Scaling up Multi-Turn Off-Policy RL and Multi-Agent
Tree Search for LLM Step-Provers

Ran Xin* !, Zeyu Zheng* 2, Yanchen Nie* 1>, Kun Yuan®, Xia Xiao'!
!ByteDance Seed 2Carnegie Mellon University ~ ®Peking University
{ran.xin, x.xiaxiao}@bytedance.com
*Equal contribution {Corresponding author
https://bfs-prover.github.io/V2/

Abstract

The integration of Large Language Models (LLMs) with automated theorem prov-
ing has shown immense promise, yet is constrained by challenges in scaling
up both training-time reinforcement learning (RL) and inference-time compute.
This paper introduces BFS-Prover-V2, a step-level theorem proving system de-
signed to address this dual scaling problem. We present two primary innovations.
The first is a novel multi-turn off-policy RL framework for continually improv-
ing the performance of the LLM step-prover at training time. This framework,
inspired by the principles of AlphaZero, utilizes a multi-stage expert iteration
pipeline featuring adaptive tactic-level data filtering and periodic retraining to
surmount the performance plateaus that typically curtail long-term RL in LLM-
based agents. The second innovation is a planner-enhanced multi-agent system
that scales reasoning capabilities at inference time. This architecture employs a
general reasoning model as a high-level planner to iteratively decompose complex
theorems into a sequence of simpler subgoals. This hierarchical approach sub-
stantially reduces the search space, enabling a team of parallel prover agents to
collaborate efficiently by leveraging a shared proof cache. We demonstrate that this
dual approach to scaling yields SoTA results on established formal mathematics
benchmarks. BFS-Prover-V2 achieves 95.08% and 41.4% on the miniF2F and
ProofNet test sets respectively. While demonstrated in the domain of formal math-
ematics, the RL and inference techniques presented in this work are of broader
interest and may be applied to other domains requiring long-horizon multi-turn
reasoning and complex search. Our models and code have been open-sourced at
https://github.com/ByteDance-Seed/BFS-Prover-V2.

1 Introduction

Automated Theorem Proving (ATP), a subfield of mathematical logic and automated reasoning,
represents one of the foundational ambitions of computer science [3]. The contemporary landscape
of formal mathematics is increasingly dominated by interactive theorem provers (ITPs) or proof
assistants. These systems, such as Coq, Isabelle, and Lean, require a human user to guide the proof
process, but they automate significant deductive tasks and, most importantly, provide a machine-
checkable guarantee of correctness [9]. Among these, the Lean4 programming language [25] has
emerged as a particularly vibrant ecosystem. A key factor in its success is Mathlib [4], a vast and
comprehensive, community-driven library of formalized mathematics. Spanning over a million lines
of code, mathlib covers extensive areas of algebra, analysis, topology, and more, providing a rich
foundation for both advanced mathematical research and the development of verified systems.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: MATH-AL

https://bfs-prover.github.io/V2/
https://github.com/ByteDance-Seed/BFS-Prover-V2

The rise of Lean4 has coincided with the explosion in the capabilities of LLMs [26, 8, 33], opening a
new frontier in neuro-symbolic Al systems. The goal here is to integrate the intuitive yet powerful
generation and search capabilities of LLMs with the absolute logical verification of formal systems.
This research direction centers on a key feedback loop: an LLM proposes intuitive proof steps, the
Lean compiler provides rigorous verification, and RL [40] uses that verification to continuously
improve the LLM’s reasoning abilities [55, 51, 28, 11, 15].

1.1 A Duality of Scaling Challenges in LLM Provers and Reasoning Agents

The development of high-performance LLM-based provers, or any other reasoning agents, is contin-
gent upon solving two fundamental and deeply interconnected scaling challenges.

Training-time scaling. This refers to the techniques required to continuously enhance a model’s
foundational capabilities and tactical intuitions via training. A common and significant obstacle
in applying RL to LLMs is the phenomenon of performance plateaus: after an initial phase of
rapid improvement, models often stagnate, with their capabilities ceasing to grow despite continued
training [24, 41, 58, 59, 10, 33, 51, 52]. Overcoming it requires carefully designed algorithms that
can sustain improving, enabling the model to master increasingly harder problems.

Inference-time scaling. This addresses the method of using a trained model to solve theorems. Real-
world mathematical problems often require deep reasoning, the formulation of intermediate lemmas,
and the exploration of an exponentially large search space of possible tactics. A powerful base model,
while necessary, is not sufficient. Without an effective search strategy, even a very competent model
can be overwhelmed by the search complexity. The challenge is to design an inference system that
allocates computational resources to the most promising avenues of exploration [2, 61, 7, 13, 6].

1.2 Our Contributions

This paper presents BFS-Prover-V2, a comprehensive training and inference system for neural
theorem proving in Lean4 that introduces novel solutions to the above scaling challenges. The
primary contributions of this work are as follows:

Novel RL Scaling Techniques at Training: We develop a distillation-free multi-stage expert-
iteration framework [37, 1], a form of off-policy RL, tailored for the domain of formal theorem
proving. To sustain learning and overcome performance plateaus, we introduce a suite of specialized
techniques within the RL pipeline. These include an adaptive, perplexity-based data filtering strategy
at the tactic level, which creates an automated curriculum for the agent, and a periodic retraining
mechanism to escape local optima in the model parameter space and increase model scaling potential.

A Planner-Enhanced Multi-Agent Tree Search System at Inference: For inference-time scaling,
we introduce a hierarchical reasoning architecture. A general-purpose reasoning model, termed
the Planner, iteratively decomposes complex theorems/goals into a sequence of more manageable
subgoals. These subgoals are then tackled by a group of parallel prover agents that share a common
subgoal cache, dramatically decreasing search complexity of the system and enabling it to solve
problems that are intractable for a monolithic prover.

State-of-the-Art Empirical Results: We validate the effectiveness and generalizability of our dual
scaling approach on established benchmarks. BFS-Prover-V2 achieves 95.08% on miniF2F test
set, largely surpassing previous step-provers [49, 53] and performing on par with best whole-proof
models [32, 22, 43]. On ProofNet test, it achieves 41.4%, setting a new state-of-the-art, showing
robust generalization across distributions.

2 The BFS-Prover-V2 System

This section details the two core components of BES-Prover-V2: (i) a training pipeline, grounded in
a Markov Decision Process (MDP) [30] and scaled via adaptive filtering and periodic retraining; and
(ii) an inference engine, which uses a planner-enhanced multi-agent search for hierarchical reasoning.

We formulate proof search in Lean4 tactic mode as a multi-turn interaction between an LLM agent
and the Lean environment, modeled as a MDP. This approach, by design, trains a model that functions
as a genuine Lean copilot, suggesting the next tactic step at any point in the proof process [56].

The core training loop of BFS-Prover-V2 is an expert iteration pipeline, which may be viewed as
a variant of the AlphaZero algorithm [1, 37]. This process, illustrated in the inner loop of Fig. 1,
includes two major alternating phases. In the proof generation phase, the best checkpoint of the
LLM prover (the expert) solves a large corpus of mathematical problems using the best-first tree
search (BFS) [53]. We formalized approximately 3 million problems [50, 57, 4, 17, 21, 53] to serve
as the training ground. Each successful proof constitutes a trajectory of (state, tactic) pairs. The data
generated in the first phase is then used in model refinement phase to update the LLM model’s
policy, which then becomes the new “expert” for the next iteration.

2.1 Scaling up training: multi-stage expert iteration

A central challenge in scaling the expert iteration pipeline or RL in general is managing the vast quan-
tity and variable quality of the synthetic data. Naively training on every successful tactic discovered
quickly leads to diminishing returns and mode collapse [24, 40, 53]. To sustain improvement over
many iterations, we introduce two key algorithmic innovations: an adaptive data filtering strategy and
a periodic retraining process. The overall architecture of this pipeline is illustrated in Fig. 1.

R Prover | 7 Data
L] > ol Pl ? | PPemm s mmmEm== -ﬁ
1'?1‘1 creau Re-synthesis N
M
No Data :
Training| Expert | Rollout Curation Expert :
{S% Iteration % R tv - Iteration 1
ez Stage-n etrain Stage-(n+1)
A from Base '
Filtering)

Y

Figure 1: Overview of the training-time scaling up architecture.

Adaptive Tactic Filtering Instead of relying on coarse problem-level filtering [58, 41], we adopt a
more fine-grained approach. This strategy is guided by the empirical observation that the perplexity
of tactics generated by the LLM follows a roughly Gaussian distribution. The distribution, shown in
Fig. 2, can be divided into three distinct regions, each with different implications for learning:

* The Low-Perplexity Tail: This region corresponds to tactics for which the model has very high
confidence. These are typically simple steps, including which in the training batch offers no new
learning signal. It can contribute to overfitting and a reduction in exploratory capacity.

—log p distribution with 10 % low & high tails highlighted

B add to train batch
Il filtered

e o o o
PR e e
o N & O
s s

o

o

®
s

Probability mass

0.1 0.3 0.5 0.7 0.9 1.1 1.3 15 1.7 1.9 =2.0
—log p (values > 2.0 grouped)

Figure 2: Tactic-Level Data Filtering Based on the Perplexity Distribution.

* The High-Perplexity Tail: This region represents tactics that the model finds highly surprising.
Case studies reveal that these are often not brilliant reasoning but noisy or suboptimal choices.
These data may teach the model to generate overly complex or irrelevant tactics.

* The Central Distribution: This region represent steps that are challenging for the model but still
within its grasp—its zone of proximal development. By selectively training only on the data from

this central part of the distribution, we ensure that the model is constantly learning at the edge of its
capabilities.

This filtering mechanism functions as a fully automated form of curriculum learning. It uses the
model’s own uncertainty as a dynamic signal of what constitutes valuable training data at its current
stage of development. This ensures a smooth and stable evolution of the model’s policy distribution.

Periodic Retraining: A “Soft Reset” to Escape Local Optima Even with adaptive filtering, after
a few expert iterations, the model still plateaus because it gets trapped in a local optimum. To escape
local optima, we introduce a multi-stage expert-iteration process to re-increase the model’s entropy
and reset its exploratory potential without losing too much competence. The procedure is as follows:

&
3 o
N <
’L’L% (0\3 ae‘l
P et
8501 ® Expert Iteration \e“w we
’ B Retrain @
g2.5{ @ Scale-up (o&\é{’ retrain
X 80.0
~ e
E 77.5 58
< 75.0 retrain
=
72,51 5ol
&
70.0

0 2 4 6 8 10 12 14 16 18
Cumulative expert-iteration rounds (x 107 tree searches)

Figure 3: Sustained Performance Improvement through Expert Iteration and Periodic Retraining.

1. Re-synthesis and De-noise: The current best prover is used to re-solve the problems in all past
iterations to find better proofs. This step effectively uses the expert model to de-noise and improve
upon its own past work. The re-synthesized proofs are then filtered as described above.

2. Retrain from a base Checkpoint: The existing training data is completely replaced by the new
dataset. A fresh model is then initialized and trained from scratch on this refined data.

The resulting model, as illustrated in Fig. 3, initially exhibits a temporary drop in performance.
However, when it is reintroduced into the expert iteration loop, its increased capacity for exploration
allows it to rapidly recover and then surpass the previous peak.

2.2 Scaling up Inference: Planner-Enhanced Multi-Agent Search

We introduce a hierarchical inference architecture shown in Fig. 4, which mirrors the workflow of
a human mathematician, who might first sketch out a high-level idea of a proof by identifying key
lemmas, and then fill in detailed deductions. Likewise, the planner, a reasoning LLM proposes
a high-level plan that includes a series of intermediate subgoals. The prover, a specialized LLM
trained as a tactic generator, receives one subgoal at a time and uses tree search to find a formal proof.

Planner-Guided Search At start, the planner is queried with the main theorem statement to
propose a list of subgoals as Lean have statements. The prover system then addresses the subgoals
sequentially via tree search. Once a subgoal is proven, it is treated as a known fact which can be used
in all subsequent proofs. If the provers fail to find a proof for a subgoal within budget, the planner is
re-queried with all subgoals that were successfully proven, in addition to the theorem statement to
generate a revised plan that corrects or refines the original proof strategy.

Parallel Provers and Shared Subgoal Cache We deploy multiple parallel prover instances that
jointly work on a single subgoal at a time to prevent wasting compute on subgoals that would be
rendered invalid if an earlier step fails and triggers a replan. As soon as the first agent finds a proof, the

Formalized Statement in [v\l Planner

th?oremRr;\athd_algebra_17
a i
I e ¢ cpte (0 o o 2 Dynamic
950 Replanning

Shared Subgoal Cache

have hl : Real.sqrt (16 + 16 * a) = 4 x Real.sqrt (1 + a)
have h2 : Real.sqrt (4 + 4 x Real.sqrt (1 + a))
+ Real.sqrt (1 + Real.sqrt (1 + a)) =6

fhave h3 : 3 x Real.sqrt (1 + Real.sqrt (1 + a)) = 6 @) @
have hd : Real.sqrt (1 + Real.sqrt (1 +a)) =2 | __

have h5 : Real.sqrt (1 + a) =3 @

have h6 : 1 +a =9

Context
Augmentation

Parallel Best-first Search

0- 0- 0-
Prover1 Prover2 Prover 3

Figure 4: Overview of the planner-enhanced multi-agent tree search architecture.

subgoal cache signals all other provers to terminate their search, preventing redundant computation.
The entire group of agents then proceeds to the next subgoal in the sequence.

3 Conclusion

This work’s contributions are the design and implementation of a holistic system for scaling LLM-
based step-provers. For training, our multi-stage expert iteration pipeline overcomes performance
plateaus and enable sustained improvement over an extended period. For inference, we introduced a
Planner-Prover paradigm. By using a planner to generate subgoals, we enable the system to tackle
complex, multi-step theorems that are intractable for monolithic approaches. The SoTA results on the
miniF2F and ProofNet benchmarks provide strong evidence for the efficacy of our approach.

Prover Method budget miniF2F-test miniF2F-valid ProofNet-test
Step-level provers
InternLM2.5-StepProver-7B [49] 256 x 32 x 600 65.9% 69.6% ~ 27%
Hunyuan-Prover-7B [18] 600 x 8 x 400 68.4% - -
BFS-Prover-V1-7B [53] 2048 x 2 x 600 70.8% - -
accumulative 73.0% - -
MPS-Prover-7BT [19] 64 x 4 x 800 x 8 72.54% - -
accumulative 75.8% - -
BFS-Prover-V2-7B (this work) accumulative 82.4% - -
" BFS-Prover-V2-32B (this work) ~ accumulative ~ 86.1% ¢ 85.5% 41.4%
w/ Planner accumulative 95.1% 95.5% -
Whole-proof provers
DeepSeek-Prover-V2-671B [32] 8192 88.9% 90.6% 37.1%
Kimina-Prover-72BT [43] 1024 87.7% - -
w/ TTRL search accumulative 92.2% - -
Goedel-Prover-32BT [22] 8192 92.2% - -
w/ Self-correction 1024 92.6% - -
Delta-Prover' [61] accumulative 95.9% - -
Seed-Prover' [7] accumulative 99.6% - -

Table 1: Comparison between BFS-Prover-V2 and other theorem provers. T denotes concurrent work.

Acknowledgements

We would like to thank Kai Shen from ByteDance Seed for his insightful discussions throughout this
project.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

8]

(9]
(10]

(11]

(12]

(13]

(14]

(15]

[16]

(171

(18]

Thomas Anthony, Zheng Tian, and David Barber. Thinking fast and slow with deep learning and tree
search. Advances in neural information processing systems, 30, 2017.

Kaito Baba, Chaoran Liu, Shuhei Kurita, and Akiyoshi Sannai. Prover agent: An agent-based framework
for formal mathematical proofs. arXiv preprint arXiv:2506.19923, 2025.

Wolfgang Bibel, Steffen Holldobler, and Gerd Neugebauer. Deduction: automated logic. Academic Press
London, 1993.

Mark Blokpoel. mathlib: A scala package for readable, verifiable and sustainable simulations of formal
theory. Journal of Open Source Software, 9(99):6049, 2024.

Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I Cowling, Philipp
Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton. A survey of monte
carlo tree search methods. IEEE Transactions on Computational Intelligence and Al in Games, 4(1):1-43,
2012.

Chenrui Cao, Liangcheng Song, Zenan Li, Xinyi Le, Xian Zhang, Hui Xue, and Fan Yang. Reviving dsp
for advanced theorem proving in the era of reasoning models. arXiv preprint arXiv:2506.11487, 2025.

Luoxin Chen, Jinming Gu, Liankai Huang, Wenhao Huang, Zhicheng Jiang, Allan Jie, Xiaoran Jin, Xing
Jin, Chenggang Li, Kaijing Ma, et al. Seed-prover: Deep and broad reasoning for automated theorem
proving. arXiv preprint arXiv:2507.23726, 2025.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit Dhillon,
Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier with ad-
vanced reasoning, multimodality, long context, and next generation agentic capabilities. arXiv preprint
arXiv:2507.06261, 2025.

Herman Geuvers. Proof assistants: History, ideas and future. Sadhana, 34(1):3-25, 2009.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong
Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement
learning. arXiv preprint arXiv:2501.12948, 2025.

Jesse Michael Han, Jason Rute, Yuhuai Wu, Edward W Ayers, and Stanislas Polu. Proof artifact co-training
for theorem proving with language models. arXiv preprint arXiv:2102.06203, 2021.

Yuhang He, Jihai Zhang, Jianzhu Bao, Fangquan Lin, Cheng Yang, Bing Qin, Ruifeng Xu, and Wotao Yin.
Bc-prover: Backward chaining prover for formal theorem proving. In Proceedings of the 2024 Conference
on Empirical Methods in Natural Language Processing, pages 3059-3077, 2024.

Albert Q Jiang, Sean Welleck, Jin Peng Zhou, Wenda Li, Jiacheng Liu, Mateja Jamnik, Timothée Lacroix,
Yuhuai Wu, and Guillaume Lample. Draft, sketch, and prove: Guiding formal theorem provers with
informal proofs. arXiv preprint arXiv:2210.12283,2022.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonzalez,
Hao Zhang, and Ion Stoica. Efficient memory management for large language model serving with
pagedattention. In Proceedings of the 29th Symposium on Operating Systems Principles, pages 611-626,
2023.

Guillaume Lample, Timothée Lacroix, et al. Hypertree proof search for neural theorem proving. Advances
in Neural Information Processing Systems, 35:26337-26349, 2022.

Chenyi Li, Ziyu Wang, Wanyi He, Yuxuan Wu, Shengyang Xu, and Zaiwen Wen. Formalization of
convergence rates of four first-order algorithms for convex optimization: C. li et al. Journal of Automated
Reasoning, 69(4):28, 2025.

Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif Rasul,
Longhui Yu, Albert Q Jiang, Ziju Shen, et al. Numinamath: The largest public dataset in ai4maths with
860k pairs of competition math problems and solutions. Hugging Face repository, 13(9):9, 2024.

Yang Li, Dong Du, Linfeng Song, Chen Li, Weikang Wang, Tao Yang, and Haitao Mi. Hunyuanprover: A
scalable data synthesis framework and guided tree search for automated theorem proving. arXiv preprint
arXiv:2412.20735, 2024.

(19]

(20]

(21]

[22]

(23]

[24]

[25]

[26]
(27]

(28]

[29]

(30]

(31]

(32]

[33]

(34]

(35]

(36]

(37]

(38]

Zhenwen Liang, Linfeng Song, Yang Li, Tao Yang, Feng Zhang, Haitao Mi, and Dong Yu. Mps-prover:
Advancing stepwise theorem proving by multi-perspective search and data curation. arXiv preprint
arXiv:2505.10962, 2025.

Haohan Lin, Zhiqing Sun, Sean Welleck, and Yiming Yang. Lean-star: Learning to interleave thinking and
proving. arXiv preprint arXiv:2407.10040, 2024.

Yong Lin, Shange Tang, Bohan Lyu, Jiayun Wu, Hongzhou Lin, Kaiyu Yang, Jia Li, Mengzhou Xia, Danqi
Chen, Sanjeev Arora, et al. Goedel-prover: A frontier model for open-source automated theorem proving.
arXiv preprint arXiv:2502.07640, 2025.

Yong Lin, Shange Tang, Bohan Lyu, Ziran Yang, Jui-Hui Chung, Haoyu Zhao, Lai Jiang, Yihan Geng,
Jiawei Ge, Jingruo Sun, et al. Goedel-prover-v2: Scaling formal theorem proving with scaffolded data
synthesis and self-correction. arXiv preprint arXiv:2508.03613, 2025.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint arXiv:2412.19437,
2024.

Mingjie Liu, Shizhe Diao, Ximing Lu, Jian Hu, Xin Dong, Yejin Choi, Jan Kautz, and Yi Dong. Prorl:
Prolonged reinforcement learning expands reasoning boundaries in large language models. arXiv preprint
arXiv:2505.24864, 2025.

Leonardo de Moura and Sebastian Ullrich. The lean 4 theorem prover and programming language. In
International Conference on Automated Deduction (CADE), pages 625-635. Springer, 2021.

OpenAl. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

Judea Pearl. Heuristics: intelligent search strategies for computer problem solving. Addison-Wesley
Longman Publishing Co., Inc., 1984.

Stanislas Polu, Jesse Michael Han, Kunhao Zheng, et al. Formal mathematics statement curriculum
learning. arXiv preprint arXiv:2202.01344, 2022.

Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving. arXiv
preprint arXiv:2009.03393, 2020.

Martin L Puterman. Markov decision processes. Handbooks in operations research and management
science, 2:331-434, 1990.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea Finn.
Direct preference optimization: Your language model is secretly a reward model. Advances in Neural
Information Processing Systems, 36, 2024.

ZZ Ren, Zhihong Shao, Junxiao Song, Huajian Xin, Haocheng Wang, Wanjia Zhao, Liyue Zhang, Zhe
Fu, Qihao Zhu, Dejian Yang, et al. Deepseek-prover-v2: Advancing formal mathematical reasoning via
reinforcement learning for subgoal decomposition. arXiv preprint arXiv:2504.21801, 2025.

ByteDance Seed, Jiaze Chen, Tiantian Fan, Xin Liu, Lingjun Liu, Zhiqi Lin, Mingxuan Wang, Chengyi
Wang, Xiangpeng Wei, Wenyuan Xu, et al. Seedl. 5-thinking: Advancing superb reasoning models with
reinforcement learning. arXiv preprint arXiv:2504.13914, 2025.

Ziju Shen, Naohao Huang, Fanyi Yang, Yutong Wang, Guoxiong Gao, Tianyi Xu, Jiedong Jiang, Wanyi He,
Pu Yang, Mengzhou Sun, et al. Real-prover: Retrieval augmented lean prover for mathematical reasoning.
arXiv preprint arXiv:2505.20613, 2025.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian
Schrittwieser, loannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go
with deep neural networks and tree search. Nature, 529(7587):484-489, 2016.

David Silver, Thomas Hubert, et al. Mastering chess and shogi by self-play with a general reinforcement
learning algorithm. In Advances in Neural Information Processing Systems, volume 30, 2017.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforcement learning
algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):1140-1144, 2018.

David Silver and Richard S Sutton. Welcome to the era of experience. Google Al, 1, 2025.

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

(50]

[51]

[52]

(53]

[54]

[55]

(561

(571

Peiyang Song, Kaiyu Yang, and Anima Anandkumar. Towards large language models as copilots for
theorem proving in lean. arXiv preprint arXiv:2404.12534, 2024.

Richard S Sutton. Reinforcement learning: An introduction. A Bradford Book, 2018.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun Xiao,
Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with llms. arXiv
preprint arXiv:2501.12599, 2025.

Ye Tian, Baolin Peng, et al. Toward self-improvement of llms via imagination, searching, and criticizing.
Advances in Neural Information Processing Systems, 2023.

Haiming Wang, Mert Unsal, Xiaohan Lin, Mantas Baksys, Junqi Liu, Marco Dos Santos, Flood Sung,
Marina Vinyes, Zhenzhe Ying, Zekai Zhu, et al. Kimina-prover preview: Towards large formal reasoning
models with reinforcement learning. arXiv preprint arXiv:2504.11354, 2025.

Haiming Wang, Huajian Xin, Chuanyang Zheng, Lin Li, Zhengying Liu, Qingxing Cao, Yinya Huang,
Jing Xiong, Han Shi, Enze Xie, et al. Lego-prover: Neural theorem proving with growing libraries. arXiv
preprint arXiv:2310.00656, 2023.

Ruida Wang, Rui Pan, Yuxin Li, Jipeng Zhang, Yizhen Jia, Shizhe Diao, Renjie Pi, Junjie Hu, and Tong
Zhang. Ma-lot: Model-collaboration lean-based long chain-of-thought reasoning enhances formal theorem
proving. arXiv preprint arXiv:2503.03205, 2025.

Ruida Wang, Jipeng Zhang, Yizhen Jia, Rui Pan, Shizhe Diao, Renjie Pi, and Tong Zhang. Theoremllama:
Transforming general-purpose llms into lean4 experts. arXiv preprint arXiv:2407.03203, 2024.

Sean Welleck and Rahul Saha. Llmstep: Llm proofstep suggestions in lean. arXiv preprint
arXiv:2310.18457, 2023.

Yuhuai Wu, Albert Qiaochu Jiang, Wenda Li, Markus Rabe, Charles Staats, Mateja Jamnik, and Christian
Szegedy. Autoformalization with large language models. Advances in Neural Information Processing
Systems, 35:32353-32368, 2022.

Zijian Wu, Suozhi Huang, Zhejian Zhou, Huaiyuan Ying, Jiayu Wang, Dahua Lin, and Kai Chen. Internlm2.
5-stepprover: Advancing automated theorem proving via expert iteration on large-scale lean problems.
arXiv preprint arXiv:2410.15700, 2024.

Zijian Wu, Jiayu Wang, Dahua Lin, and Kai Chen. Lean-github: Compiling github lean repositories for a
versatile lean prover. arXiv preprint arXiv:2407.17227, 2024.

Huajian Xin, Daya Guo, Zhihong Shao, Zhizhou Ren, Qihao Zhu, Bo Liu, Chong Ruan, Wenda Li, and
Xiaodan Liang. Deepseek-prover: Advancing theorem proving in llms through large-scale synthetic data.
arXiv preprint arXiv:2405.14333, 2024.

Huajian Xin, ZZ Ren, Junxiao Song, Zhihong Shao, Wanjia Zhao, Haocheng Wang, Bo Liu, Liyue Zhang,
Xuan Lu, Qiushi Du, et al. Deepseek-prover-v1. 5: Harnessing proof assistant feedback for reinforcement
learning and monte-carlo tree search. arXiv preprint arXiv:2408.08152, 2024.

Ran Xin, Chenguang Xi, Jie Yang, Feng Chen, Hang Wu, Xia Xiao, Yifan Sun, Shen Zheng, and Kai
Shen. Bfs-prover: Scalable best-first tree search for llm-based automatic theorem proving. arXiv preprint
arXiv:2502.03438, 2025.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jianhong Tu,
Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical expert model via
self-improvement. arXiv preprint arXiv:2409.12122, 2024.

Kaiyu Yang, Gabriel Poesia, Jingxuan He, Wenda Li, Kristin Lauter, Swarat Chaudhuri, and Dawn Song.
Formal mathematical reasoning: A new frontier in ai. arXiv preprint arXiv:2412.16075, 2024.

Kaiyu Yang, Aidan Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil, Ryan J
Prenger, and Animashree Anandkumar. Leandojo: Theorem proving with retrieval-augmented language
models. Advances in Neural Information Processing Systems, 36, 2024.

Huaiyuan Ying, Zijian Wu, Yihan Geng, Jiayu Wang, Dahua Lin, and Kai Chen. Lean workbook: A large-
scale lean problem set formalized from natural language math problems. arXiv preprint arXiv:2406.03847,
2024.

[58] Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian Fan,
Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system at scale. arXiv
preprint arXiv:2503.14476, 2025.

[59] Yu Yue, Yufeng Yuan, Qiying Yu, Xiaochen Zuo, Ruofei Zhu, Wenyuan Xu, Jiaze Chen, Chengyi Wang,
TianTian Fan, Zhengyin Du, et al. Vapo: Efficient and reliable reinforcement learning for advanced
reasoning tasks. arXiv preprint arXiv:2504.05118, 2025.

[60] Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. Minif2f: a cross-system benchmark for formal
olympiad-level mathematics. arXiv preprint arXiv:2109.00110, 2021.

[61] Yichi Zhou, Jianqiu Zhao, Yongxin Zhang, Bohan Wang, Siran Wang, Luoxin Chen, Jiahui Wang, Haowei
Chen, Allan Jie, Xinbo Zhang, et al. Solving formal math problems by decomposition and iterative
reflection. arXiv preprint arXiv:2507.15225, 2025.

A Practical Implementation and Benchmark Results

We now present practical implementation of the BFS-Prover-V2 system and its benchmark results.

Model and Data: The LLM prover agent is built upon the Qwen2.5-Math-7B and Qwen2.5-32B
models [54], which serve as the base for our policy optimization. The multi-stage expert iteration
process was initialized with the checkpoint from BFS-Prover-V1 [53]. To construct a large-scale
training corpus, we autoformalized the NuminaMath-CoT and NuminaMath-1.5 datasets [17] using
carefully designed prompts applied to general-purpose models, augmented with Lean4 compiler
feedback. Combined with data provided by Goedel-Prover [21], this process produced approximately
3 million formal statements. Prompts used for autoformalization can be found in Section D.1. All
experiments are conducted in Lean v4.10.0 with LeanDojo [56].

Training setup: We refine the policy LLM after each expert iteration round using one of two
Supervised Fine-Tuning (SFT) strategies, chosen based on the outcome of the round. For rounds
with a manageable data yield, we perform a continuous finetune from the current best checkpoint
for a single epoch, using a conservative cosine learning rate decay from 5 x 10~¢ and decaying to
1 x 10~7. A more comprehensive retrain from the base model is triggered under two conditions:
either if the round produces a very large volume of new data, or if model performance has stagnated.
In the case of a performance plateau, this retraining is combined with an aggressive data curation step
to create a new, refined dataset designed to break the local; see Section 2.1. This retraining process is
conducted for 3 epochs with a higher learning rate decaying from 2 x 10~5 and decaying to 1 x 1076,
Both strategies utilize a global batch size of 1024.

Inference configuration: Our inference process combines a low-level Prover with a high-level
Planner, as detailed in Section 2.2. The Prover agents utilize a Best-First Search (BFS) algorithm,
with an implementation that follows BFS-Prover-V1 [53], where we set the sampling temperature
to 1.3, the expansion width to 3, and a length normalization factor of 2.0. For the high-level
strategic Planner, we employ Gemini2.5-pro, while other general-purpose reasoning models can
achieve comparable performance if properly prompted. Prompts used for Planner can be found in
Section D.2.

Benchmark results: We evaluated BFS-Prover-V2 on two key benchmarks: miniF2F, a test of high-
school competition math, and ProofNet, which challenges reasoning over a large undergraduate-level
library. Our system sets a new state of the art for LLM step-provers, achieving 95.08% on the miniF2F
test set (95.49% on validation) and 41.4% on the ProofNet test set. The near-saturation performance
on miniF2F validates our iterative RL pipeline’s ability to master a problem distribution. More
importantly, the strong ProofNet result demonstrates successful generalization from the system’s
training corpus, which consists mainly of high-school competition problems, to the more complex,
library-dependent undergraduate problems. See detailed comparison with other LLM provers in
Table 1.

B Case Studies

B.1 Proof Conciseness and Tactic Proficiency

A primary advantage of our step-level proof approach over the whole-proof paradigm is a dramatic
reduction in proof length, which arises from the interactive nature of our method. By engaging
with the Lean environment step by step, our model captures and leverages fine-grained tactic state
information. This iterative feedback loop significantly improves its ability to employ powerful,
high-level tactics such as simp, linarith, and nlinarith, enabling it to solve complex goals in a
single step rather than through lengthy, explicit derivations.

To illustrate this contrast, we present a comparative analysis of proofs for two problems,
aime_1984_p7 and amc12_2000_p1, generated by BFS-Prover-V2 and DeepSeek-Prover-V2.

e “
aime_1984_p7

For the problem aime_1984_p7, BFS-Prover-V2 produces a remarkably concise proof,
where a single tactic simp [h;, ho] effectively replaces over 2000 lines that appear in
numerous have blocks within DeepSeek-Prover-V2’s proof.

BFS-Prover-V2 (step-level proof):

theorem aime_1984_p7
(f : Z—>172)
(ho : V n, 1000 < n —
(hy : V n, n < 1000 —
f 84 = 997 := by
simp [hi, hol

=n - 3)
=f (f (n + 5)))

DeepSeek-Prover-V2 (whole-proof):

theorem aime_1984_p7 (f : Z —7Z) (hg : V n, 1000 < n —-f n = n -

3)

(hy : Vn, n < 1000 - f n =f (f (n + 5))) : f 84 = 997 :=

by

have ho : £ 1004 = 1001 := by

have ho; : £ 1004 = 1004 - 3 := by
apply ho
<;> norm_num

rw [ha:]

<;> norm_num

have hz : f 1003 = 1000 := by
have hz; : f 1003 = 1003 - 3
apply ho
<;> norm_num
rw [h3:1]
<;> norm_num

by

have hy : £ 1002 = 999 := by
have hy; : £ 1002 = 1002 - 3
apply ho
<;> norm_num
rv [hy1]
<;> norm_num

by

-- ... (approximately 2000 lines of similar calculations
omitted)

10

have hjg3 : £ 89 = 998 := by

have hyg9gs; : f 89 = f (f (89 + 5)) i = by
apply h;
<;> norm_num

rw [hig931]

have higzz : £ (89 + 5) = f 94 := by norm_num

rv [hig32]

rw [hig92]

<;> norm_num

<;> linarith

have hjggq : £ 84 = 997 := by
have higgq1 : £ 84 = f (f (84 + 5)) := by
apply hi

<;> norm_num
rv [hi1941]
have higao : £ (84 + 5) = f 89 := by norm_num
rw [hig42]
rw [hig93]
<;> norm_num
<;> linarith

rw [hi94]
< 3 > norm_num

amc12_2000_p1

For the problem amc12_2000_p1, BFS-Prover-V2 finishes the proof with a concise applica-
tion of nlinarith, replacing the roughly 80 lines of explicit case analysis over the unknowns
i, m, and o required in DeepSeek-Prover-V2’s proof.

BFS-Prover-V2 (step-level proof):

theorem amc12_2000_p1
(imo : N)
(ho : 1 #m Am# o A o # i)
(hy : i*m*xo = 2001)

i+m+o < 671 := by

obtain (hi, hm, ha):= ho

obtain _ | _ | _ | i := i <;> obtain _ | _ _ m :=m <;>
obtain _ | _ | _ | o := o <;>try omega

any_goals
ring_nf at h; F; nlinarith;
ring_nf at * <;> try omega
nlinarith [mul_nonneg (by positivity i) (by positivity
0 < 0), mul_nonneg (by positivity m) (by positivity
0 < i), mul_nonneg (by positivity : 0 < o) (by positivity : O

0 <
0 <

DeepSeek-Prover-V2 (whole-proof):

theorem amc12_2000_pl (i m o : N) (ho : i #m A m# o A o # i) (
hy : i * m * o = 2001)
i+ m+ o< 671 := by

11

-- ... (approximately 80 lines of properties related to
unknowns i, m, and o omitted)

have h_main : i + m + o < 671 := by

have hg i=1VvVi=3Vi=23Vi=29Vi==69Vi= 87
V i = 667 V i = 2001 := by

have hg1 i | 2001 = ho

have hgo i < 2001 := hj;

have hgs i > 0 := h_pos_i

have hgy : 1 =1V i=3Vi=23Vi=29Vi-==69 Vi-=
87 Vi = 667 V i = 2001 := by

have hgs : i | 2001 := hg;

have hgg : 1 < 2001 hgo
interval_cases i <;> norm_num at hgs F <;> omega
exact hggy
have hg : m =1V m=3Vm=23Vm=29Vm=269 V m= 87

V m = 667 Vm= 2001 := by
have hg1 m | 2001 := hsj
have hgao m < 2001 := hg
have hg3 : m > 0 := h_pos_m
have hgg4 m=1Vm=3Vm=23Vm=29V m=69 V m =
87 V m = 667 V m = 2001 := by
have hgs : m | 2001 := hg1
have h96 i m S 2001 := h92

interval_cases m <;> norm_num at hgs F <;> omega
exact hgy
have higp : o =1V o =3V o =23V o =29 V o = 69 V o = 87

V o = 667 V o = 2001 by
have hig: o | 2001 hy
have higo o < 2001 := hy
have hios o >0 := h_pos_o
have hig4 : o =1V o =3V o =23V o =29 V o =69 V o =
87 V o = 667 V o = 2001 := by
have higs : o | 2001 := hig:
have h106 . 0 S 2001 := h102

interval_cases o <;> norm_num at hjgos F <;> omega
exact hioga
rcases hg with (rfl | rfl | rfl | rfl | rfl | rfl | rfl |
rfl) <;>
rcases hg with (rfl | rfl | rfl | rfl | rfl | rfl | rfl |
rfl) <;>
rcases hio with (rfl | rfl | rfl | rfl | rfl | rfl | rfl |
rfl) <;>
norm_num [mul_assoc, mul_comm, mul_left_comm] at h; ho F <;>
(try omega) <;>
(try
{
norm_num at ho F <;>
(try omega) <;>
(try
{
ring_nf at h; F <;>
omega
B
P <>
(try
{
norm_num at hgo F <;>
(try omega) <;>
(try
{
ring_nf at h; F <;>

12

omega

b
o<
(try
{

norm_num at hg F <;>
(try omega) <;>
(try
{
ring_nf at hy; F <;>
omega
i)
P <>
(try
{
norm_num at hg F <;>
(try omega) <;>
(try
{
ring_nf at h; F <;>
omega
i)
i)
<;>
(try omega)
<;>
(try
{
ring_nf at h; F <;>
omega

b

exact h_main

B.2 Novel Proof Strategies

Another significant advantage of our step-level proof approach is its ability to discover novel proof
strategies that whole-proof or human-proof methods typically would not consider. By exploring the
proof space progressively, our system can identify non-obvious connections and construct solutions
that are both elegant and insightful.

We illustrate this capability by examining the problems imo_1963_p5 and
algebra_amgm_sumltoneqn_prodltonleql, each of which highlights a distinct advantage of our
approach.

é)
imo_1963_p5

For the problem imo_1963_p5, our model, DeepSeek-Prover-V2, and Compfiles dataset
provide step-level proof, whole-proof, and human-proof versions, respectively. Notably, both
whole-proof and human-proof approaches employ similar strategies: multiplying both sides
of the equation by 2 - sin(7/7), then applying sum-to-product trigonometric identities for
simplification. In contrast, BFS-Prover-V2 develops an entirely different approach: first
transforming the left side of the equation into a polynomial in cos(7/7) using double and
triple angle formulas, then proving that cos(7/7) satisfies the corresponding polynomial
equation.

13

BFS-Prover-V2 (step-level proof):

theorem imo_1963_pb5
Real.cos (m / 7) - Real.cos (2 * w / 7) + Real.cos (3 *x w / 7)
=1/ 2 := by

have x : Real.pi / 7 = Real.pi / 7 * 1 := by ring

have h : 3 * Real.pi / 7 = Real.pi - 4 * Real.pi / 7 := by
ring

rw [h, cos_sub] <;> norm_num

have h2 := cos_two_mul (Real.pi / 7)

have h3 := cos_three_mul (w / 7)

rw [show 4 * Real.pi / 7 = Real.pi - 3 * Real.pi / 7 by ring,
cos_sub]
simp [h2, h3, cos_two_mul, sin_pi, cos_pi]
ring_nf at h2 h3 F
norm_num [h2, h3, cos_pi_div_two]
ring_nf
<;> have h4 := cos_pi
<;> simp [h4]
ring_nf at * <;> norm_num
rw [+ sub_eq_zero]
nth_rewrite 1 [+ sub_eq_zero]

ring_nf
apply eq_of_sub_eq_zero
let y := cos (Real.pi * (1 / 7))

have:= cos_three_mul (Real.pi *x (1 / 7))
ring_nf at =*

apply eq_of_sub_eq_zero

clear this h3 h2

apply eq_of_sub_eq_zero

have := cos_three_mul (Real.pi * (1 / 7))
field_simp [mul_assoc] at *

on_goal 1 => ring

replace : Real.pi * (1 / 7 : R) = Real.pi / 7 := by ring

try rw [this]; norm_num

have h5 := cos_three_mul (Real.pi / 7)

have : 3 * (Real.pi / 7) = Real.pi - 4 * (Real.pi / 7) := by
ring

simp [this, cos_pi] at h5

let z := cos (Real.pi / 7)

rcases lt_trichotomy O z with hz | hz | hz

any_goals simp_all [show cos (4 * (Real.pi / 7)) = cos (2 * (2
* (Real.pi / 7))) by ring,

cos_two_mull]

any_goals nlinarith [cos_sq_add_sin_sq (Real.pi / 7), Real.
sin_pi_div_two_sub, pow_two_nonneg (cos (Real.pi / 7) - 1),
pow_two_nonneg (cos (Real.pi / 7) + 1)1

contrapose hz

refine not_1t.2 7_

apply cos_nonneg_of_mem_Icc <;> constructor <;> linarith [
pi_pos]

DeepSeek-Prover-V2 (whole-proof):

theorem imo_1963_p5 : Real.cos (Real.pi / 7) - Real.cos (2 *
Real.pi / 7) + Real.cos (3 * Real.pi / 7) =1 / 2 := by
have hl : 2 * Real.sin (Real.pi / 7) * (Real.cos (Real.pi / 7)
- Real.cos (2 * Real.pi / 7) + Real.cos (3 * Real.pi / 7)) =

Real.sin (Real.pi / 7) := by
have hil; : 2 * Real.sin (Real.pi / 7) * Real.cos (Real.pi /
7) = Real.sin (2 * Real.pi / 7) := by

14

have hl;; : Real.sin (2 * Real.pi / 7) = 2 * Real.sin (

Real.pi / 7) * Real.cos (Real.pi / 7) := by
have hl;2 : Real.sin (2 * Real.pi / 7) = Real.sin (2 * (
Real.pi / 7)) := by ring
rv [h1;2]
have hl;3 : Real.sin (2 * (Real.pi / 7)) = 2 * Real.sin
(Real.pi / 7) * Real.cos (Real.pi / 7) := by
rw [Real.sin_two_mul]
<;> ring
rw [hil;3]
<;> ring

linarith
have hls : 2 * Real.sin (Real.pi / 7) * Real.cos (2 * Real.
pi / 7) = Real.sin (3 * Real.pi / 7) - Real.sin (Real.pi / 7)
:= by

-- ... (approximately 20 lines of calculations omitted)

have hlz : 2 * Real.sin (Real.pi / 7) * Real.cos (3 * Real.
pi / 7) = Real.sin (4 * Real.pi / 7) - Real.sin (2 * Real.pi
/ T7) := by

-- ... (approximately 20 lines of similar calculations omitted

)

have hily : Real.sin (4 * Real.pi / 7) = Real.sin (3 * Real.
pi / 7) := by

-- ... (approximately 20 lines of similar calculations omitted

)

have h2 : Real.sin (Real.pi / 7) > 0 := by
apply Real.sin_pos_of_pos_of_1lt_pi
linarith [Real.pi_pos, Real.pi_gt_three]
linarith [Real.pi_pos, Real.pi_gt_threel

have h3 : Real.cos (Real.pi / 7) - Real.cos (2 * Real.pi / 7)

+ Real.cos (3 * Real.pi / 7) =1/ 2 := by

have h3; : 2 * Real.sin (Real.pi / 7) > 0 := by linarith
have h3s : Real.cos (Real.pi / 7) - Real.cos (2 * Real.pi /
7) + Real.cos (3 * Real.pi / 7) =1/ 2 := by

apply mul_left_cancely (show (2 * Real.sin (Real.pi / 7)
R) # 0 by linarith)
nlinarith [Real.sin_le_one (Real.pi / 7), Real.sin_le_one
(2 * Real.pi / 7), Real.sin_le_one (3 * Real.pi / 7),
Real.sin_le_one (4 * Real.pi / 7), Real.sin_le_one (Real
.pi / 7)1
exact h3.

apply h3

Compfiles dataset (human-proof):

theorem imo1963_pb
Real.cos (m/7) - Real.cos (2x7w/7) + Real.cos (3*7/7) = 1/2
:= by
rw [show (2*7m/7) = m - (6%mw/7) by linarith]
rw [Real.cos_pi_sub]
simp only [sub_neg_eq_add]
have h : 2 * Real.sin (7w / 7) # 0 := by

15

simp only [ne_eq, mul_eq_zero, O0fNat.ofNat_ne_zero, false_or

apply ne_of_gt
apply Real.sin_pos_of_pos_of_lt_pi
simp only [Nat.ofNat_pos, div_pos_iff_of_pos_right, Real.
pi_pos]
trans 1
rw [div_1lt_one (by linarith only)]
linarith only [Real.pi_le_four]
linarith only [Real.pi_gt_threel
apply (mul_right_inj ' h).mp
rw [left_distrib, left_distrib]
have prod_sum : V (x y : R),
2 * Real.sin x * Real.cos y = Real.sin (x + y) - Real.sin
(y - x) := by
intro x y
rw [Real.sin_add, Real.sin_sub]
linarith only
rw [prod_sum, prod_sum, prod_sum]

rw [show (7 / 7 + = 7) = 2 x 1 / 7 by linarith only]
rw [show (# / 7 - m / 7) 0 by linarith only]
rw [show (m# / 7 + 6 *x w / 7) =6 x m / 7 by linarith only]
rw [show (6 x 7w / 7 m™/ 7) = 4 x w / 7 by linarith only]
rvw [show (m / 7 + 3 xm / 7) = 4 x w / 7 by linarith only]
rw [show (3 x # / 7 -7 / 7) = 2 * w / 7 by linarith only]
rw [Real.sin_zero]

ring_nf

rw [+ Real.sin_pi_sub]

rw [show (m# - 7 x (6 / 7)) = m / 7 by linarithl]
congr

linarith

algebra_amgm_sumltoneqn_prodltonleql

For the problem algebra_amgm_sumltoneqn_prodltonleql, the whole-proof model
DeepSeek-Prover-V2 adopts a standard, first-principles approach: it proceeds by man-
ually handling cases (n = 0, some a; = 0, all a; > 0), and then takes the logarithm of the
product and then applies the well-known inequality In(x) < 2 — 1 to each term, resulting in
a verbose proof. In contrast, BFS-Prover-V2 recognizes the problem as a special case of the
Arithmetic Mean-Geometric Mean (AM-GM) inequality. It directly invokes the correspond-
ing theorem from Mathlib, Real.geom_mean_le_arith_mean, demonstrating an ability
to leverage high-level library theorems for a more insightful and efficient proof.

BFS-Prover-V2 (step-level proof):

theorem algebra_amgm_sumltoneqn_prodltonleql
(a : N — NNReal)

(n : N)

(ho : > x in Finset.range n, a x = n)
[l x in Finset.range n, a x < 1 := by
have g := hog

revert hg
intro amgm

let S := Finset.prange n
by_cases hl : n = 0

simp [h1]

have hn : 0 < n := by omega

16

let g := (fun (x : N) => (a x : R))

let w : N— R := fun _ => 1

have w_nonneg : V i, 0 < w i

simp [w, zero_le_one]

have w_pos : O <[] i in Finset.range n, w i
all_goals aesop (add simp w)

have w_nonneg : V x € S, 0 < w x

any_goals simp [w]

have w_pos : 0 <[[x € S, v x

simp [w]

have amgm_real : ([x €S, px ~ (wx :R)~ (Cxes, (vx

R)™H <Cxes, wx*px :R)/ Cxes, (wx: R
apply Real.geom_mean_le_arith_mean
exact w_nonneg
simp [w, S, hn]
field_simp [u]
simp [p, w, S] at amgm_real
norm_cast at amgm_real
simp[amgm] at amgm_real
by_cases H : r[a_l € Finset.range n, a a_1 = 0
simp [H]
simp [+ NNReal.coe_le_coe, amgm] at amgm_real
rw [div_self] at amgm_real
apply le_of_not_1t
all_goals aesop (add simp NNReal)
rw [+NNReal.coe_one] at amgm_real
norm_cast at amgm_real
contrapose! amgm_real
erw [Real.one_lt_rpow_iff]
left
all_goals aesop (add simp [Finset.rangel)

DeepSeek-Prover-V2 (whole-proof):

theorem algebra_amgm_sumltoneqn_prodlitonleql (a : N — NNReal) (n

N)
(ho : G x in Finset.range n, a x) = n) : ([x in Finset.
range n, a x) < 1 := by
have hy : (] x in Finset.range n, (a x : R)) < 1 := by
have hy : (¢ x in Finset.range n, (a x : R)) = n := by
exact_mod_cast hg
by_cases h3 : n = 0
simp [hs]
have hy : 0 < n := Nat.pos_of_ne_zero hj
by_cases hs : 3 i, i € Finset.range n A (a i : R) = 0
obtain (i, hi, hg) := hs
have h7 : ([[x in Finset.range n, (a x : R)) = 0 := by
have hg : i € Finset.range n := hi
have hg : (a i : R) = 0 := hg
have hio : ([x in Finset.range n, (a x : R)) = 0 :=
by
calc
(] x in Finset.range n, (a x : R)) =] x in Finset
.range n, (a x : R) := rfl
_ =0 := by
apply Finset.prod_eq_zero hg
simp [hg]
exact hjig
linarith
have hs' : V i, i € Finset.range n — (a i : R) > 0 := by

intro i hi

17

\.

have hg : -3 i, i € Finset.range n A (a i : R) = 0 :=
hs
have hy : (a i : R) # 0 := by
intro h
have hg : 3 i, i € Finset.range n A (a i : R) = 0 :=
(i, hi, by simp_all)
contradiction
have hg : (a i : R) > 0 := by
have hg : (a i : R) > 0 := by exact_mod_cast (a i).
prop
contrapose! hr
linarith
exact hg
have hg : ([x in Finset.range n, (a x : R)) < 1 := by

have h7 :) x in Finset.range n, Real.log ((a x : R))
< 0 := by
have hg :) x in Finset.range n, Real.log ((a x : R)

) <Y x in Finset.range n, ((a x : R) - 1) := by

apply Finset.sum_le_sum

intro i hi

have hg : (a i : R) > 0 := hs' i hi

have hio : Real.log ((a i : R)) < (a i : R) -1 :=

by
have hi; : Real.log ((a i : R)) < (a i : R) -1
= by
linarith [Real.log_le_sub_one_of_pos hg]
exact hii
exact hig
-- ... (approximately 40 lines of calculations omitted)
have hy : ([x in Finset.range n, a x) < 1 := by
have hz : ([[x in Finset.range n, a x : R) < 1 := by
exact hi
have hy : ([x in Finset.range n, a x : R) = (] x in Finset.
range n, a x : R) := rfl
have hs : ([[x in Finset.range n, a x : R) = (] x in Finset.
range n, (a x : R)) := by simp
have hg : ([[x in Finset.range n, a x : R) < 1 := by simpa [
hs] using h;
have h7 : ([[x in Finset.range n, a x : NNReal) < 1 := by

norm_cast at hg F
<;> simp_all [Finset.prod_range_succ]
<;> norm_num
<;> linarith
simpa using hr
exact ho

J

Despite the advantages of step-level proof in significantly reducing proof length and discovering
novel proof strategies, step-level proof has one notable limitation: poor readability. The interactive
nature of step-level proof generation often results in proofs that are more challenging for humans to

follow and understand compared to the more structured and explanatory whole-proof approaches.

This trade-off between conciseness and readability represents a crucial consideration when evaluating
the practical utility of different proof generation paradigms.

18

C Illustration of Planner-Prover Paradigm with an IMO Problem

To demonstrate the effectiveness of our Planner-Prover paradigm, we present an analysis of the
solution process for a challenging IMO problem: imo_1969_p2.

In the following proof, the statements h_coeffs_polar, h_y_rewritten_with_polar, and
h_y_collapsed_to_single_cos represent the dynamic replanning phase, while all other have
statements belong to the initial planning phase. Unlike in conventional whole-proof methods, have
statements in our framework are presented without the := by clause. This example highlights the
crucial role of dynamic replanning in our system. Without dynamic replanning, the prover gets
stuck at h_y_is_sinusoid, failing to complete the proof even after 7,200 attempts. With dynamic
replanning, however, the system successfully completes the proof in just 800 attempts. The dynamic
replanning process breaks down complex steps into smaller, more manageable subgoals, which
enables the prover to bypass critical bottlenecks more efficiently.

()
imo_1969_p2 - Part 1

theorem imo_1969_p2

(m n : R)
(k : N)

(a : N—=>R)
(y : R—>R)

(ho : 0 < k)
(hy : V x, y x =Y i in Finset.range k, ((Real.cos (a i + x))

/ (2-1i)))

(heg : ym = 0)

(h3 : yn=0) : 3t : Z, m - n =1t *x Real.pi := by

have h_cos_add : V i x, Real.cos (a i + x) = Real.cos (a i) *
Real.cos x - Real.sin (a i) * Real.sin x

simp [cos_add, add_right_inj]

have h_y_sum_expanded : V (x : R), y x =) i in (Finset.range
k : Finset N), (Real.cos (a i) * Real.cos x - Real.sin (a i)
* Real.sin x) / ((2 : N) =~ i : R)

simp [h;, h_cos_add]

have h_y_sum_split : V (x : R), y x = . i in (Finset.range k
Finset N), Real.cos (a i) * Real.cos x / ((2 : N) =~ i : R))
- G_ i in (Finset.range k : Finset N), Real.sin (a i) * Real
.sin x / ((2 : N) = i : R))
intro z <;> simp_rw [h_y_sum_expanded]
simp [sub_div, Finset.sum_sub_distrib]

have h_y_expand : V (x : R), y x = Q. i in (Finset.range k
Finset N), Real.cos (a i) / ((2 : N) =~ i : R)) * Real.cos x -
QG i in (Finset.range k : Finset N), Real.sin (a i) / ((2
N) =~ i : R)) * Real.sin x
intro x_exp
simp only [Finset.sum_mul, h_y_sum_split]
congr <;> symm <;> field_simp <;> ring

have h_k_ge_one : 1 < k
apply Nat.succ_le_of_1t <;> exact ho

have h_complex_repr : ({3 i in (Finset.range k : Fimset N),
Real.cos (a i) / ((2 : N) =~ i : R), > i in (Finset.range k :
Finset N), Real.sin (a i) / ((2 : N) ~ i : R)) : C) =5 i in
(Finset.range k : Finset N), Complex.exp (f(a i) * Complex.I)

/T2 : N) ~ i) : R)

simp [Complex.exp_mul_I, div_eq_inv_mul, Complex.ext_iff]

19

simp [Complex.cos_ofReal_re, Complex.sin_ofReal_re] <;>
field_simp <;> norm_cast

constructor <;> apply Finset.sum_congr <;> aesop

field_simp [_root_.pow_add, show (4 : R) = 2 =~ 2 by norm_num]
<;> ring

norm_num [mul_comm _ 2, pow_mull]

rewrite [show (4 : R) =~ x = (2 * 2 : R) - x by ring, mul_pow]
<;> field_simp
<;> ring

have h_sum_split : (O i in (Finset.range k : Fimset N),
Complex.exp (1T(a i) * Complex.I) / 1(((2 : N) =~ i) : R)) =
Complex.exp (fT(a 0) * Complex.I) + > i in (Fimset.Icc 1 (k-1)

Finset N), Complex.exp (f(a i) * Complex.I) / 1T(((2 : N) -~
i) : R)

have h_range_split : Finset.range k = insert 0 (Finset.Icc 1
(k - 1))

ext x <;> simp [Nat.lt_succ_iff]

rcases x with (_|_|x) <;> omega

rw [h_range_split, Finset.sum_insert]
norm_num [pow_zero, eq_self_iff_true]
simp [Nat.le_zero]

have h_abs_head : Complex.abs (Complex.exp (f(a 0) * Complex.I
)) =1
simp [Complex.abs_exp, eq_self_iff_truel

have h_tail_geom_sum_val : ¢ i in (Fimset.Icc 1 (k - 1) :
Finset N), 1 / ((2 : N) -~ i : R)) =1 -1/ (2 :R) =~ (k - 1)

have h_tight : (1 : R) <k
norm_cast at *x <;>
linarith

clear h_tight h_sum_split h_complex_repr h_y_expand
h_y_sum_split h_y_sum_expanded h_cos_add ha hz h; hg

induction' k <;> simp [Finset.sum_Icc_succ_top, *]

induction' (N) <;> simp_all [Finset.sum_Icc_succ_top, pow_succ

ring
<;>ring_nf

have h_abs_tail_le : Complex.abs (i in (Fimnset.Icc 1 (k-1)
Finset N), Complex.exp (f(a i) * Complex.I) / 7(((2 : N) =~ i
) R <1 -1/ @R~ (k- 1)

rw [« h_tail_geom_sum_val]

apply (Complex.abs.sum_le _ _).trans_eq

apply Finset.sum_congr rfl

intro i _

simp [Complex.abs_exp_ofReal_mul_I, Nat.cast_pow, Nat.
cast_ofNat]

have h_abs_tail_lt_one : Complex.abs QZ i in (Finset.Icc 1 (k
-1) : Finset N), Complex.exp (1(a i) * Complex.I) / T(((2 : N
) ~ i) R)) < 1

refine 1lt_of_le_of_1t h_abs_tail_le 7_

refine sub_lt_self _ (by positivity)

have h_abs_ge_by_rev_triangle : Complex.abs QD i in (Finset.
range k : Finset N), Complex.exp (f(a i) * Complex.I) / 1T(((2
: N) ~ i) : R)) > 1 - Complex.abs (¢ i in (Finset.Icc 1 (k
-1) : Finset N), Complex.exp (1T(a i) * Complex.I) / T(((2 : N
) - i) : R))
rw [h_sum_split]

20

rw [+ h_abs_head]
apply Complex.abs.le_add

imo_1969_p2 - Part 2

have h_abs_ge_final : Complex.abs CS i in (Finset.range k :
Finset N), Complex.exp (f(a i) * Complex.I) / 1T(((2 : N) =~ i)
R >1/ (2 : R) =~ (k-1)
refine' _root_.trans h_abs_ge_by_rev_triangle
linarith [h_abs_tail_1le]

have h_abs_gt_zero : 0 < Complex.abs CS i in (Finset.range k
Finset N), Complex.exp (f(a i) * Complex.I) / T(((2 : N) =~ i
) : R))

linarith [pow_two_nonneg ((k - 1 : N) : R)]

have h_complex_val_ne_zero : (0. i in (Finset.range k : Finset
N), Real.cos (a i) / ((2 : N) =i : R), > i in (Finset.range
k : Finset N), Real.sin (a i) / ((2 : N) =~ i : R)) : C) # 0

focus all_goals (norm_num; aesop)

have h_coeffs_polar : 3 (R b : R), 0 < R A QE i in (

Finset.range k : Finset N), Real.cos (a i) / ((2 : N) -~
i : R)) = R * Real.cos b A O i in (Finset.range k :

Finset N), Real.sin (a i) / ((2 : N) -~ i : R)) = R *
Real.sin b

set x :=). i € Finset.range k, cos (a i) / ((2 : R) -~ i)

use Complex.abs (O i € Finset.range k, Complex.exp ({(a i
) * Complex.I) / T(12 =~ 1i))

let y : R :=> i € Finset.range k, sin (a i) / 2-i

have h := Complex.abs_mul_cos_add_sin_mul_I ¢ i in
Finset.range k, Complex.exp ((a i : R) * Complex.I) /
2 : 06 ~ i)

use Complex.arg (. i in Finset.range k, Complex.exp (f(a
i) * Complex.I) / (2:R) - i)
simp_all [Complex.ext_iff]

have h_y_rewritten_with_polar : 3 (R a : R), 0 < R AV x,
y x = R * Real.cos a * Real.cos x - R * Real.sin a *
Real.sin x

obtain (R, phi, hR_pos, h_cos_eql, h_sin_eql) :=
h_coeffs_polar

use R, phi <;> simp_all[Complex.exp_mul_I, Complex.abs]

21

have h_y_collapsed_to_single_cos : 4 (R a : R), 0 < R A

V x, y x = R * Real.cos (x + a)

rcases h_y_rewritten_with_polar with (R, a', h_R_pos,
h_y_)

use R, a', h_R_pos <;> intros <;> simp [h_y_, cos_addl]
<;> ring

have h_y_is_sinusoid : 3 (R a : R), 0 <R A (V x, y x = R *
Real.cos (x - a))

obtain (R, a, _, hy) := h_y_collapsed_to_single_cos

use R, -a <;> aesop

have h_roots_exist : 3 (R a : R), 0O <R A ym=R * Real.cos (
m - a) ANyn =R * Real.cos (n - a)

rcases h_y_is_sinusoid with (R, a, h_R_pos, h_y_R_a)

exact (R, a, h_R_pos,
by simp [h_y_R_al, by simp [h_y_R_al)

have h_cos_zero : 3 (R a : R), 0 < R A Real.cos (m - a) = 0 A
Real.cos (n - a) =0
rcases h_roots_exist with (R, a, h_rPos, h_mEq, h_nEq)
exact
(R, a, h_rPos,

by have := hy; have := hs; field_simp [h;] at * <;>
nlinarith,
by have := hs; have := hy; field_simp [h;] at * <;>

nlinarith)

have h_roots_in_pi_half_multiples : 3 (a : R) (t1 t2 : Z), m -
a= (2% (t; : R) + 1) * Real.pi / 2 A n - a = (2 * (t2 : R)
+ 1) * Real.pi / 2

rcases h_cos_zero with (R, a, _, h_m_cos_zero, h_n_cos_zero>

rw [cos_eq_zero_iff] at h_m_cos_zero h_n_cos_zero

exact (a, 71(Classical.choose h_m_cos_zero) , 7(Classical.
choose h_n_cos_zero) , by convert h_m_cos_zero.choose_spec ,
by convert h_n_cos_zero.choose_spec)

have h_m_minus_n_form : 3 t; to : Z, m - n = ((2 * (t1 : R) +
1) * Real.pi / 2) - ((2 * (t2 : R) + 1) * Real.pi / 2)

obtain (z, t1, t2, h_z_root_m, h_z_root_n) i =
h_roots_in_pi_half_multiples

refine (ti1 , t2,7_)<;>

linarith

have h_m_minus_n_simplified : 3 t; t2 : Z, m - n = (T(t1 - t2)
R) * Real.pi
rcases h_m_minus_n_form with (tl, to, h_form) <;>
exists t; <;> exists tqo <;> field_simp at h_form F <;>
linarith

obtain (ti1, t2,h_m_sub_n_ti;_t2) := h_m_minus_n_simplified <;>
use t; - to <;> 1linarith [h_m_sub_n_t;_t2]

22

D Prompts Used in This Work

D.1 Prompts for Autoformalization

Our autoformalization pipeline operates in two stages to ensure syntactic correctness. First, an
Initial Formalization Prompt (shown below) translates a natural language problem into a
Lean 4 theorem statement. If the generated code fails to compile, an Error Feedback Prompt is
then deployed to revise the statement, using the verbatim error message from the Lean compiler as
direct feedback for revision.

Prompt for Initial Formalization

You are an expert in math proof and the theorem prover: Lean. Given a math problem that
contains the question and all conditions, and its corresponding solution that contains solution
steps and the correct answer, generate a mathematically equivalent proof problem and rewrite
it in the Lean 4 statement. You should follow the following procedures.

a): Identify all questions and conditions in the given problem.
b): Identify all solution steps and the correct answers in the given solution.

¢): With the questions and conditions in a) and correct answers in b), translate the
(question, conditions, correct answer) tuple to a mathematically equivalent proof
problem that proves question == answer given conditions.

d): Rewrite the math proof problem in c) to a Lean 4 statement. Note that you should
write the statement only, no proof is required. This also means you do not need to
consider the solution steps either.

The first priority is to ensure the generated Lean code can be built successfully. Consider
using the following tips.

* Use a broader import, e.g., import Mathlib, to bring in the entirety of the
necessary library, and remove specific import of submodules, e.g., import
Mathlib.LinearAlgebra.BasicReal3, accordingly.

* Add noncomputable before def only when necessary.
* Use by instead of begin end.
* Add sorry to skip the proof.
You should strictly follow the below criteria to guarantee the lean statement is equivalent to
the mathematical problem.
* Each definition used in Lean 4 statement should only directly appear in the conditions
problem in a).

» Each definition should NOT come from and assume any knowledge directly from
the solution step in b).

¢ Each condition in a) should be used as a definition in Lean 4.

* For any implications appearing in the conclusions of the original problem, extract
their antecedents and declare them as explicit assumptions before the colon, leaving
only the consequent in the conclusion after the colon.

 For equations, structure the theorem in the form ’conditions : conclusions’ where
conditions include variable definitions and domains, and conclusions are the solu-
tions to the equation, avoiding implication or equivalence symbols.

Below are examples to illustrate the process:
Example 1 (Number Theory):
Lean 4 statement:

theorem nt3_problem (n p : N) (hn : n > 1) (hp : Nat.Prime p)
(hi : n | (p - 1)) (2 : p | (n°6 - 1))
Jk : N, (p-n=5k"2)V (p+mn-==5k"2) := by
sorry

23

problem:

NT3. Let n > 1 be a positive integer and p a prime number such that n | (p — 1) and
p | (n® — 1). Prove that at least one of the numbers p — n and p + n is a perfect square.
Example 2 (Number Theory):

Lean 4 statement:

theorem nt4_problem (x y : N)
(hx : x > 0) (hy : y > 0)
(hi1 : I m : N, 3 xx + 4 %y =m2)
(h2 : 3 n : N, 4 * x + 3 xy=n"2)
7] x AT |y := by
sorry

problem:

NT4. If the positive integers x and y are such that both 3z + 4y and 4x + 3y are perfect
squares, prove that both x and y are multiples of 7.

Example 3 (Algebra):

Lean 4 statement:

theorem sum_not_zero (a b c d : R)
(ht a* b x c -d=1)
(h2 b *x c *d - a = 2)
(h3 c *xd*a-b = 3)
(h4 d *x a *xb - c = -6)
a+ b+ c+ d# := by
sorry
problem:

The real numbers a, b, ¢, d satisfy simultaneously the equations abc — d = 1,bcd — a =
2,cda — b= 3,dab — ¢ = —6. Prove thata + b+ c+ d # 0.

Example 4 (Inequality):

Lean 4 statement:

theorem inequality_proof (a b c : R)
(ha : a > 0) (hb : b > 0) (hc : c > 0)

8 / ((a + b)~2 + 4*a*bx*xc) +
8 / ((b + ¢c)~2 + 4xaxbxc) +
8 / ((c + a)~2 + 4*a*bx*c) +
a2 + b2 + ¢c~2 >
8 / (a+3) +8/ (b + 3) + 8/ (c +3) := by
sorry
problem:

The real numbers a, b, ¢, d satisfy simultaneously the equations abc — d = 1,bcd — a =
2,cda — b = 3,dab— ¢ = —6. Prove thata + b+ ¢+ d # 0.

Now, use the same process for the following problem and solution:

{problem}

{solution }

Prompt for Error Feedback

You are an expert in math proof and the theorem prover: Lean. You are given the following
math problem that contains the question and all conditions, and its corresponding solution
that contains solution steps and the correct answer.

{problem}

{solution }

24

.

A mathematically equivalent proof problem that proves question == answer given conditions
is generated and rewritten in the Lean 4 statement, as shown below:

{Lean 4 statement }

However, this lean code got error with 1ake build, and here is the error message:

{error message}

Please modify the lean code to ensure it can be built successfully with 1ake build. Here is
a few tips that might help:

* Use a broader import, e.g., import Mathlib, to bring in the entirety of the
necessary library, and remove specific import of submodules, e.g., import
Mathlib.LinearAlgebra.BasicReal3, accordingly.

* Add noncomputable before def only when necessary.
* Use by instead of begin end.
* Add sorry to skip the proof.

D.2 Prompts for Planner

s

Prompt for Initial Planning

You are an expert assistant specializing in Math Olympiads and the Lean 4 theorem prover.
Your primary goal is to generate syntactically perfect, type-checkable Lean 4 intermediate
steps for a given theorem. Strictly adhere to the following rules. ANY violation will be
considered an error. While ensuring correctness, generate as many intermediate steps as
possible.

Task

Given the following theorem statement in Lean 4, your job is to plan the complete proof by
analyzing the theorem statement and generating a coherent sequence of have statements.
These statements should form a clear chain of reasoning that bridges the theorem’s assump-
tions to its final claim, breaking down complex arguments into simpler components.
Mandatory Rules

You must comply with every rule in this section. Failure to adhere to any single rule will
result in an incorrect output.

1. Critical Rule: Explicitly Specify Set/Finset Types
This is the most common and fatal point of error. You must explicitly declare the
type for any Set or Finset literal. This rule is non-negotiable.

- Correct: ({ {-1, 0, 1}} : Set Z)
- Incorrect: { {-1, 0, 1}}

2. Omit the Proof: Never provide the proof. Only state the have statement itself.

3. Valid Lean 4 Code: The entire output block must be type-checkable in a Lean
4.10.0 environment.

4. Use Existing Names: Use the exact, existing lemma and definition names from
mathlib. Do not invent names.

5. No Undeclared Variables: Do not introduce any variables or constants not declared
in the original theorem statement.

6. Explicit Multiplication: Multiplication must always use the * symbol.

- Correct: a * x
- Incorrect: ax

7. No Chained Inequalities: Never use chained inequalities. They must be split using
logical AND A.

25

10.

11.

12.

13.

14.

15.
16.

- Correct: a <= x A x <= D
= x <=

- Incorrect: a <

ol

Correct Logarithm Function: Real.log is only for the natural logarithm. For
logarithms with a specified base, you must use Real . logb.

- Correct: Real.logb (2 : R) 8
- Incorrect: Real.log (2 : R) 8

Factorial Notation: In Lean, factorials must be written as (n) ! or Nat.factorial
n,notn!.

- Correct: (m)! or Nat.factorial n
- Incorrect: n!

Numeric Types Must Be Explicitly Annotated: To avoid type ambiguity in Lean,
any expression involving numeric operations must have at least one number’s type
specified.

- For division: (1 : R) / 2 = 0.5, but (1 : Z) / 2 =
- For subtraction: (1 : Z) - 2 = -1, but (1 : N) - 2
- Correct: (a : R) / b, a/ (b :R), (n :7Z) -m

- Incorrect: a / b, n - m

Interval Notation: Do not use Icc, Ioo, Ico, Ioc, etc., to represent intervals. Only
use inequalities.

- Correct: a <= x A x <= b
- Incorrect: Icc a b

Complex Numbers: Use Complex. I for the imaginary unit and Complex.abs for
the modulus/absolute value of a complex number.

Avoid Common Inequality Theorems: Avoid using common inequality theorems
like Holder’s or Jensen’s. For inequality problems, try to ensure each proof step
only requires basic simplification.

Proving Equivalences: When handling equivalences > (iff), produce have state-
ments as implications.

- Left-to-right: assume LHS, conclude RHS.
- Right-to-left: assume RHS, conclude LHS.

Real.pi Notation: Always use Real.pi, not 7.

Final Check: Before providing the plan, perform a final review to ensure you
have scrupulously followed all the rules above, especially the critical rule regarding
Set/Finset.

Examples:
Below are examples to illustrate the process and input/output format.

Input:

theorem singapore2019_r1_p7 (x : R) (hx : Real.tan x = 5) :
:= by

(6 + Real.sin (2 * x)) / (1 + Real.cos (2 * x)) = 83
Output:

have h;y : Real.sin x = 5 * Real.cos x

have hs : Real.sin x -~ 2 = 25 * Real.cos x =~ 2

have hy : 26 * Real.cos x =~ 2 =1

have hsin2x_val : Real.sin (2 * x) = (6 : R) / (13 : R)
have hcos2x_val : Real.cos (2 *x x) = -(12 : R) / (13 : R)

26

Input:

theorem problem4
(g : N> R)
(h : Vk : N, 5<k—>k< 124 g k = (Real.logb (k : R) ((7 : R

) - (k - 2 - 1))) / (Real.logb ((k + 1 : R)) ((7 : R) =~ (k -

2 - 4)))
(J] ¥ in Finset.Icc (5 : N) 124, g k) = (41 : R) / 7 := by
Output:

have h_prod_split : (] k in (Finset.Icc 5 124 : Finset N), g k)
= ([¥ in (Finset.Icc 5 124 : Fimset N), ((k ~ 2 - 1) / (k -
2 -4 : R))) x (] k in (Finset.Icc 5 124 : Fimnset N), (Real.
logb (k : R) (7 : R) / Real.logb ((k + 1 : R)) (7 : R)))

have h_telescope_partl : ([k in (Finset.Icc 5 124 : Fimset N),
((k ~ 2 -1) / (k-2 -4 :R))) = (41 : R) / 21

have h_telescope_part2 : ([[k in (Finset.Icc 5 124 : Fimset N),
(Real.logb (k : R) (7 : R) / Real.logb ((k + 1 : R)) (7 : R))
) = 3

have h_final_product : (41 / 21 : R) * 3 = (41 : R) / 7

Input:

theorem amcl2b_variant_pl3
(S : Finset R)
(hp : V(x : R), x € S0 < x A x <2 % Real.pi A 2 - 4 x Real.

sin x + 3 * Real.cos (3 * x) 0)
S.card = 4 := by
Output:

have h_intervall : 3 x, 0 < x A x < Real.pi / 2 A (2 - 4 * Real.
sin x + 3 * Real.cos (3 * x) = 0)

have h_interval2 : 3 x, Real.pi / 2 < x A x < 3 * Real.pi / 4 A
(2 - 4 x Real.sin x + 3 * Real.cos (3 * x) = 0)

have h_interval3 : 3 x, 3 * Real.pi / 4 < x A x < Real.pi A (2 -
4 x Real.sin x + 3 * Real.cos (3 * x) = 0)

have h_interval4 : 3 x, Real.pi < x A x < 2 * Real.pi A (2 - 4 x
Real.sin x + 3 * Real.cos (3 * x) = 0)

have h_card_eq_4 : S.card = 4

You must follow all the instructions and mandatory rules above. After deep consideratioin,
output the complete plan in Lean for the input below.
{theorem}

Prompt for Dynamic Replanning

You are an expert assistant specializing in Math Olympiads and the Lean 4 theorem prover.
Your primary goal is to generate syntactically perfect, type-checkable Lean 4 intermediate
steps for a given theorem. Strictly adhere to the following rules. ANY violation will be
considered an error. While ensuring correctness, generate as many intermediate steps as
possible.

Task

Given the following theorem statement, along with already proven subgoals and a currently
stuck subgoal, your job is to replan the remaining proof by analyzing the stuck subgoal and
generating a coherent sequence of have statements, either by correcting the stuck subgoal
or decomposing the stuck subgoal into smaller, logically consistent steps leading toward the
theorem’s conclusion.

27

The plan must have all proven subgoals in their original order and position. Only insert new
have statements immediately after them.

These new statements should form a clear chain of reasoning that bridges the current progress
to the final theorem, breaking down complex reasoning into simpler components.
Mandatory Rules

You must comply with every rule in this section. Failure to adhere to any single rule will
result in an incorrect output.

(The rules are identical to those in the Prompt for Initial Planning, with the three
additional rules shown below introduced before Final Check.)

16. Insert After Proven Steps: All new auxiliary have statements must be inserted
immediately after the provided proven subgoals. The proven subgoals’ wording,
order, and placement are immutable. They must remain exactly as given, with no
edits, insertions, or extensions inside them.

17. Provide Complete Plan: Output the entire updated plan, preserving the proven
subgoals exactly as given and appending new have statements after them in the
correct order. Do not output only the new ones. The plan must contain multiple new
have statements with sufficient intermediate steps to meaningfully connect to the
theorem’s conclusion.

18. Ensure Logical Continuity: Each new step must be logically sound. Avoid rep-
etition of the stuck subgoal. If the stuck subgoal is restated, it must not appear
immediately after the last proven subgoal. New intermediate steps must be intro-
duced in between.

Examples:

Below are examples to illustrate the process and input/output format.
Input:

Theorem

theorem singapore2019_r1_p7 (x : R) (hx : Real.tan x = 5) :
(6 + Real.sin (2 * x)) / (1 + Real.cos (2 * x)) = 83 := by

Proven Subgoals
-- (None)

Stuck Subgoal

have h_sin4x_is_2sin2xcos2x : Real.sin (4 * x) = 2 * Real.sin (2
* x) * Real.cos (2 * x)

Output:

have h; : Real.sin x = 5 * Real.cos x

have hos : Real.sin x -~ 2 = 25 x Real.cos x ~ 2

have hy : 26 * Real.cos x =~ 2 =1

have hsin2x_val : Real.sin (2 *x x) = (5 : R) / (13 : R)
have hcos2x_val : Real.cos (2 * x) = -(12 : R) / (13 : R)
Input:

Theorem

theorem amcl2b_variant_pl3

(S : Finset R)

(hgp : V (x : R), x € S0 < x A x <2 % Real.pi A 2 - 4 x Real.
sin x + 3 * Real.cos (3 * x) = 0) :

S.card = 4 := by

Proven Subgoals

have h_intervall : 3 x, 0 < x A x < Real.pi / 2 A (2 - 4 * Real.
sin x + 3 * Real.cos (3 * x) = 0)

28

have h_interval2 : 3 x, Real.pi / 2 < x A x < 3 * Real.pi / 4 A
(2 - 4 x Real.sin x + 3 * Real.cos (3 * x) = 0)

Stuck Subgoal

have h_card_eq_4 : S.card = 4

Output:

have h_intervall : 3 x, 0 < x A x < Real.pi / 2 A (2 - 4 * Real.
sin x + 3 * Real.cos (3 * x) = 0)

have h_interval2 : 3 x, Real.pi / 2 < x A x < 3 * Real.pi / 4 A
(2 - 4 x Real.sin x + 3 * Real.cos (3 * x) = 0)

have h_interval3 : 3 x, 3 * Real.pi / 4 < x A x < Real.pi A (2 -

4 ¥ Real.sin x + 3 * Real.cos (3 * x) = 0)
have h_interval4 : 3 x, Real.pi < x A x < 2 * Real.pi A (2 - 4 %
Real.sin x + 3 * Real.cos (3 * x) = 0)

have h_card_eq_4 : S.card = 4

Input:
Theorem:

theorem trig_identity_4x (x : R)
Real.sin (4 * x) = 4 * Real.sin x * Real.cos x * (1 - 2 * Real.
sin x ~ 2) := by

Proven Subgoals:

have h_sindx_is_2sin2xcos2x : Real.sin (4 * x) = 2 *x Real.sin (2
* x) * Real.cos (2 * x)

Stuck Subgoal:

have h_identity : Real.sin (2 * x) * Real.cos (2 * x) = 2 * Real
.sin x * Real.cos x * (1 - 2 * Real.sin x ~ 2)

Output:

have h_sindx_is_2sin2xcos2x : Real.sin (4 * x) = 2 *x Real.sin (2
* x) * Real.cos (2 * x)

have h_sin2x : Real.sin (2 * x) = 2 * Real.sin x * Real.cos x

have h_cos2x_in_terms_of_sin_cos : Real.cos (2 * x) = Real.cos x
~ 2 - Real.sin x = 2

have h_cos2x_in_terms_of_sin : Real.cos (2 * x) = 1 - 2 * Real.
sin x ~ 2

have h_final_identity : 2 * Real.sin (2 * x) * Real.cos (2 * x)
= 4 * Real.sin x * Real.cos x * (1 - 2 * Real.sin x ~ 2)

You must follow all the instructions and mandatory rules above. After deep consideratioin,
output the complete refined plan in Lean for the input below.

Input:

Theorem

{theorem}

Proven Subgoals

{proven_subgoals}

Stuck Subgoal

{stuck_subgoal}

29

	Introduction
	A Duality of Scaling Challenges in LLM Provers and Reasoning Agents
	Our Contributions

	The BFS-Prover-V2 System
	Scaling up training: multi-stage expert iteration
	Scaling up Inference: Planner-Enhanced Multi-Agent Search

	Conclusion
	Practical Implementation and Benchmark Results
	Case Studies
	Proof Conciseness and Tactic Proficiency
	Novel Proof Strategies

	Illustration of Planner-Prover Paradigm with an IMO Problem
	Prompts Used in This Work
	Prompts for Autoformalization
	Prompts for Planner

