Euclidean shapes like the pseudo-
sphere (a model of hyperbolic geometry with constant negative curvature) and the hyperboloid of one
sheet.
— Complex & Multi-Scale Manifolds: To challenge the method’s ability to handle intricate local
structure, we implemented a multi-scale torus with high-frequency modulation and a non-uniform
sphere with a deliberately biased sampling density.
— Manifolds with singularities: This category includes a cone surface, which features a singularity
at its apex, and a genus-2 surface (a double torus), which has a more complex global topology than a
sphere or simple torus.

A detailed list of all manifolds is available in Appendix C. Each synthetic manifold was sampled
with 1250 points, and a deterministic train/test split with a 0.8/0.2 ratio was created for subsequent
experiments. This diverse suite enables a comprehensive evaluation of the proposed intrinsic topology
search across varying curvatures, connectivity rates, and complexities.

To assess the algorithmic stability and convergence robustness, we performed five independent runs
of topology search for each synthetic geometry. The target functions were defined in terms of intrinsic
manifold parameters with values normalized to the range [0, 1]. The stopping criterion was set to a
near-zero loss function value (MSE ≤ 0.003). Fig. 3 presents the distribution of epochs required for
convergence across different types of geometry.

Figure 3: Distribution of epochs required for differentiable Isomap convergence across multiple
independent runs on synthetic non-Euclidean manifolds.

The box plots in Fig. 3 reveal the correct and stable convergence to the intrinsic geometry of the
proposed approach for each geometry in the setup used.

Noise sensitivity. To evaluate the robustness of our approach to noisy data — a critical requirement
for real-world applications — we replicated the experimental setup from Section 3.2 while introducing
three levels of Gaussian noise to the coordinates of each synthetic manifold. The noise levels were set
to 1%, 3%, and 5% of the scale of each dimension, relative to a unified absolute domain range of [0,
20] for all manifolds. We limited the maximum noise to 5% because higher levels (e.g., 10%) were
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observed to destroy the underlying manifold structure, rendering the problem of intrinsic topology
recovery ill-posed. Visualizations of all geometries at these noise levels, including an example
of structural degradation at 10% noise, are provided in Appendix D. An example of the Helicoid
manifold is shown in Fig. 4.

Figure 4: Helicoid manifold with increasing levels of noise (0%, 1%, 3%, 5%).

We executed our topology search algorithm across five independent runs for each geometry and noise
level. The results, summarized in Fig. 5, show the distribution and median number of training epochs
required for convergence under each condition.

Figure 5: Distribution and median values of epochs required for convergence across synthetic
geometries at different noise levels.

The results obtained indicate that there are no statistically significant differences in the number of
epochs required for convergence between the noise levels evaluated. This consistency suggests that
the convergence behavior of the algorithm is mainly independent of noise magnitude. The observed
stability demonstrates the robustness of the proposed approach to noise perturbations, underscoring
its suitability for applications involving noisy real-world data.

3.3 Inference implementation strategy choice

To capture the end-to-end implementation of the proposed topology search method, it is necessary
to select the most applicable method for out-of-sample transform mapping for test points and large
datasets. Three candidate inference methods were rigorously evaluated on a diverse set of synthetic
manifolds: an optimized Kernel Ridge Regression model (Isomap+KRR), an ensemble of k-Nearest
Neighbors regressions (Isomap+KNN), and a Random Forest regression (Isomap+RF) (Section 2.2).

The evaluation was based on accuracy criteria, measured by the coefficient of determination (R2) and
the Root Mean Square Error (RMSE), which quantify how well the downstream task is solved at the
test points. The mean performance of each method across the tested geometries is summarized in
Tab. 1.
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Table 1: Comparison of quality for the different inference methods with baselines

Method Description R2 RMSE Time (s)
Isomap+KNN Differentiable Isomap with Ensemble of k-Nearest Neighbors 0.817 0.103 0.267
Isomap+KRR Differentiable Isomap with Optimized Kernel Ridge Regression 0.732 0.132 0.368
Isomap+RF Differentiable Isomap with Random Forest Regressor 0.830 0.093 0.251
Classical Isomap Isomap with Euclidean distances matrix to intrinsic dim 0.410 0.204 0.245
t-SNE t-distributed Stochastic Neighbor Embedding to intrinsic dim 0.448 0.201 1.121
PCA Principal Component Analysis to intrinsic dim 0.233 0.258 0.001
Raw Features Raw Euclidean distances 3-dim 0.368 0.217 -

A comparative analysis of the differentiable Isomap inference methods reveals a statistically sig-
nificant performance hierarchy. The results indicate that the Isomap+RF method achieves a higher
accuracy, obtaining the highest R2 score (0.830) and the lowest error rate (RMSE = 0.093). The
Isomap+KNN method demonstrates competitive performance, while the Isomap+KRR approach,
though less accurate, remains a viable option.

The performance ranking among these methods is consistent with their underlying regression strate-
gies: the Random Forest local, non-parametric approximation excels at capturing the complex
neighborhood structure of the Isomap manifold, leading to higher fidelity. In terms of computational
efficiency, all differentiable Isomap methods are comparable, with Isomap+RF being the fastest. For
the final implementation, the Isomap+RF strategy is selected.

Comparison with analogues. To confirm the effectiveness of the proposed approach for out-of-
sample points as the test part of the ML task, we compared quality metrics on the downstream
regression task on the manifold obtained with our differentiable Isomap with other methods of
manifold learning: classical Isomap on Euclidean distances, PCA, and t-SNE. Quality metrics
(RMSE, R2) averaged for synthetic geometries runs are presented in Fig. 6 and in Tab. 1.

Figure 6: Comparison of downstream regression task quality on test set for differentiable Isomap
with inference methods variations (KNN, KRR, RF) and analogues manifold learning methods: PCA,
classical Isomap, t-SNE.

All differentiable Isomap variants significantly outperform the classical dimensionality reduction
benchmarks (Classical Isomap, t-SNE, PCA) and the raw feature baseline. Separate quality metrics
for each geometry type are presented in the Appendix B, along with display visualizations.

3.4 MNIST dataset

To identify the dimensionality of the intrinsic topology of the standard MNIST dataset, we applied
the local PCA algorithm described in Section 2.1 with various thresholds of local explained variance,
depending on the cumulative explained variance. The target threshold for cumulative explained
variance (CEV) is 0.95 with 482 local dimensions for MNIST. Additional details and CEV plot can
be found in Appendix E.

The topology search process on the MNIST dataset exhibited fluctuations in the loss function consis-
tent with those observed on synthetic datasets. The convergence plot, the final weight distribution,
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and the resulting projection are provided in Appendix E. Downstream classification and regression
tasks were performed on the discovered manifold using a compact neural network architecture,
consisting of two linear layers with a latent space dimension of 482. For comparison, a baseline
model was evaluated using raw features and an alternative manifold learning method (PCA). The
results, presented in Fig. 7, indicate that the manifold discovered by the differentiable Isomap yielded
superior performance in both regression and classification tasks, despite being optimized only for
reconstruction loss (RMSE).

Figure 7: Convergence process and performance metrics for downstream classification and regression
tasks using raw features, the manifold learned by differentiable Isomap, and the manifold learned by
PCA.

Analysis of the convergence behavior suggests that the PCA projection may have failed to preserve
critical information, limiting the model’s capacity to achieve high accuracy. Conversely, while the raw
features contain the necessary information, the model may lack sufficient inductive bias or complexity
to learn an effective mapping. Differentiable Isomap, by contrast, learned a manifold that effectively
captures the intrinsic structure of the data, facilitating more accurate approximations and resulting in
the highest overall performance.

4 Discussion

Convergence dynamics. To further investigate the convergence behavior and the reasons for the
observed variance in the required epochs, we analyzed the dynamics of the curvature estimates during
optimization. Fig. 8 compares these dynamics for two independent runs on the Swiss Hole manifold.

Fig. 8 reveals significant fluctuations in the estimated curvature during optimization. We hypothesize
that these fluctuations are driven by rapid changes in the eigenvalues of the learned distance matrix,
which can induce sharp increases in the loss (visible as "loss spikes") and temporarily steer the
geometry search in a suboptimal direction.

These results confirm the complex, non-convex nature of the loss function landscape in topological
space discovery. The proposed topology search method encounters local optima, manifesting itself as
difficulty in transitioning between different curvature regimes. The observed curvature fluctuations
suggest that escaping these local optima requires increasing the learning rate, which induces qualita-
tive changes in the distance matrix, enabling transitions between fundamentally different geometric
structures.
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Figure 8: Optimization dynamics comparing curvature estimates and loss function values for two
independent runs on the Swiss Hole geometry. Fluctuations in curvature coincide with sharp increases
in loss.

Theoretical connections to curvature flow. Our analysis also indicates a tendency for gradient
optimization to converge toward points of singularity of curvature (Fig. 8). We implemented an ad
hoc weights perturbation as the singularity point is approached. From a topological perspective, this
process is known as surgery and is related to a similar Ricci flow process. The proposed algorithm
can also be described in terms of Ricci flow, allowing for theoretical analysis.

However, our problem formulation differs from the classical Ricci flow in two key aspects: (1) the
initial condition is a random metric (distance matrix), not a smooth Riemannian metric; and (2) the
target metric is defined implicitly as the minimizer of a downstream task loss, not an explicit geometric
functional. While we observe dynamics reminiscent of curvature flow, formally establishing this
connection remains a compelling direction for future theoretical work.

Computational complexity. The primary limitation of our method is its computational cost,
which arises from the iterative optimization of the differentiable Isomap pipeline and the use of
RF-based algorithms for out-of-sample inference. This cost scales exponentially with the intrinsic
dimensionality of the data.

For synthetic geometries with 2-dimensional intrinsic topology and 1000 training points, the mean
topology search time ranged from 190 to 250 seconds, and for inference with 200 points, the mean
time ranged from 0.2 to 3.3 seconds. For the MNIST dataset with 2000 points and a 482-dimensional
intrinsic topology, 25000 optimization epochs took 6.5 hours. For 60000 samples, the full training
and test dataset, the inference time reached 40 minutes.

Practical applications and further use. The result of the algorithm is the learned distance matrix
(and a fitted Isomap model) that could be transferred to any subset of the original feature space. The
learned embedding can be used directly as input to downstream models designed for non-Euclidean
data, such as hyperbolic Mamba [10], general LLMs, or recommender systems [9]. Additionally,
the distance matrix can be utilized outside of Isomap to perform manifold regularization during the
training of any machine learning model, thus improving performance without requiring architectural
changes.

5 Conclusion

The field of manifold learning has evolved from basic nonlinear dimensionality reduction techniques
to sophisticated methods that leverage specialized non-Euclidean geometries and differentiable
optimization. This work proposes a differentiable Isomap approach, which contributes to this
trajectory by enabling the end-to-end optimization of both metric and mapping, thereby discovering
intrinsic topological structures that would be difficult to specify manually. Experimental results
demonstrate the accurate recovery of topology on synthetic non-Euclidean datasets, suggesting
promising applicability to real-world problems with unknown geometric structures.
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A Technical details on differentiable Isomap realization

A.1 Differentiable Shortest Path Computation

The core innovation of our approach lies in making the shortest-path calculation differentiable. We
formulate the all-pairs shortest path problem as a series of recursive updates (5) and implemented a
custom autograd function FloydWarshall:

D
(k)
ij = min

(
D

(k−1)
ij , D

(k−1)
ik +D

(k−1)
kj

)
(5)

where D(k) represents the distance matrix after considering paths through vertex k. This formulation
enables gradient propagation through the minimization operations via a custom backward pass that
tracks which edges participated in the optimal paths.

The backward pass propagates gradients through the relaxation steps, enabling optimization of the
underlying distance matrix:

∂L
∂G

=
∑
k

I [D < (D:,k +Dk,:)]⊙
∂L
∂D

(6)

Where:

- ∂L
∂G is the gradient of the final loss function L (e.g., reconstruction error) with respect to the initial

input graph G.

- ∂L
∂D is the gradient of the loss function L with respect to the output matrix of shortest-path distances

D, is passed down from the subsequent layers of the model (e.g., the MDS operation).

-
∑

k is a summation over all intermediate vertices k used in the Floyd-Warshall algorithm.

- I[·] is an indicator function that returns a matrix of the same shape as D. Each element (i, j) in
this matrix is 1 if the shortest path from i to j was updated using vertex k in the forward pass (i.e.,
if Dij = Dik + Dkj was true and shorter than the previous known path) and 0 otherwise. This
function essentially records the "history" of the shortest path computation, identifying which edges
were critical in determining the final geodesic distances.

- D is the final shortest-path distance matrix computed in the forward pass.

In essence, this equation states that the gradient for an edge weight in the original graph G is the sum
of the gradients ∂L

∂D for all shortest-path distances Dij that were reliant on that specific edge during
the computation. This allows the model to learn which local distances are most important for forming
accurate global geodesics.

A.2 Differentiable Multidimensional Scaling

For the dimensionality reduction step, we employ a differentiable variant of classical multidimensional
scaling (MDS). Given the geodesic distance matrix D, we compute the centered kernel matrix:

K = −1

2
HD2H (7)

where H = I − 1
n11

⊤ is the centering matrix and D2 contains squared distances.

The embedding coordinates are obtained through eigenvalue decomposition:

K = V ΛV ⊤ (8)

with the resulting embedding given by:

X = V[:d] ·
√
|Λ[:d]| (9)
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where d is the target dimensionality and we select the d largest eigenvalues by magnitude to preserve
maximum variance.

To maintain differentiability, we implement a smoothed eigenvalue decomposition that allows gradient
propagation through the spectral decomposition. The gradient flow is preserved by considering the
perturbation theory of eigenvalues and eigenvectors.

B Comparison with analogues for synthetic geometries

Table 2: R2 and RMSE quality metrics for downstream regression task quality in comparison with
analogues manifold learning methods (Classical Isomap, PCA, t-SNE) and raw features baseline.

R2

Method Isomap+
KNN

Isomap+
KRR

Isomap+
RF

Raw
Features PCA Classical

Isomap t-SNE

Cone Surface 0.857 0.780 0.943 0.417 0.201 0.409 0.223
Connected Multiscale 0.062 0.160 0.216 0.187 0.152 0.000 0.149

Genus-2 Surface 0.621 0.563 0.342 0.418 0.064 0.418 0.312
Helicoid 0.980 0.961 0.982 0.021 0.021 0.055 0.033

Hyperboloid 0.876 0.482 0.919 0.213 0.205 -0.024 0.522
Multi-Scale Torus 0.953 0.902 0.950 0.708 0.638 0.670 0.575

Non-Uniform Sphere 0.937 0.852 0.986 0.503 0.362 0.378 0.324
Pseudosphere 0.863 0.515 0.920 0.258 0.243 0.255 0.336

S-Curve 0.996 0.989 0.995 0.936 0.315 0.998 0.994
Sphere 0.664 0.698 0.846 0.503 0.483 0.002 0.435

Swiss Hole 0.977 0.982 0.909 0.076 0.061 0.846 0.740
Swiss Roll 0.968 0.980 0.794 0.060 0.052 0.843 0.856

Torus 0.864 0.651 0.984 0.489 0.231 0.477 0.328

RMSE

Method Isomap+
KNN

Isomap+
KRR

Isomap+
RF

Raw
Features PCA Classical

Isomap t-SNE

Cone Surface 0.112 0.138 0.070 0.225 0.264 0.227 0.260
Connected Multiscale 0.281 0.266 0.257 0.262 0.267 0.290 0.268

Genus-2 Surface 0.191 0.205 0.252 0.237 0.300 0.237 0.257
Helicoid 0.043 0.058 0.042 0.307 0.307 0.302 0.305

Hyperboloid 0.097 0.198 0.079 0.244 0.245 0.278 0.190
Multi-Scale Torus 0.063 0.091 0.065 0.157 0.175 0.167 0.189

Non-Uniform Sphere 0.074 0.114 0.035 0.208 0.236 0.233 0.243
Pseudosphere 0.102 0.192 0.078 0.237 0.239 0.238 0.224

S-Curve 0.034 0.061 0.039 0.145 0.471 0.024 0.043
Sphere 0.159 0.151 0.108 0.194 0.198 0.275 0.207

Swiss Hole 0.030 0.026 0.059 0.190 0.192 0.078 0.101
Swiss Roll 0.035 0.028 0.090 0.192 0.193 0.078 0.075

Torus 0.115 0.183 0.040 0.222 0.272 0.224 0.254
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Figure 9: S-Curve manifold visualization with differentiable Isomap (Isomap+RF) and Classical
Isomap methods.
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C Synthetic manifolds table

Table 3: Summary of synthetically generated non-Euclidean manifolds used for experimental valida-
tion.

Manifold Name Description Key Property
Swiss Roll A rolled 2D plane Non-convex, simple bending
Swiss Hole A rolled 2D plane with a central hole Non-convex, simple hole

S-Curve An S-shaped folded 2D plane Non-convex, simple bending
Torus Donut-shaped surface Non-trivial genus (g = 1)

Sphere Perfectly symmetrical surface of constant curvature Constant positive curvature
Pseudosphere Model of hyperbolic geometry Constant negative curvature
Hyperboloid Hyperboloid of one sheet Ruled surface

Helicoid Minimal surface resembling a spiral ramp Ruled, minimal surface
Multi-Scale Torus Torus with high-frequency sinusoidal modulation Multi-scale detail

Non-Uniform Sphere Sphere with non-uniform sampling density Density variations
Cone Surface Cone with a singular apex point Singularity

Genus-2 Surface Double torus surface Complex topology (g = 2)
Connected Multiscale A single, complex connected structure Varying local properties
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D Synthetic geometries visualization

Figure 10: Examples of non-Euclidean synthetic manifolds with noise levels.
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E MNIST topology search

Fig.11 demonstrates that the target CEV is achieved with 482 local dimensions for the local PCA
threshold of 0.95 explained variance. For lower thresholds, more local dimensions are needed, so
we take the value 482 as the dimension of the intrinsic dataset topology. This comparison also
demonstrate inability of low-dimensional local PCA-based visualizations to reflect at least 0.1 CEV.

Figure 11: Dependence of local dimensions number of cumulative explained variance of dataset and
local PCA thresholds comparison.

Figure 12: MNIST 482 dimensional topology search: final weights distribution, convergence plot,
PCA projections for target and output classes, predictions distribution in comparison of target.

Fig. 12 demonstrates the convergence process for the intrinsic 482-dimensional MNIST manifold.
The loss fluctuations follow a similar pattern to those observed for synthetic geometries. The PCA
projection was generated to present the 482-dimensional manifold in an interpretable Euclidean
manner. However, the low explained variance of 0.02 indicates limited interpretability of the obtained
mappings. Therefore, the assessment of solution quality should rely more substantially on quantitative
performance metrics.
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F Manifold dimension estimation algorithm pseudocode

Algorithm 1 Local PCA for Intrinsic Dimensionality Estimation
Require: Data matrix X ∈ Rm×n, num of neighbors k, curvature threshold τ , num of samples N .
Ensure: Estimated intrinsic dimensionality d.

1: D ← ∅ ▷ Initialize an empty list for dimension estimates
2: nbrs← NearestNeighbors(n_neighbors = k).fit(X)
3: sample_idx← random choice of N indices from [0,m− 1]
4: for each index i in sample_idx do
5: neighborhood← nbrs.kneighbors(X[i], return_distance = False)
6: Xlocal ← X[neighborhood]
7: X̃local ← Xlocal −mean(Xlocal, axis = 0) ▷ Center the neighborhood
8: eigenvalues← PCA().fit(X̃local).explained_variance_
9: di ← 1 ▷ Initialize local dimension counter

10: for j ← 2 to len(eigenvalues) do
11: if eigenvalues[j] < τ · eigenvalues[j − 1] then
12: break
13: end if
14: di ← di + 1
15: end for
16: D.append(di) ▷ Store the local dimension estimate
17: end for
18: d← mode(D) ▷ Take the most frequent local dimension estimate
19: return d
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the paper’s contributions: a dif-
ferentiable Isomap pipeline, intrinsic dimensionality estimation, and joint optimization
of a distance matrix and downstream model (Section 1, 2). The claims are matched by
experiments on synthetic manifolds and MNIST (Sections 3.2–3.4)

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Limitations are discussed in Section 4. We note computational cost grows
with intrinsic dimension, convergence can be unstable and require learning rate tuning, and
experiments are limited to moderate-sized datasets (synthetic manifolds, MNIST).

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not present formal theorems or proofs. The work focuses
on algorithm design and empirical evaluation, though Section A describes differentiable
shortest-path and spectral steps at an algorithmic level.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We disclose dataset construction, synthetic manifold definitions (Appendix
C), sampling strategy, train/test splits (Section 3.2), hyperparameters and stopping criteria
(Section 3.1), and provide code and data via anonymized repository link (Section 2).

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All code to reproduce experiments, synthetic dataset generators, and training
scripts are available in an anonymized open repository: https://anonymous.4open.
science/r/diffisomap-2E1D/.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section 3.1 details compute setup (GPU model), datasets, splits, and training
configuration. Appendix F includes pseudocode for intrinsic dimensionality estimation, and
all hyperparameters are available in the public repository.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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Answer: [Yes]

Justification: We perform five independent runs for each synthetic geometry (Section 3.2)
and report distributions of convergence epochs (Fig. 3, Fig. 5). Mean values are reported in
Tab. 1, with per-geometry metrics in Appendix B.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Compute environment and runtimes are reported in Section 3.1 and Section 4
(complexity paragraph), including training and inference times for synthetic and MNIST
datasets.

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research follows the NeurIPS Code of Ethics. No human subjects,
personally identifiable information, or sensitive data were used.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss positive impact (enabling automated topology discovery and
improved downstream models) and note potential negative impacts (computational cost,
possible misuse for biased data embeddings) in Section 4 and the Conclusion.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No models or datasets with high risk of misuse are released. The synthetic
datasets are procedurally generated, and MNIST is a public dataset.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All existing datasets (MNIST) and libraries (PyTorch) are cited with their
standard licenses respected. MNIST is publicly available under permissive terms.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We release synthetic manifold generation scripts and trained model checkpoints.
Documentation is included in the repository with instructions for use.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Justification: The work does not involve crowdsourcing or human subjects.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human subjects were involved, so IRB approval was not required.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were not used as part of the core methodology. They were only used for
minor text editing support and not for model design, training, or evaluation.
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