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ABSTRACT

Information-theoretic generalization analysis has achieved astonishing success in
characterizing the generalization capabilities of noisy and iterative learning al-
gorithms. However, current advancements are mostly restricted to average-case
scenarios and necessitate the stringent bounded loss assumption, leaving a gap
with regard to computationally tractable PAC generalization analysis, especially
for long-tailed loss distributions. In this paper, we bridge this gap by introduc-
ing a novel class of PAC bounds through leveraging loss entropies. These bounds
simplify the computation of key information metrics in previous PAC information-
theoretic bounds to one-dimensional variables, thereby enhancing computational
tractability. Moreover, our data-independent bounds provide novel insights into
the generalization behavior of the minimum error entropy criterion, while our
data-dependent bounds improve over previous results by alleviating the bounded
loss assumption under both leave-one-out and supersample settings. Extensive nu-
merical studies indicate strong correlations between the generalization error and
the induced loss entropy, showing that the presented bounds adeptly capture the
patterns of the true generalization gap under various learning scenarios.

1 INTRODUCTION

Employing information-theoretic measures to analyze the generalization properties of learning al-
gorithms has recently attracted increasing attention (Xu & Raginsky, 2017; Bassily et al., 2018).
The core concept involves quantifying the information stored in the model weights about the train-
ing dataset, serving as a natural indicator of overfitting. These bounds offer several advantages,
as the information-theoretic measures are both dependent on the data distribution and the learning
algorithm, while the underlying assumptions are considerably more lenient in comparison to con-
temporary techniques like uniform stability (Hardt et al., 2016; Bassily et al., 2020; Lei et al., 2021)
and model compression (Arora et al., 2018; Zhou et al., 2018). Information-theoretic generalization
analysis becomes a potent tool for characterizing the generalization capabilities of noisy and itera-
tive learning algorithms (Negrea et al., 2019; Bu et al., 2020; Steinke & Zakynthinou, 2020; Wang
& Mao, 2021; Haghifam et al., 2020; Neu et al., 2021; Raginsky et al., 2021).

Nonetheless, these generalization bounds are plagued by overestimation, as neural networks can
memorize substantial training data while still generalizing well (Nasr et al., 2019). Furthermore,
their information-theoretic foundation in Shannon’s entropy renders them notoriously hard to com-
pute due to the challenge of high-dimensional entropy estimation (Dong et al., 2023). A significant
advancement was made in (Steinke & Zakynthinou, 2020) by adopting a setting where the train-
ing set is sampled from a larger supersample, and subsequently bounding the generalization error
through the mutual information between the selection of the training set and various aspects e.g. pre-
dictions for the supersample (Harutyunyan et al., 2021), the loss pairs (Hellström & Durisi, 2022),
or the loss difference (Wang & Mao, 2023). Remarkably, these bounds not only exhibit computa-
tional tractability due to the lower dimensionality of the associated random variables but also provide
quantitatively tighter estimates, particularly for large neural networks.

While recent endeavors on computationally tractable generalization bounds have yielded promising
outcomes, these bounds are mostly restricted to average-case scenarios, leaving a gap in terms of
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computationally tractable high-probability generalization bounds. Furthermore, these bounds rely
on stringent bounded assumptions regarding the loss function, which can be limiting when dealing
with long-tailed loss distributions e.g. cross-entropy. In this paper, we demonstrate that analyzing
the properties of one-dimensional variables is sufficient for characterizing the generalization capa-
bilities of learning algorithms. The generalization bounds we present address the computational
challenges of prior high-probability bounds and mitigate the bounded assumption through our pro-
posed thresholding strategy. Specifically, our contributions are summarized as follows:

• We demonstrate that the recently established bounds by Kawaguchi et al. (2023) can be further en-
hanced by substituting the mutual information between input and representation with loss entropy.
This substitution leads to the derivation of data-independent generalization bounds, which employ
both unconditional (Theorem 1) and conditional (Theorem 2) information measures. Notably,
these bounds offer novel insights into the Minimum Error Entropy (MEE) criterion (Principe,
2010): To the best of our knowledge, we introduce the first information-theoretic generalization
bound for MEE by showing that the generalization error scales with Õ(

√
H(Ew)/n), where Ew

represents the prediction error, and n denotes the size of the training set.

• We simplify previous data-dependent generalization bounds relying on high-dimensional infor-
mation measures with loss entropies. Our refined bounds exclusively involve one-dimensional
variables: the losses or loss differences. These bounds are not only easier to evaluate but also alle-
viate the stringent bounded assumption regarding the loss function, under both the leave-one-out
(Theorem 3) and supersample (Theorem 4) settings. Furthermore, we introduce novel fast-rate
bounds for a generalized version of the weighted generalization error (Theorem 5), improving the
convergence rate from 1/

√
n to 1/n when the empirical risk approaches zero. This advancement

is further augmented by our thresholding strategy (Theorem 6), which effectively addresses the
key limitations of previous fast-rate bounds when tackling long-tailed loss distributions.

• We substantiate our theoretical results with comprehensive numerical experiments on synthetic
and real datasets, which exhibit distinct correlations between the generalization error and our
proposed loss entropy metrics. Furthermore, the data-dependent bounds are capable of character-
izing the generalization gap patterns across varied deep-learning tasks. Significantly, our square-
root and fast-rate bounds consistently improve over the previously tightest high-probability bound
(Hellström & Durisi, 2022) under the supersample setting.

2 PRELIMINARIES

We denote random variables by capitalized letters (X), their specific realizations by lower-case
letters (x), and the corresponding spaces by calligraphic letters (X ). Shannon’s entropy of random
variable X is denoted by H(X), while Rényi’s α-order entropy of X is denoted by Hα(X). The
mutual information between random variables X and Y is denoted as I(X;Y ), and their conditional
mutual information given Z is denoted as I(X;Y |Z). We further write X|Y=y (or X|y) to represent
X conditioned on Y = y. We follow the same setting of (Kawaguchi et al., 2023) and assume that
all loss variables involved in our theoretical analysis are discrete and have finite cardinality. This
assumption also aligns well with continuous loss functions, as we discussed in Appendix G.3.

Generalization Error
Let Z = X × Y denote the instance space of interest, where X and Y represent the input and label
spaces, respectively. We define W as the hypotheses space, and ℓ : W × Z 7→ L ∈ R+ as the
loss function. The training dataset S = {Zi}ni=1 ∈ Zn is constructed by i.i.d sampling from the
unknown data-generating distribution µ. Given a learning algorithm A that takes S as input and
provides a hypothesis W ∈ W , our main objective is to investigate the generalization behavior of
W . Specifically, we denote Lw = ℓ(w,Z) for Z ∼ µ, and Lw

i = ℓ(w,Zi) for i ∈ [1, n]. The
generalization error ∆(w, S) = L(w)− LS(w) is defined as the difference between the population
risk L(w) = EZ [L

w] and the empirical risk LS(w) = 1
n

∑n
i=1 L

w
i . Additionally, we introduce

bw = supz∈Z ℓ(w, z) to represent the maximum attainable loss, and Bw,S = supi∈[1,n] L
w
i to

indicate the maximum samplewise loss given the hypothesis w ∈ W and the dataset S.

Leave-One-Out Setting
The leave-one-out (LOO) setting was recently introduced by Rammal et al. (2022) for generalization
analysis. Let S̃l = {Zi}n+1

i=1 ∈ Zn+1 be a dataset containing n + 1 i.i.d samples. We denote U ∼

2



Published as a conference paper at ICLR 2024

Unif([1, n + 1]) as a uniform random variable, representing the single test sample chosen from S̃l.
The training Sl and test S̄l datasets are then constructed as Sl = S̃l \ZU and S̄l = {ZU}. We define
Rw = {Lw

i }
n+1
i=1 ∈ Rw as the set of all individual samplewise losses and measure the generalization

ability of the hypothesis W by the LOO validation error ∆(W, S̃l, U) = LS̄l
(W )− LSl

(W ).

Supersample Setting
The supersample framework was initially explored by Steinke & Zakynthinou (2020) for general-
ization analysis. Let S̃s = {Zi,0, Zi,1}ni=1 ∈ Zn×2 be a dataset constructed by i.i.d sampling n× 2

samples. We denote Ũ = {Ũi}ni=1 ∼ Unif({0, 1}n) as n random {0, 1} variables used to separate
training and test samples, where Ũi = 0 indicates that Zi,0 is used for training and Zi,1 for testing.
The training and test datasets are then constructed as Ss = {Zi,Ũi

}ni=1 and S̄s = {Zi,1−Ũi
}ni=1,

respectively. We define R̃w = {Lw
i,0, L

w
i,1}ni=1 ∈ R̃w as the set of all individual samplewise losses,

and R̃w
∆ = {∆Lw

i }ni=1 ∈ R̃w
∆ as the set of loss differences, where ∆Lw

i = Lw
i,1 − Lw

i,0. The
generalization ability is measured by the validation error ∆(W, S̃s, Ũ) = LS̄s

(W )− LSs(W ).

3 MAIN THEOREMS

In this section, we investigate high-probability bounds to establish a connection between loss entropy
and the generalization error. We begin by enhancing existing upper bounds presented in (Kawaguchi
et al., 2023), considering scenarios where the model remains fixed and independent of the training
dataset. Subsequently, we introduce novel data-dependent generalization bounds under both the
LOO and supersample settings. Lastly, we put forth fast-rate bounds concerning a generalized ver-
sion of the weighted validation error (Zhivotovskiy & Hanneke, 2018; Yang et al., 2019).

3.1 DATA-INDEPENDENT BOUNDS

The first part of our analysis demonstrates that minimizing the loss entropy effectively enhances the
generalization ability of deep learning models, under the assumption that the network w remains
fixed and independent of the training dataset S. Precisely, given arbitrary w ∈ W , random sample
Z ∼ µ and let Lw = ℓ(w,Z), we establish the following upper bounds:
Theorem 1. For any γ > 0 and δ > 0, with probability at least 1− δ over the draw of S:

∆(w, S) ≤ Cw
1

√
H(Lw) + Cw

2

n
+

Cw
3√
n
, where


Cw

1 = 2bw
√
2

Cw
2 = cw

√
m log(

√
n/γ)

2 + log(2/δ)

Cw
3 = γbw +

Bw,S√
γ

n1/4

√
2 log(2/δ)

Theorem 2. For any γ > 0 and δ > 0, with probability at least 1− δ over the draw of S:

∆(w, S) ≤ C̃w
1

√
H(Lw|Y ) + C̃w

2

n
+

C̃w
3√
n
, where


C̃w

1 = 2bw
√

2|Y|

C̃w
2 = cw

√
m log(

√
n/γ)

2 + log(2|Y|/δ)

C̃w
3 = γbw +

Bw,S
√

γ|Y|
n1/4

√
2 log(2|Y|/δ)

In this context, m and cw represent the dimension and the sensitivity of the nuisance variables
respectively, which are the source of randomness in µ. It is evident that Cw

1 , Cw
2 , Cw

3 = Õ(1) as
n → ∞ (likewise for C̃w

1 , C̃w
2 , C̃w

3 ), exhibiting a convergence rate of 1/
√
n. It is worth noting that

benefitted from the adoption of final layer outputs (i.e. losses), our bounds are applicable to arbitrary
deterministic models and loss functions that can be expressed as f : Z 7→ R+, without requirements
on the presence of intermediate representation layers as stipulated in (Kawaguchi et al., 2023).

A comparison between Theorem 1 and 2 highlights a trade-off concerning the complexity of |Y|
(cardinality of the label space): On the one hand, we have H(Lw|Y ) ≤ H(Lw), as conditioning
always reduces entropy. On the other hand, Theorem 2 scales linearly with

√
|Y|, resulting in

potentially ineffective bounds when |Y| is large, e.g. regression tasks. When I(Lw;Y ) is large,
signifying prominent performance variation across classes, it is advisable to adopt Theorem 2 for
tighter upper bounds. Otherwise, the upper bound in Theorem 1 is preferred.
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A prominent difference between Theorem 2 and previous data-independent bounds established in
(Kawaguchi et al., 2023) lies in the replacement of I(X;Tw|Y ) with H(Lw|Y ), where Tw rep-
resents any intermediate representation generated by the encoder of the model. By recognizing
the Markov chain relationship X → Tw → Lw conditioned on the label Y and leveraging the
data-processing inequality (DPI), we rigorously prove that the mutual information I(Lw;X|Y ) =
H(Lw|Y ) − H(Lw|X,Y ) serves as a tighter bound over the objective I(X;Tw|Y ) of the infor-
mation bottleneck principle. When the model w is deterministic, which is commonly the case
for modern deep learning models, we have H(Lw|X,Y ) = 0, implying the equivalence between
I(Lw;X|Y ) and H(Lw|Y ). Moreover, it is known that the mutual information I(X;Tw|Y ) can
be infinite in certain special cases when X can be deterministically recovered from Tw (Amjad &
Geiger, 2019). Conversely, the loss entropies H(Lw) and H(Lw|Y ) are always finite.

Another improvement brought by our bounds is related to the factor Cw
1 which originally involves∑

t∈T w
ϵ
P1/2(Tw = t), where T w

ϵ ≈ T w represents the typical subset of the representation space
T w. This quantity exhibits exponential scaling with H1/2(T

w) > H(Tw), necessitating an addi-
tional assumption about the probability decay rate of Tw to bound Cw

1 and maintain the convergence
rate of 1/

√
n. By adopting leave-one-out analysis (see Appendix B and C) when establishing con-

centration bounds for multinomial distributions, we overcome this limitation and obtain constant
Cw

1 factors that are independent of Lw, without any further assumptions.

It is noteworthy that our data-independent bounds provide new insights into understanding the gener-
alization of the MEE criterion. Typically, for regression or binary classification tasks, the prediction
error is evaluated by Ew = Y − f(w,X) given the sample Z ∼ µ, where f represents the encoder.
The final loss is then deterministically computed given the loss function ℓ as Lw = ℓ(Ew), e.g. the
MSE loss ℓ(x) = x2. Then we have H(Lw) ≤ H(Ew) due to the data-processing inequality, which
directly indicates that optimizing H(Ew) minimizes the upper bound in Theorem 1, verifying that
MEE enhances the generalization capability of deep-learning models.

Lastly, our results address an important computability issue of previous upper bounds presented by
Kawaguchi et al. (2023): accurately calculating the value of I(X;Tw|Y ) is exceedingly challenging
due to the high dimensionality of both X and Tw, particularly for modern large neural networks.
This poses additional obstacles when attempting to utilize these bounds to assess the generalization
ability of deep learning models in practical scenarios. In contrast, our upper bounds only involve
Lw and Y , which are one-dimensional for most traditional learning tasks, making the estimation of
both H(Lw) and H(Lw|Y ) feasible and efficient.

While one may notice that the model w is not always independent of the training dataset S in real
applications, theorem 1 and 2 still offer practical utility in several real-world learning tasks, such as
pre-training, where one aims to assess the generalization ability of pre-trained models on a specific
dataset. Another relevant task is model evaluation in the validation dataset, for which our bounds
provide valuable information on the magnitude and the likelihood of the average validation error
deviating from the population risk.

3.2 DATA-DEPENDENT BOUNDS

In the following section, we extend our analysis to encompass data-dependent scenarios, where the
model W becomes a random variable correlated with the dataset S during training. To achieve this,
we explore both the LOO and supersample settings to analyze the generalization ability of deep
learning models and establish upper bounds for the validation error under both cases.

Theorem 3. For any λ ∈ (0, 1) and δ > 0, with probability at least 1−δ over the draw of W, S̃l, U :

∆
(
W, S̃l, U

)
≤ CW

1

√
H1−λ(RW ) + CW

2 , where

{
CW

1 =
√
2ΣRW

CW
2 = 1

λ log
(
1
δ

)
+ log

(
2
δ

)
by assuming that n+1

n (LW
U − L̄W ) is ΣRW -subgaussian w.r.t U for ΣRW ∈ [0, BW,S̃l ].

Theorem 4. For any λ ∈ (0, 1) and δ > 0, with probability at least 1−δ over the draw of W, S̃s, Ũ :

∆
(
W, S̃s, Ũ

)
≤ C̃W

1

√
H1−λ(R̃W

∆ ) + C̃W
2

n
, where

{
C̃W

1 =

√
2
n

∑n
i=1

(
∆LW

i

)2
C̃W

2 = 1
λ log

(
1
δ

)
+ log

(
2
δ

)
4
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Importantly, it holds that limn→∞ ∆(W, S̃s, Ũ) = ∆(W,Ss), indicating the supersample validation
error approximates the generalization error when the dataset is sufficiently large. Similarly, we have
C̃W

1 , C̃W
2 = Õ(1) as n → ∞. The parameter λ implies a trade-off between Rényi’s α-order joint

entropy of samplewise losses and the probability of generalization, as Hα(X) monotonically de-
creases with increasing α. Notably, Theorem 4 scales proportionally with 1/

√
n, whereas Theorem

3 does not. This is attributed to the fact that the test loss is only evaluated on a single sample ZU

under the LOO setting, resulting in higher variance in the validation error. Such a phenomenon is
also observed by Rammal et al. (2022); Haghifam et al. (2022).

The main advantage of Theorem 3 lies in its applicability under the interpolating regime, where the
model achieves zero training loss. In this case, H(RW ) simplifies to H(LW

U ), which is the entropy of
a one-dimensional random variable. This feature enables direct tractability of this upper bound when
provided with i.i.d samples of the test loss LW

U . Similarly, H(R̃W
∆ ) reduces to H({Li,1−Ũi

}ni=1)
under the interpolating regime, the joint entropy of all samplewise test losses. While this quantity
is not directly tractable due to its high dimensionality, the subadditivity of Shannon’s entropy could
be utilized to establish an alternative upper bound by H({Li,1−Ũi

}ni=1) ≤
∑n

i=1 H(Li,1−Ũi
). This

subadditivity property also applies to Rényi’s entropy when λ ≈ 0 (see Appendix E.1), confirming
the tractability of the upper bounds in both Theorem 3 and 4.

Theorem 4 further utilizes the loss difference between training and test loss values to derive strictly
tighter bounds, which are denoted as ∆LW

i = LW
i,1 − LW

i,0. This concept was first explored in
(Wang & Mao, 2023), in which it was proven that I(∆LW

i , Ũi) ≤ I(LW
i,1, L

W
i,0; Ũi) by apply-

ing the DPI. Here we extend this conclusion to the loss entropy metrics by leveraging the con-
cavity of Shannon’s entropy. Specifically, we have that 1

2

(
H(∆LW

i ) +H(LW
i,0)
)
≤ H(LW

i,1) and
1
2

(
H(∆LW

i ) +H(LW
i,1)
)
≤ H(LW

i,0), which further yields the following reductions:

H(∆LW
i ) ≤ 1

2

(
H(LW

i,0) +H(LW
i,1)
)
≤ max

(
H(LW

i,0), H(LW
i,1)
)
≤ H(LW

i,0, L
W
i,1).

The most notable improvement of Theorem 3 and 4 compared to previous data-dependent bounds
presented in (Negrea et al., 2019; Rammal et al., 2022; Steinke & Zakynthinou, 2020) is the replace-
ment of I(W ;S), I(W ;U |S̃l) and I(W ; Ũ |S̃s) with H(RW ) and H(R̃W

∆ ). To see this, we take the
LOO setting as an example and leverage the Markov chain relationship: U → Sl → W → RW

conditioned on S̃l, which demonstrates that I(RW ;U |S̃l) is strictly smaller than I(W ;U |S̃l) and
I(W ;Sl|S̃l) by applying the DPI. By utilizing the independence between U and S̃l, we have
I(RW ;U) ≤ I(RW ;U) + I(U ; S̃l|RW ) = I(RW ;U |S̃l) + I(U ; S̃l) = I(RW ;U |S̃l). Similarly,
the conditional independence between S̃l and W given Sl indicates I(W ;Sl|S̃l) ≤ I(W ;Sl|S̃l) +

I(W ; S̃l) = I(W ; S̃l|Sl)+ I(W ;Sl) = I(W ;Sl). When the training process A : Sl 7→ W is deter-
ministic (e.g., using full gradient descent or stochastic algorithms with a fixed seed), the randomness
of RW is mainly induced by U , which implies H(RW |U) ≈ 0. With these in mind, we have

H(RW ) ≈ I(RW ;U) ≤ I(RW ;U |S̃l) ≤ I(W ;U |S̃l) ≤ I(W ;Sl|S̃l) ≤ I(W ;Sl).

This verifies our claim that introducing the loss entropy H(RW ) constitutes a significant improve-
ment over I(W ;S), I(W ;U |S̃l) and I(W ; Ũ |S̃s). The same conclusion can also apply to H(R̃W

∆ ).
Moreover, these previous bounds encounter the same computational challenge in modern deep learn-
ing settings, which is even more severe than estimating I(X;Tw|Y ) due to the considerably higher
dimensionalities of both W and Sl compared to X or Tw. In contrast, our bounds could be effi-
ciently approximated by estimating the entropy of one-dimensional random variables.

Theorems 3 and 4 are versatile and applicable to scenarios where the training process of the model
W involves the dataset S. This broadens the range of applications compared to Theorems 1 and
2, encompassing supervised learning, unsupervised learning, transfer learning, and other contexts.
For both Theorems 3 and 4, the key quantities H(RW ) or H(R̃W ) can be further decomposed
into H(RW ) ≤ H(RW

S ) + H(RW
S̄
), where RW

S and RW
S̄

represent the collections of samplewise
training and test losses, respectively. Intuitively, training algorithms aim to minimize the training
loss, thereby reducing H(RW

S ) since all training losses tend to approach zero for a well-fitted model.
At the same time, H(RW

S̄
) measures the extent of overfitting, which arises when the model provides

incorrect answers to test samples. This illustrates a novel trade-off between training and test loss
entropies to achieve the best generalization performance.
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In addition to the presented main theorems, our proof technique also holds intrinsic research inter-
est. Specifically, we observe the Markov chain W → R → ∆ conditioned on the selection U ,
where R acts as the ”bottleneck” for information flow from W to the evaluation error ∆ (e.g. RW

or R̃W
∆ ). We proceed by investigating a typical subset of space Rϵ which satisfies P(R /∈ Rϵ) < δ

and |Rϵ| = O(eH(R)). By systematically enumerating each element r ∈ Rϵ within this specified
subset, we effectively isolate ∆ from W and construct generalization bounds upon concentration in-
equalities that exclusively leverage the stochastic nature of U . By taking the union bound across
every single element r ∈ R, we establish a connection between sample complexity-based and
information-theoretic analyses, ultimately leading to our conclusive results. While our paper pri-
marily investigates the LOO and supersample settings, we underscore potential extensions of such a
technique to accommodate alternative sampling scenarios, e.g. in cases of random selecting n < m
training samples from a supersample dataset comprising a total of m samples.

3.2.1 FAST-RATE BOUNDS

We now delve into the weighted validation error denoted as ∆C(W, S̃s, Ũ) = LS̄s
(W ) − (1 +

C)LSs
(W ), where C is a selected positive constant. The introduction of this weighted error enables

establishing fast-rate bounds that scale linearly with 1/n instead of the conventional 1/
√
n rates

(Catoni, 2007; Hellström & Durisi, 2021b). While previous bounds typically adopt a universal value
of C for all training losses (Hellström & Durisi, 2022; Wang & Mao, 2023), we empirically observe
that individual sample losses often exhibit a long-tailed distribution in well-trained deep-learning
models: the majority of training samples have losses that cluster near zero, while a small number of
samples consistently exhibit comparatively high losses even after the training process, significantly
influencing the overall empirical risk. Motivated by this observation, we employ distinct values of
Ci for each individual training loss LW

i,Ũi
to derive strictly tighter bounds.

Theorem 5. For any κ ≥ 0, λ, γ ∈ (0, 1) and δ > 0, if κ ≥ BW,S̃s , then with probability at least
1− δ over the draw of W, S̃s, Ũ , the following inequality holds:

∆
(
W, S̃s, Ũ

)
≤ 1

n

n∑
i=1

CiL
W
i,Ũi

+GW
1

H1−λ(R̃
W ) +GW

2

n
, where


GW

1 = 1
η = 2κ

γ log 2

GW
2 = 1

λ log
(
1
δ

)
+ log

(
4
δ

)
Ci = −

log
(
2−e2ηL̂W

i

)
2ηL̂W

i

− 1

and L̂W
i = max(LW

i,0, L
W
i,1) for any i ∈ [1, n].

In the interpolating regime where training losses approach zero, the weighted validation error sim-
plifies to its original unweighted form. Therefore, a convergence rate of 1/n is achieved by letting
γ → 1 when the empirical risk approaches zero. This characteristic renders the fast-rate bounds par-
ticularly valuable when the empirical risk is small or even zero. Conversely, when positive training
losses are prevalent, the adaptive modulation of weights Ci w.r.t L̂W

i endows the bounds with the
versatility to accommodate various loss distributions. In contrast, if a universal constant C is ap-
plied uniformly to all training losses, it must satisfy the condition that C ≥ supi∈[1,n] Ci, inevitably
resulting in looser bounds when dealing with non-interpolating scenarios (see Appendix F.2).

Notably, the joint entropy H(R̃W ) encompasses all samplewise losses, which facilitates direct com-
putational tractability through the subadditivity property inherent in information entropy. In con-
trast, the previously established fast-rate high-probability generalization bound (Hellström & Durisi,
2022) employs the multivariate mutual information I(R̃W ; Ũ |S̃s), which is unfortunately intractable
due to the high-dimensional nature of the variables R̃W , Ũ , and S̃s.

However, it is evident that the bound presented in Theorem 5 exhibits linear scaling with BW,S̃s , the
largest samplewise loss. In scenarios involving long-tailed loss distributions (e.g. cross-entropy),
this factor can be considerably larger than the subgaussian norm in Theorem 3 or the L2 norm of loss
differences in Theorem 4. Consequently, the improvement in the convergence rate may diminish in
practical evaluations when compared to these previously established bounds.

In light of this observation, we further explore scenarios where κ < BW,S̃s . This naturally leads
to the consideration of a thresholding strategy aimed at deriving tightened fast-rate generalization
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Figure 1: Pearson correlation analysis between the generalization error and different metrics for
5-layer MLP trained on synthetic 2D Gaussian datasets. (a), (b): The correlations of H(Lw) and
H(Lw|Y ) with the generalization gap, respectively. (c): Comparison of Pearson correlation coeffi-
cients for different metrics and the generalization gap.

bounds. With an arbitrary threshold κ > 0 and a samplewise loss L, it can be verified that L =
Lκ + L−κ, where Lκ = min(L, κ) and L−κ = max(L − κ, 0). By employing the strategies
outlined in Theorems 4 and 5, we can derive generalization bounds that simultaneously leverage the
advantages of fast convergence rates and the modest L2 scaling factor:
Theorem 6. For any κ > 0, γ, λ1, λ2 ∈ (0, 1) and δ > 0, with probability at least 1 − δ over the
draw of W, S̃s, Ũ , the following inequality holds:

∆
(
W, S̃s, Ũ

)
≤ 1

n

n∑
i=1

CiL
W,κ

i,Ũi
+ G̃W

1

H1−λ1
(R̃W,κ) + G̃W

2

n
+ G̃W

3

√
H1−λ2

(R̃W,−κ
∆ ) + G̃W

4

n
,

where R̃W,κ = {LW,κ
i,0 , LW,κ

i,1 }ni=1, R̃W,−κ
∆ = {∆LW,−κ

i }ni=1, ∆LW,−κ
i = LW,−κ

i,1 − LW,−κ
i,0 and

G̃W
1 = 1

η = 2κ
γ log 2 , G̃W

2 = 1
λ1

log
(
2
δ

)
+ log

(
8
δ

)
, Ci = −

log

(
2−e2ηL̂

W,κ
i

)
2ηL̂W,κ

i

− 1,

G̃W
3 =

√
2
n

∑n
i=1

(
∆LW,−κ

i

)2
, G̃W

4 = 1
λ2

log
(
2
δ

)
+ log

(
4
δ

)
.

Theorem 6 introduces a manual threshold κ to partition each samplewise loss into L = Lκ + L−κ.
Combining with the techniques developed in Theorems 4 and 5, we subsequently establish upper
bounds for these two components. Consequently, the previous factor BW,S̃s is replaced by the
manually set threshold κ for the first component Lκ, and by the more moderate L2 norm of loss
differences for the second component L−κ. Our experimental findings indicate that this bound
is significantly tighter than both Theorems 4 and 5 (see Appendix F.2). It is worth noting that this
thresholding technique can also be applied to the bounds presented in (Wang & Mao, 2023), yielding
improved bounds for the expected generalization error when dealing with long-tailed loss distribu-
tions (see Appendix E.2). Furthermore, the joint entropy of all training losses, denoted as H(R̃W

S ),
serves as a tighter alternative to the terms related to loss variance and sharpness, which were utilized
in (Wang & Mao, 2023) to derive fast-rate expected generalization bounds (see Appendix E.3).

4 NUMERICAL RESULTS

In this section, we conduct empirical comparisons between the generalization bounds established in
this paper and the previous high-probability bounds proposed in (Kawaguchi et al., 2023; Hellström
& Durisi, 2022). Our evaluation involves two sets of experiments: Firstly, we investigate data-
independent bounds using synthetic 2D Gaussian datasets by employing a simple MLP network
as the classifier, which follows the same learning settings as (Kawaguchi et al., 2023). Secondly,
we evaluate data-dependent bounds by training more complex neural networks on real-world image
classification datasets (4-layer CNN on MNIST (LeCun & Cortes, 2010) and ResNet-50 (He et al.,
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Figure 2: Comparison of the generalization gap in 3 different deep-learning scenarios, along with
theoretical upper bounds including the square-root bound (Theorem 4), the fast-rate bound (Theorem
6) and the binary KL bound (Theorem 7 in (Hellström & Durisi, 2022)).

2016) on CIFAR10 (Krizhevsky et al., 2009)). These experiments follow the same deep learning
settings as those in (Harutyunyan et al., 2021; Hellström & Durisi, 2022; Wang & Mao, 2023). In
all of these experiments, we utilize the cross-entropy loss LCE to quantify the generalization error
and adopt the empirical risk minimization criterion to find the hypothesis W .

4.1 SYNTHETIC DATA

For the first classification task, we utilize synthetic 2D Gaussian datasets and employ a 5-layer
MLP, comprising a variational encoder and a deterministic classifier. The experimental settings are
consistent with those in (Kawaguchi et al., 2023), where we train a total of 216 different models,
covering various architectures, weight decay rates, dataset draws, and random seeds. The optimiza-
tion of the hypothesis is performed using the reparameterization trick (Kingma et al., 2015) in an
end-to-end manner. A Monte-Carlo sampling-based estimator is employed to estimate the values of
I(X;Tw) and I(X;Tw|Y ), and I(W ;S) is computed based on the posterior distribution modeled
by the SWAG method (Mandt et al., 2017; Maddox et al., 2019). The computations of H(Lw) and
H(Lw|Y ) are relatively straightforward, such that a simple kernel density estimator suffices.

Here, we use Gaussian kernels and determine the kernel width according to the rule-of-thumb cri-
terion. To empirically evaluate the predictive power of different metrics on generalization, we fol-
low the approach in previous works (Galloway et al., 2023; Kawaguchi et al., 2023) and adopt the
Pearson correlation analysis. As depicted in Figure 1, both H(Lw) and H(Lw|Y ) exhibit stronger
correlations with the generalization error in comparison to other metrics, including the number of
parameters, the F-norm of the hypothesis, information bottleneck I(X;Tw) related metrics, and
the input-output mutual information I(W ;S). This observation highlights the capabilities of loss
entropy metrics in assessing the generalization ability of deep learning models. Moreover, the ob-
servation that H(Lw|Y ) outperforms H(Lw) supports our analysis, demonstrating that Theorem 2
is more effective than Theorem 1 when the cardinality of the label space |Y| is finite.

4.2 REAL-WORLD LEARNING TASKS

In order to assess information-theoretic generalization bounds within the context of modern deep-
learning tasks, we adhere to the experimental configurations established by Harutyunyan et al.
(2021). Specifically, we consider training a 4-layer CNN on binarized MNIST data, which is re-
stricted to comprise only digits 4 and 9. Additionally, we engage in fine-tuning a pre-trained ResNet-
50 model on the CIFAR10 dataset. A comprehensive illustration of the training algorithm, network
architecture, and experimental setup can be found in Appendix F.

As of our current knowledge, the most stringent fast-rate high-probability information-theoretic
generalization bound available in the literature is the binary KL bound (Theorem 7 in (Hellström &
Durisi, 2022)) employing I(R̃W ; Ũ |S̃s). Note that this quantity is computationally intractable due
to its high dimensionality, and here we adopt a lower-bound approximation:

∑n
i=1 I(L

W
i,0, L

W
i,1; Ũi)

(see Appendix F.2 for the proof). In addition to this baseline (Binary KL), our primary comparison
centers around the square-root generalization bound in Theorem 4 (Square-Root) and the fast-rate
generalization bound in Theorem 6 (Fast-Rate).
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The final outcomes are presented in Figure 2. As can be seen, these upper bounds effectively cap-
ture the patterns of the generalization gap. Across the three distinct learning scenarios, both our
square-root bound and fast-rate bound exhibit significant improvements over the lower-bound ap-
proximation of the binary KL bound. This observation substantiates our previous discussion that
our bounds can adeptly accommodate long-tailed loss distributions, while the binary KL bound is
influenced by the maximum attainable loss value. Moreover, the fast-rate bound consistently out-
performs the square-root bound, particularly in more challenging learning scenarios (CIFAR10 and
SGLD). This provides empirical validation for the efficacy of our thresholding strategy.

Furthermore, it is evident from Figure 2c that the binary KL bound is especially loose in the initial
epochs. This behavior arises due to the adoption of a universal C: according to the expression of
Ci in Theorem 5 and 6, using distinct Ci particularly improves the bound when the majority of loss
values are close to the threshold κ, which happens at the early stages of the training process. In con-
trast, our loss entropy-based generalization bounds overcome this limitation, consistently offering
accurate predictions of the actual generalization error.

5 RELATED WORKS

This work is intricately linked to extensive literature concerning information-theoretic generaliza-
tion bounds. The seminal contributions by Russo & Zou (2016); Xu & Raginsky (2017); Russo
& Zou (2019) initially motivated the characterization of generalization properties through mutual
information between training samples and model parameters. This approach has demonstrated its
efficacy in dissecting the behavior of noisy and iterative learning algorithms, exemplified by its ap-
plication in SGLD (Negrea et al., 2019; Wang et al., 2021) and SGD (Neu et al., 2021; Wang &
Mao, 2021; Dong et al., 2023). Furthermore, it serves as a scaffold for subsequent enhancements
by encompassing techniques such as conditioning (Hafez-Kolahi et al., 2020), the chaining strat-
egy (Asadi et al., 2018; Zhou et al., 2022; Clerico et al., 2022), the random subsets or individual
techniques (Bu et al., 2020; Rodrı́guez-Gálvez et al., 2021), and conditional information measures
(Steinke & Zakynthinou, 2020; Haghifam et al., 2020).

Remarkably, Harutyunyan et al. (2021) introduced a novel approach to establish generalization
bounds by leveraging conditional mutual information (CMI) between the model’s output and super-
sample variables. This technique treats the neural network as a ”black box”, resulting in a substantial
reduction in the dimensionality of random variables used in constructing generalization bounds, ren-
dering them directly tractable. Building upon this foundation, Hellström & Durisi (2022); Wang &
Mao (2023) further extended the approach by incorporating evaluated losses and loss differences
to derive tighter bounds. Another notable exploration in the CMI framework is the leave-one-out
setting, as recently investigated by Haghifam et al. (2022); Rammal et al. (2022). This variant sig-
nificantly reduces the required number of samples from n× 2 to just n+ 1.

The information bottleneck (IB) principle (Tishby et al., 2000) and the minimum error entropy
(MEE) criterion (Erdogmus & Principe, 2000) play essential roles in designing supervised learning
algorithms under the information-theoretic learning framework (Principe, 2010). The IB objective
is developed based on the concept of minimal sufficient statistics and is widely adopted as a reg-
ularization technique (Alemi et al., 2016; Kolchinsky & Tracey, 2017; Kolchinsky et al., 2019).
Notably, Kawaguchi et al. (2023) provides the first information-theoretic generalization bound for
the IB principle, revealing that the generalization error scales roughly as Õ(

√
I(X;Tw|Y )/n). The

MEE criterion is recognized for its robustness against outliers or covariate shifts, attributed to its
capacity to capture high-order statistics of error distributions, and thus find applications in a variety
of learning tasks (Hu et al., 2013; Shen & Li, 2015; Guo et al., 2020).

6 CONCLUSION

In this paper, we introduce a series of high-probability information-theoretic generalization bounds
based on loss entropy. We demonstrate that these bounds are superior in tightness compared to
previous counterparts established in (Kawaguchi et al., 2023; Hellström & Durisi, 2022), both the-
oretically and empirically. Our numerical experiments on both synthetic and real-world datasets
substantiate that our bounds are consistently predictive of the true generalization gap across various
deep-learning scenarios, validating the efficacy of our theoretical analysis.
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A PREREQUISITE DEFINITIONS AND LEMMAS

Unless otherwise noted, we use log to denote the logarithmic function with base e.

Definition 1. (Subgaussian) A random variable X is σ-subgaussian if for any ρ ∈ R, E[exp(ρ(X−
E[X]))] ≤ exp(ρ2σ2/2).

Definition 2. (Kullback-Leibler Divergence) Let P and Q be probability measures on the same
space X , the KL divergence from P to Q is defined as KL(P ∥ Q) ≜

∫
X p(x) log(p(x)/q(x)) dx.

Definition 3. (Mutual Information) Let (X,Y ) be a pair of random variables with values over the
space X ×Y . Let their joint distribution be PX,Y and the marginal distributions be PX and PY re-
spectively, the mutual information between X and Y is defined as I(X;Y ) = KL(PX,Y ∥ PXPY ).
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Lemma 1. (Lemma 3 in Kawaguchi et al., 2022) Let the vector X = (X1, · · · , Xn) follow the
multinomial distribution with parameters m and p = (p1, · · · , pn). Let ā1, · · · , ān ≥ 0 be fixed
such that

∑n
i=1 āipi ̸= 0. Then for any ϵ > 0,

P

(
n∑

i=1

āi

(
pi −

Xi

m

)
> ϵ

)
≤ exp

(
−mϵ2

β

)
,

where β = 2
∑n

i=1 ā
2
i pi.

Lemma 2. (Lemma 1 in Xu & Raginsky, 2017) Let (X,Y ) be a pair of random variables with joint
distribution PX,Y and let Ȳ be an independent copy of Y . If f(x, y) is a measurable function such
that EX,Y [f(X,Y )] exists and f(X, Ȳ ) is σ-subgaussian, then∣∣EX,Y [f(X,Y )]− EX,Ȳ [f(X, Ȳ )]

∣∣ ≤√2σ2I(X;Y ).

Lemma 3. (Donsker-Varadhan formula) Let P and Q be probability measures defined on the same
measurable space, where P is absolutely continuous with respect to Q. Then

KL(P ∥ Q) = sup
X

{
EP [X]− logEQ[e

X ]
}
,

where X is any random variable such that eX is Q-integrable and EP [X] exists.

B PROOF OF THEOREM 1

We define the data generating process as Z = (θ(Y, V ), Y ), where Y is the randomly generated
label, θ is some hidden deterministic function and V = {Vi}mi=1 ∈ V ⊂ Rm are i.i.d nuisance
variables. For any y ∈ Y , define the sensitivity cwi,y of the model w.r.t the nuisance variable Vi:

cwi,y = sup
v1,··· ,vi,v̂i,··· ,vm

∣∣ log(pl ◦ ℓ)(w, θy(v1, · · · , vi, · · · , vm), y)

− log(pl ◦ ℓ)(w, θy(v1, · · · , v̂i, · · · , vm), y)
∣∣,

where pl(l) = P(Lw = l) and θy(v) = θ(y, v). We then define the global sensitivity of w as:

cwy = sup
i∈[1,m]

cwi,y, and cw = EY [c
w
Y ].

Given the hypothesis w ∈ W , we denote the set of all possible loss values by

Lw = {ℓ(w, θy(v), y) : v ∈ V, y ∈ Y}.

For any γ > 0, we then define the typical subset of Lw by

Lw
γ =

{
l ∈ Lw : − log pl(l)−H(Lw) ≤ cw

√
m log(

√
n/γ)

2

}
. (1)

Note that Lw
γ is deterministic given the fixed hypothesis w ∈ W .

B.1 PROPERTIES OF THE TYPICAL SUBSET

Lemma 4. For any γ > 0, we have

P
(
Lw /∈ Lw

γ

)
≤ γ√

n
,

and ∣∣Lw
γ

∣∣ ≤ exp

(
H(Lw) + cw

√
m log(

√
n/γ)

2

)
.

Proof. Consider the following function

f(y, v) = − log pl(hy(v)), where hy(v) = ℓ(w, θy(v)).
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Let py(y) = P(Y = y), pv(v) = P(V = v) and h−1
y (l) = {v ∈ V : hy(v) = l}, we have

EY,V [f(Y, V )] = −
∑
y∈Y

py(y)
∑
v∈V

pv(v) log pl(hy(v))

= −
∑
y∈Y

py(y)
∑
l∈Lw

∑
v∈h−1

y (l)

pv(v) log pl(hy(v))

= −
∑
l∈Lw

∑
y∈Y

py(y)
∑

v∈h−1
y (l)

pv(v)

 log pl(l)

= −
∑
l∈Lw

pl(l) log pl(l)

= H(Lw).

Therefore, by applying McDiarmid’s inequality on f(V ) = − log pl(L
w), we have

P(− log pl(L
w)−H(Lw) ≥ ϵ) ≤ exp

(
− 2ϵ2

m(cw)2

)
. (2)

Take δ as the RHS of (2), we have

ϵ = cw
√

m log(1/δ)

2
. (3)

Combining with (1), we select δ = γ/
√
n and

P
(
Lw /∈ Lw

γ

)
≤ δ =

γ√
n
.

We now consider the size of the typical subset. For any l ∈ Lw
γ , we have

− log pl(l)−H(Lw) ≤ ϵ

− log pl(l) ≤ H(Lw) + ϵ

−H(Lw)− ϵ ≤ log pl(l)

exp(−H(Lw)− ϵ) ≤ pl(l).

This implies that

1 ≥ P
(
Lw ∈ Lw

γ

)
=
∑
l∈Lw

γ

pl(l) ≥
∑
l∈Lw

γ

exp(−H(Lw)− ϵ) =
∣∣Lw

γ

∣∣ exp(−H(Lw)− ϵ).

Combining with (3), we finally get∣∣Lw
γ

∣∣ ≤ exp

(
H(Lw) + cw

√
m log(

√
n/γ)

2

)
.

B.2 DECOMPOSITION OF THE GENERALIZATION ERROR

For convenience, we define t =
∣∣Lw

γ

∣∣, the elements of the typical subset as Lw
γ = {a1, · · · , at}, and

I =
{
i ∈ [1, n] : Lw

i /∈ Lw
γ

}
,

Ik = {i ∈ [1, n] : Lw
i = ak}.

Note that I and Ik are random variables that are dependent on the training dataset S. We then use
these notations to decompose the generalization error:
Lemma 5. The generalization error ∆(w, S) satisfies

∆(w, S) = P
(
Lw /∈ Lw

γ

)(
ELw

[
Lw|Lw /∈ Lw

γ

]
− 1

|I|
∑
i∈I

Lw
i

)

17
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+
1

|I|

(
P
(
Lw /∈ Lw

γ

)
− |I|

n

)∑
i∈I

Lw
i

+

t∑
k=1

(
P(Lw = ak)−

|Ik|
n

)
ak.

Proof. By noticing that I ∪ I1 ∪ · · · ∪ It = [1, n], the population risk can then be decomposed as:

ELw [Lw] = P
(
Lw /∈ Lw

γ

)
ELw

[
Lw|Lw /∈ Lw

γ

]
+

t∑
k=1

P(Lw = ak)ELw [Lw|Lw = ak]

= P
(
Lw /∈ Lw

γ

)
ELw

[
Lw|Lw /∈ Lw

γ

]
+

t∑
k=1

P(Lw = ak)ak. (4)

Similarly, we can decompose the empirical risk as:

1

n

n∑
i=1

Lw
i =

1

n

(∑
i∈I

Lw
i +

t∑
k=1

∑
i∈Ik

Lw
i

)

=
1

n

∑
i∈I

Lw
i +

t∑
k=1

1

n

∑
i∈Ik

ak

=
1

n

∑
i∈I

Lw
i +

t∑
k=1

|Ik|
n

ak. (5)

Substitute (4) and (5) into ∆(w, S), we can get

∆(w, S) = L(w)− LS(w) = ELw [Lw]− 1

n

n∑
i=1

Lw
i

= P
(
Lw /∈ Lw

γ

)
ELw

[
Lw|Lw /∈ Lw

γ

]
− P

(
Lw /∈ Lw

γ

) 1

|I|
∑
i∈I

Lw
i

+ P
(
Lw /∈ Lw

γ

) 1

|I|
∑
i∈I

Lw
i − 1

n

∑
i∈I

Lw
i

+

t∑
k=1

P(Lw = ak)ak −
t∑

k=1

|Ik|
n

ak

= P
(
Lw /∈ Lw

γ

)(
ELw

[
Lw|Lw /∈ Lw

γ

]
− 1

|I|
∑
i∈I

Lw
i

)

+
1

|I|

(
P
(
Lw /∈ Lw

γ

)
− |I|

n

)∑
i∈I

Lw
i

+

t∑
k=1

(
P(Lw = ak)−

|Ik|
n

)
ak.

To simplify the notations, we denote the decomposition above as:

∆(w, S) = A(w, S) +B(w, S) + C(w, S),

where

A(w, S) = P
(
Lw /∈ Lw

γ

)(
ELw

[
Lw|Lw /∈ Lw

γ

]
− 1

|I|
∑
i∈I

Lw
i

)
,
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B(w, S) =
1

|I|

(
P
(
Lw /∈ Lw

γ

)
− |I|

n

)∑
i∈I

Lw
i ,

C(w, S) =

t∑
k=1

(
P(Lw = ak)−

|Ik|
n

)
ak.

B.3 BOUNDING EACH TERM IN THE DECOMPOSITION

Lemma 6. For any γ > 0, A(w, S) satisfies:

A(w, S) ≤ γbw√
n
.

Proof. From Lemma 4, we have
P
(
Lw /∈ Lw

γ

)
≤ γ√

n
.

Since Lw
i ≥ 0 for any i ∈ [1, n], we can prove that

A(w, S) = P
(
Lw /∈ Lw

γ

)(
ELw

[
Lw|Lw /∈ Lw

γ

]
− 1

|I|
∑
i∈I

Lw
i

)
≤ P

(
Lw /∈ Lw

γ

)
ELw

[
Lw|Lw /∈ Lw

γ

]
≤ γ√

n
ELw

[
Lw|Lw /∈ Lw

γ

]
≤ γbw√

n
.

Lemma 7. For any γ > 0 and δ > 0, with probability at least 1−δ, B(w, S) and C(w, S) satisfies:

B(w, S) ≤

√
P
(
Lw /∈ Lw

γ

)∑
i∈I Lw

i

|I|

√
2 log(2/δ)

n
,

C(w, S) ≤ 2bw
√

2(H(Lw) + Cw
4 ) + 2 log(2/δ)

n
,

where

Cw
4 = cw

√
m log(

√
n/γ)

2
.

Proof. Denote qk = P(Lw = ak) for k ∈ [1, t] and q = P
(
Lw /∈ Lw

γ

)
. Let

Ck(w, S) =

t∑
i=1

(
qi −

|Ii|
n

)
ai −

(
qk − |Ik|

n

)
ak.

We then apply Lemma 1 with

n = t+ 1, X = (|I1|, · · · , |It|, |I|), p = (q1, · · · , qt, q),
m = n, āk = 0, āt+1 = 0, and āi = ai for any i ̸= k.

When there exists i ∈ [1, t] \ k such that qiai > 0, we have
∑t

i=1 āiqi + āt+1q ̸= 0 and the
precondition of Lemma 1 is satisfied. Then for any ϵ > 0,

P(Ck(w, S) > ϵ) ≤ exp

− nϵ2

2
(∑t

i=1 qia
2
i − qka2k

)
, (6)
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for any k ∈ [1, t]. Similarly, by setting āt+1 = 1 and āi = 0 for any i ∈ [1, n], we have

P
(
q − |I|

n
> ϵ

)
≤ exp

(
−nϵ2

2q

)
. (7)

Take δ as the RHS of (6) and (7) respectively, we then get

P

Ck(w, S) >

√√√√ t∑
i=1

qia2i − qka2k

√
2 log(1/δ)

n

 ≤ δ, (8)

for any k ∈ [1, t] and

P

(
q − |I|

n
>

√
2q log(1/δ)

n

)
≤ δ. (9)

Otherwise if qiai = 0 for all i ̸= k or q = 0, then Ck(w, S) = 0 or q − |I|/n = 0 and (8), (9) are
natrually satisfied. Therefore, the inequalitites (8), (9) hold for arbitrary (q1a1, · · · , qtat, q).
By substituting (9) into B(w, S), we have that for any δ > 0, with probability at least 1− δ,

B(w, S) =
1

|I|

(
P
(
Lw /∈ Lw

γ

)
− |I|

n

)∑
i∈I

Lw
i

≤

√
P
(
Lw /∈ Lw

γ

)∑
i∈I Lw

i

|I|

√
2 log(1/δ)

n
. (10)

Similarly, from (8), we have that for any δ > 0 and k ∈ [1, t], with probability at least 1− δ,

Ck(w, S) ≤

√√√√ t∑
i=1

P(Lw = ai)a2i − P(Lw = ak)a2k

√
2 log(1/δ)

n

≤ bw

√√√√ t∑
i=1

P(Lw = ai)− P(Lw = ak)

√
2 log(1/δ)

n

= bw
√
P
(
Lw ∈ Lw

γ

⋂
Lw ̸= ak

)√2 log(1/δ)

n

≤ bw
√

2 log(1/δ)

n
.

Taking the union bound over every k ∈ [1, t], we have that for any δ > 0, with probability at least
1− δ, the following inequalities hold:

C1(w, S) ≤ bw
√

2 log(t/δ)
n ,

...

Ct(w, S) ≤ bw
√

2 log(t/δ)
n .

(11)

By substituting (11) into C(w, S), we have that for any δ > 0, with probability at least 1− δ,

C(w, S) =

t∑
k=1

(
P(Lw = ak)−

|Ik|
n

)
ak

=
1

t− 1

t∑
k=1

Ck(w, S)

≤ 1

t− 1

t∑
k=1

bw
√

2 log(t/δ)

n
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=
t

t− 1
bw
√

2 log(t/δ)

n
.

For the extreme case where t = 1, we can similarly derive that for any δ > 0, with probability at
least 1− δ,

C(w, S) =

(
P(Lw = a1)−

|I1|
n

)
a1

≤ a1
√
P(Lw = a1)

√
2 log(1/δ)

n

≤ bw
√

2 log(t/δ)

n
.

Therefore, for arbitrary t ≥ 1, we have

C(w, S) ≤ 2bw
√

2 log(t/δ)

n
. (12)

From Lemma 4, we know that

t =
∣∣Lw

γ

∣∣ ≤ exp

(
H(Lw) + cw

√
m log(

√
n/γ)

2

)
.

Substituting into (12), we have

C(w, S) ≤ 2bw
√

2 log(t) + 2 log(1/δ)

n

≤ 2bw

√√√√√2

(
H(Lw) + cw

√
m log(

√
n/γ)

2

)
+ 2 log(1/δ)

n
. (13)

Finally, by taking the union bound over (10) and (13), we have that for any δ > 0, with probability
at least 1− δ, the following inequalities hold:

B(w, S) ≤

√
P
(
Lw /∈ Lw

γ

)∑
i∈I Lw

i

|I|

√
2 log(2/δ)

n
,

C(w, S) ≤ 2bw
√

2(H(Lw) + Cw
4 ) + 2 log(2/δ)

n
.

B.4 COMPLETING THE PROOF

Theorem 1 (Restate). For any γ > 0 and δ > 0, with probability at least 1 − δ, the following
inequality holds:

∆(w, S) ≤ Cw
1

√
H(Lw) + Cw

2

n
+

Cw
3√
n
,

where

Cw
1 = 2bw

√
2,

Cw
2 = cw

√
m log(

√
n/γ)

2
+ log(2/δ),

Cw
3 = γbw +Bw,S

√
γ

n1/4

√
2 log(2/δ).

Proof. From Lemma 6, we know that for any γ > 0,

A(w, S) ≤ γbw√
n
. (14)

21



Published as a conference paper at ICLR 2024

Recall that in Lemma 4, we proved that

P
(
Lw /∈ Lw

γ

)
≤ γ√

n
.

By applying Lemma 7, we have that for any γ > 0 and δ > 0, with probability at least 1− δ,

B(w, S) ≤

√
P
(
Lw /∈ Lw

γ

)∑
i∈I Lw

i

|I|

√
2 log(2/δ)

n

≤
√
γ

n1/4

1

|I|
∑
i∈I

Bw,S

√
2 log(2/δ)

n

= Bw,S

√
γ

n1/4

√
2 log(2/δ)

n
, (15)

and

C(w, S) ≤ 2bw
√

2(H(Lw) + Cw
4 ) + 2 log(2/δ)

n

= Cw
1

√
H(Lw) + Cw

2

n
. (16)

Recall that in Lemma 5 we proved

∆(w, S) = A(w, S) +B(w, S) + C(w, S). (17)

By substituting (14), (15) and (16) into (17), we finally get

∆(w, S) ≤ γbw√
n

+Bw,S

√
γ

n1/4

√
2 log(2/δ)

n
+ Cw

1

√
H(Lw) + Cw

2

n

= Cw
1

√
H(Lw) + Cw

2

n
+

1√
n

(
γbw +Bw,S

√
γ

n1/4

√
2 log(2/δ)

)
= Cw

1

√
H(Lw) + Cw

2

n
+

Cw
3√
n
.

C PROOF OF THEOREM 2

Similarly, given the hypothesis w ∈ W , we denote the set of all possible loss values per class by

Lw
y = {ℓ(w, θy(v), y) : v ∈ V}.

Let Lw
y = Lw|y . For any γ > 0, define the typical subset of Lw

y by

Lw
γ,y =

{
l ∈ Lw

y : − log pl|y(l)−H(Lw
y ) ≤ cwy

√
m log(

√
n/γ)

2

}
, (18)

where pl|y(l) = P(Lw = l|Y = y) = P
(
Lw
y = l

)
.

C.1 PROPERTIES OF THE CONDITIONAL TYPICAL SUBSET

We first show that Lw
γ,y shares exactly the same properties as the unconditional one:

Lemma 8. For any γ > 0, we have

P
(
Lw
y /∈ Lw

γ,y

)
≤ γ√

n
,

and ∣∣Lw
γ,y

∣∣ ≤ exp

(
H(Lw

y ) + cwy

√
m log(

√
n/γ)

2

)
.

22



Published as a conference paper at ICLR 2024

Proof. Consider the function fy(v) = − log pl|y(hy(v)), we have

EV [fy(V )] = −
∑
v∈V

pv(v) log pl|y(hy(v))

= −
∑
l∈Lw

y

∑
v∈h−1

y (l)

pv(v) log pl|y(hy(v))

= −
∑
l∈Lw

y

 ∑
v∈h−1

y (l)

pv(v)

 log pl|y(l)

= −
∑
l∈Lw

y

pl|y(l) log pl|y(l)

= H(Lw
y ).

Therefore, by applying McDiarmid’s inequality on f(V ) = − log pl|y(L
w
y ), we have

P
(
− log pl|y(L

w
y )−H(Lw

y ) ≥ ϵ
)
≤ exp

(
− 2ϵ2

m(cwy )
2

)
. (19)

Take δ as the RHS of (19), we have

ϵ = cwy

√
m log(1/δ)

2
.

Combining with (18), we select δ = γ/
√
n and

P
(
Lw
y /∈ Lw

γ,y

)
≤ δ =

γ√
n
.

Similar to the proof of Lemma 4, we can prove that∣∣Lw
γ,y

∣∣ exp(−H(Lw
y )− ϵ

)
≤ 1,

which further implies ∣∣Lw
γ,y

∣∣ ≤ exp

(
H(Lw

y ) + cwy

√
m log(1/δ)

2

)
.

C.2 DECOMPOSITION OF THE GENERALIZATION ERROR

We further define ty =
∣∣Lw

γ,y

∣∣, the elements of the typical subset as Lw
γ,y = {ay1, · · · , a

y
ty}, and

Iy =
{
i ∈ [1, n] : Lw

i /∈ Lw
γ,y, Yi = y

}
,

Iy
k = {i ∈ [1, n] : Lw

i = ayk, Yi = y}.

We then use these notations to decompose the generalization error.

Lemma 9. The generalization error ∆(w, S) = Ã(w, S) + B̃(w, S) + C̃(w, S), where

Ã(w, S) =
∑
y∈Y

P
(
Y = y, Lw /∈ Lw

γ,y

)(
ELw

[
Lw|Y = y, Lw /∈ Lw

γ,y

]
− 1

|Iy|
∑
i∈Iy

Lw
i

)
,

B̃(w, S) =
∑
y∈Y

1

|Iy|

(
P
(
Y = y, Lw /∈ Lw

γ,y

)
− |Iy|

n

)∑
i∈Iy

Lw
i ,

C̃(w, S) =
∑
y∈Y

ty∑
k=1

(
P(Y = y, Lw = ayk)−

|Iy
k |
n

)
ayk.
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Proof. The population risk conditioned on Y = y can be decomposed as:

ELw
y
[Lw

y ] = P
(
Lw
y /∈ Lw

γ,y

)
ELw

y

[
Lw
y |Lw

y /∈ Lw
γ,y

]
+

ty∑
k=1

P
(
Lw
y = ayk

)
ELw

y

[
Lw
y |Lw

y = ayk
]

= P
(
Lw
y /∈ Lw

γ,y

)
ELw

y

[
Lw
y |Lw

y /∈ Lw
γ,y

]
+

ty∑
k=1

P
(
Lw
y = ayk

)
ayk.

Summarising over y ∈ Y , we have

ELw [Lw] =
∑
y∈Y

P
(
Y = y, Lw /∈ Lw

γ,y

)
ELw

[
Lw|Y = y, Lw /∈ Lw

γ,y

]
+
∑
y∈Y

ty∑
k=1

P(Y = y, Lw = ayk)a
y
k.

Similarly, we can decompose the empirical risk as:

1

n

n∑
i=1

Lw
i =

1

n

∑
y∈Y

∑
i∈Iy

Lw
i +

ty∑
k=1

∑
i∈Iy

k

Lw
i


=

1

n

∑
y∈Y

∑
i∈Iy

Lw
i +

∑
y∈Y

ty∑
k=1

1

n

∑
i∈Iy

k

ayk

=
1

n

∑
y∈Y

∑
i∈Iy

Lw
i +

∑
y∈Y

ty∑
k=1

|Iy
k |
n

ayk.

Substituting the inequalities above into ∆(w, S), we have

∆(w, S) =
∑
y∈Y

P
(
Y = y, Lw /∈ Lw

γ,y

)
ELw

[
Lw|Y = y, Lw /∈ Lw

γ,y

]
−
∑
y∈Y

P
(
Y = y, Lw /∈ Lw

γ,y

)( 1

|Iy|
∑
i∈Iy

Lw
i

)

+
∑
y∈Y

P
(
Y = y, Lw /∈ Lw

γ,y

)( 1

|Iy|
∑
i∈Iy

Lw
i

)
−
∑
y∈Y

|Iy|
n

(
1

|Iy|
∑
i∈Iy

Lw
i

)

+
∑
y∈Y

ty∑
k=1

P(Y = y, Lw = ayk)a
y
k −

∑
y∈Y

ty∑
k=1

|Iy
k |
n

ayk

=
∑
y∈Y

P
(
Y = y, Lw /∈ Lw

γ,y

)(
ELw

[
Lw|Y = y, Lw /∈ Lw

γ,y

]
− 1

|Iy|
∑
i∈Iy

Lw
i

)

+
∑
y∈Y

1

|Iy|

(
P
(
Y = y, Lw /∈ Lw

γ,y

)
− |Iy|

n

)∑
i∈Iy

Lw
i

+
∑
y∈Y

ty∑
k=1

(
P(Y = y, Lw = ayk)−

|Iy
k |
n

)
ayk.

C.3 BOUNDING EACH TERM IN THE DECOMPOSITION

Lemma 10. For any γ > 0, Ã(w, S) satisfies:

Ã(w, S) ≤ γbw√
n
.
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Additionally, for any δ > 0, with probability at least 1− δ, the following inequalities hold:

B̃(w, S) ≤
∑
y∈Y

√
P
(
Y = y, Lw /∈ Lw

γ,y

)∑
i∈Iy Lw

i

|Iy|

√
2 log(2|Y|/δ)

n

C̃(w, S) ≤ 2bw
√
|Y|
√

2(H(Lw|Y ) + Cw
4 ) + 2 log(2|Y|/δ)
n

.

Proof. From Lemma 8, we have
P
(
Lw
y /∈ Lw

γ,y

)
≤ γ√

n
.

By the fact that Lw
i ≥ 0 for any i ∈ [1, n], we can prove that

Ã(w, S) =
∑
y∈Y

P
(
Y = y, Lw /∈ Lw

γ,y

)(
ELw

[
Lw|Y = y, Lw /∈ Lw

γ,y

]
− 1

|Iy|
∑
i∈Iy

Lw
i

)
≤
∑
y∈Y

P(Y = y)P
(
Lw
y /∈ Lw

γ,y

)
ELw

[
Lw|Y = y, Lw /∈ Lw

γ,y

]
≤
∑
y∈Y

P(Y = y)
γ√
n
bw =

γbw√
n
.

Denote qyk = P(Y = y, Lw = ayk) for k ∈ [1, ty], qy = P(Y = y, Lw /∈ Lw
γ,y) and let

C̃y
k (w, S) =

ty∑
i=1

(
qyi − |Iy

i |
n

)
ayi −

(
qyk −

|Iy
k |
n

)
ayk.

We apply Lemma 1 with

n = ty + 1, X =
(
|Iy

1 |, · · · ,
∣∣∣Iy

ty

∣∣∣, |Iy|
)
, p =

(
qk1 , · · · , qkty , q

k
)
,

m = n, āk = 0, āty+1 = 0, and āi = ayi for any i ̸= k.

Then for any ϵ > 0, we have

P
(
C̃y

k (w, S) > ϵ
)
≤ exp

− nϵ2

2
(∑ty

i=1 q
y
i (a

y
i )

2 − qyk(a
y
k)

2
)
, (20)

for any k ∈ [1, ty]. Similarly, we can get

P
(
qy − |Iy|

n
> ϵ

)
≤ exp

(
−nϵ2

2qy

)
. (21)

Take δ as the RHS of (20) and (21) respectively, we have

P

C̃y
k (w, S) >

√√√√ ty∑
i=1

qyi (a
y
i )

2 − qyk(a
y
k)

2

√
2 log(1/δ)

n

 ≤ δ,

for any k ∈ [1, ty] and

qy − |Iy|
n

≤
√

2qy log(1/δ)

n
.

Take the union bound over y ∈ Y , we have that for any δ > 0, with probability at least 1 − δ, the
following inequality holds for all y ∈ Y simultaneously:

C̃y
k (w, S) ≤

√√√√ ty∑
i=1

qyi (a
y
i )

2 − qyk(a
y
k)

2

√
2 log(|Y|/δ)

n
, (22)
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for any k ∈ [1, ty] and

P

(
qy − |Iy|

n
>

√
2qy log(|Y|/δ)

n

)
≤ δ. (23)

Substitute (23) into B̃(w, S), we have that for any δ > 0, with probability at least 1− δ,

B̃(w, S) =
∑
y∈Y

1

|Iy|

(
P
(
Y = y, Lw /∈ Lw

γ,y

)
− |Iy|

n

)∑
i∈Iy

Lw
i

≤
∑
y∈Y

√
P
(
Y = y, Lw /∈ Lw

γ,y

)∑
i∈Iy Lw

i

|Iy|

√
2 log(|Y|/δ)

n
. (24)

Similarly, from (22), we have that for any δ > 0 and k ∈ [1, ty], with probability at least 1− δ,

C̃y
k (w, S) ≤

√√√√ ty∑
i=1

qyi (a
y
i )

2 − qyk(a
y
k)

2

√
2 log(|Y|/δ)

n

≤ bw

√√√√ ty∑
i=1

qyi − qyk

√
2 log(|Y|/δ)

n

= bw
√
P
(
Y = y

⋂
Lw ∈ Lw

γ,y

⋂
Lw ̸= ayk

)√2 log(|Y|/δ)
n

≤ bw
√
P(Y = y)

√
2 log(|Y|/δ)

n
.

Taking the union bound over k, we have that for any δ > 0, with probability at least 1 − δ, the
following holds for all k ∈ [1, t] and y ∈ Y simultaneously:

C̃y
k (w, S) ≤ bw

√
P(Y = y)

√
2 log(ty|Y|/δ)

n
. (25)

Substitute (25) into C̃(w, S), we have that for any δ > 0, with probability at least 1− δ,

C̃(w, S) =
∑
y∈Y

ty∑
k=1

(
P(Y = y, Lw = ayk)−

|Iy
k |
n

)
ayk

=
∑
y∈Y

1

ty − 1

ty∑
k=1

C̃y
k (w, S)

≤
∑
y∈Y

1

ty − 1

ty∑
k=1

bw
√
P(Y = y)

√
2 log(ty|Y|/δ)

n

=
∑
y∈Y

bw
√
P(Y = y)

ty
ty − 1

√
2 log(ty|Y|/δ)

n

≤ 2
∑
y∈Y

bw
√
P(Y = y)

√
2 log(ty|Y|/δ)

n
.

Recall Lemma 8 which proves that

ty =
∣∣Lw

γ,y

∣∣ ≤ exp

(
H(Lw

y ) + cwy

√
m log(

√
n/γ)

2

)
.

By applying Jensen’s inequality, we have

C̃(w, S) ≤ 2bw
∑
y∈Y

√
P(Y = y)

√
2 log(ty) + 2 log(|Y|/δ)

n
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≤ 2bw
∑
y∈Y

√
P(Y = y)

√√√√√2

(
H(Lw

y ) + cwy

√
m log(

√
n/γ)

2

)
+ 2 log(|Y|/δ)

n

≤ 2bw
√
|Y|

√√√√√√∑
y∈Y

P(Y = y)

2

(
H(Lw

y ) + cwy

√
m log(

√
n/γ)

2

)
+ 2 log(|Y|/δ)

n

= 2bw
√

|Y|

√√√√√2

(
H(Lw|Y ) + cw

√
m log(

√
n/γ)

2

)
+ 2 log(|Y|/δ)

n
(26)

Finally, taking the union bound over (24) and (26), we have that for any δ > 0, with probability at
least 1− δ, the following inequalities hold:

B̃(w, S) ≤
∑
y∈Y

√
P
(
Y = y, Lw /∈ Lw

γ,y

)∑
i∈Iy Lw

i

|Iy|

√
2 log(2|Y|/δ)

n

C̃(w, S) ≤ 2bw
√
|Y|
√

2(H(Lw|Y ) + Cw
4 ) + 2 log(2|Y|/δ)
n

.

C.4 COMPLETING THE PROOF

Theorem 2 (Restate). For any γ > 0 and δ > 0, with probability at least 1 − δ, the following
inequality holds:

∆(w, S) ≤ C̃w
1

√
H(Lw|Y ) + C̃w

2

n
+

C̃w
3√
n
,

where

C̃w
1 = 2bw

√
2|Y|,

C̃w
2 = cw

√
m log(

√
n/γ)

2
+ log(2|Y|/δ),

C̃w
3 = γbw +Bw,S

√
γ|Y|
n1/4

√
2 log(2|Y|/δ).

Proof. Recall from Lemma 8 that

P
(
Lw
y /∈ Lw

γ,y

)
≤ γ√

n
.

Combining with Lemma 10, we have that for any γ > 0 and δ > 0, with probability at least 1− δ,

B̃(w, S) ≤
∑
y∈Y

√
P
(
Y = y, Lw /∈ Lw

γ,y

)∑
i∈Iy Lw

i

|Iy|

√
2 log(2|Y|/δ)

n

=
∑
y∈Y

√
P(Y = y)

√
P
(
Lw
y /∈ Lw

γ,y

) 1

|Iy|

(∑
i∈Iy

Lw
i

)√
2 log(2|Y|/δ)

n

≤
√
γ

n1/4

1

|Iy|

(∑
i∈Iy

Bw,S

)√
|Y|
√∑

y∈Y
P(Y = y)

√
2 log(2|Y|/δ)

n

≤ Bw,S

√
γ|Y|
n1/4

√
2 log(2|Y|/δ)

n
.
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and

C̃(w, S) ≤ 2bw
√

|Y|
√

2(H(Lw|Y ) + Cw
4 ) + 2 log(2|Y|/δ)
n

= C̃w
1

√
H(Lw|Y ) + C̃w

2

n
.

By applying Lemma 9, we can get

∆(w, S) = Ã(w, S) + B̃(w, S) + C̃(w, S)

≤ γbw√
n

+Bw,S

√
γ|Y|
n1/4

√
2 log(2|Y|/δ)

n
+ C̃w

1

√
H(Lw|Y ) + C̃w

2

n

≤ C̃w
1

√
H(Lw|Y ) + C̃w

2

n
+

1√
n

(
γbw +Bw,S

√
γ|Y|
n1/4

√
2 log(2|Y|/δ)

)

= C̃w
1

√
H(Lw|Y ) + C̃w

2

n
+

C̃w
3√
n
.

D PROOF OF DATA-DEPENDENT BOUNDS

Let R ∈ R be any discrete random variable. Denote pr(r) = P(R = r). For any λ > 0, define

Cλ =
1

eλH(R)

∑
r∈R

p1−λ
r (r).

For any ϵ > 0, we define the typical subset

Rϵ = {r ∈ R : − log pr(r)−H(R) ≤ ϵ}.

D.1 PROPERTIES OF THE TYPICAL SUBSET

Lemma 11. For any λ > 0, by taking ϵ = 1
λ log(Cλ/δ), we have

P(R /∈ Rϵ) ≤ δ,

and

|Rϵ| ≤ exp

(
H1−λ(R) +

1

λ
log

(
1

δ

))
.

Proof. From the definition of the typical subset and by applying Markov’s inequality, we have

P(R /∈ Rϵ) = P(− log pr(R) ≥ H(R) + ϵ)

= P(−λ log pr(R) ≥ λH(R) + λϵ)

= P
(
p−λ
r (R) ≥ exp(λH(R) + λϵ)

)
≤

ER

[
p−λ
r (R)

]
exp(λH(R) + λϵ)

(27)

=

∑
r∈R p1−λ

r (r)

exp(λH(R) + λϵ)
=

Cλ

eλϵ
. (28)

Now we compute the size of Rϵ:

− log pr(R)−H(R) ≤ ϵ

− log pr(R) ≤ H(R) + ϵ

−H(R)− ϵ ≤ log pr(R)
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exp(−H(R)− ϵ) ≤ pr(R).

This further implies that

1 ≥ P(R ∈ Rϵ) =
∑
r∈Rϵ

pr(r) ≥
∑
r∈Rϵ

exp(−H(R)− ϵ) = |Rϵ| exp(−H(R)− ϵ).

By taking Cλ/e
λϵ = δ in (28), i.e. ϵ = 1

λ log(Cλ/δ), we have

|Rϵ| ≤ exp

(
H(R) +

1

λ
log

(
Cλ

δ

))
= exp

(
H(R) +

1

λ
log

(
1

δ

)
+

1

λ
log

(
1

eλH(R)

∑
r∈R

p1−λ
r (r)

))

= exp

(
H(R) +

1

λ
log

(
1

δ

)
− 1

λ
λH(R) +

1

λ
log
∑
r∈R

p1−λ
r (r)

)

= exp

(
H1−λ(R) +

1

λ
log

(
1

δ

))
.

D.2 COMPLETING THE PROOF

Theorem 3 (Restate). For any λ ∈ (0, 1) and δ > 0, with probability at least 1 − δ, the following
inequality holds:

∆
(
W, S̃l, U

)
≤ CW

1

√
H1−λ(RW ) + CW

2 ,

where

CW
1 =

√
2ΣRW ,

CW
2 =

1

λ
log

(
1

δ

)
+ log

(
2

δ

)
,

by assuming that n+1
n (LW

U − L̄W ) is ΣRW -subgaussian w.r.t U for ΣRW ∈ [0, BW,S̃l ].

Proof. Assume that RW = r for some r = {li}n+1
i=1 ∈ RW , we then have

∆
(
W, S̃l, U

)
= lU − 1

n

∑
i̸=U

li

= lU − 1

n

n+1∑
i=1

li +
1

n
lU

=
n+ 1

n
lU − n+ 1

n
l̄

=
n+ 1

n

(
lU − l̄

)
,

where l̄ = 1
n+1

∑n+1
i=1 li. It is easy to verify that EU

[
∆
(
W, S̃l, U

)]
= 0. When lU = bW,S̃l =

supi∈[1,n+1] li and li = 0 for any i ̸= U , ∆
(
W, S̃l, U

)
takes the maximum value of bW,S̃l . Sim-

ilarly, one can prove that ∆
(
W, S̃l, U

)
≥ −bW,S̃l , which implies that ∆

(
W, S̃l, U

)
is bW,S̃l -

subgaussian. Assume that RW = r and let ∆
(
W, S̃l, U

)
be σr-subgaussian w.r.t U , where

σr ∈ [0, bW,S̃l ], then for any t > 0,

PU

(
∆
(
W, S̃l, U

)
≥ t
)
≤ exp

(
− t2

2(σr)
2

)
.
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That is, for any δ > 0 and r ∈ RW , if RW = r, then with probability at least 1− δ,

∆
(
W, S̃l, U

)
≤ σr

√
2 log(1/δ). (29)

From Lemma 11, we know that for any δ > 0,

P
(
RW /∈ RW

ϵ

)
≤ δ, (30)∣∣RW

ϵ

∣∣ ≤ exp

(
H1−λ

(
RW

)
+

1

λ
log

(
1

δ

))
. (31)

Taking the union bound of (29) over every r ∈ RW
ϵ , we have that for any δ > 0, with probability at

least 1− δ, the following inequality holds for all r ∈ RW
ϵ simultaneously if RW = r:

∆
(
W, S̃l, U

)
≤ σr

√
2 log(|RW

ϵ |/δ).

Therefore, if RW ∈ RW
ϵ , then we have that for any δ > 0, with probability at least 1− δ,

∆
(
W, S̃l, U

)
≤ ΣRW

√
2 log(|RW

ϵ |/δ). (32)

Again, take the union bound over (32) and (30), we have that for arbitrary RW ∈ RW and δ > 0,
with probability at least 1− δ,

∆
(
W, S̃l, U

)
≤ ΣRW

√
2 log(2|RW

ϵ |/δ). (33)

By substituting (31) into the inequality above, we can get

∆
(
W, S̃l, U

)
≤ ΣRW

√
2

(
H1−λ(RW ) +

1

λ
log

(
1

δ

))
+ 2 log

(
2

δ

)
= CW

1

√
H1−λ(RW ) + CW

2 .

Theorem 4 (Restate). For any λ ∈ (0, 1) and δ > 0, with probability at least 1 − δ, the following
inequality holds:

∆
(
W, S̃s, Ũ

)
≤ C̃W

1

√
H1−λ(R̃W

∆ ) + C̃W
2

n
,

where

C̃W
1 =

√√√√ 2

n

n∑
i=1

(
∆LW

i

)2
,

C̃W
2 =

1

λ
log

(
1

δ

)
+ log

(
2

δ

)
.

Proof. Assume that R̃W
∆ = r for some r = {∆li}ni=1 ∈ R̃W

∆ , we then have

∆
(
W, S̃s, Ũ

)
= LS̄(W )− LS(W )

=
1

n

n∑
i=1

LW
i,1−Ũ

− LW
i,Ũ

=
1

n

n∑
i=1

(−1)Ũi∆li.

Notice that EŨi
[(−1)Ũi ] = 0, by applying McDiarmid’s inequality with f(Ũ) = ∆

(
W, S̃s, Ũ

)
, we

have that when R̃W
∆ = r, for any t > 0:

PŨ

(
∆
(
W, S̃s, Ũ

)
≥ t
)
≤ exp

(
− 2t2∑n

i=1(2∆li/n)
2

)
.
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That is, for any δ > 0 and r ∈ R̃W
∆,ϵ, if R̃W

∆ = r, then with probability at least 1− δ,

∆
(
W, S̃s, Ũ

)
≤

√√√√ 1

n

n∑
i=1

(∆li)
2

√
2 log(1/δ)

n
.

From Lemma 11, we know that for any δ > 0,

P
(
R̃W

∆ /∈ R̃W
∆,ϵ

)
≤ δ, (34)∣∣∣R̃W

∆,ϵ

∣∣∣ ≤ exp

(
H1−λ(R̃

W
∆ ) +

1

λ
log

(
1

δ

))
. (35)

Taking the union bound over every r ∈ R̃W
∆,ϵ, we have that for any δ > 0, with probability at least

1− δ, the following bounds holds for all r ∈ R̃W
∆,ϵ simultaneously if R̃W

∆ = r:

∆
(
W, S̃s, Ũ

)
≤

√√√√ 1

n

n∑
i=1

(∆li)
2

√√√√2 log
(∣∣∣R̃W

∆,ϵ

∣∣∣/δ)
n

.

Therefore, if R̃W
∆ ∈ R̃W

∆,ϵ, we have that for any δ > 0, with probability at least 1− δ,

∆
(
W, S̃s, Ũ

)
≤

√√√√ 1

n

n∑
i=1

(
∆LW

i

)2
√√√√2 log

(∣∣∣R̃W
∆,ϵ

∣∣∣/δ)
n

. (36)

Again, take the union bound over (36) and (34), we have that for arbitrary R̃W
∆ ∈ R̃W

∆ and δ > 0,
with probability at least 1− δ,

∆
(
W, S̃s, Ũ

)
≤

√√√√ 1

n

n∑
i=1

(
∆LW

i

)2
√√√√2 log

(
2
∣∣∣R̃W

∆,ϵ

∣∣∣/δ)
n

. (37)

By substituting (35) into the inequality above, we have

log
(
2
∣∣∣R̃W

∆,ϵ

∣∣∣/δ) = log
(∣∣∣R̃W

∆,ϵ

∣∣∣)+ log

(
2

δ

)
≤ H1−λ(R̃

W
∆ ) +

1

λ
log

(
1

δ

)
+ log

(
2

δ

)
= H1−λ(R̃

W
∆ ) + C̃W

2 .

Substituting this into (37), we have that for any δ > 0, with probability at least 1− δ,

∆
(
W, S̃s, Ũ

)
≤ C̃W

1

√
H1−λ(R̃W

∆ ) + C̃W
2

n
.

D.3 FAST-RATE GENERALIZATION BOUNDS

We then prove our fast-rate generalization bounds for the validation error under the supersample
setting. To overcome the loose BW,S̃s factor in previous fast-rate bounds, we adopt a thresholding
strategy based on a simple observation: for any κ > 0, the error could be decomposed by:

L = min(κ, L) + max(L− κ, 0).

For convenience, we denote Lκ = min(κ, L) and L−κ = max(L− κ, 0), then L = Lκ + L−κ.
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Lemma 12. For any κ > 0, λ ∈ (0, 1) and δ > 0, with probability at least 1 − δ, the following
inequality holds:

1

n

n∑
i=1

LW,κ

i,1−Ũi
− (1 + Ci)L

W,κ

i,Ũi
≤

H1−λ(R̃
W,κ) + 1

λ log(1/δ) + log(4/δ)

nη
,

where R̃W,κ = {LW,κ
i,0 , LW,κ

i,1 }ni=1 and

η ∈
(
0,

log 2

2κ

)
, Ci = −

log
(
2− e2ηL̂

W,κ
i

)
2ηL̂W,κ

i

− 1, L̂W,κ
i = max

(
LW,κ
i,0 , LW,κ

i,1

)
,

for any i ∈ [1, n].

Proof. Assume that R̃W,κ = r for some r = {li,0, li,1}ni=1 ∈ R̃W,κ, the values of Ci, i ∈ [1, n] are
then deterministic given r. We then have

P

(
1

n

n∑
i=1

li,1−Ũi
− (1 + Ci)li,Ũi

≥ t

)

= P

(
1

n

n∑
i=1

(
1 +

Ci

2

)(
li,1−Ũi

− li,Ũi

)
− Ci

2
li,1−Ũi

− Ci

2
li,Ũi

≥ t

)

= P

(
1

2n

n∑
i=1

(
(−1)Ũi(2 + Ci)li,1 − Cili,1

)
+

1

2n

n∑
i=1

(
−(−1)Ũi(2 + Ci)li,0 − Cili,0

)
≥ t

)

≤ P

(
sup

I∈{0,1}

{
1

2n

n∑
i=1

(
(−1)Ũi(2 + Ci)− Ci

)
li,I

+
1

2n

n∑
i=1

(
−(−1)Ũi(2 + Ci)− Ci

)
li,1−I

}
≥ t

)

≤ P

(
sup

I∈{0,1}

{
1

2n

n∑
i=1

(
(−1)Ũi(2 + Ci)− Ci

)
li,I

}

+ sup
I∈{0,1}

{
1

2n

n∑
i=1

(
−(−1)Ũi(2 + Ci)− Ci

)
li,1−I

}
≥ t

)

≤ inf
γ∈(0,1)

P

(
sup

I∈{0,1}

{
1

2n

n∑
i=1

(
(−1)Ũi(2 + Ci)− Ci

)
li,I

}
≥ γt

)

+ P

(
sup

I∈{0,1}

{
1

2n

n∑
i=1

(
−(−1)Ũi(2 + Ci)− Ci

)
li,1−I

}
≥ (1− γ)t

)
.

Observe that the two events above share the same marginal distribution, this implies that

P

(
1

n

n∑
i=1

li,1−Ũi
− (1 + Ci)li,Ũi

≥ t

)

≤ inf
γ∈(0,1)

P

(
sup

I∈{0,1}

{
1

2n

n∑
i=1

(
(−1)Ũi(2 + Ci)− Ci

)
li,I

}
≥ γt

)

+ P

(
sup

I∈{0,1}

{
1

2n

n∑
i=1

(
(−1)Ũi(2 + Ci)− Ci

)
li,I

}
≥ (1− γ)t

)
. (38)

32



Published as a conference paper at ICLR 2024

Since the values of Ci, i ∈ [1, n] are determined by R̃W,κ = r, they are independent of Ũ . For any
I ∈ {0, 1}, t > 0 and η > 0, by applying Markov’s inequality, we then have

P

(
1

2n

n∑
i=1

(
(−1)Ũi(2 + Ci)− Ci

)
li,I ≥ t

)

= P

(
exp

(
η

n∑
i=1

(
(−1)Ũi(2 + Ci)− Ci

)
li,I

)
≥ e2ηnt

)

≤ e−2ηntEŨ

[
exp

(
η

n∑
i=1

(
(−1)Ũi(2 + Ci)− Ci

)
li,I

)]

= e−2ηnt
n∏

i=1

EŨi

[
exp
(
η
(
(−1)Ũi(2 + Ci)− Ci

)
li,I

)]
= e−2ηnt

n∏
i=1

e−2ηli,I(1+Ci) + e2ηli,I

2
.

We intend to carefully select the values of η and Ci, such that e−2ηli,I(1+Ci)+e2ηli,I ≤ 2 is satisfied
for any i ∈ [1, n] and I ∈ {0, 1}. Notice that e2ηli,I ≤ 2 implies 2ηli,I ≤ log 2 < 1. Furthermore,
since e−2ηli,I(1+Ci)+e2ηli,I decreases monotonically with the increase of Ci, it is sufficient to select
a large enough Ci that satisfies:

2− e2ηli,I

e−2ηli,I
≥ e−2ηli,ICi .

Solving the inequality above yields Ci ≥ − log(2− e2ηli,I )/2ηli,I − 1. It is easy to verify that this
lower bound increases monotonically with the increase of li,I . Therefore, if we choose the value of
Ci by

Ci ≥ − log(2− e2ηmax(li,0,li,1))

2ηmax(li,0, li,1)
− 1,

we will have
e−2ηli,I(1+Ci) + e2ηli,I

2
≤ 1,

for any i ∈ [1, n] and the following inequality can hold:

P

(
1

2n

n∑
i=1

(
(−1)Ũi(2 + Ci)− Ci

)
li,I ≥ t

)
≤ e−2ηnt. (39)

Take the union bound of (39) over I ∈ {0, 1}, we can get

P

(
sup

I∈{0,1}

{
1

2n

n∑
i=1

(
(−1)Ũi(2 + Ci)− Ci

)
li,I

}
≥ t

)
≤ 2e−2ηnt. (40)

Substituting (40) into (38), we have

P

(
1

n

n∑
i=1

li,1−Ũi
− (1 + Ci)li,Ũi

≥ t

)
≤ inf

γ∈(0,1)
2e−2ηγnt + 2e−2η(1−γ)nt

= 2e−ηnt + 2e−ηnt = 4e−ηnt. (41)

By selecting δ as the RHS of (41), we have that for any δ > 0, with probability at least 1− δ,

1

n

n∑
i=1

li,1−Ũi
− (1 + Ci)li,Ũi

≤ log(4/δ)

nη
.

From Lemma 11, we know that for any δ > 0,

P
(
R̃W,κ /∈ R̃W,κ

ϵ

)
≤ δ, (42)
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∣∣∣R̃W,κ
ϵ

∣∣∣ ≤ exp

(
H1−λ(R̃

W,κ) +
1

λ
log

(
1

δ

))
. (43)

Notice that the marginal distribution of R̃W,κ is symmetric due to the existence of Ũ , i.e. if
{li,0, li,1}ni=1 ∈ R̃W,κ

ϵ , then we also have {li,1, li,0}ni=1 ∈ R̃W,κ
ϵ . Since the upper bound above

(40) holds for both I ∈ {0, 1}, the equivalent size of R̃W,κ
ϵ can be divided by 2. Taking the union

bound over every r ∈ R̃W,κ
ϵ , we then have that for any δ > 0, with probability at least 1 − δ, the

following bound holds for all R̃W,κ ∈ R̃W,κ
ϵ simultaneously if R̃W,κ = r:

1

n

n∑
i=1

LW,κ

i,1−Ũi
− (1 + Ci)L

W,κ

i,Ũi
≤

log
(
2
∣∣∣R̃W,κ

ϵ

∣∣∣/δ)
nη

. (44)

By substituting (43) into (44) and take the union bound with (42), we have that for any R̃W,κ ∈ R̃W,κ

and δ > 0, with probability at least 1− δ,

1

n

n∑
i=1

LW,κ

i,1−Ũi
− (1 + Ci)L

W,κ

i,Ũi
≤

log
(∣∣∣R̃W,κ

ϵ

∣∣∣)+ log(4/δ)

nη

≤
H1−λ(R̃

W,κ) + 1
λ log(1/δ) + log(4/δ)

nη
.

The only requirement on the selection of Ci and η is

Ci, η ∈

Ci ≥ −
log
(
2− e2ηL̂

W,κ
i

)
2ηL̂W,κ

i

− 1

, for all i ∈ [1, n].

Note that the condition above implies e2ηL̂
W,κ
i < 2 for any i ∈ [1, n], we therefore choose

η <
log 2

2κ
≤ log 2

2 supi∈[1,n]

(
L̂W,κ
i

) .

Theorem 5 (Restate). For any κ ≥ 0, λ, γ ∈ (0, 1) and δ > 0, if κ ≥ BW,S̃s , then with probability
at least 1− δ, the following inequality holds:

∆
(
W, S̃s, Ũ

)
≤ 1

n

n∑
i=1

CiL
W
i,Ũi

+GW
1

H1−λ(R̃
W ) +GW

2

n
,

where

GW
1 =

1

η
=

2κ

γ log 2
,

GW
2 =

1

λ
log

(
1

δ

)
+ log

(
4

δ

)
,

Ci = −
log
(
2− e2ηL̂

W
i

)
2ηL̂W

i

− 1.

Proof. The proof directly follows from Lemma 12 by noticing that LW,κ
i,I = LW

i,I for any i ∈ [1, n]

and I ∈ {0, 1} when κ ≥ BW,S̃s .

Theorem 6 (Restate). For any κ > 0, γ, λ1, λ2 ∈ (0, 1) and δ > 0, with probability at least 1− δ,
the following inequality holds:

∆
(
W, S̃s, Ũ

)
≤ 1

n

n∑
i=1

CiL
W,κ

i,Ũi
+ G̃W

1

H1−λ1
(R̃W,κ) + G̃W

2

n
+ G̃W

3

√
H1−λ2

(R̃W,−κ
∆ ) + G̃W

4

n
,

34



Published as a conference paper at ICLR 2024

where R̃W,κ = {LW,κ
i,0 , LW,κ

i,1 }ni=1, R̃W,−κ
∆ = {∆LW,−κ

i }ni=1, ∆LW,−κ
i = LW,−κ

i,1 − LW,−κ
i,0 and

G̃W
1 =

1

η
=

2κ

γ log 2
,

G̃W
2 =

1

λ1
log(2/δ) + log(8/δ),

G̃W
3 =

√√√√ 2

n

n∑
i=1

(
∆LW,−κ

i

)2
,

G̃W
4 =

1

λ2
log(2/δ) + log(4/δ),

Ci = −
log
(
2− e2ηL̂

W,κ
i

)
2ηL̂W,κ

i

− 1.

Proof. By the definition of the validation error, we have the following decomposition:

∆
(
W, S̃s, Ũ

)
=

1

n

n∑
i=1

LW
i,1−Ũi

− LW
i,Ũi

=
1

n

n∑
i=1

LW,κ

i,1−Ũi
− (1 + Ci)L

W,κ

i,Ũi
+

1

n

n∑
i=1

CiL
W,κ

i,Ũi

+
1

n

n∑
i=1

LW,−κ

i,1−Ũi
− LW,−κ

i,Ũi
. (45)

By applying Lemma 12, we have that for any δ > 0, with probability at least 1− δ,

1

n

n∑
i=1

LW,κ

i,1−Ũi
− (1 + Ci)L

W,κ

i,Ũi
≤

H1−λ1(R̃
W,κ) + 1

λ1
log(1/δ) + log(4/δ)

nη
,

By taking η = γ log 2
2κ < log 2

2κ , we then have

1

n

n∑
i=1

LW,κ

i,1−Ũi
− (1 + Ci)L

W,κ

i,Ũi
≤

2κ
(
H1−λ1(R̃

W,κ) + 1
λ1

log(1/δ) + log(4/δ)
)

nγ log 2
. (46)

By reapplying the proof of Theorem 4 on R̃W,−κ instead of R̃W , we have that for any δ > 0, with
probability at least 1− δ,

1

n

n∑
i=1

LW,−κ

i,1−Ũi
− LW,−κ

i,Ũi
≤

√√√√ 2

n

n∑
i=1

(
∆LW,−κ

i

)2√H1−λ2(R̃
W,−κ
∆,d ) + 1

λ2
log(1/δ) + log(2/δ)

n
.

(47)
By taking the union bound of (46), (47) and then substituting it into (45), we have

∆
(
W, S̃s, Ũ

)
≤ 1

n

n∑
i=1

CiL
W,κ

i,Ũi
+

2κ
(
H1−λ1

(R̃W,κ) + 1
λ1

log(2/δ) + log(8/δ)
)

nγ log 2

+

√√√√ 2

n

n∑
i=1

(
∆LW,−κ

i

)2√H1−λ2
(R̃W,−κ

∆ ) + 1
λ2

log(2/δ) + log(4/δ)

n
.

35



Published as a conference paper at ICLR 2024

E ADDITIONAL THEORETICAL RESULTS

E.1 SUBADDITIVITY OF RÉNYI’S ENTROPY

It is easy to show that Shannon’s entropy enjoys the subadditivity property, i.e. given arbitrary
random variables X1, · · · , Xn, we have

H(X1, · · · , Xn) = H(X1) +H(X2|X1) + · · ·+H(Xn|X1, · · · , Xn−1)

≤ H(X1) +H(X2) + · · ·+H(Xn).

If the subadditivity property also applies to Rényi’s entropy, we will be able to upper bound the
joint entropy of samplewise losses in our main theorems by the sum of entropies of each individual
loss, which avoids estimating high-dimensional information-theoretic quantities and yields directly
tractable upper bounds. We will show that for discrete random variables with finite support, the
subadditivity property holds for Rényi’s entropy when α ≈ 1. Note that these assumptions are
naturally satisfied for digital computers using floating-point numbers.

Lemma 13. Given arbitrary discrete random variables X ∈ X and Y ∈ Y , assume that |X | = m <
∞ and |Y| = n < ∞. If X and Y are independent, then Hα(X,Y ) = Hα(X)+Hα(Y ). Otherwise
for any ϵ ∈ (0, H(X) +H(Y ) −H(X,Y )), there exists δ > 0 such that when α ∈ (1 − δ, 1), we
have Hα(X,Y ) + ϵ ≤ Hα(X) +Hα(Y ).

Proof. Let pij = P(X = Xi, Y = Yj), pi = P(X = Xi) =
∑n

j=1 pij and qj = P(Y = Yj) =∑m
i=1 pij , then by the definition of Rényi’s entropy, we have

Hα(X,Y ) =
1

1− α
log

m∑
i=1

n∑
j=1

pαij ,

Hα(X) =
1

1− α
log

m∑
i=1

pαi , Hα(Y ) =
1

1− α
log

n∑
j=1

qαj .

When X and Y are independent, we have pij = piqj and thus

m∑
i=1

n∑
j=1

pαij =

(
m∑
i=1

pαi

)
·

 n∑
j=1

qαj

,

which directly implies Hα(X,Y ) = Hα(X) +Hα(Y ).

Otherwise when X and Y are dependent, recall that H(X,Y ) < H(X) +H(Y ), we then have

lim
α→1

Hα(X,Y ) ≤ lim
α→1

Hα(X) +Hα(Y ).

For any ϵ ∈ (0, H(X) +H(Y )−H(X,Y )), let γ = (H(X) +H(Y )−H(X,Y )− ϵ)/2. Then by
the definition of limit, we know that there exist δ1, δ2 > 0 such that when α ∈ (1− δ1, 1), we have
|Hα(X,Y )−H(X,Y )| ≤ γ, when α ∈ (1−δ2, 1), we have |Hα(X)+Hα(Y )−H(X)−H(Y )| ≤
γ. Combining these two inequalities yields the desired result:

Hα(X,Y ) ≤ γ +H(X,Y ) = γ +H(X) +H(Y )− ϵ− 2γ

≤ γ + γ +Hα(X) +Hα(Y )− ϵ− 2γ = Hα(X) +Hα(Y )− ϵ.

The proof is complete by taking δ = min(δ1, δ2).

When the number of samples n is large enough, we have limn→∞
1
n log(1/δ) = 0 in our main

theorems. These high-probability factors are thus significantly smaller than the joint loss entropy
term H1−λ(R

W ), and we can select λ ≈ 0 to acquire computational tractable bounds as

H1−λ(R
W ) ≤ H1−λ(L1) +H1−λ(L2) + · · ·+H1−λ(Ln),

by applying Lemma 13 recursively.
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E.2 TIGHTENING PREVIOUS BOUNDS BY THRESHOLDING

In this section, we demonstrate that the fast-rate bounds for the expected generalization error estab-
lished in (Wang & Mao, 2023) can be further tightened by adopting our thresholding strategy. The
original theorems are stated as follows:

Theorem 7. (Theorem 3.2 in Wang & Mao, 2023) Assume that ℓ(·, ·) ∈ [0, 1], then∣∣∣EW,S̃s,Ũ

[
∆
(
W, S̃s, Ũ

)]∣∣∣ ≤ 1

n

n∑
i=1

√
2I(∆LW

i ; Ũi).

Theorem 8. (Theorem 4.3 in Wang & Mao, 2023) Assume that ℓ(·, ·) ∈ [0, 1], then for any C2 ∈
(0, log 2/2),

EW,S̃s,Ũ

[
∆
(
W, S̃s, Ũ

)]
≤ C1EW,Ss

[LSs
(W )] +

n∑
i=1

I(LW
i,1; Ũi)

C2n
,

where

C1 = −
log
(
2− e2C2

)
2C2

− 1.

As can be seen, these upper bounds only hold when ℓ(·, ·) ∈ [0, 1]. In the case of unbounded loss
functions e.g. cross-entropy, these bounds should be multiplied by bW,S̃s to stay hold, which is
significantly looser when the marginal distributions of the losses are long-tailed. We first tighten
Theorem 7 by introducing subgaussianity:

Lemma 14. Assume that LW
i,0 and LW

i,1 are σ-subgaussian for any i ∈ [1, n], then∣∣∣EW,S̃s,Ũ

[
∆
(
W, S̃s, Ũ

)]∣∣∣ ≤ 2

n

n∑
i=1

√
2σ2I(∆LW

i ; Ũi).

Proof. From the definition of the validation error, we have∣∣∣EW,S̃s,Ũ

[
∆
(
W, S̃s, Ũ

)]∣∣∣ = ∣∣∣∣∣ES̃s,Ũ ,W

[
1

n

n∑
i=1

LW
i,1−Ũi

− LW
i,Ũi

]∣∣∣∣∣
=

1

n

∣∣∣∣∣ES̃s,Ũ ,W

[
n∑

i=1

(−1)Ũi
(
LW
i,1 − LW

i,0

)]∣∣∣∣∣
≤ 1

n

n∑
i=1

∣∣∣E∆LW
i ,Ũi

[
(−1)Ũi∆LW

i

]∣∣∣.
From the assumption that LW

i,0 and LW
i,1 are σ-subgaussian, we have that ∆LW

i = LW
i,1 − LW

i,0 is

2σ-subgaussian. Then by applying Lemma 2 with f(Ũi,∆LW
i ) = (−1)Ũi∆LW

i , we have∣∣∣E∆LW
i ,Ũi

[
(−1)Ũi∆LW

i

]
− E∆L̄W

i ,Ũi

[
(−1)Ũi∆L̄W

i

]∣∣∣ ≤ 2

√
2σ2I(∆LW

i ; Ũi).

Since ∆L̄W
i is independent of Ũi, we have E∆L̄W

i ,Ũi

[
(−1)Ũi∆L̄W

i

]
= 0 and

∣∣∣EW,S̃s,Ũ

[
∆
(
W, S̃s, Ũ

)]∣∣∣ ≤ 1

n

n∑
i=1

∣∣∣E∆LW
i ,Ũi

[
(−1)Ũi∆LW

i

]∣∣∣
≤ 2

n

n∑
i=1

√
2σ2I(∆LW

i ; Ũi).
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Note that this bound is at least as tight as Theorem 7, since the condition that ℓ(·, ·) ∈ [0, 1] implies
σ ≤ 1

2 .

We further tighten Theorem 8 by introducing the thresholding strategy. For any κ > 0, the expected
generalization error can be decomposed as:

EW,S̃s,Ũ

[
∆
(
W, S̃s, Ũ

)]
= ES̃s,Ũ ,W

[
1

n

n∑
i=1

LW
i,1−Ũi

− LW
i,Ũi

]

= ES̃s,Ũ ,W

[
1

n

n∑
i=1

LW,κ

i,1−Ũi
− (1 + C1)L

W,κ

i,Ũi
+ LW,−κ

i,1−Ũi
− LW,−κ

i,Ũi
+ C1L

W,κ

i,Ũi

]

≤ ES̃s,Ũ ,W

[
1

n

n∑
i=1

LW,κ

i,1−Ũi
− (1 + C1)L

W,κ

i,Ũi

]
+ ES̃s,Ũ ,W

[
1

n

n∑
i=1

LW,−κ

i,1−Ũi
− LW,−κ

i,Ũi

]

+ ES̃s,Ũ ,W

[
1

n

n∑
i=1

C1L
W,κ

i,Ũi

]
. (48)

The following theorem establishes an upper bound for the decomposition above by leveraging both
square-root and fast-rate bounds:

Theorem 9. For any κ > 0 and C2 ∈ (0, log 2
2κ ), assume that LW,κ

i,0 and LW,κ
i,1 are σκ-subgaussian

for all i ∈ [1, n], then

EW,S̃s,Ũ

[
∆
(
W, S̃s, Ũ

)]
≤

n∑
i=1

I(LW,κ
i,1 ; Ũi)

C2n
+

2

n

n∑
i=1

√
2σ2

κI(∆LW,−κ
i ; Ũi)

+
C1

n
EW,Ss

[
n∑

i=1

LW,κ

i,Ũi

]
,

where

C1 = −
log
(
2− e2C2κ

)
2C2κ

− 1.

Proof. We first decompose the first term in (48) as:

EW,S̃s,Ũ

[
1

n

n∑
i=1

LW,κ

i,1−Ũi
− (1 + C1)L

W,κ

i,Ũi

]

=
1

n

n∑
i=1

ELW
i,0,L

W
i,1,Ũi

[
LW,κ

i,1−Ũi
− (1 + C1)L

W,κ

i,Ũi

]
=

1

n

n∑
i=1

ELW
i,0,L

W
i,1,Ũi

[(
1 +

C1

2

)(
LW,κ

i,1−Ũi
− (1 + C1)L

W,κ

i,Ũi

)
− C1

2
LW,κ

i,1−Ũi
− C1

2
LW,κ

i,Ũi

]

=
1

2n

n∑
i=1

[
ELW

i,0,Ũi

[
−(2 + C1)(−1)ŨiLW,κ

i,0 − C1L
W,κ
i,0

]
+ ELW

i,1,Ũi

[
(2 + C1)(−1)ŨiLW,κ

i,1 − C1L
W,κ
i,1

]]
.

Notice that LW
i,0 and LW

i,1 share the same marginal distribution, E[LW,κ
i,0 |Ũi = 0] = E[LW,κ

i,1 |Ũi = 1],
and E[LW,κ

i,1 |Ũi = 0] = E[LW,κ
i,0 |Ũi = 1], we have

EW,S̃s,Ũ

[
1

n

n∑
i=1

LW,κ

i,1−Ũi
− (1 + C1)L

W,κ

i,Ũi

]
=

1

n

n∑
i=1

ELW
i,1,Ũi

[
(2 + C1)(−1)ŨiLW,κ

i,1 − C1L
W,κ
i,1

]
.
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For any i ∈ [1, n], by applying Lemma 3 on C2

(
(2 + C1)(−1)ŨiLW,κ

i,1 − C1L
W,κ
i,1

)
, we have

I(LW,κ
i,1 ; Ũi) ≥ ELW

i,1,Ũi

[
C2

(
(2 + C1)(−1)ŨiLW,κ

i,1 − C1L
W,κ
i,1

)]
− logEL̄W

i,1,Ũi

[
e
C2

(
(2+C1)(−1)Ũi L̄W,κ

i,1 −C1L̄
W,κ
i,1

)]
. (49)

Since L̄W,κ
i,1 ≤ κ, by selecting C1 and C2 as:

C1, C2 ∈

{
C2 ∈

(
0,

log 2

2κ

)
, C1 ≥ −

log
(
2− e2C2κ

)
2C2κ

− 1

}
,

we will have

EL̄W
i,1,Ũi

[
e
C2

(
(2+C1)(−1)Ũi L̄W,κ

i,1 −C1L̄
W,κ
i,1

)]
=

EL̄W
i,1

[
e−2C2(1+C1)L̄

W,κ
i,1 + e2C2L̄

W,κ
i,1

]
2

≤ 1. (50)

By substituting (50) into (49), we can get

ELW
i,1,Ũi

[
C2

(
(2 + C1)(−1)ŨiLW,κ

i,1 − C1L
W,κ
i,1

)]
≤ I(LW,κ

i,1 ; Ũi),

By summing the inequality above over i ∈ [1, n], we can prove that

EW,S̃s,Ũ

[
1

n

n∑
i=1

LW,κ

i,1−Ũi
− (1 + C1)L

W,κ

i,Ũi

]
≤

n∑
i=1

I(LW,κ
i,1 ; Ũi)

C2n
. (51)

Next, by reapplying the proof of Lemma 14 on R̃W,−κ instead of R̃W , we can prove that

EW,S̃s,Ũ

[
1

n

n∑
i=1

LW,−κ

i,1−Ũi
− LW,−κ

i,Ũi

]
≤ 2

n

n∑
i=1

√
2σ2

κI(∆LW,−κ
i ; Ũi), (52)

The proof is complete by substituting (51) and (52) into (48).

According to the Markov chain relationship Ũi → LW
i,1 → LW,κ

i,1 and by applying the data-processing
inequality, we have I(LW,κ

i,1 ; Ũi) ≤ I(LW
i,1; Ũi). We also have LW,κ

i,Ũi
≤ LW

i,Ũi
. Therefore, Theorem 9

tightens Theorem 8 by reducing the bW,S̃s factor to a manual threshold κ, at the cost of introducing
an extra term that scales with σκ. When the losses are long-tailed, we will have bW,S̃s ≫ σκ and
Theorem 9 can be significantly tighter than Theorem 8. Otherwise, we can simply take κ ≈ bW,S̃s

and let Theorem 9 reduce to Theorem 8.

E.3 COMPARISON WITH VARIANCE AND SHARPNESS BASED BOUNDS

Theorem 6 also provides alternative perspectives on fast-rate generalization bounds by leveraging
the entropies of training and test losses. By comparison, the previous work (Wang & Mao, 2023)
utilizes variance V (γ) and sharpness F (γ) related terms as replacements to the training risk, which
are defined as:

V (γ) = EW,S

[
1

n

n∑
i=1

(ℓ(W,Zi)− (1 + γ)LS(W ))
2

]
,

F (γ) =
1

n

n∑
i=1

EW,Zi

[
ℓ(W,Zi)− (1 + γ)EW |Zi

[ℓ(W,Zi)]
]2
.

We show that our loss entropy measure serves as tightened versions of both the variance and
sharpness-related terms. To see this, let I ∼ Unif([1, n]) randomly selects a training sample ZI

from S. We now measure the variance of LI = ℓ(W,ZI):
Proposition 1. Assume that ℓ(·, ·) ∈ [0, 1], then Var[LI ] ≤ min(V (0), F (0)) + EW,S [LS(W )].
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Proof. For the formula of the total variance, we have

VarW,S,I [LI ] = EW,S [VarI [LI ]] + VarW,S [EI [LI ]]

= EW,S

[
1

n

n∑
i=1

(ℓ(W,Zi)− LS(W ))
2

]
+VarW,S [LS(W )]

= V (0) + EW,S [L
2
S(W )]− E2

W,S [LS(W )]

≤ V (0) + EW,S [LS(W )].

Similarly, we have

VarW,S,I [LI ] = ES [VarW,I|S [LI ]] + VarS [EW,I|S [LI ]]

= ES

[
EW,I|S

[
ℓ(W,ZI)− EW |S,I [ℓ(W,ZI)]

]2]
+VarS [EW,I|S [LI ]]

≤ ES

[
1

n

n∑
i=1

EW |Zi

[
ℓ(W,Zi)− EW |Zi

[ℓ(W,Zi)]
]2]

+VarS [EW,I|S [LI ]]

=
1

n

n∑
i=1

EW,Zi

[
ℓ(W,Zi)− EW |Zi

[ℓ(W,Zi)]
]2

+VarS [EW,I|S [LI ]]

= F (0) + ES [E2
W,I|S [LI ]]− E2

S [EW,I|S [LI ]]

≤ F (0) + ES [EW,I|S [LI ]]

= F (0) + EW,S [LS(W )].

Here, EW,S [LS(W )] is the average training loss, which approaches zero in the interpolating regime.
That is, the variance of LI is a natural lower bound for both the variance and sharpness measures.
Furthermore, we show that the entropy of training losses is upper bounded by that of LI :

1

n
H(R̃W

S ) ≤ 1

n

n∑
i=1

H(LW
i,Ũi

) =

n∑
i=1

P(I = i)H(LI |I = i) = H(LI |I) ≤ H(LI).

Notice that LI is a Bernoulli random variable under the assumption that ℓ(·, ·) ∈ {0, 1}, which im-
plies that the entropy of LI is determinated when we know its variance. Therefore, any upper bound
for Var[LI ] directly serves as an upper bound for H(LI). This conclusion can be extended to con-
tinuous cases, by noticing that the Gaussian distribution N(0, σ2) possesses the maximum entropy
among all probability distributions whose variance is σ2. On the contrary, the variance is unknown
and can even be non-finite when only the entropy is provided (e.g. Cauchy distribution, student-t
distribution with t < 2, etc.). Moreover, the fast-rate bounds of (Wang & Mao, 2023) requires ℓ(·, ·)
to be 0-1 loss, while Theorem 6 can accommodate any ℓ(·, ·) ∈ [0, 1]. These observations further
validate the superiority of our results.

F EXPERIMENT DETAILS AND ADDITIONAL RESULTS

In this paper, deep learning models are trained with an Intel Xeon CPU (2.10GHz, 48 cores), 256GB
memory, and 4 Nvidia Tesla V100 GPUs (32GB).

F.1 SYNTHETIC EXPERIMENTS

In our synthetic data experiments, the learning task is a 5-class classification on two-dimensional
points generated with isotropic Gaussian distributions. The training set contains 50 samples, while
the test set contains 250 samples. 216 models in total are trained according to different combina-
tions of the following options: 4 MLP encoders ([256, 256, 128, 128], [128, 128, 64, 64], [64, 64,
32, 32], [32, 32, 16, 16]), 3 weight-decay rates (0, 0.01, 0.1), 3 dataset draws and 3 random seeds.
The models are designed under the variational setting, where the encoder is trained to characterize
a conditional distribution for the representation given the input via deterministic means and stan-
dard deviations. The parameterization trick is used for optimization. Models are trained for 300
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Metric Spearman Pearson Kendall

Num. params. -0.0576 -0.0294 -0.0402
∥W∥F -0.2172 -0.0871 -0.1374

Î(X;Tw) 0.1816 0.2878 0.1280
Î(X;Tw|Y ) 0.1749 0.3167 0.1129
Ǐ(X;Tw) 0.1648 0.3712 0.1223
Ǐ(X;Tw|Y ) 0.2293 0.3842 0.1515

Ǐ(S;W ) 0.0020 0.0211 0.0074
Ǐ(S;W ) + Î(X;Tw) 0.0178 0.0211 0.0178
Ǐ(S;W ) + Î(X;Tw|Y ) 0.0163 0.0211 0.0167
Ǐ(S;W ) + Ǐ(X;Tw) 0.0135 0.0212 0.0162
Ǐ(S;W ) + Ǐ(X;Tw|Y ) 0.0164 0.0211 0.0167
Ĩ(S;W ) + Î(X;Tw) 0.1104 0.1401 0.0794
Ĩ(S;W ) + Î(X;Tw|Y ) 0.2253 0.3177 0.1567
Ĩ(S;W ) + Ǐ(X;Tw) 0.2684 0.3928 0.1912
Ĩ(S;W ) + Ǐ(X;Tw|Y ) 0.3015 0.4130 0.2085

H(Lw) 0.5767 0.5611 0.4037
H(Lw|Y ) 0.7088 0.6350 0.5251

Table 1: Correlation analysis between different metrics and the generalization gap. Î , Ǐ , Ĩ represents
different strategies for mutual information estimation.

Metric Spearman Pearson Kendall

Num. params. 0.4944 0.2770 0.3985
∥W∥F 0.4944 0.2680 0.3985

Î(X;Tw) 0.4799 0.6232 0.2941
Î(X;Tw|Y ) 0.4923 0.6185 0.3203
Ǐ(X;Tw) 0.1496 0.0190 0.0196
Ǐ(X;Tw|Y ) 0.2198 0.0495 0.0980

Ǐ(S;W ) 0.6065 0.5692 0.4633
Ǐ(S;W ) + Î(X;Tw) 0.6140 0.6417 0.4248
Ǐ(S;W ) + Î(X;Tw|Y ) 0.6202 0.6406 0.4510
Ǐ(S;W ) + Ǐ(X;Tw) 0.3808 0.1378 0.2549
Ǐ(S;W ) + Ǐ(X;Tw|Y ) 0.4138 0.1648 0.2810
Ĩ(S;W ) + Î(X;Tw) 0.6223 0.5692 0.4510
Ĩ(S;W ) + Î(X;Tw|Y ) 0.6223 0.5692 0.4510
Ĩ(S;W ) + Ǐ(X;Tw) 0.5666 0.5685 0.3987
Ĩ(S;W ) + Ǐ(X;Tw|Y ) 0.5810 0.5707 0.4118

H(Lw) 0.8782 0.8679 0.7647
H(Lw|Y ) 0.9030 0.8915 0.7778

Table 2: Correlation analysis between different metrics and the generalization gap with 20% label
noise. Î , Ǐ , Ĩ represents different strategies for mutual information estimation.

epochs with a learning rate of 0.01. The conditional and unconditional loss entropies are estimated
using a simple Gaussian kernel density estimator, where the kernel width is automatically selected
by the well-known rule-of-thumb criterion. The code for this experiment is largely based on the
implementation from Kawaguchi et al. (2023)1.

Besides Pearson correlation analysis, we further present the estimated coefficients of Spearman
and Kendall correlations in Table 1. Additionally, we conduct experiments with 20% label noise to
examine the robustness of our bounds against noises in Table 2, i.e. 20% of the labels are replaced by

1https://github.com/xu-ji/information-bottleneck
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Figure 3: Comparison of the generalization gap in 3 different deep-learning scenarios, along with
theoretical upper bounds including the weighted bound (Theorem 5), the fast-rate bound (Theorem
6) and the binary KL bound (Theorem 7 in (Hellström & Durisi, 2022)).
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Figure 4: Comparison of the generalization gap in 3 different deep-learning scenarios, along with
the weighted generalization bound (Theorem 5) using adaptive Ci values (Adaptive) or a universal
value for all Ci (Universal).

randomly generated ones. As can be seen in Table 1 and 2, the loss entropy metrics are consistently
the better indicators of generalization.

F.2 REAL-WORLD LEARNING TASKS

We conduct 3 real-world learning scenarios to evaluate different generalization bounds: 1) MNIST
4 vs 9 classification using Adam, 2) MNIST 4 vs 9 classification using SGLD, and 3) CIFAR-10
classification with fine-tuned ResNet-50. The loss function is cross-entropy.

In each experiment under the supersample (leave-one-out) setting, we draw k1 samples of S̃s (S̃l),
each involving randomly sampling 2n (n+ 1) samples from the corresponding dataset. For each S̃s

(S̃l), we then draw k2 samples of the training / test split variable Ũ (U ), resulting in total of k1 × k2
independent runs. The value of k1, k2 and experimental settings are kept the same as Harutyunyan
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Figure 5: Comparison of the generalization gap in 3 different deep-learning scenarios, along with
theoretical upper bounds including the square-root bound (Theorem 4), the fast-rate bound (Theorem
6) and the binary KL bound (Theorem 7 in (Hellström & Durisi, 2022)) using bin size 0.6.
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Figure 6: Comparison of the test risk in 3 different deep-learning scenarios, along with theoretical
upper bounds for the test risk including the square-root bound (Theorem 4), the fast-rate bound
(Theorem 6) and the binary KL bound (Theorem 7 in (Hellström & Durisi, 2022)).
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Figure 7: Comparison of the generalization gap and the theoretical upper bound (Theorem 3) under
the leave-one-out setting.

et al. (2021)2. The discretization strategy discussed in Section G.3 is adopted to discretize each loss
value with a bin size of 1.0. A union bound of our main results and Proposition 3 is then taken to
provide valid generalization bounds for continuous loss functions.

Although the RHS of Theorem 4 and 6 directly involve the test losses, the exact values of test losses
are not required to evaluate the key coefficients C̃W

1 or G̃W
3 in these theorems (Note that we can

directly take L̂W
i , L̂W,κ

i = κ in Theorem 5 and 6). For any w, let Z ∼ µ and L = ℓ(w,Z). Then
it suffices to adopt a few validation samples to estimate E[L] and E[L2]. By applying Markov’s
inequality, we have:

P

(
1

n

n∑
i=1

(∆LW
i )2 ≥ ϵ

)
≤

1
n

∑n
i=1 E[(∆LW

i )2]

ϵ

=

1
n

∑n
i=1 E

[
(LW

i,Ũi
)2 + (LW

i,1−Ũi
)2 − 2LW

i,Ũi
LW
i,1−Ũi

]
ϵ

=

1
n

∑n
i=1(L

W
i,Ũi

)2 + E[L2]− 2E[L]( 1n
∑n

i=1 L
W
i,Ũi

)

ϵ
.

Therefore, one can easily acquire a quantile estimation of C̃W
1 or G̃W

3 through a few validation
samples, which is also necessary when training models in practice.

The hyper-parameters are automatically chosen by optimization using the Scipy package: Specifi-
cally, λ is chosen by the L-BFGS-B algorithm since it is derivable; γ and κ are chosen by the Nelder-
Mead optimization algorithm; and the binary KL measures in (Hellström & Durisi, 2022) are solved
by the brentq algorithm. It is noteworthy the hyper-parameters should not be directly optimized over
the RHS of our bounds, since they are assumed to be constants and should be independent of the
draw of W , S̃s and Ũ . Instead, note that these bounds can be expressed as P(∆ ≤ B) ≥ 1−δ, where
the validation error ∆ and the upper bound B are both random variables. By taking b as the expec-

2https://github.com/hrayrhar/f-CMI/tree/master
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tation of B and then optimizing the hyper-parameters over b, we are able to fulfill the prerequisites
of these bounds and keep the evaluation valid after optimization.

We select δ = 0.5 to simulate the mean of generalization bounds. It is worth noting that the binary
KL bound (Theorem 7 in (Hellström & Durisi, 2022)) is not directly tractable as it involves a high-
dimensional stochastic KL divergence quantity:
Theorem 10. (Theorem 7 in Hellström & Durisi, 2022) Assume that ℓ(·, ·) ∈ [0, 1], then with
probability at least 1− δ over the draw of S̃s and Ũ ,

d

(
EW |S̃s,Ũ

[
1

n

n∑
i=1

LW
i,Ũi

]
∥ EW |S̃s,Ũ

[
1

2n

n∑
i=1

(
LW
i,0 + LW

i,1

)])

≤
KL
(
PR̃W |S̃s,Ũ

∥∥∥ PR̃W |S̃s

)
+ log

(
2
√
n

δ

)
n

,

where d(p ∥ q) = p log(p/q) + (1− p) log((1− p)/(1− q)) is the binary KL divergence.

In order to apply comparisons, we average the binary KL bound above over multiple draws of Ũ , S̃s.
In this way, the stochastic KL divergence can be approximated by:

EŨ,S̃s

[
KL
(
PR̃W |S̃s,Ũ

∥∥∥ PR̃W |S̃s

)]
= I(R̃W ; Ũ |S̃s).

Additionally, we will show that
∑n

i=1 I(L
W
i,0, L

W
i,1; Ũi) serves as a lower-bound approximation for

I(R̃W ; Ũ |S̃s):

Proposition 2.
∑n

i=1 I(L
W
i,0, L

W
i,1; Ũi) ≤ I(R̃W ; Ũ |S̃s).

Proof. For convenience, we denote {Ũi}ni=1 as Ũ1:n. Then

I(R̃W ; Ũ |S̃s) = I(R̃W ; Ũ |S̃s) + I(Ũ ; S̃s)

= I(R̃W ; Ũ) + I(Ũ ; S̃s|R̃W )

≥ I(R̃W ; Ũ)

= I(R̃W ; Ũ1) + I(R̃W ; Ũ2:n|Ũ1)

= I(R̃W ; Ũ1) + I(R̃W ; Ũ2:n)− I(Ũ2:n; Ũ1) + I(Ũ2:n; Ũ1|R̃W )

= I(R̃W ; Ũ1) + I(R̃W ; Ũ2:n) + I(Ũ2:n; Ũ1|R̃W )

≥ I(R̃W ; Ũ1) + I(R̃W ; Ũ2:n)

· · ·

≥
n∑

i=1

I(R̃W ; Ũi)

=

n∑
i=1

I(LW
i,0, L

W
i,1; Ũi) + I(R̃W \ {LW

i,0, L
W
i,1}; Ũi|LW

i,0, L
W
i,1)

≥
n∑

i=1

I(LW
i,0, L

W
i,1; Ũi).

We then evaluate the effectiveness of the proposed thresholding method. As shown in Figure 3, our
fast-rate generalization bound (Theorem 6) is considerably tighter than the weighted generalization
bound (Theorem 5). Without the thresholding technique, the fast-rate bounds fail to outperform the
lower-bound approximation of the binary KL bound. Similarly, Figure 4 demonstrates the effec-
tiveness of adaptively choosing coefficients Ci for each individual training loss. It can be seen that
this strategy is especially useful in the early stage of the training process, where the magnitude of
training losses is comparable to test losses and remains to be minimized. This behavior is further
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Figure 8: The influence of training loss L using the adaptive Ci strategy with κ = 1 in Theorem 5.

verified in Figure 8, that the adaptive Ci strategy particularly lowers the bound when the training
losses are close (but not equal) to the threshold. For well-trained networks where training losses
approach zero, the improvement will be less significant.

To examine the impact of bin size on the visualization results, we additionally report the comparison
between generalization bounds with a bin size of 0.6 in Figure 5. In general, decreasing the bin size
results in larger loss entropy values but lower discretization errors. Therefore, there exists a trade-off
between these two quantities to acquire the tightest generalization bound. Moreover, we visualize
the comparison between different bounds for the test risk instead of the generalization error in Figure
6. Note that each generalization bound directly implies a test risk bound by adding the training risk
to both sides.

We further report the comparison between our leave-one-out generalization bound (Theorem 3)
and the generalization gap in Figure 7. Although this bound does not capture the behavior of the
generalization gap well for large n values, we highlight that this is the first computationally tractable
high-probability generalization bound under the leave-one-out setting.

G FURTHER DISCUSSIONS

G.1 ADDITIONAL RELATED WORKS

High-probability generalization bounds in the literature could be categorized by the distribution they
are taken over (Hellström et al., 2023):

• PAC-Bayesian bounds, which hold with high probability over the draw of the training dataset, but
are averaged over the learning algorithm;

• Single-draw bounds, which hold with high probability over the draw of both the dataset and a
single hypothesis;

• Mean-hypothesis bounds, high probability bounds of the average hypothesis output from the learn-
ing algorithm, given the dataset.

Exponential stochastic inequalities (ESI) were initially employed to derive generalization bounds
in seminal works by (Zhang, 2006; Catoni, 2007). Subsequently, these bounds were formalized by
(Koolen et al., 2016; Mhammedi et al., 2019; Grünwald & Mehta, 2020). The general form of PAC-
Bayesian bounds has been established by (Germain et al., 2009; Bégin et al., 2014; Rivasplata et al.,
2020), leading to various specific bounds that leverage the sub-gaussian nature of loss functions
(Hellström & Durisi, 2020) and binary KL upper bounds for the population risk given the empirical
risk with bounded loss functions (McAllester, 2013; Foong et al., 2021).

Data-dependent priors based on data splitting were introduced by (Ambroladze et al., 2006) and
further extended by (Mhammedi et al., 2019; Dziugaite et al., 2021). Further investigations into
data-dependent priors through the lens of differential privacy were conducted by (Dziugaite & Roy,
2018; Rivasplata et al., 2020). The exploration of distribution-dependent priors is discussed by
Catoni (2007); Lever et al. (2013). It is also noteworthy that an essentially equivalent approach to
the CMI framework was introduced in the PAC-Bayesian context much earlier by (Audibert, 2004;
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Catoni, 2007) to mitigate the variance of PAC-Bayesian generalization bounds, under the name of
”almost exchangeable priors” or ”transductive learning”.

Beyond PAC-Bayesian bounds, Catoni (2007) noted that analogous techniques can be employed to
derive single-draw bounds from the posterior. Rivasplata et al. (2020) leverages the Radon-Nikodym
derivative to formulate single-draw bounds beyond relative entropy, which are further extended by
(Hellström & Durisi, 2021b;a). Esposito et al. (2021) linked single-draw generalization error with
Rényi-, f -Divergences and Maximal Leakage. Xu & Raginsky (2017) adapted the monitor technique
to transform average generalization bounds into single-draw counterparts.

G.2 CONVERGENCE RATE OF LOO BOUNDS

In the interpolating regime where the training risk approaches zero, it is shown in Theorem II.1
of (Haghifam et al., 2022) that the LOO bound for the expected generalization error scales with
1/ log(n), while our Theorem 3 does not exhibit such property. However, it is worth noting that the
dimensionality of the LOO-CMI term I(RW ;U |S̃l) is still proportional to n even in the interpolating
regime, so this does not necessarily lead to tighter or computationally tractable bounds when n is
large. In contrast, our loss entropy measure H(RW ) reduces to the entropy of a single 1-dimensional
variable, making the bound directly tractable.

G.3 DISCRETIZATION OF CONTINUOUS LOSS

In practice, the loss function is usually continuous (e.g. cross-entropy). While the loss values can be
treated as discrete variables by the fact that they are stored in digital computers with floating-point
numbers, it is impractical to estimate the loss entropy with machine-precision binning size. Instead,
we show that the loss values could be discretized with an arbitrary bin size and still acquire valid
generalization bounds. Let b > 0 be the bin size and ϕb(x) be the rounding function of base b:

ϕb(x) = b× argmin
i∈N

|ib− x|.

Since the discretization error of the training risk is directly tractable, we only consider the discretiza-
tion error of the test risk:
Proposition 3. For any w ∈ W and b > 0, let {Zi}ni=1 ∼ µn be i.i.d samples, Li = ℓ(w,Zi) and
{Di}ni=1 ∼ Unif([− b

2 ,
b
2 ]

n) be i.i.d uniform variables. Then with probability at least 1− δ, we have

1

n

n∑
i=1

Li −
1

n

n∑
i=1

ϕb(Li +Di) ≤ b

√
2 log(1δ )

n
.

Proof. Let L̂i = Li − ϕb(Li + Di), then it is easy to verify that EDi [L̂i] = 0 and L̂i ∈ [−b, b],
i.e. L̂i is b-subgaussian. Since {Li}ni=1 and {Di}ni=1 are both i.i.d, we have that 1

n

∑n
i=1 L̂i is

b√
n

-subgaussian. Therefore,

P

(
1

n

n∑
i=1

L̂i − E

[
1

n

n∑
i=1

L̂i

]
≥ ϵ

)
≤ exp

(
−nϵ2

2b2

)
.

By taking δ as the RHS of the inequality above, we then have that with probability at least 1− δ,

1

n

n∑
i=1

L̂i ≤ b

√
2 log(1δ )

n
.

The proof is complete.

Therefore, by perturbing each test loss with Di ∼ Unif([− b
2 ,

b
2 ]) and then rounding to the nearest

bin, the loss values could be discretized without significant impact on the validation error. In this
way, one can directly evaluate our main theorems with the discretized losses, and then take the union
bound with Proposition 3 to acquire generalization upper bounds for continuous loss functions. Note
that in our main Theorems 3 - 6, the losses are not required to be deterministic given the model W
and sample Z, so these bounds remain valid after introducing external randomness Di by taking the
probability over the draw of W , S̃s (or S̃l), Ũ (or U ) and Di.

46



Published as a conference paper at ICLR 2024

G.4 THE INTERPOLATING REGIME

It is common to observe that at the end of the training progress, the network overfits the training
dataset and approaches 100% training accuracy. Such a phenomenon corresponds to the interpolat-
ing regime, which assumes that the network can always fit the given training dataset and achieve
zero empirical risk. This assumption leads to certain simplifications and reveals many intriguing
properties of information-theoretic generalization bounds (Hellström & Durisi, 2022; Wang & Mao,
2023). For example, the key information quantities in our main Theorems 3 - 6 could be simplified to
the entropy of samplewise test loss. Furthermore, Theorem 5 achieves a convergence rate of O(1/n)
when the empirical risk approaches zero. It would be tempting to connect generalization analysis
under over-parameterization frameworks (e.g. NTK (Chen et al., 2020) and Mean-field (Nitanda
et al., 2021; Nishikawa et al., 2022; Aminian et al., 2023)) that investigate the interpolating regime,
with information-theoretic generalization bounds.
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