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Abstract

Large language models (LLMs) have recently001
been used as backbones for recommender sys-002
tems. However, their performance often lags003
behind conventional methods in standard tasks004
like retrieval. We attribute this to a mis-005
match between LLMs’ knowledge and the006
knowledge crucial for effective recommenda-007
tions. While LLMs excel at natural language008
reasoning, they cannot model complex user-009
item interactions inherent in recommendation010
tasks. We propose bridging the knowledge gap011
and equipping LLMs with recommendation-012
specific knowledge to address this. Opera-013
tions such as Masked Item Modeling (MIM)014
and Bayesian Personalized Ranking (BPR)015
have found success in conventional recom-016
mender systems. Inspired by this, we sim-017
ulate these operations through natural lan-018
guage to generate auxiliary-task data samples019
that encode item correlations and user prefer-020
ences. Fine-tuning LLMs on such auxiliary-021
task data samples and incorporating more in-022
formative recommendation-task data samples023
facilitates the injection of recommendation-024
specific knowledge into LLMs. Extensive ex-025
periments across retrieval, ranking, and rat-026
ing prediction tasks on LLMs such as FLAN-027
T5-Base and FLAN-T5-XL show the effective-028
ness of our technique in domains such as Ama-029
zon Toys & Games, Beauty, and Sports & Out-030
doors. Notably, our method outperforms con-031
ventional and LLM-based baselines, including032
the current SOTA, by significant margins in re-033
trieval, showcasing its potential for enhancing034
recommendation quality.035

1 Introduction036

Large language models (LLMs) exhibit strong gen-037

eralization abilities through zero-shot learning, in-038

context learning (Brown et al., 2020), fine-tuning,039

and instruction tuning (Wei et al., 2022). Encour-040

aged by this, recent studies explore the use of041

LLMs as backbones in recommendation (Kang042

et al., 2023; Geng et al., 2022; Zhang et al., 2023; 043

Bao et al., 2023). Despite their great potential, 044

LLMs are inferior to supervised recommenders 045

(He et al., 2017; Rendle et al., 2009) in recom- 046

mendation tasks such as rating-prediction under 047

zero-shot and few-shot in-context learning settings 048

(Kang et al., 2023). We hypothesize that this stems 049

from a gap between LLMs’ knowledge and rec- 050

ommendation knowledge: LLMs are proficient at 051

natural language reasoning, while recommendation 052

involves modeling complex user-item interactions. 053

In this work, we propose to mitigate this gap by 054

fine-tuning LLMs with data samples that encode 055

recommendation knowledge. 056

Recent works (Geng et al., 2022; Zhang et al., 057

2023; Bao et al., 2023) show that certain recom- 058

mendation knowledge can be introduced into LLMs 059

through instruction tuning. As shown in Figure 060

1(a), their training data samples, which we refer 061

to as recommendation-task data samples, primar- 062

ily help LLMs understand the recommendation 063

tasks by providing instructions on what to do (e.g., 064

“Pick an item for the user from the following candi- 065

dates.”). In terms of modeling the target recommen- 066

dation domain, however, they present raw user and 067

item features for personalization (e.g. the user’s 068

ID or the IDs of the items they recently interacted 069

with), which are insufficient for LLMs to fully com- 070

prehend the target domain. 071

Considering the aforementioned limitations of 072

using LLMs as recommenders, we propose a novel 073

approach to generate additional fine-tuning data 074

samples for LLMs that effectively encode recom- 075

mendation knowledge, particularly focusing on 076

item correlations within the target domain. We 077

refer to these generated data samples as auxiliary- 078

task data samples, as they are used as auxiliary 079

tasks in addition to the recommendations tasks. 080

While developing the auxiliary tasks, our key in- 081

spiration comes from the classical operations that 082

are typically used to train conventional recom- 083
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1) P5 Retrieval (Sequential Recommendation)

Input: I find the purchase history list of user_15466: 4110 -> 4467 -> 
4468 -> 4472 I wonder what is the next item to recommend to the 
user. Can you help me decide?
Output: 1581

Input: What star rating do you think user_23 will give item_7391?
Output: 5.0

Input: Pick the most suitable item from the following list and 
recommend to user_250: 4915 , 1823 , 3112 , 3821 , 3773 , 520 , …
Output: 520

a) Recommendation-task data samples of the existing studies b)  Our recommendation-task and auxiliary-task data samples

1) Retrieval

Input: A user has purchased the 
following products: Item ID: I811, Title: 
Women’s Gel-Excite Running Shoes; 
Item ID: I1014, Title: Women’s Dry-fit 
Tempo Shorts; … What would the user 
buy next?
Output: I10145

2) Ranking

Input: A user has purchased the 
following products: Item ID: I811, Title: 
Women’s Gel-Excite Running Shoes; … 
Which of the following candidate items 
would you recommend the user to buy 
next? Candidate items are: I8, I92, 
I10145, …
Output: I10145

3) Rating Prediction
Input: A user likes the following 
products: Item ID: I811, Title: Women’s 
Gel-Excite Running Shoes;… The user 
dislikes the following products: … 
Predict whether the user would like the 
following item. Answer yes or no. Item 
ID: I1014, Title: Women’s Dry-fit Tempo 
Shorts;
Output: Yes

6) Bayesian Personalized Ranking (BPR)

Input: A user has purchased the following 
products: Item ID: I811, Title: Women’s 
Gel-Excite Running Shoes; … Which of the 
following two products would the user buy 
next? Item ID: I123, Title: Golf Club Cleaner 
Brush; or Item ID: I1014, Title: Women’s Dry-fit 
Tempo Shorts? 
Output: Item ID: I1014, Title: Women’s Dry-fit 
Tempo Shorts

4) Masked Item Modeling (MIM)

Input: A user has purchased the following 
products: Item ID: I811, Title: Women’s 
Gel-Excite Running Shoes; [masked item];  … 
[masked item]; … What are the masked 
items, in chronological order? 
Output: Item ID: I1014, Title: Women’s Dry-fit 
Tempo Shorts; Item ID: I10145, …

2) P5 Ranking (Direct Recommendation)

3) P5 Rating Prediction

4) InstructRec Ranking (type <P1, I0, T3>)

Input: The user has purchased these items: <historical interactions>.  
Please respond to this user by selecting items from the candidates: 
<candidate items>.
Output: <target item>

5) TALLRec Rating Prediction

Input: Given the user’s historical interactions, please determine 
whether the user will enjoy the target new movie by answering "Yes" 
or "No". User’s liked items: GodFather. User’s disliked items: Star 
Wars. Target new movie: Iron Man.
Output: No.

5) Masked Language Modeling (MLM)

Input: Item ID: I811, Title: Women’s Gel-Excite 
Running Shoes; Item ID: I1014, Title: Women’s 
Dry-fit Tempo Shorts;

Output:
<S> <E>

<B>  ID: I8 <S> : Women <S>
Shoes; Item ID: I1014, Title Shorts;

Figure 1: Data samples adopted by the existing studies and this work. (a) shows the recommendation-task data
samples of the existing studies. Specifically, (a1)-(a3) demonstrate the retrieval, ranking, and rating prediction data
samples of P5 (Geng et al., 2022); (a4) shows a ranking (type <P1, I0, T3>) data sample of InstructRec (Zhang et al.,
2023); (a5) is a rating prediction data sample of TALLRec (Bao et al., 2023). (b) shows our recommendation-task
(blue boxes) and auxiliary-task (purple boxes) data samples (we present more samples in Appendix C).

mender systems, namely, masked item modeling084

(MIM) (Sun et al., 2019) and Bayesian Personal-085

ized Ranking (BPR) (Rendle et al., 2009). Our key086

innovation lies in converting the MIM and BPR087

tasks into natural language tasks that can be used088

to train the LLMs. We also incorporate the masked089

language modeling (MLM) (Devlin et al., 2019)090

task for the user’s past interactions to supplement091

the MIM task with fine-grained item correlations.092

Our contributions can be summarized as follows:093

• We propose a novel method to align LLMs with094

new recommendation domains, i.e., supplement-095

ing the fine-tuning of the LLMs with auxiliary-096

task data samples that mimic the classical opera-097

tions in training conventional recommender sys-098

tems with natural language prompts.099

• We propose recommendation-task data samples100

that are more informative as compared to the ex-101

isting work (Geng et al., 2022). Specifically, we102

reduce the complexity of the input/output spaces103

by eliminating the user IDs. We further enhance104

the user sequences by providing item titles.105

• We fine-tune the open-source 3B FLAN-T5-106

XL and 223M FLAN-T5-Base with our pro-107

posed recommendation-task and auxiliary-task108

data samples in a simple multi-task learning frame-109

work. Experiments on various recommendation 110

tasks, i.e., retrieval, ranking, and rating-prediction, 111

across three target domains, i.e., Amazon Toys 112

& Games, Beauty, and Sports & Outdoors, show 113

the effectiveness of our proposed method and its 114

components. For retrieval, our model outperforms 115

both conventional and LLM-based baselines, in- 116

cluding the current SOTA, by large margins. 117

2 Related Work 118

Recommender Systems. Recommender systems 119

help users in discovering items of interest. As a 120

practical approach, Collaborative Filtering (CF) 121

(Mao et al., 2021) explores historical user-item in- 122

teractions, assuming that users with similar behav- 123

iors have similar preferences for items. Among 124

various CF methods, Matrix Factorization (MF) 125

methods (Rendle et al., 2009; Mao et al., 2021) 126

project users and items into a shared vector space 127

and estimate a user’s preference for an item through 128

the inner product of their vectors and are widely 129

adopted. Context-aware approaches (Cheng et al., 130

2016) further include additional information, such 131

as user and contextual features, to improve rec- 132

ommendation quality. However, CF fails to cap- 133

ture the sequential patterns in users’ behaviors, 134

which leads to the rise of sequential recommenda- 135
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tions. Sequential recommenders based on Convolu-136

tional Neural Networks (CNNs) (Tang and Wang,137

2018), Gated Recurrent Units (GRUs) (Hidasi et al.,138

2016), and self-attention (Sun et al., 2019; Zhang139

et al., 2019; Kang and McAuley, 2018; Zhou et al.,140

2020; Rajput et al., 2023) have become prevalent141

in the era of deep learning. Notably, leveraging142

a T5-like backbone, Rajput et al. 2023 formal-143

ize recommendation as generative retrieval, i.e.,144

autoregressively decode the identifiers of the tar-145

get items, and achieve the current SOTA. While146

structurally resembling LLMs, it lacks their pre-147

training knowledge and the accompanying natural148

language reasoning potential. Our proposed ap-149

proach adopts self-attention for sequential recom-150

mendation, specifically harnessing LLMs as back-151

bones. We compare against various baselines from152

all the classes discussed above.153

LLMs for Recommendation. LLMs have re-154

cently been explored for recommendation tasks155

due to their ability to understand, generate, and156

reason with natural language. Several studies fo-157

cus on incorporating LLMs’ natural language capa-158

bilities into existing recommendation techniques.159

E.g., Hou et al. 2022 and Cao et al. 2023 encode160

item contents (title, description, etc.) with BERT161

(Devlin et al., 2019), which enables learning se-162

mantically informed embeddings even for zero-163

shot items. Moreover, pre-trained LLM backbones164

have also been used for recommendation through165

zero-shot learning (Kang et al., 2023), in-context166

learning (Kang et al., 2023), fine tuning (Cui et al.,167

2022; Kang et al., 2023), and instruction tuning168

(Geng et al., 2022; Zhang et al., 2023; Bao et al.,169

2023). Besides helping classic recommendation170

tasks, LLMs also enable novel recommendation171

use cases. Geng et al. 2022 leverage LLMs to172

explain the recommendation results. Gao et al.173

2023; Wang and Lim 2023 utilize GPT-3 (Brown174

et al., 2020) for conversational recommendation.175

Christakopoulou et al. 2023 extract persistent user176

interests with LLMs for deeper user understand-177

ing. Carranza et al. 2023 generate private synthetic178

representations of the original data with LLMs for179

privacy-preserving recommendation.180

Recommendation as Instruction-following. The181

success of instruction tuning, i.e., fine-tune on data182

described via instructions (Mishra et al., 2022; Wei183

et al., 2022), has inspired attempts that instruction-184

tune LLM backbones for recommendation tasks.185

Geng et al. 2022 formalize various recommen-186

dation tasks as natural language instructions and 187

fine-tune a unified recommender with T5 (Raffel 188

et al., 2020) backbone. Zhang et al. 2023 fur- 189

ther supplement the tuning data with user prefer- 190

ences/intentions deduced by GPT-3.51 to accom- 191

modate instructions of free forms. Bao et al. 2023 192

explore instruction tuning LLMs with limited data. 193

In contrast to the existing studies, our work fo- 194

cuses on introducing new recommendation knowl- 195

edge into LLMs, which we believe is the key for im- 196

proving recommenders with LLM backbones. We 197

create auxiliary tasks that improve the recommen- 198

dation tasks, including retrieval, ranking, and rat- 199

ing prediction. Our proposed recommendation-task 200

and auxiliary-task data samples include raw user 201

purchase sequences in addition to natural language 202

instructions. These data samples supplement each 203

other in encoding the target recommendation do- 204

main knowledge. We experiment under restricted 205

settings. Compared to the previous studies (Zhang 206

et al., 2023), we consider larger candidate pools 207

(e.g., our retrieval and ranking experiments con- 208

sider the entire dataset and 99 hard negatives, re- 209

spectively). Unlike Bao et al. 2023, we fully train 210

all models to maximize their performances. 211

3 Methodology 212

We propose designing data samples that encode rec- 213

ommendation knowledge to align LLMs with the 214

target recommendation domain. Sections 3.1 and 215

3.2 discuss our auxiliary-task and recommendation- 216

task data, respectively. Section 3.3 introduces a 217

simple multi-task learning framework that we use 218

to fine-tune LLMs. 219

3.1 Auxiliary-task Data Generation 220

Conventional recommenders acquire recommen- 221

dation knowledge via classic operations such as 222

masked item modeling (Sun et al., 2019) and BPR 223

loss reduction (Rendle et al., 2009). We mimic 224

these operations with natural language prompts. In 225

addition, we sample sub-sequences of the raw user 226

purchase sequences. The resulting data, which we 227

refer to as auxiliary-task data samples, encode item 228

correlations contained in users’ preferences 2. 229

1https://platform.openai.com/docs/models/overview
2As a side note, we also explored encoding item correla-

tions contained in item contents (categories, descriptions, etc.).
Observing no noticeable performance increase, we present our
approach and results in Appendix D
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3.1.1 Masked Item Modeling (MIM)230

Conventional sequential recommenders (Sun et al.,231

2019) learn item correlations from users’ interac-232

tion sequences. Specifically, they predict randomly233

masked items in the sequences by jointly condition-234

ing on the unmasked items. We mimic this process,235

which we refer to as masked item modeling (MIM),236

with natural language prompts.237

MIM applies a Cloze objective (Sun et al., 2019).238

At each training step, random items in the input239

user sequence are replaced with a special token240

"[mask]", and the model learns to recover the241

masked items based on its surrounding context. An242

example of the masking process:243

Input: [i1, i2, i3, i4, i5]
random masking−−−−−−−−−→

[i1, [mask]1, i3, [mask]2, i5]

Label: [mask]1 = i2, [mask]2 = i4

(1)244

The MIM loss is computed as follows in conven-245

tional sequential recommenders:246

LMIM =
1

|Smu |
∑

im∈Smu

−logP (im|S
′
u), (2)247

where S ′u is the masked version of user sequence248

Su, Smu stands for the masked items in Su. P (·),249

the probability of observing im given S ′u, is calcu-250

lated from deep bidirectional self-attention (Devlin251

et al., 2019).252

Our natural language imitation of MIM loss253

(Equation 2) is described in Figure 1(b4). Given254

purchase sequence: [i1, i2, i3, i4, i5], we generate255

prompts, e.g., Input: “A user has purchased the256

following products: Item ID: [ID]i1 , Title: [Title]i1 ;257

[masked item]; Item ID: [ID]i3 , Title: [Title]i3 ;258

[masked item]; Item ID: [ID]i5 , Title: [Title]i5 .259

What are the masked items, in chronological or-260

der?”, and Output: “Item ID: [ID]i2 , Title: [Title]i2 ;261

Item ID: [ID]i4 , Title: [Title]i4 ;”. To accommodate262

long sequences, we introduce a sliding window263

w and each prompt considers one sub-sequence:264

[ik, ik+1..., ik+w−1], where 1 ≤ k ≤ max
(
1,(L-265

w+1)
)

andL is the total length of the user sequence.266

The resulting MIM data samples encodes the cor-267

relations between the masked items and the rest of268

the sequences.269

3.1.2 Masked Language Modeling (MLM)270

In addition to MIM that considers a single item for271

each mask, we also mask out and recover a con-272

secutive span of tokens to encode fine-grained item273

correlations contained in the users’ purchase se- 274

quences. This process resembles masked language 275

modeling (MLM) (Devlin et al., 2019). 276

As shown in Figure 1(b5), given a user sequence, 277

we sample a sub-sequence by randomly decid- 278

ing a starting item and a sub-sequence length Ls, 279

where 2 ≤ Ls ≤ w and w is the sliding win- 280

dow for accommodating long sequences. These 281

sub-sequences, referred to as MLM data samples, 282

supplement the MIM data samples: through span 283

corruption (Raffel et al., 2020), i.e., masking and re- 284

covering consecutive spans of tokens, LLMs learn 285

to model more fine-grained correlations across mul- 286

tiple continuous items from the MLM data samples. 287

3.1.3 Bayesian Personalized Ranking (BPR) 288

Besides correlating similar items, we explore con- 289

trasting dissimilar items. BPR loss (Rendle et al., 290

2009) is adopted by conventional recommenders 291

(Rendle and Freudenthaler, 2014; Koren et al., 292

2009; Cheng et al., 2016) for personalized rank- 293

ing, i.e., learning users’ preferences for some items 294

over the others. Inspired by this, we imitate BPR 295

loss reduction with natural language prompts for 296

training LLMs. 297

The objective of BPR loss reduction in conven- 298

tional recommenders is: 299

LBPR = E
(u,i+)∼ppos

− log σ(s(u, i+)− s(u, i−)),

(3) 300

where (u, i+) is a pair of a user u and an item 301

i+ sampled from the distribution of positive pairs 302

ppos, i.e., u interacted with i+. i− is a randomly 303

sampled negative item that u has not interacted 304

with. The similarity between u and i+, denoted by 305

s(u, i+), is calculated by taking the dot product of 306

their representations. σ(·) is the Sigmoid function. 307

Figure 1(b6) shows our natural language imi- 308

tation. We elicit user preferences by generating 309

prompts with binary choices that contrast a posi- 310

tive item and a negative item. Each prompt takes 311

the form of a binary decision, e.g., Input: “A user 312

has purchased ... Which of the following two prod- 313

ucts would the user buy next? Item ID: [ID]i− , 314

Title: [Title]i− ; Item ID: [ID]i+ , Title: [Title]i+ .”, 315

and Output: “Item ID: [ID]i+ , Title: [Title]i+”. Fol- 316

lowing Section 3.1.1, we adopt a sliding window 317

w to accommodate long user sequences and the 318

positive item is always the one next to the sliding 319

window. These BPR data samples encode dissimi- 320

larities between the purchased items and the rest of 321

the items in the dataset. 322
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Step 3: Prediction

Step 1: Generate Recommendation & Auxiliary Task Data Samples

Step 2: Multi-task 
Fine-tuning

LLM 
Backbone

A user has purchased … What would 
the user buy next?

A user has purchased … Which of the 
following candidate items would you 
recommend the user to buy next? …

A user likes … The user dislikes … 
Predict whether the user would like …

I123

I123

No

Generate recommendation-task & auxiliary-task data samples
Training Testing

Retrieval data 
samples

Rating prediction 
data samples

Retrieval data samples

Rating prediction data samples

Ranking data 
samples

MIM data 
samples

BPR data 
samples

MLM data 
samples

Retrieval data 
samples

Rating prediction 
data samples

Ranking data 
samples

Multi-task 
fine-tuning LLM backbone Evaluation

Figure 2: Fine-tuning and evaluation framework.

3.2 Recommendation-task Data Generation323

As shown in Figure 1(a), the existing recom-324

menders with LLM backbones adopt prompts that325

primarily convey the recommendation tasks by pro-326

viding directions on how to perform them. Such327

information is essential, yet insufficient for repre-328

senting the target recommendation domain.329

We propose prompts that help LLMs compre-330

hend the target recommendation domain in addi-331

tion to the recommendation tasks. Specifically, we332

reduce the complexity of the input/output spaces.333

In contrast to Geng et al. 2022, we eliminate user334

IDs and represent the users by their historical pur-335

chases. Consequently, we relieve LLMs from mem-336

orizing a substantial volume of user IDs (e.g., Ama-337

zon Sports & Outdoors has 35,598 users). More-338

over, compared to Geng et al. 2022 that represent339

user sequences solely by item IDs, we include340

both the IDs and the titles of the items, which341

makes it easier for LLMs to recognize the items.342

Notably, ranking candidates and items in the out-343

put are represented solely by their IDs to reduce344

the length of the prompts and maintain a smaller345

output space. Figures 1(b1)-(b3) show examples346

of our retrieval, ranking, and rating prediction347

recommendation-task data samples. The raw item348

IDs (e.g., ‘0000031852’) are mapped into shorter349

ones (e.g., ‘I123’) 3 to reduce input/output space350

complexity. To fully present the users’ historical351

purchases to LLMs, we adopt a sliding window w352

similar to Section 3.1.1.353

3.3 Fine-tuning and Evaluation Framework354

As shown in Figure 2, we adopt a simple framework355

to fine-tune the LLM backbones and evaluate the re-356

3We adopt random mapping, i.e., similar-looking IDs may
not imply any connection or semantic similarity. We acknowl-
edge that using semantic-rich IDs (Rajput et al., 2023) could
enhance performance and leave the exploration to the future.

sulting model. We first generate recommendation- 357

task and auxiliary-task data samples using the train- 358

ing set. Next, we tune the LLM backbone with 359

these data samples in a multi-task learning man- 360

ner. Finally, we evaluate the recommendation tasks 361

using the recommendation-task data samples gen- 362

erated from the test set. 363

4 Experiments 364

We evaluate the proposed method and compare it 365

with conventional as well as LLM-based recom- 366

menders. We aim to answer the following research 367

questions: RQ1. Can our method introduce knowl- 368

edge into LLMs from new recommendation do- 369

mains? RQ2. How does our model perform com- 370

pared to the conventional as well as LLM-based 371

recommenders in retrieval, ranking, and rating pre- 372

diction? RQ3. How beneficial are the individual 373

proposed tasks? RQ4. What’s the effect of varying 374

the size of the backbone LLM? 375

4.1 Experimental Setting 376

Datasets. We experiment on three real-world 377

datasets: Amazon Toys & Games, Beauty, and 378

Sports & Outdoors 4. Following Zhou et al. 2020; 379

Geng et al. 2022, we keep 5-core data and apply 380

leave-one-out evaluation, i.e., for each user pur- 381

chase sequence (where the interactions are sorted 382

by timestamp in ascending order), the last, the sec- 383

ond to the last, and the prior interactions are used 384

for testing, validation, and training, respectively. 385

We present data statistics in Appendix B. 386

Recommendation Tasks. We evaluate on three es- 387

tablished recommendation tasks: retrieval, which 388

retrieves the ground truth item that a user inter- 389

acted with from the entire dataset; ranking, which 390

chooses the ground truth item that a user interacted 391

with from a candidate pool of size 100 (1 posi- 392

tive item and 99 negative items sampled based on 393

popularity); rating prediction, which classifies an 394

interaction as either "like" or "dislike" (interactions 395

with ratings > 3 are considered as "like"). We leave 396

the exploration and evaluation of novel recommen- 397

dation tasks (e.g., explanation generation) to the 398

future, due to a lack of ground-truth data. 399

Evaluation Metrics. For retrieval and ranking, we 400

report top-k Hit Ratio (HR@k) and Normalized 401

Discounted Cumulative Gain (NDCG@k), where 402

k is set to 5/10 and 1/5/10, respectively. For rat- 403

ing prediction, we report Area Under the Receiver 404

4https://nijianmo.github.io/amazon/
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Methods
Toys & Games Beauty Sports & Outdoors

NDCG
@5

NDCG
@10

HR
@5

HR
@10

NDCG
@5

NDCG
@10

HR
@5

HR
@10

NDCG
@5

NDCG
@10

HR
@5

HR
@10

Caser1 0.0107 0.0141 0.0166 0.0270 0.0131 0.0176 0.0205 0.0347 0.0072 0.0097 0.0116 0.0194
HGN1 0.0221 0.0277 0.0321 0.0497 0.0206 0.0266 0.0325 0.0512 0.0120 0.0159 0.0189 0.0313
GRU4Rec1 0.0059 0.0084 0.0097 0.0176 0.0099 0.0137 0.0164 0.0283 0.0086 0.0110 0.0129 0.0204
BERT4Rec1 0.0071 0.0099 0.0116 0.0203 0.0124 0.0170 0.0203 0.0347 0.0075 0.0099 0.0115 0.0191
FDSA1 0.0140 0.0189 0.0228 0.0381 0.0163 0.0208 0.0267 0.0407 0.0122 0.0156 0.0182 0.0288
SASRec1 0.0306 0.0374 0.0463 0.0675 0.0249 0.0318 0.0387 0.0605 0.0154 0.0192 0.0233 0.0350
S3-Rec1 0.0294 0.0376 0.0443 0.0700 0.0244 0.0327 0.0387 0.0647 0.0161 0.0204 0.0251 0.0385
TIGER2 0.0371 0.0432 0.0521 0.0712 0.0321 0.0384 0.0454 0.0648 0.0181 0.0225 0.0264 0.0400

P52 0.0050 0.0066 0.0070 0.0121 0.0107 0.0136 0.0163 0.0254 0.0041 0.0052 0.0061 0.0095
P5-XL 0.0023 0.0031 0.0035 0.0061 0.0036 0.0050 0.0063 0.0104 0.0029 0.0035 0.0040 0.0060
FLAN-T5-Base 0.0000 2e−5 0.0000 5e−5 0.0000 0.0000 0.0000 0.0000 0.0000 9e−6 0.0000 3e−5
FLAN-T5-XL 2e−5 2e−5 5e−5 5e−5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

ReAT [Ours] 0.0390 0.0461 0.0558 0.0776 0.0382 0.0442 0.0535 0.0722 0.0188 0.0232 0.0285 0.0422
UT [Ours] 0.0166 0.0202 0.0252 0.0362 0.0188 0.0231 0.0292 0.0425 0.0079 0.0101 0.0118 0.0187
UT+AT [Ours] 0.0392 0.0459 0.0563 0.0772 0.0329 0.0397 0.0482 0.0693 0.0178 0.0219 0.0268 0.0393

∆ (%) +5.66 +6.71 +8.06 +8.99 +19.00 +15.10 +17.84 +11.42 +3.87 +3.11 +7.95 +5.50

Table 1: Retrieval results. 1 marks results from Zhou et al. 2020; 2 marks results from Rajput et al. 2023. ∆
compares the best [Ours] with the best baseline.

Methods
Toys & Games Beauty Sports & Outdoors

NDCG
@5

NDCG
@10

HR
@1

HR
@5

HR
@10

NDCG
@5

NDCG
@10

HR
@1

HR
@5

HR
@10

NDCG
@5

NDCG
@10

HR
@1

HR
@5

HR
@10

BPR-MF1 0.0641 0.0940 0.0233 0.1066 0.2003 0.0857 0.1224 0.0311 0.1426 0.2573 0.0848 0.1220 0.0314 0.1404 0.2563
BPR-MLP1 0.0688 0.0988 0.0252 0.1142 0.2077 0.0848 0.1215 0.0317 0.1392 0.2542 0.0927 0.1296 0.0351 0.1520 0.2671
SimpleX1 0.1244 0.1469 0.0268 0.1958 0.2662 0.1441 0.1711 0.0325 0.2247 0.3090 0.1505 0.1800 0.0331 0.2362 0.3290

P5-XL 0.0290 0.0444 0.0097 0.0494 0.0977 0.0298 0.0456 0.0110 0.0498 0.0992 0.0286 0.0436 0.0097 0.0486 0.0957
FLAN-T5-Base 0.0107 0.0127 0.0057 0.0156 0.0217 0.0097 0.0113 0.0052 0.0137 0.0189 0.0069 0.0082 0.0035 0.0102 0.0144
FLAN-T5-XL 0.0160 0.0312 0.0026 0.0315 0.0793 0.0152 0.0296 0.0022 0.0301 0.0753 0.0097 0.0193 0.0014 0.0192 0.0491

RaAT [Ours] 0.1714 0.2034 0.0956 0.2464 0.3453 0.1376 0.1691 0.0702 0.2036 0.3013 0.0933 0.1199 0.0424 0.1448 0.2272
UT [Ours] 0.1536 0.1867 0.0831 0.2233 0.3259 0.1236 0.1537 0.0609 0.1863 0.2798 0.0867 0.1137 0.0381 0.1362 0.2202
UT+AT [Ours] 0.1703 0.2064 0.0938 0.2443 0.3562 0.1441 0.1758 0.0742 0.2126 0.3112 0.0997 0.1281 0.0468 0.1526 0.2404

∆ (%) +37.78 +40.50 +256.72 +25.84 +33.81 0.00 +2.75 +128.31 -5.38 +0.71 -33.75 -28.83 +33.33 -35.39 -26.93

Table 2: Ranking results. 1 marks results from Geng et al. 2022. ∆ compares the best [Ours] with the best baseline.

Methods Toys & Games Beauty Sports & Outdoors

History 66.59 64.80 62.78
DMF 51.82 51.23 51.38
Wide&Deep 70.93 67.10 67.60
P5-XL 51.04 50.63 50.36
FLAN-T5-Base 57.85 56.04 55.00
FLAN-T5-XL 55.23 53.77 52.01

RpAT [Ours] 71.16 68.27 65.87
UT [Ours] 70.79 67.45 65.35
UT+AT [Ours] 71.08 67.55 65.18

∆ (%) +0.32 +1.74 -2.56

Table 3: Rating prediction AUC-ROC. ∆ compares the
best [Ours] with the best baseline.

Operating Characteristic Curve (AUC-ROC).405

Models. We compare to non LLM-based recom-406

menders. For retrieval, we consider sequential407

recommenders including Caser (Tang and Wang,408

2018), which leverages CNNs, HGN (Ma et al.,409

2019), which adopts hierarchical gating networks,410

GRU4Rec (Hidasi et al., 2016), which leverages411

GRUs (Cho et al., 2014), BERT4Rec (Sun et al.,412

2019), FDSA (Zhang et al., 2019), SASRec (Kang413

and McAuley, 2018), S3-Rec (Zhou et al., 2020), 414

and TIGER (Rajput et al., 2023), which lever- 415

age self-attention, with TIGER being the current 416

SOTA. For ranking, we consider BPR-MF (Ren- 417

dle et al., 2009), BPR-MLP (Cheng et al., 2016), 418

and SimpleX (Mao et al., 2021), which are col- 419

laborative filtering-based method. For rating pre- 420

diction, we consider History, a naive method 421

that always predicts based on how likely a user 422

likes the training items they purchased, DMF 423

(Xue et al., 2017), a neural matrix factorization 424

model, and Wide&Deep (Cheng et al., 2016), 425

a context-aware method. Beside, we also con- 426

sider LLM-based methods including P5 (Geng 427

et al., 2022), which fine-tunes T5 (Raffel et al., 428

2020) with multi-task recommendation prompts, 429

P5-XL, which fine-tunes FLAN-T5-XL with P5 430

prompts, FLAN-T5-Base/XL (Wei et al., 2022), 431

which make zero-shot predictions with FLAN-T5- 432

Base or FLAN-T5-XL (we query them with our 433
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proposed recommendation-task data samples gen-434

erated from the test set). ReAT/ RaAT/ RpAT,435

which fine-tune FLAN-T5-XL with our proposed436

retrieval (Re), ranking (Ra), or rating prediction437

(Rp) task data samples along with the auxiliary-438

task (AT) data samples 5, unified training (UT),439

which fine-tunes FLAN-T5-XL with a combination440

of our proposed Re, Ra, Rp data samples, uni-441

fied training w/ auxiliary tasks (UT+AT), which442

fine-tunes FLAN-T5-XL with a combination of our443

proposed Re, Ra, Rp, MIM, MLM data samples.444

Implementation Details. We adopt the 3B FLAN-445

T5-XL (Wei et al., 2022) as the backbone (note446

that we use the 223M FLAN-T5-Base for the ab-447

lation studies in Section 4.3). We set the sliding448

window size w to 20. For the BPR data samples,449

we sample the negative items based on popularity.450

For the ranking and BPR data samples, the posi-451

tion of the positive item in the candidate pool is452

always determined randomly. For the MIM and453

MLM data samples, we adopt a masking ratio of454

20%. To fully fine-tune the LLM backbone, we ap-455

ply dynamic sampling for the BPR and MIM/MLM456

data samples (we present details about the dynamic457

sampling and the statistics of our data samples in458

Appendix C). To reduce cost, we validate on 3,000459

users. Meanwhile, testing is performed on all users.460

We fine-tune FLAN-T5-XL and FLAN-T5-Base461

for 70, 000 and 10, 000 steps, with batch sizes 16462

and 64, respectively. We set the learning rate to463

0.001 and warm-up steps to 1,000. During pre-464

diction, we set the width of the beam search for465

retrieval and ranking to 20. For unified models,466

i.e., UT and UT+AT, model selections are based on467

retrieval validation performance. We present the de-468

tailed settings of P5-XL experiments in Appendix469

A. We cite the results of some baseline models from470

Zhou et al. 2020; Geng et al. 2022, and Rajput et al.471

2023. We implement DMF and Wide&Deep with472

RecBole 6. We adopt the default configurations,473

except the data split, mapping (ratings to "like"s or474

"dislike"s), and metric are adjusted to follow our475

experiment settings as reported earlier.476

4.2 Overall Performance (RQ1 & RQ2)477

Tables 1, 2, and 3 show the results of retrieval,478

ranking, and rating prediction, respectively. FLAN-479

T5-Base/XL exhibit suboptimal performance on480

5BPR data samples are used only by RaAT as we observe
that they help ranking but not retrieval and rating prediction.
MIM/ MLM data samples are used by ReAT, RaAT, and RpAT.

6https://recbole.io

retrieval and ranking. For retrieval, they show near 481

zero NDCGs and HRs. For ranking, they are signif- 482

icantly inferior to the conventional baselines. For 483

rating prediction, they perform much higher than 484

random guessing (50.00), outperforming DMF, but 485

still fall behind History and Wide&Deep. This 486

shows that FLAN-T5 models lack recommenda- 487

tion knowledge. Moreover, we find that our pro- 488

posed method effectively aligns LLMs with new 489

recommendation domains (RQ1). In particular, 490

by fine-tuning FLAN-T5-XL with our proposed 491

data samples, our models significantly outperform 492

FLAN-T5-XL on all three tasks across the datasets. 493

When compared to the baselines, our models 494

show remarkable performance, especially on re- 495

trieval (RQ2). For retrieval, our ReAT outperforms 496

TIGER, the current SOTA, by large margins across 497

datasets and metrics. Additionally, it is essential 498

to highlight that our method possesses natural lan- 499

guage reasoning potentials of LLMs, which are 500

absent in TIGER. For ranking, our RaAT greatly 501

outperforms SimpleX, the best baseline, on Toys 502

& Games. On Beauty, RaAT performs on par with 503

SimpleX. On Sports & Outdoors, RaAT is infe- 504

rior to the conventional recommenders on metrics 505

such as NDCG/HR@10, yet still greatly outper- 506

forms the LLM-based baselines. Notably, the @1 507

performance of RaAT is always much higher than 508

the conventional recommenders. For rating predic- 509

tion, our RpAT outperforms Wide&Deep, the best 510

baseline, on Toys & Games and Beauty while lags 511

slightly behind it on Sports & Outdoors. These re- 512

sults verify that our method introduces substantial 513

recommendation domain knowledge into LLMs for 514

outperforming strong baselines. 515

Moreover, our UT greatly outperforms P5-XL 516

across datasets and metrics. This shows that our 517

proposed recommendation task prompts better pre- 518

serve item correlations as compared to the P5 ones. 519

Specifically, we enhance user sequence modeling 520

by introducing helpful details such as item titles 521

while excluding less informative details such as 522

user IDs and explanation data. 523

We also compare our UT+AT model with our 524

task-specific models, i.e., ReAT/ RaAT/ RpAT. 525

We show that our method allows fine-tuning a 526

unified model that addresses all recommendation 527

tasks without sacrificing per-task performance by 528

much. For retrieval, UT+AT is slightly worse than 529

ReAT but still outperforms all baselines, except 530

that UT+AT performs comparably with TIGER on 531

Sports & Outdoors. For ranking, UT+AT performs 532
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# Methods
NDCG

@5
NDCG
@10

HR
@5

HR
@10

1 TIGER 0.0371 0.0432 0.0521 0.0712

2 FLAN-T5-XL 2e−5 2e−5 5e−5 5e−5
3 2+retrieval 0.0182 0.0219 0.0273 0.0388
4 3+MLM 0.0306 0.0369 0.0443 0.0641
5 4+MIM 0.0390 0.0461 0.0558 0.0776

6 FLAN-T5-Base 0.0000 2e−5 0.0000 5e−5
7 6+retrieval 0.0149 0.0183 0.0219 0.0325
8 7+MLM 0.0219 0.0271 0.0334 0.0495
9 8+MIM 0.0242 0.0304 0.0376 0.0566

Table 4: Retrieval ablation study on Toys & Games.
Rows 1, 2, 5 (equivalent to ReAT), and 6 are copied
from Table 1.

# Methods
NDCG

@5
NDCG
@10

HR
@1

HR
@5

HR
@10

1 SimpleX 0.1244 0.1469 0.0268 0.1958 0.2662

2 FLAN-T5-XL 0.0160 0.0312 0.0026 0.0315 0.0793
3 2+ranking 0.1520 0.1864 0.0807 0.2218 0.3284
4 3+MLM 0.1580 0.1912 0.0854 0.2303 0.3333
5 4+MIM 0.1677 0.1976 0.0938 0.2391 0.3317
6 5+BPR 0.1714 0.2034 0.0956 0.2464 0.3453

7 FLAN-T5-Base 0.0107 0.0127 0.0057 0.0156 0.0217
8 7+ranking 0.1349 0.1654 0.0720 0.1957 0.2901
9 8+MLM 0.1481 0.1782 0.0820 0.2119 0.3051
10 9+MIM 0.1489 0.1811 0.0817 0.2141 0.3136
11 10+BPR 0.1534 0.1844 0.0844 0.2196 0.3153

Table 5: Ranking ablation study on Toys & Games.
Rows 1, 2, 6 (equivalent to RaAT), and 7 are copied
from Table 2.

on par with or slightly better than our task-specific533

RaAT model. For rating prediction, UT+AT is534

slightly worse than RpAT.535

4.3 Ablation Studies (RQ3 & RQ4)536

Tables 4, 5, and 6 show ablation studies on Toys537

& Games for retrieval, ranking, and rating predic-538

tion, respectively. We observe that all the proposed539

tasks are beneficial (RQ3). In Table 4 rows 2-5,540

successively adding our proposed retrieval, MLM,541

and MIM data samples into the fine-tuning data542

increases the retrieval performance. All three tasks543

are essential. E.g., row 4, which fine-tunes FLAN-544

T5-XL using retrieval and MLM data samples per-545

forms on par with S3-Rec and worse than TIGER546

(row 1, the current SOTA). Further adding MIM547

data samples (row 5) surpasses TIGER. This shows548

# Methods AUC-ROC
1 Wide&Deep 70.93
2 FLAN-T5-XL 55.23
3 2+rating-prediction 70.38
4 3+MLM 71.08
5 4+MIM 71.16

# Methods AUC-ROC

6 FLAN-T5-Base 57.85
7 6+rating-prediction 69.17
8 7+MLM 67.31
9 8+MIM 68.24

Table 6: Rating-prediction ablation study on Toys &
Games. Rows 1, 2, 5 (equivalent to RpAT), and 6 are
copied from Table 3.

that the item-level and token-level item correlations 549

introduced by MIM and MLM are essential and 550

complement each other. Similarly, in Table 5 rows 551

2-6, the ranking performance improves as we in- 552

corporate our proposed ranking, MLM, MIM, and 553

BPR data samples into fine tuning. Among these 554

data samples, ranking task data samples are the 555

most helpful. BPR data samples, which contrast the 556

positive items with the negative ones, provide the 557

least assistance. For rating predictions, as shown 558

in Table 6 rows 2-5, our proposed rating predic- 559

tion data samples greatly increase the performance. 560

MLM and MIM do help, but only marginally. 561

We also find that our proposed method is effec- 562

tive regardless of the size of the backbone model 563

(RQ4). In Tables 4, 5, and 6, we apply our method 564

on FLAN-T5-Base and observe significant perfor- 565

mance increases on all three recommendation tasks. 566

In terms of overall performance, our best retrieval 567

model with FLAN-T5-Base (Table 4 row 9) falls 568

behind TIGER but still outperforms all baselines 569

except TIGER, S3-Rec, and SASRec. In Table 5, 570

our best ranking model with FLAN-T5-Base (row 571

11) outperforms SimpleX by large margins, though 572

falls behind our best ranking model with FLAN-T5- 573

XL (row 6). In Table 6, our best rating prediction 574

model with FLAN-T5-Base (row 7) is slightly in- 575

ferior to the best model with FLAN-T5-XL (row 576

5) and Wide&Deep. The effectiveness of the indi- 577

vidual tasks remains roughly consistent with the 578

previous results with FLAN-T5-XL (except that 579

MLM does not help rating prediction). E.g., in Ta- 580

ble 5 rows 7-11, our ranking task, MLM, MIM, and 581

BPR data samples all contribute to the ranking per- 582

formance, with the ranking task data samples being 583

the most beneficial and BPR the least beneficial. 584

5 Conclusion 585

We propose to align LLMs with the recommen- 586

dation domain by fine-tuning with data samples 587

that encode recommendation knowledge. We pro- 588

pose auxiliary-task data samples that encode item 589

correlations contained in users’ preferences. We 590

further design recommendation-task data samples 591

that are more informative than ones in existing stud- 592

ies. Experiments on retrieval, ranking, and rating 593

prediction show that our method effectively intro- 594

duces recommendation knowledge into FLAN-T5- 595

Base/XL from three domains. Our method greatly 596

outperforms both conventional and LLM-based 597

baselines in retrieval, achieving the new SOTA. 598

8



6 Limitations599

Our proposed method utilizes LLMs as the back-600

bones. The substantial parameter size of the LLMs601

results in increased computational resource con-602

sumption and extended training and inference times603

compared to conventional recommenders. Never-604

theless, adopting LLM backbones is beneficial due605

to their significant potential. In addition to the ex-606

ceptional performance demonstrated in this study,607

we anticipate that future research will continue to608

augment existing recommendation tasks and ad-609

dress novel recommendation scenarios by leverag-610

ing the diverse capabilities of LLM backbones.611
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Dataset # Users # Items # Interactions Sparsity (%)
Toys & Games 19,412 11,924 167,597 99.93
Beauty 22,363 12,101 198,502 99.93
Sports & Outdoors 35,598 18,357 296,337 99.95

Table 7: Statistics of the datasets.

A P5-XL Experimental Setting and782

Additional Results783

A.1 Experimental Setting784

We generate P5 prompts using the source code pro-785

vided by the P5 authors 7. However, for a fair com-786

parison, we update the data pre-processing to be787

consistent with our method and the other baselines.788

Specifically, we apply random instead of sequential789

indexing when mapping the item IDs. As pointed790

out by Rajput et al. 2023, the sequential indexing of791

items (e.g., the purchase sequence of the first user792

in Toys & Games is mapped into ‘1, 2, 3, 4, 5, 6, 7’)793

in the original P5 pre-processing leads to data leak-794

age (e.g., given the train items, i.e., ‘1, 2, 3, 4, 5,795

6’, the LLM can easily infer the test item, i.e., ‘7’).796

Therefore, we adopt random mapping (i.e., con-797

secutive or similar-looking IDs may not imply any798

connection), which is consistent with our method.799

In addition, the original P5 pre-processing adopts800

leave-one-out split for retrieval and ranking, while801

splitting the dataset by 0.8:0.1:0.1 for the training,802

validation, and testing of rating prediction. This803

could result in data leakage, as the test interactions804

of one task might be included in the training set of805

another task. We instead adopt leave-one-out data806

split for all three recommendation tasks, which is807

consistent with our proposed method as well as the808

other baselines.809

For a fair comparison, We apply the same back-810

bone (FLAN-T5-XL), fine-tuning steps (70,000),811

batch size (16), and learning rate (0.001) as adopted812

by our proposed method. Following the original P5813

code, we fine-tune a unified model with prompts of814

their proposed five task families (rating, sequential815

recommendation, explanation, review, and direct816

recommendation. The sequential recommendation817

and direct recommendation families are weighted 5818

times higher than the rest families). In Tables 1, 2,819

and 3, we adopt prompt templates 2-1, 2-7, and 1-4820

for evaluating the retrieval, ranking, and rating pre-821

diction performance of the P5-XL model, as these822

templates better suit the forms of the recommenda-823

tion tasks (introduced in the second subsection of824

Section 4.1) than the other templates.825

7https://github.com/jeykigung/P5

A.2 Additional Results 826

In Table 8, we report the ranking results of P5-XL 827

evaluated with prompt template 5-5. We can tell 828

that P5-XL (5-5) slightly fall behind P5-XL. Our 829

proposed UT greatly outperforms both P5-XL and 830

P5-XL (5-5), which again verifies that our proposed 831

recommendation task prompts are more informa- 832

tive than the P5 ones. 833

B Dataset Statistics 834

Table 7 presents the statistics of the Amazon 835

datasets, i.e., Toys & Games, Beauty, and Sports & 836

Outdoors 8 that we used to evaluate our proposed 837

method as well as all the baselines. 838

C Examples and Statistics of the 839

Proposed Data Samples 840

C.1 Statistics of the Data Samples 841

Table 10 presents the statistics of our proposed 842

recommendation-task and auxiliary-task data sam- 843

ples. Consider the recommendation-task data sam- 844

ples, the training data samples are generated by 845

swiping a sliding window of size w = 20 over 846

the training split of the user sequence. The vali- 847

dation data samples consider only 3,000 users for 848

each dataset for cost-efficient validation. We test 849

on all users, therefore the counts of the testing data 850

samples equal to the total number of users in the 851

datasets. The auxiliary-task data samples, on the 852

other hand, are generated using only the training 853

splits. Notably, during training, we apply dynamic 854

sampling that decide the negative items in the BPR 855

data samples as well as the masked items/tokens 856

in the MIM/MLM data samples on the fly. Such 857

dynamic sampling helps to fully fine-tune the LLM 858

backbones. 859

C.2 Examples of the Data Samples 860

In Table 11, we present examples of our proposed 861

data samples. These data samples are generated 862

with the training data split of an Amazon - Toys 863

& Games user whose ID is ‘A12HF3UBDV34RR’. 864

Note that to fully fine-tune the LLM backbone, 865

we apply dynamic sampling for the BPR and 866

MIM/MLM data samples and decide the negative 867

items and masked items/tokens on the fly. Here, 868

we only present the BPR, MIM, and MLM data 869

samples resulted from a single sampling. 870

8https://nijianmo.github.io/amazon/
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Methods
Toys & Games Beauty Sports & Outdoors

NDCG
@5

NDCG
@10

HR
@1

HR
@5

HR
@10

NDCG
@5

NDCG
@10

HR
@1

HR
@5

HR
@10

NDCG
@5

NDCG
@10

HR
@1

HR
@5

HR
@10

P5-XL 0.0290 0.0444 0.0097 0.0494 0.0977 0.0298 0.0456 0.0110 0.0498 0.0992 0.0286 0.0436 0.0097 0.0486 0.0957
P5-XL (5-5) 0.0274 0.0428 0.0089 0.0467 0.0948 0.0289 0.0443 0.0093 0.0497 0.0982 0.0275 0.0426 0.0091 0.0470 0.0943

UT [Ours] 0.1536 0.1867 0.0831 0.2233 0.3259 0.1236 0.1537 0.0609 0.1863 0.2798 0.0867 0.1137 0.0381 0.1362 0.2202

Table 8: Additional P5-XL Ranking results. Rows 1 and 3 are copied from Table 2.

Methods
NDCG

@5
NDCG
@10

HR
@5

HR
@10

UT [Ours] 0.0079 0.0101 0.0118 0.0187
UT+IE [Ours] 0.0076 0.0097 0.0121 0.0185

Table 9: Retrieval results on Sports & Outdoors with
(UT+IE) or without (UT) IE data samples. Row 1 is
copied from Table 1.

Input: What’s the title of I1014?  Output: Women’s Dry-fit Tempo Shorts
Input: What’s the brand of I1014?  Output: Nike
Input: What’s the price of I1014?   Output: $31.8
…

Step 3: Prediction

Step 1: Generate Recommendation & Auxiliary Task Data Samples

Step 2: Multi-task 
Fine-tuning

LLM 
Backbone

A user has purchased … What would 
the user buy next?

A user has purchased … Which of the 
following candidate items would you 
recommend the user to buy next? …

A user likes … The user dislikes … 
Predict whether the user would like …

I123

I123

No

Figure 3: Item embedding (IE) data samples.

D Mimicking Item Embedding871

Our proposed data samples introduced in the main872

paper encode item correlations encompassed in873

users’ preferences. We also explore encoding item874

correlations encompassed in item contents, i.e., cat-875

egories, descriptions, etc.876

We observe that the conventional context-aware877

recommenders commonly integrate item contents878

to help the model better understand the items and879

achieve enhanced performance. E.g., Hou et al.880

2022 embed the concatenations of item content881

fields with BERT (Devlin et al., 2019). The learned882

item embeddings, X ∈ RN×d, where N is the883

number of the items and d is the dimension of the884

vector space, serve as initial representations of the885

items.886

We mimic this item embedding (IE) process with887

natural language prompts. As shown in Figure 3,888

by asking questions about the properties of an item889

in the input and answering them in the output, we890

can generate item embedding data samples such as891

‘Input: What’s the brand of I1014? Output: Nike’.892

We repeat such question answering process for var-893

ious available item content fields, including title,894

categories, brand, price, attributes, and descriptions.895

These data samples represent knowledge about the896

items, but with natural language rather than nu-897

merical vectors. We expect that tuning LLMs with898

IE data samples can help them to comprehend the 899

items in the target recommendation domain and 900

enhance their performance. 901

To evaluate the IE data samples, we tune a 902

UT+IE model, which augments the fine-tuning 903

data of our UT model with IE data samples (the 904

rest experimental settings of UT+IE and UT remain 905

the same). We present its retrieval performance on 906

Sports & Outdoors in Table 9. We observe no no- 907

ticeable performance increase when incorporate 908

IE data samples. The reason might be, the raw 909

item content fields are noisy. E.g., the description 910

field is long and can contain noise such as hash- 911

tags and URLs. It has been shown (Cao et al., 912

2023) pre-processing the raw fields to extract fine- 913

grained features helps to enhance context-aware 914

recommenders. Inspired by this, in the future, we 915

plan to improve the IE data samples by refining the 916

item content fields. 917
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Task
Toys & Games Beauty Sports & Outdoors

# Train # Valid # Test # Train # Valid # Test # Train # Valid # Test

Retrieval 30,761 3,000 19,412 36,582 3,000 22,363 47,320 3,000 35,598
Ranking 30,761 3,000 19,412 36,582 3,000 22,363 47,320 3,000 35,598
Rating prediction 30,761 3,000 19,412 36,582 3,000 22,363 47,320 3,000 35,598

MIM DS 0 0 DS 0 0 DS 0 0
MLM DS 0 0 DS 0 0 DS 0 0
BPR DS 0 0 DS 0 0 DS 0 0

Table 10: Statistics of our proposed data samples. DS stands for dynamic sampling.

Task Data sample

Retrieval Input: A user has purchased the following Amazon products (arranged in chronological order, from earliest to most recent): Item ID: I9762, Title:
Winstonia’s 8 Wheels Combo Set Nail Art Polymer Slices Fimo Decal Pieces Accessories - Butterflies, Bows, Animals, Fruit, Flowers, Dragonflies,
Cupcakes, Hearts; Item ID: I8123, Title: MASH Rhinestones 2400 Piece 12 Color Nail Art Nailart Manicure Wheels; Item ID: I158, Title: Aveeno Clear
Complexion Daily Moisturizer, 4 Ounce; Item ID: I5324, Title: Bdellium Tools Professional Antibacterial Makeup Brush Studio Line - Precision Kabuki
Airbrushed Effect 957; Item ID: I7522, Title: Bdellium Tools Professional Makeup Brush Green Bambu Series Smoky Eyes 5pc. Brush Set; Item ID:
I7647, Title: real Techniques Stippling Brush; Item ID: I7811, Title: Maybelline New York Color Sensational High Shine Lipcolor, Coral Lustre 840,
0.12 Ounce; Item ID: I9440, Title: Bed Head BH313 Orange Crush 1-inch Styler; Item ID: I5046, Title: Herstyler Baby Curl Curling Iron, Purple; What
would the user buy next?
Output: I3977

Ranking Input: A user has purchased the following Amazon products (arranged in chronological order, from earliest to most recent): Item ID: I9762, Title:
Winstonia’s 8 Wheels Combo Set Nail Art Polymer Slices Fimo Decal Pieces Accessories - Butterflies, Bows, Animals, Fruit, Flowers, Dragonflies,
Cupcakes, Hearts; Item ID: I8123, Title: MASH Rhinestones 2400 Piece 12 Color Nail Art Nailart Manicure Wheels; Item ID: I158, Title: Aveeno Clear
Complexion Daily Moisturizer, 4 Ounce; Item ID: I5324, Title: Bdellium Tools Professional Antibacterial Makeup Brush Studio Line - Precision Kabuki
Airbrushed Effect 957; Item ID: I7522, Title: Bdellium Tools Professional Makeup Brush Green Bambu Series Smoky Eyes 5pc. Brush Set; Item ID:
I7647, Title: real Techniques Stippling Brush; Item ID: I7811, Title: Maybelline New York Color Sensational High Shine Lipcolor, Coral Lustre 840,
0.12 Ounce; Item ID: I9440, Title: Bed Head BH313 Orange Crush 1-inch Styler; Item ID: I5046, Title: Herstyler Baby Curl Curling Iron, Purple; Which
of the following candidate items would you recommend the user to buy next? Candidate items are: I10537, I11849, I2647, I10506, I377, I8136, I3598,
I2316, I114, I10379, I6767, I2801, I4687, I3446, I7222, I5925, I4608, I2226, I2279, I11708, I4376, I8771, I6502, I8650, I7006, I11350, I6716, I4690,
I11303, I3446, I8704, I4001, I9816, I1498, I6896, I1598, I7653, I2086, I12019, I3235, I12052, I27, I5786, I9936, I697, I10050, I447, I10898, I2093,
I2618, I2044, I2618, I6924, I2769, I8117, I10772, I9252, I4668, I6982, I2234, I9894, I9441, I6514, I5519, I8620, I710, I10212, I8654, I7648, I11054,
I1419, I10958, I334, I576, I1537, I8278, I3181, I189, I3510, I7974, I6010, I11187, I6465, I9596, I9356, I311, I2313, I7117, I9249, I643, I6732, I8803,
I5499, I2434, I3977, I10691, I10707, I5553, I7999, I8672.
Output: I3977

Rating prediction Input: A user likes the following Amazon products: Item ID: I7522, Title: Bdellium Tools Professional Makeup Brush Green Bambu Series Smoky Eyes
5pc. Brush Set; Item ID: I7811, Title: Maybelline New York Color Sensational High Shine Lipcolor, Coral Lustre 840, 0.12 Ounce; The user dislikes
the following Amazon products: Item ID: I7647, Title: real Techniques Stippling Brush; Item ID: I9440, Title: Bed Head BH313 Orange Crush 1-inch
Styler; Item ID: I5046, Title: Herstyler Baby Curl Curling Iron, Purple; Predict whether the user would like the following item. Answer yes or no. Item
ID: I3977, Title: L’Oreal Paris HiP Studio Secrets Professional Color Truth Cream Eyeliner, Brown, 0.159 Ounce
Output: no

MIM Input: A user has purchased the following Amazon products (arranged in chronological order, from earliest to most recent): Item ID: I9762, Title:
Winstonia’s 8 Wheels Combo Set Nail Art Polymer Slices Fimo Decal Pieces Accessories - Butterflies, Bows, Animals, Fruit, Flowers, Dragonflies,
Cupcakes, Hearts; [masked item]; Item ID: I158, Title: Aveeno Clear Complexion Daily Moisturizer, 4 Ounce; Item ID: I5324, Title: Bdellium Tools
Professional Antibacterial Makeup Brush Studio Line - Precision Kabuki Airbrushed Effect 957; Item ID: I7522, Title: Bdellium Tools Professional
Makeup Brush Green Bambu Series Smoky Eyes 5pc. Brush Set; [masked item]; Item ID: I7811, Title: Maybelline New York Color Sensational High
Shine Lipcolor, Coral Lustre 840, 0.12 Ounce; Item ID: I9440, Title: Bed Head BH313 Orange Crush 1-inch Styler; Item ID: I5046, Title: Herstyler
Baby Curl Curling Iron, Purple; Item ID: I3977, Title: L’Oreal Paris HiP Studio Secrets Professional Color Truth Cream Eyeliner, Brown, 0.159 Ounce;
What are the masked items, in chronological order?
Output: Item ID: I8123, Title: MASH Rhinestones 2400 Piece 12 Color Nail Art Nailart Manicure Wheels; Item ID: I7647, Title: real Techniques
Stippling Brush;

MLM Input: Item ID: I7811, Title: Maybelline New York Color Sensational High Shine Lipcolor, Coral Lustre 840, 0.12 Ounce; Item ID: I9440, Title: Bed
Head BH313 Orange Crush 1-inch Styler;

BPR Input: A user has purchased the following Amazon products (arranged in chronological order, from earliest to most recent): Item ID: I9762, Title:
Winstonia’s 8 Wheels Combo Set Nail Art Polymer Slices Fimo Decal Pieces Accessories - Butterflies, Bows, Animals, Fruit, Flowers, Dragonflies,
Cupcakes, Hearts; Item ID: I8123, Title: MASH Rhinestones 2400 Piece 12 Color Nail Art Nailart Manicure Wheels; Item ID: I158, Title: Aveeno Clear
Complexion Daily Moisturizer, 4 Ounce; Item ID: I5324, Title: Bdellium Tools Professional Antibacterial Makeup Brush Studio Line - Precision Kabuki
Airbrushed Effect 957; Item ID: I7522, Title: Bdellium Tools Professional Makeup Brush Green Bambu Series Smoky Eyes 5pc. Brush Set; Item ID:
I7647, Title: real Techniques Stippling Brush; Item ID: I7811, Title: Maybelline New York Color Sensational High Shine Lipcolor, Coral Lustre 840,
0.12 Ounce; Item ID: I9440, Title: Bed Head BH313 Orange Crush 1-inch Styler; Item ID: I5046, Title: Herstyler Baby Curl Curling Iron, Purple; Which
of the following two items would the user buy next? Item ID: I4168, Title: Sulfur Soap with Lanolin; Item ID: I3977, Title: L’Oreal Paris HiP Studio
Secrets Professional Color Truth Cream Eyeliner, Brown, 0.159 Ounce;
Output: Item ID: I3977, Title: L’Oreal Paris HiP Studio Secrets Professional Color Truth Cream Eyeliner, Brown, 0.159 Ounce;

Table 11: Examples of our proposed data samples.
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