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ABSTRACT

Large Language Models (LLMs) contribute significantly to the development of
conversational AI and have great potential to assist scientific research in various
areas. This paper attempts to address the following questions: What opportuni-
ties do the current generation of generative pre-trained transformers (GPTs) offer
for the development of noisy intermediate-scale quantum (NISQ) technologies?
Additionally, what potential does the forthcoming generation of GPTs possess
to push the frontier of research in fault-tolerant quantum computing (FTQC)? In
this paper, we implement a Quantum GPT-Guided Architecture Search (QGAS)
model, which can rapidly propose promising ansatz architectures and evaluate
them with application benchmarks including quantum chemistry and quantum fi-
nance tasks. Our results demonstrate that after a limited number of prompt guide-
lines and iterations, we can obtain a high-performance ansatz that is able to pro-
duce comparable results that are achieved by state-of-the-art quantum architecture
search methods. This study provides a simple overview of GPT’s capabilities in
supporting quantum computing research while highlighting the limitations of the
current GPT at the same time. Additionally, we discuss futuristic applications for
LLM in quantum research.

1 INTRODUCTION

Large-scale language models (LLMs), such as ChatGPT (OpenAI, 2023), can learn autonomously
from data and communicate with humans by reinforcement learning with human feedback (RLHF)
mechanisms (Christiano et al., 2017). Since the release of ChatGPT by OpenAI, this type of AI
technology has made a huge impact on a large number of research areas (van Dis et al., 2023;
Stokel-Walker & Van Noorden, 2023). LLMs are being rapidly adopted in areas such as advanced
chemistry (Pan, 2023), healthcare (Korngiebel & Mooney, 2021), protein design (Ferruz & Höcker,
2022), etc. However, how can LLMs help the emerging fields such as quantum computing? We
have seen many recent articles discussing how quantum computing can play an important role in the
development of generative pre-trained transformers (GPTs) in the form of exploiting more complex,
larger search spaces and more efficient training (Baker, 2023), but no one has yet discussed whether
GPTs can contribute to the development of quantum computing.

As the field of quantum computing evolves, the design of quantum architecture stands as one of the
most critical aspects. Quantum architectures define the structure and behavior of quantum circuits,
which underpin every quantum algorithm. The correct selection and optimization of quantum cir-
cuits are crucial to achieving superior computational speed-ups and minimizing error rates inherent
in quantum systems. As such, the development of effective methodologies for quantum architecture
design is a pressing need.

The design of quantum architecture is a complex task that requires a deep understanding of quantum
mechanics (Chen et al., 2022; Cheng et al., 2020; Mato et al., 2022; Baker et al., 2021; Qi et al.,
2023; Liang et al., 2023; Zhan & Gupta, 2022; Hillery et al., 2023; Liang et al., 2022b), computer
science (Wang et al., 2022b; Hu et al., 2022; Li et al., 2023; Wang et al., 2021; 2022c), and opti-
mization algorithms (Baheri et al., 2022; He et al., 2023). Traditional methods have relied heavily
on human expertise and intuition, which, while invaluable, are inherently limited by our cognitive
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capabilities and biases. This is where large language models (LLMs) like GPT can make a signif-
icant contribution. GPT models are renowned for their ability to understand, generate, and reason
about human language. They can absorb vast amounts of information, identify patterns within it, and
make inferences based on these patterns. These capabilities make them particularly suited for the
task of quantum architecture design. In the context of quantum architecture design, GPT can serve
in multiple capacities. For instance, in tasks like Variational Quantum Eigensolvers (VQE), LLMs
can act as controllers to conduct classical optimization. LLMs can effectively navigate the vast and
complex search spaces of classical parameters, potentially outperforming traditional optimization
techniques.

Furthermore, LLMs can be leveraged to explore the design space of the ansatz circuit. They can
generate efficient architectures for the ansatz based on patterns and principles gleaned from large
datasets of quantum circuits and their performance metrics. By doing so, they can contribute to the
development of more expressive and efficient quantum architectures.

In summary, the application of GPT and similar models to quantum architecture design represents
a promising avenue for accelerating the progress of quantum computing. By integrating human
expertise with the power of advanced machine learning, we stand to make significant strides in our
quest to harness the full potential of quantum computing. In this paper, we aim to delve deeper into
this intriguing prospect and explore how GPT can contribute to the design of quantum architectures.

2 RELATED WORKS

Ansatz Architecture Search: The design of ansatz architectures plays a crucial role in the re-
search of VQAs. A well-crafted ansatz architecture can lead to more accurate computational re-
sults (Kandala et al., 2017). In the past, researchers derived problem-specific ansatz structures by
analyzing particular problems (Peruzzo et al., 2014; O’Malley et al., 2016). For instance, the Unitary
Coupled-Cluster Singles and Doubles (UCCSD) scheme (Grimsley et al., 2019) is still considered
the “golden” ansatz for solving molecular energy problems within the VQE framework.

QuantumNAS (Wang et al., 2022a) and QAS (Du et al., 2022) introduced noise-aware frameworks
for the automated search of ansatz architectures. On the other hand, PAN (Liang et al., 2022a) and
Layer VQE (Liu et al., 2022) proposed ansatz frameworks that employ progressive training and
search approaches at both pulse and gate levels, respectively. These advancements have expanded
the range of possibilities for designing ansatz structures and optimizing their performance in various
quantum computing applications. In contrast to conventional search strategies, we employ a method
that iteratively prompts GPT-4 to propose ansatz architecture from a given search space, this kind
of paradigm that combines human feedback and the ability of GPT-4 can greatly reduce the cost for
search ansatz structure.

Powerful Capabilities of LLMs: The remarkable performance of Large Language Models
(LLMs), such as GPT, has left a huge impression on researchers. These models have demonstrated
significant assistance or indispensable acceleration and resource-saving contributions in various re-
search domains (Brown et al., 2020; Ouyang et al., 2022; van Dis et al., 2023). We have observed that
in closely related research directions, researchers have begun to appreciate and utilize LLMs to gen-
erate datasets (Ye et al., 2022) and accomplish sentence embedding tasks more effectively (Cheng
et al., 2023). In the field of computer architecture, there have been efforts to use GPT for neural
architecture search, and the effectiveness of GPT has been demonstrated through several simple
examples (Zheng et al., 2023; Yan et al., 2023). Beyond computer science, researchers in health
care (Korngiebel & Mooney, 2021), advanced chemistry (Pan, 2023; Bran et al., 2023), and other
domains (Ferruz & Höcker, 2022) have explored the integration of GPT with existing execution
tools to further advance the research process in their respective fields. Our work aims to explore the
roles and limitations of GPT in the emerging field of quantum computing, thereby contributing to
the understanding of the potential and challenges in applying these powerful models to this exciting
new domain.

3 UNDERSTANDING THE DESIGN OF QUANTUM ARCHITECTURE FOR VQAS

The architecture of the ansatz circuits in Variational Quantum Algorithms (VQAs) is pivotal, as
it underpins the ability of these algorithms to tackle complex computational tasks effectively and
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Problem Information:
Model Definition, 
Number of Qubits,
Design Spaces,
…

GPT 4.0

Problem Encoding:
Translate problem information to text format and using specific prompt as: You 
are an expert in quantum computing. Your task is to help select the best ansatz 
for variational quantum eigensolver to compute the <problem>.

Output Ansatz:
The structure has been 
defined as operation ID 
with corresponding 
qubits.

Qasm format Quantum Circuit:
// Block 1: U3+CU3 on 

qubits (0,1)

u3(0, 0, 0) q[0];

u3(0, 0, 0) q[1];

cu3(0, 0, 0) q[0], q[1];

// Block 2: ZZ+RY on 

qubits (1,2)

rzz(0) q[1], q[2];

ry(0) q[1];

ry(0) q[2];

……

Simulator       /      Quantum Processor

Output

Iterative Prompt Tuning:
By using this ansatz, we achieved {Performance} in the <Device> 
with <iterations>. Please recommend a new model that …

Performance

Figure 1: Illustration of design and implementation of QGAS. Following an initial encoding issue,
GPT-4 suggests an ansatz, which is subsequently processed by a sub-model constructed by GPT-
3.5 to convert it into QASM format. To assess the effectiveness of the ansatz, a benchmarking
application is executed, enabling the evaluation of its quality. The obtained results are then fed back
to GPT-4 through a natural language prompt, facilitating further iterations and refinements.

efficiently. The ansatz circuit’s task is to approximate the lowest energy quantum state, commonly
known as the ground state. A direct correlation exists between the performance of the VQA and the
ansatz circuit’s proficiency in emulating this quantum state.

Specifically, the Hamiltonian associated with the target molecule is converted into a sequence of
Pauli matrices, thereby transforming the continuous problem of identifying the molecular ground
state energy into a discrete optimization task. This transformation is a core operation in quan-
tum computing, demonstrating the potential of VQAs for quantum supremacy, particularly in situ-
ations where classical computers encounter significant computational hurdles. The architecture of
the ansatz circuit is deeply entrenched in the principles of quantum entanglement and superposi-
tion. Quantum gates, the primary building blocks of ansatz circuits, are strategically arranged to
manipulate qubits, the fundamental units of quantum information. These gates facilitate unitary
transformations, driving the evolution of the quantum system from an initial state to a final state that
closely approximates the quantum system’s ground state.

The design of the ansatz circuit often adheres to heuristic principles and is highly tailored to the
specific problem being addressed. Factors such as the selection and sequencing of quantum gates,
as well as the degree of qubit entanglement, are critical elements that require customization. An
effectively designed ansatz circuit should allow efficient exploration of the Hilbert space, the vec-
tor space encompassing all conceivable states of the quantum system. Researchers have proposed
various strategies for designing ansatz circuits, such as:

1. Hardware-efficient ansatz (Liang et al., 2022a; Kandala et al., 2017): These are circuits
designed to be compatible with specific quantum hardware, considering the connectivity
and native gate set of the quantum processor.

2. Problem-specific ansatz (Peruzzo et al., 2014; O’Malley et al., 2016): This approach in-
corporates prior knowledge of the problem at hand (e.g., the structure or symmetries of the
target molecule) to design the ansatz circuit more efficiently.

3. Machine learning-guided ansatz (Wang et al., 2022a; Rattew et al., 2019): Machine learn-
ing techniques are employed to generate and optimize ansatz circuits by learning from
previously solved instances or based on heuristics.
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In conclusion, the architecture design of the ansatz circuit is a key factor determining the perfor-
mance of VQAs. Researchers continue to explore novel ways to improve the design and optimiza-
tion of ansatz circuits to maximize the potential of VQAs for practical applications.

4 METHODOLOGY

In the search for quantum circuit architectures, GPT-4 is capable of recommending ansatz structures
under the guidance of prompts iteratively. Variational Quantum Algorithms (VQAs) represent a
quantum computing approach that utilizes hybrid quantum-classical algorithms to solve optimiza-
tion problems and simulate quantum systems (Peruzzo et al., 2014). The choice of ansatz is of
critical importance in VQAs as it determines the efficiency and accuracy of the algorithm. In this
section, we introduce our proposed QGAS model and its training process as showin in the Fig. 1.
The core objective of QGAS is to leverage GPT as a controller to recommend high-quality ansatz
structures for VQAs.

4.1 ANSATZ ARCHITECTURE GENERATION

We initially provide GPT-4 with a description of the corresponding problem and our requirements,
ensuring the granularity of the description is as detailed as possible to obtain reliable responses from
GPT-4. For instance, in the case of quantum chemistry problems related to molecular ground state
energy, we provide information about the molecule, the basis for fitting molecular electron orbitals,
and the required number of qubits. For quantum finance investment optimization problems, we
supply information regarding the budget, the number of assets, the risk factor, and stock details.

In our preliminary model, we present GPT with six design spaces (Wang et al., 2022a; McClean
et al., 2018; Lloyd et al., 2020; Farhi & Neven, 2018; Henderson et al., 2020; McKay et al., 2018),
corresponding quantum circuit interfaces, and code:

(1) U3+CU3 – One block has a U3 layer with one U3 gate on each qubit and a CU3 layer.

(2) ZZ+RY – One block contains one layer of ZZ gate and one RY layer.

(3) RXYZ – One block has four layers: RX, RY, RZ, and CZ.

(4) ZX+XX – Based on their MNIST circuit design, one block has two layers: ZX and XX.

(5) RXYZ+U1+CU3 – Based on their random circuit basis gate set, we propose a design space in
which one block has six layers in the order of RX, RY, RZ, CZ, U1, and CU3.

(6) IBMQ Basis – One block with the basis gate set of IBMQ devices, in which one block has
six layers in the order of RZ, X, RZ, SX, RZ, and CNOT.

Simultaneously, we grant GPT-4 the choice of qubit placement of the design spaces. The default
number of circuit blocks is set to six, and each circuit block takes two qubits, e.g., the output should
be an ID list for the ansatz as well as the selected qubits for each block. For example: [1, (0,1)], [2,
(1,2)],. . . , [0, (4,5)] means we use operation1 for block1 and the block1 is on qubits(0,1), operation2
for block2 and block2 is on qubits (1,2),. . . , operation 0 for block6 and the block6 is on qubits (4,5).
Subsequently, we request GPT-3.5 to output the recommended ansatz structure in QASM format
since the resource for GPT-4 is limited for regular users, some sub-tasks can be efficiently done by
GPT-3.5 to save the cost on GPT-4.

4.2 TRAINING ON THE GENERATED ANSATZ

Utilizing the generated quantum circuit structures, we train an ansatz within the context of the cor-
responding problem to achieve enhanced performance. Considering different problems with distinct
characteristics, we obtain the Hamiltonians corresponding to these problems using various methods.
For instance, in quantum chemistry for molecular ground state energy, we perform a fit of the elec-
tronic structure of the molecule and subsequently obtain the Hamiltonian of the related molecule
through fermionic mapping (Anselmetti et al., 2021; Uvarov et al., 2020). In contrast, for gen-
eral quantum finance problems, we encode the problem into a quadratic problem structure and then
translate this quadratic problem into an Ising Hamiltonian (Barkoutsos et al., 2020; Camino et al.,
2023).
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Algorithm 1 GPT-Prompts (ldes, lperf , Design Space, Choices)

// Input: a list of explored design ldes, the corresponding normalized performance of each design
lperf , design backbone Model, and design space Choices.
// Output: a prompt to the GPT-4 model;
prompts = “You are an expert in the field of quantum computing, especially for quantum archi-
tecture design.”;
promptu = “Your task is to help select the best ansatz for variational quantum eigensolver to
compute the ground state energy of [name] molecule. The ansatz works on [number] qubits
and contains [number] blocks. For each block, there are 6 types of operations to choose from:”
{Design Space} Please output an ID list for the ansatz as well as the selected qubits for each
block. {Choices};
For example: [1, (0,1)], [2, (1,2)], ...., [0,(4,5)] means we use operation 1 for block1 and the
block1 is on qubits(0,1), operation2 for block2 and block2 is on qubits(1,2), ...,operation 0 for
block6 and the block6 is on qubits(4,5).”
// Input the [Choices] to GPT-3.5 model;
// Translate [Choices] to QASM form;
return prompts + promptu;

Following this, we execute the relevant problem with the proposed ansatz using a quantum processor
or simulator. Generally, in gate-level quantum circuit training, we employ gradient-based training
methods, and the optimization process relies on calculating the gradients of the parameterized quan-
tum circuits with respect to their parameters. These gradients are utilized to update the parameters
in order to minimize the target objective function, such as the difference between the calculated and
target energy values.

4.3 HUMAN FEEDBACK & CAPABILITY OF GPT

Quantum architectures are crucial for quantum computing applications. The selection of an appro-
priate ansatz can significantly impact the computational cost and the accuracy of results. In this
section, we investigate the cooperation between human expertise and the GPT model to provide a
more efficient structure for the ansatz, a framework we refer to as QGAS.

Previous results on quantum architecture search, such as the state-of-the-art framework Quantum-
NAS (Wang et al., 2022a), often proceed in two steps. The first step involves searching for a super-
circuit within a large predefined design space. The second step involves searching for a subcircuit
within this supercircuit. In this process, every design space within this area is treated with equal
importance when sampled. The QGAS approach also begins with a search within a large predefined
design space. However, it differentiates by incorporating human feedback and specific design space
characteristics to perform a ranking. The ranked design spaces are then used to guide the second step
of the search for the ansatz. In the context of the QGAS framework, each design space is treated dif-
ferently based on its unique features such as expressivity, entanglement power, and others. With the
assistance of the GPT model, more granular supervision and consideration are performed within the
same predefined space. Initially, experts in quantum computing bring their deep understanding of
quantum systems’ complex behavior to bear, providing feedback on specific search strategies. They
advise the search algorithm to focus on particular parameters or structures that have shown promise
in past research, leveraging established quantum theories and past experiences. This guidance helps
eliminate redundant exploration of the search space, improving the search’s efficiency and accuracy.
The GPT-4 model also contributes to this process by suggesting additional strategies for quantum
circuit optimization. For instance, it may recommend leveraging initial parameters for a “warm
start” or incorporating certain error mitigation methods. However, it is crucial to remember that
the suggestions from the GPT-4 model can be a mixture of effective and incorrect strategies. Here,
human expertise is necessary to discern the effective methods from the incorrect ones, preventing
wastage of resources on the latter.

Furthermore, human feedback is paramount in evaluating the search outcomes. The final design
of a quantum architecture must be theoretically feasible and practically superior in performance.
Even if a design scores highly in the algorithm, it cannot be accepted if it fails to pass the rigorous
evaluation by human experts. These evaluations consider various factors such as theoretical consis-
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Figure 2: Visualization of benchmark applications. a) Max-Cut problem with 5 nodes. b) Traveling
Salesman Problem with 3 nodes. c) Portfolio Optimization problem. d) Molecule structure of H2O.
e) Molecule Structure of LiH .

tency, practical viability, and comparison with existing architectures. This feedback then feeds back
into the system to update and adjust the search strategies, establishing an iterative feedback loop.
The integration of human feedback and GPT’s power thus enables a more efficient and effective
exploration of the quantum circuit architecture. This is especially beneficial for complex quantum
computations where the optimal circuit design is not intuitively obvious, and the number of possible
circuit configurations can be prohibitively large.

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

Our experiment relies on GPT-4 as the selected LLM, and we both use Torchquantum (Wang et al.,
2022a) and qiskit-runtime (Johnson, 2022) to execute experiments. As for the experiments on qiskit-
runtime, we import the system model from ibmq manila.

5.2 APPLICATION BENCHMARKING FOR QGAS

In order to verify the efficacy of the proposed QGAS framework, we employed a series of application
benchmarks. These benchmarks have been chosen to represent diverse domains of quantum com-
puting, showcasing the versatility and broad applicability of the QGAS framework. Fig. 2 illustrates
five distinct applications, namely: Portfolio Optimization, MaxCut Problem, Traveling Salesman
Problem (TSP), and the estimation of Molecule Ground State Energy for both Lithium Hydride
(LiH) and Water (H2O).

The Portfolio Optimization application originates from the sphere of quantum finance. This problem
involves the selection of a set of investments that provides the greatest expected return for a given
level of risk. By leveraging the strengths of quantum computing, we can optimize complex financial
portfolios in quantum algorithms. And we set the risk factor as 0.5, the number of assets as four,
the budget as half of the number of assets, and the penalty as equal to the number of assets, the
visualization of the problem is shown in the Fig. 2(c). The MaxCut problem and the TSP, on the
other hand, are examples of quantum optimization problems. MaxCut is a well-known problem in
graph theory, and it involves the partitioning of a graph into two subsets to maximize the sum of the
weights of the edges crossing the subsets, we generate a five nodes graph as shown in the Fig. 2(a).
The TSP is a classic algorithmic problem focused on optimization, where it is necessary to find the
shortest possible route that visits a set of locations and returns to the origin, we generate a graph with
three destinations for the traveling salesman as shown in the Fig. 2(b), to be noticed, this problem
will request 8 qubits to solve. Lastly, the estimation of Molecule Ground State Energy for LiH
and H2O is a fundamental problem in quantum chemistry, the structure of these two molecules has
shown in Fig. 2(d) and (e). The ability to precisely calculate the ground state energy of molecules
is key for understanding chemical reactions and designing new molecules and materials.
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Figure 3: (a) and (b) Experiments for two trials of the quantum chemistry molecule ground state en-
ergy tasks and evaluation of the ansatz architecture generated by QGAS. We show both the epochs
and estimated energy for each iteration, where a lower estimated energy with fewer epochs indicates
a better ansatz. (c) and (d) Experiments for two trials of the portfolio optimization problem and eval-
uation of the ansatz architecture generated by QGAS. We show both the gatecounts and estimated
value for each iteration, a lower estimated value with smaller gatecounts indicates a better ansatz. In
both trials, the results demonstrate in a limited number of prompt guidelines and iterations, we can
obtain a high-performance ansatz generated by QGAS.

Figure 4: The application benchmarks for comparing the state-of-art ansatz and QGAS-generated
ansatz. a) Molecule ground state energy estimation tasks for H2O and LiH , compare the ansatz gen-
erated by QGAS, UCCSD, and QuantumNAS. b) Machine learning tasks for MNIST-2 and MNIST-
4 classification, compare the QGAS-generated ansatz, random generated ansatz, and QuantumNAS.

The optimization and finance problems are firstly encoded to quadratic problems and then mapped
to Ising Hamiltonian. For the chemistry tasks, the molecules were first subjected to STO-3G ap-
proximation to model the electronic orbitals. Subsequently, a fermionic mapping was employed to
derive the corresponding Hamiltonian.

5.3 EVALUATION AND COMPARISON

We evaluated our QGAS framework on both TorchQuantum and a simulator with the noise and sys-
tem model of IBMQ Belem. The results were extensively compared with different existing ansatzes
and state-of-the-art ansatz architecture search methods.

From Table 1, we can gain multiple observations, in the case of the Portfolio Optimization problem,
the ansatz architecture found by QGAS outperformed the TwoLocal and RealAmplitudes architec-
tures. However, the gate count was seven more than that of TwoLocal. Despite this, we believe the
trade-off is justifiable considering the performance gain. The performance of the ansatz architec-
tures and corresponding estimated gate counts at different iterations during model optimization is
presented in Fig. 3 (c) and (d). It can be observed that during the optimization iterations, QGAS
actively improves the quantum circuit’s generalizability by increasing gate counts, thereby improv-
ing performance. And for both two trails, we obtain high-performance ansatz in a limited number
of iterations. Moreover, we observe that when the gate counts reach a threshold, the performance
then cuts down. We validated this gate count threshold for the portfolio optimization problem in our
experiments with RealAmplitudes and TwoLocal as well. In the 8-qubit Traveling Salesman Prob-
lem, we observed a similar advantage that QGAS has over the other two ansatzes. For the 5-qubit
Max-Cut problem, RealAmplitudes produced the best results, using eight more gates than the ansatz
architecture found by QGAS.
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Table 1: Comparison between existing ansatz and the ansatz generated by QGAS.

(a) Portfolio Optimization (4 Assets, 4q)

Model Repeats GateCounts Value Reference

TwoLocal
2 24 -0.01112

-0.0149

3 34 -0.01303
5 54 -0.00645

RealAmplitude 2 29 0.00053
3 39 -0.00217

QGAS (Ours) 1 31 -0.01347
(b) Max-Cut (5nodes, 5q)

Model Repeats GateCounts Value Reference

TwoLocal
2 29 -1.99694

-2.0

3 38 -1.99329
5 96 -1.99332

RealAmplitude 2 41 -1.99890
3 56 -1.99516

QGAS (Ours) 1 33 -1.99837
(c) TSP (3nodes, 8q)

Model Repeats GateCounts Value Reference

TwoLocal
2 53 -7317.077

-7379.0

3 70 -7327.370
5 104 -7017.373

RealAmplitude 2 109 -7309.703
3 154 -6181.840

QGAS (Ours) 1 58 -7376.639

In the experiment determining molecular ground state energy, as shown in Fig. 4, we compared
QGAS with the state-of-the-art ansatz architecture search framework QuantumNAS and the prob-
lem ansatz UCCSD. In noise-free conditions, QGAS achieved slightly better results than UCCSD
and was comparable with QuantumNAS. We also plotted the performance of the ansatz architectures
and corresponding estimated energy at different iterations during model optimization in Fig. 3. We
then tested QGAS’s adaptability to noise in a quantum environment. As seen in Figure 4(a), for the
MNIST classification problem in a noisy environment, QGAS performed worse than QuantumNAS
but significantly better than a randomly generated ansatz. We believe that enhancing QGAS’s adapt-
ability to noise should be closely linked to the combination of human feedback with the capability of
GPT, which will be discussed in the next section. The primary reason for the current lack of adapt-
ability to noise is the difficulty in successfully conveying a complex quantum noise environment to
GPT. This requires further contemplation and more meticulous work to devise specific prompts.

5.4 OBSERVATION FROM HUMAN FEEDBACK & CAPABILITY OF GPT

Throughout the experimental process, human feedback played an indispensable role in achieving
exceptional performance with GPT-4. In the most fundamental framework, we initially had to fine-
tune the system with specific prompts. Without this adjustment, GPT-4 would yield choices outside
of the given design space. In the experiments concerning molecular ground state energy, GPT-4
proactively analyzed and opted to improve the circuit’s expressive power by increasing the circuit
depth. However, when the circuit depth became too great, we observed a decrease in accuracy
instead of an expected increase. Moreover, the number of epochs in the optimization process was
substantial. We converted these observations into human-readable text and submitted them to GPT-
4. Upon receiving our feedback, GPT-4 quickly provided several alternative solutions.

We prompt GPT-4 to generate new ansatz architecture based on itself’s suggested solutions on both
LiH and H2O tasks. In the H2O task, GPT-4 suggested initializing all parameters on the rotation
gates to a single value, this set to a value related to molecular characteristics based on GPT-4’s
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analysis. However, this analysis was not entirely scientific based on our experience. Ultimately, this
approach reduced the number of epochs by four while maintaining the circuit depth and performance
as shown in Fig. 3(a). In the LiH task, GPT-4 deployed a

√
H gate on all qubits initially, followed

by an identical ansatz structure behind these
√
H gates. GPT-4 referred to this form as VQE-I

(VQE with Initial Guess). Remarkably, this approach reduced the number of epochs by 47 while
maintaining the circuit depth and performance as shown in Fig. 3(b).

These findings underscore the essential role of human feedback in guiding GPT-4’s performance in
quantum circuit architecture design. By refining the system’s understanding and approaches, human
feedback helps to optimize the balance between circuit depth, performance, and computational ef-
ficiency. This form of interactive cooperation between humans and artificial intelligence provides a
promising avenue for progress in quantum computing applications.

6 DISCUSSION

It is important to recognize that quantum computing is currently in its nascent stage, often referred to
as the Noisy Intermediate-Scale Quantum (NISQ) era. In the NISQ regime, which is characterized
by a limited number of imperfect qubits without error correction, most algorithms are variational,
used to address problems in quantum chemistry, combinational optimization, and quantum machine
learning. These algorithms use a measurement scheme on parameterized quantum circuits, with
variations of the parameters used to optimize a cost function that estimates target observables.

• GPT can help improve these components by designing better quantum architectures. By
absorbing information from classical computer architecture.

• GPT can propose architectures that are efficient in terms of experimental resources and
robust to hardware noise. Additionally, the quality of the initial parameter guess heavily
influences the number of iterations required for optimization.

• GPT can assist in this regard by utilizing its ability to absorb broad knowledge to make
a good initial parameter guess. For example, GPT can fine-tune a parameterized circuit
with initial guesses by leveraging observations from the quantum chemistry community
on the properties of molecules such as electronic symmetry. This substantially reduces
the quantum resources required by maximizing the usage of the prior knowledge of the
interdisciplinary research community.

Ethics. In employing GPT for recommending quantum computing circuit structures, several eth-
ical issues may emerge. The aspect of data privacy and security is paramount, as the data used
for suggesting and optimizing quantum circuit configurations may encompass sensitive and con-
fidential information, making it susceptible to unauthorized access. This circumstance highlights
the imperative need for robust security and privacy safeguards. Moreover, decision transparency
and explainability present a significant concern. The potential lack of transparency and explainabil-
ity in GPT’s recommendations could obfuscate the understanding and verification of the proposed
decision processes and outcomes, leading to possible mistrust and skepticism. The inadvertent ab-
sorption and propagation of bias from training data by GPT can culminate in the recommended
quantum computing circuit structures being unreliable, thus, human supervising is required for this
kind of model.
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A MORE DISCUSSIONS

A.1 NOISY SIMULATION

We conducted further experiments similar to those depicted in Figure 3 for estimating the ground
state energy of the LiH molecule, this time incorporating the noise model from ibmq quito to
assess the performance of QGAS in a more realistic environment. As illustrated in Figure 5, the
first eight iterations employ the same circuit architecture as the experiment in Figure 3, with the
sole difference being the consideration of the noise model. This adjustment led to a significant
degradation in performance. Despite the ansatz architecture exhibiting enhanced performance in a
noiseless environment, it failed to maintain this superiority under noisy conditions. When compared
to the state-of-the-art circuit architecture search scheme QuantumNAS (Wang et al., 2022a), an
estimated energy around -6.4 H is achievable. Even though a superior result is noted with the ansatz
architecture generated by QGAS at the sixth iteration, it’s evident that its performance is not robust
in a noisy environment. GPT cannot understand the noise model, and cannot distinguish different
noise models, some better prompts or framework to fine-tune GPT for noisy quantum environments
is needed.

Figure 5: Experiments for the quantum chemistry molecule ground state energy tasks and evaluation
of the ansatz architecture generated by QGAS. We show estimated energy for each iteration, where a
lower estimated energy indicates a better ansatz. And first eight structures are adopted from Figure.
3, and the rest four are iterative recommended by GPT-4.

A.2 WHAT ELSE LLMS CAN DO FOR QUANTUM COMPUTING?

As quantum hardware improves, fault-tolerant (FT) quantum computers may become more feasible,
allowing for perfect manipulation of logical qubits. Looking forward to the future of GPT appli-
cations in this field, GPT can be used to design and optimize fault-tolerant quantum algorithms by
absorbing knowledge from a variety of sources, like classical computing and quantum error cor-
rection theory. This can lead to the development of more robust and efficient quantum algorithms,
bringing us closer to achieving practical quantum computing capabilities. When the era of FT quan-
tum computing arrives, boasting formidable computational capabilities, FT quantum machines will
have the potential to enable a paradigm of quantum-assisted GPT. This will facilitate large-scale
training with few reliable resources, leveraging the inherent properties and immense computational
power of quantum computing.

It is important to recognize that GPT’s knowledge is derived from vast data models available on the
internet (Hutson, 2021), and much of the public information surrounding the nascent field of quan-
tum computing can be misleading. Moreover, a significant amount of bias exists that questions the
validity of quantum computing. Due to the complexity of the knowledge required in this domain,
even researchers may inadvertently propagate incorrect ideas in their publications. GPT takes all of
this information into account, which may result in responses that exhibit an inadvertent bias against
quantum computing. Such an effect can be particularly detrimental at this stage of quantum comput-
ing’s development, as negative and harmful information could impact researchers’ motivation and
enthusiasm for their work. Therefore, by exploring how GPT can help quantum computing, in what
form one should use GPT in the development of quantum computing, and what kind of connection
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exists between quantum computing and GPT, sorting out these can reduce the risks associated with
combining quantum computing and GPT.

A.3 BEYOND REACH

GPT is not currently a general artificial intelligence; rather, it is a form of seemingly sophisticated
artificial intelligence. Therefore, at least for the time being, it cannot think like a human with emo-
tions and cannot perform any tasks that require humanity. Although GPT performs well in reading
comprehension and assessment on tests such as the SAT and GRE, it is limited by the large-scale data
on which it is based (Caliskan et al., 2017), i.e. it cannot observe scientific phenomena in nature by
itself, it cannot monitor the entire physical environment of scientific experiments, it loses coherence
in lengthy conversations, and it even contradicts its own previous conclusions (Brown et al., 2020).
For quantum computing, an emerging, complex, and still-evolving field, GPT is possible to obtain
incorrect information from a massive dataset. Furthermore, it cannot “think” dynamically about
quantum physics and quantum information theory to design new quantum algorithms. In addition,
it cannot construct a quantum computer “by hand” nor can it detect emergencies during physical
experiments or interactions between quantum hardware researchers.

A.4 LOOKING INTO THE FUTURE

Currently, the GPT model has demonstrated its capability to learn from large data and generate
reasonable answers to proper questions. We expect to see it integrate better capability to reason
logically for math equations. Harnessing the ability to recognize the patterns in the text and sta-
tistical associations between words and phrases to make predictions about what comes next (e.g.,
mathematical symbols and operations), GPT is developing a better understanding of the underly-
ing mathematical concepts. If it were able to produce accurate logical reasoning for mathematical
equations, the sprinkled knowledge across the vast quantum world could be more connected, which
expedites the discovery of new quantum algorithms including more efficient error correction codes
and improved mappings between fermions and qubits for Hamiltonian simulation.

For the aspect of quantum control, calibration is crucial for achieving optimal system performance.
Quantum computing systems require precise calibration to ensure accurate and efficient processing
of information. In this context, two typical parameters that need to be calibrated are amplitude
and duration. A traditional calibration process begins by assigning a default value to the amplitude
parameter. Subsequently, the duration parameter is tuned and the optimal value is determined by
identifying the highest point of fidelity. Once the optimal duration is established, the amplitude
is swept to further refine the system’s performance. By iteratively adjusting these parameters, the
quantum state can approximate the desired state. When prior knowledge of the quantum hardware
is available, the noise’s dominant effect can be evaluated. For instance, assume that in a 3-D plot,
the amplitude and duration parameters are the X and Y axes, the fidelity of the quantum gate is the
Z-axis. This configuration produces a mountainous landscape that characterizes the noise feature. If
experimental data indicates that the landscape has changed, the objective is to pinpoint the optimal
peak’s new location. By scanning additional points, the system can be re-calibrated to account for the
landscape shift caused by the hardware. Incorporating prior knowledge about the hardware and the
general shape of the landscape from a few testing samples, the next generations of GPT potentially
could be utilized to estimate the extent of the landscape shift caused by experimental factors. This
application of GPT can potentially expedite the calibration process.

In addition to the algorithm innovations, GPT also exposes precious opportunities to validate them
in an agile manner, which is critical given how fast these innovations could be. We have already
witnessed the power of GPT to facilitate software development, and we believe that GPT is also ca-
pable of advancing the simulation of quantum computers. GPT can summarize the mandatory steps
that occur in distinct candidate algorithms, standardize them in a universally compatible simulation
framework, and provide suggestions on hardware and software resources to rapidly construct such
simulation frameworks and validate the innovations. To live up to these promises, GPT needs to be
further trained on quantum-computing specific datasets, and gain deeper and broader insights about
how quantum computing can evolve in the foreseeable future, and we believe this is an interdisci-
plinary mission that brings the best of all worlds into quantum computing.
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