
Soft Prompting for Unlearning in Large Language Models

Anonymous ACL submission

Abstract

The widespread popularity of Large Language001
Models (LLMs), partly due to their unique abil-002
ity to perform in-context learning, has also003
brought to light the importance of ethical and004
safety considerations when deploying these pre-005
trained models. In this work, we focus on in-006
vestigating machine unlearning for LLMs moti-007
vated by data protection regulations. In contrast008
to the growing literature on fine-tuning meth-009
ods to achieve unlearning, we focus on a com-010
paratively lightweight alternative called soft011
prompting to realize the unlearning of a subset012
of training data. With losses designed to en-013
force forgetting as well as utility preservation,014
our framework Soft Prompting for Unlearning015
(SPUL) learns prompt tokens that can be ap-016
pended to an arbitrary query to induce unlearn-017
ing of specific examples at inference time with-018
out updating LLM parameters. We conduct019
a rigorous evaluation of the proposed method020
and our results indicate that SPUL can sig-021
nificantly improve the trade-off between util-022
ity and forgetting in the context of text clas-023
sification with LLMs. We further validate024
our method using multiple LLMs to highlight025
the scalability of our framework and provide026
detailed insights into the choice of hyperpa-027
rameters and the influence of the size of un-028
learning data. Code and data are available at029
https://tinyurl.com/softprompt.030

1 Introduction031

With advancements in transformer mod-032

els (Vaswani et al., 2017) and the availability of033

massive text corpus, language models have rapidly034

evolved over the past decade. The pre-train and035

fine-tune pipeline has garnered wide popularity,036

especially since the release of LLMs such as037

GPT (OpenAI, 2024) and LLaMA (Touvron et al.,038

2023). However, ethical and security concerns039

have been raised due to the inclusion of private040

and sensitive information in the training data. For041

example, LLMs can regurgitate individual personal 042

information (Nasr et al., 2023), or mimic harmful 043

and/or hateful behavior as a consequence of such 044

content being prevalent in the data (Wen et al., 045

2023). The non-consented and unwarranted use 046

of copyrighted content for LLM training has also 047

raised significant concerns (Eldan and Russinovich, 048

2023; Grynbaum and Mac, 2023). 049

Current policies governing the use and distri- 050

bution of such models do not encompass all ethi- 051

cal avenues; nonetheless, certain regulations such 052

as California Consumer Privacy Act (CCPA) and 053

GDPR’s Right to be Forgotten (RTBF) serve as 054

guidelines for organizations to ensure that their op- 055

erations do not infringe upon user privacy. Specif- 056

ically, these regulations stipulate that businesses 057

and data collectors provide and exercise an opt- 058

out mechanism essentially allowing individuals to 059

request the deletion of their data on reasonable 060

grounds. In machine learning literature, these reg- 061

ulations have been conceptualized as machine un- 062

learning (Cao and Yang, 2015; Bourtoule et al., 063

2021), which aims to eliminate the influence of 064

unwanted data points on a model’s behavior as if 065

they had never been observed during training. Nat- 066

urally, machine unlearning should be integrated 067

into the LLM pipeline to address the previously 068

outlined issues resulting from the presence of sen- 069

sitive data in pre-training. However, unlearning in 070

LLMs faces unique challenges due to the inaccessi- 071

bility of model and pre-training data, and the sheer 072

size of the pre-trained LLMs making re-training 073

practically infeasible. Much of the research in this 074

direction therefore focuses on the fine-tuning ap- 075

proach which involves training all or a subset of 076

LLM parameters to enforce unlearning (Jang et al., 077

2023; Chen and Yang, 2023; Yao et al., 2024b; 078

Maini et al., 2024; Yao et al., 2024a). 079

In this work, we propose a novel approach to 080

unlearning in LLMs via soft prompting which is 081

less resource-intensive than fine-tuning. To the best 082
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of our knowledge, this is the first work to investi-083

gate the use of soft prompting for unlearning in084

LLMs. Soft prompting simplifies the process of085

adapting LLMs to an arbitrary downstream task086

by optimizing learnable token embeddings that en-087

code signals from a corresponding dataset (Lester088

et al., 2021; Li and Liang, 2021). The soft prompts089

are trained end-to-end and essentially act as instruc-090

tions for a frozen pre-trained LLM during inference.091

We leverage this ability to modulate LLM outputs092

using prompts and formulate Soft Prompting for093

Unlearning (SPUL), a resource-efficient mecha-094

nism to achieve LLM unlearning in text classifica-095

tion. We optimize a set of soft prompt parameters096

that learn to encode underlying information in the097

data relevant for unlearning. When prepended to098

the input tokens of an LLM during inference, the099

soft prompts guide the LLM towards a generic100

response. We implement a multi-objective loss101

aligned with specific unlearning goals to facilitate102

the learning of soft prompts. SPUL unlearns un-103

desirable outcomes without updating large-scale104

LLM parameters and can fully capitalize on the105

language understanding capability offered by the106

pre-trained LLMs. Consequently, our framework107

can utilize the same pre-trained LLM for different108

unlearning tasks and datasets during inference.109

We evaluate SPUL for sentiment classification110

on benchmark NLP datasets when unlearning a111

subset from the corresponding training dataset and112

compare against various fine-tuning-based meth-113

ods. We show that SPUL can effectively induce114

forgetting during inference while preserving the115

pre-trained utility with significant improvements116

over baselines. We conduct experiments to analyze117

the influence of SPUL hyperparameters including118

the contribution of loss components and the size119

of the soft prompts. We further validate SPUL on120

multiple pre-trained LLMs of different parameter121

sizes and different sizes of unlearning sets.122

2 Related Work123

2.1 Soft prompting124

Soft prompting or prompt tuning emerged as a125

lightweight alternative to fine-tuning while keep-126

ing pre-trained LLM parameters frozen. Motivated127

by discrete prompts that guide pre-trained LLMs128

via task-specific instructions or demonstration ex-129

amples, soft prompting makes prompt design more130

efficient by employing trainable prompt parameters.131

The idea was conceived by Lester et al. (2021); they132

added trainable continuous embeddings to the en- 133

coder input sequence of an LLM and showed that 134

the learned prompts achieve performance compara- 135

ble to fine-tuning on NLP classification tasks with 136

models having over 10B parameters. Simultane- 137

ously, Li and Liang (2021) developed the notion of 138

prefix tuning which prepends task-specific prefixes 139

to the input embeddings along with the encoder 140

and decoder inputs of an autoregressive LM and 141

showed that their method is comparable to fine- 142

tuning approaches for text generation tasks. Liu 143

et al. (2021) concatenated trainable continuous 144

prompts with discrete prompts along with a prompt 145

encoder module that maps prompts to model inputs 146

to improve performance on supervised and few- 147

shot tasks. Subsequent research showed that deep 148

prompt tuning achieves comparable performance 149

to fine-tuning across several tasks on models of 150

varying scales by inserting tunable parameters into 151

every LLM layer (Liu et al., 2022a). 152

2.2 Unlearning in LLMs 153

Machine unlearning arose as a promising solution 154

to address data protection guidelines by efficiently 155

forgetting training samples corresponding to un- 156

learning requests in place of costly retraining (Bour- 157

toule et al., 2021; Cao and Yang, 2015; Liu et al., 158

2022b; Guo et al., 2020; Sekhari et al., 2021; Go- 159

latkar et al., 2020). In the context of LLMs, ma- 160

chine unlearning is quickly gaining prominence 161

due to concerns stemming from bias, toxicity, and 162

privacy (Si et al., 2023; Liu et al., 2024). Some 163

works in this direction emphasize model param- 164

eter optimization via gradient ascent (Jang et al., 165

2023; Chen and Yang, 2023; Yao et al., 2024b; 166

Maini et al., 2024; Yao et al., 2024a) to unlearn un- 167

wanted responses for specific examples or datasets. 168

They also fine-tune the model with various knowl- 169

edge alignment objectives to maintain model utility. 170

Other works leverage parameter optimization via 171

relabeling of unlearning data. For instance, Eldan 172

and Russinovich (2023) unlearn Harry Potter con- 173

tent by fine-tuning the model via gradient descent 174

to replace the model’s response for queries related 175

to Harry Potter with outputs containing generic 176

translations. In contrast to these works, Jia et al. 177

(2024) utilize similar fine-tuning objectives but fo- 178

cus on optimizer selection and propose a frame- 179

work that performs influence-based model updates 180

via second-order optimization. Additionally, some 181

works propose localization-based objectives that 182

aim to identify a subset of model units that rep- 183
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resent information about unlearning data and ef-184

fectively delete them (Meng et al., 2022; Yu et al.,185

2023; Wu et al., 2023). A few works also focus186

on modifying LLM input sequences to promote187

unlearning for black-box LLMs but are limited188

in the size of data that can be unlearned. For in-189

stance, Pawelczyk et al. (2023) perform in-context190

unlearning by crafting input comprised of unlearn191

samples paired with flipped labels and other demon-192

strations with correct labels. Thaker et al. (2024)193

investigate guardrail techniques for unlearning by194

instructing models to withhold unwanted knowl-195

edge or filtering undesirable LLM outputs. Unlike196

most fine-tuning-based approaches, our goal in this197

work is to develop a soft prompting strategy to fa-198

cilitate unlearning in LLMs. We aim to modulate199

LLM behavior using prompts similar to input mod-200

ification strategies. However, instead of specify-201

ing manual instructions or providing demonstration202

samples as context, we leverage soft prompting to203

automate prompt optimization while adhering to204

unlearning objectives through loss specifications.205

3 Soft Prompting for Unlearning206

3.1 Soft Prompting207

Let D = {si, yi}Ni=1 denote a dataset containing208

N input-output pairs where si is a text sequence209

containing ni tokens and yi is the corresponding210

output. Also, let hθ represent a pre-trained LLM211

with parameters θ; hθ can be prompted with si to212

obtain an output ŷi. Assume xi ∈ Rni×d denotes213

the token embeddings obtained for an arbitrary text214

sample si from the embedding module of hθ where215

d is the dimension of the embedding space. We216

first define p prompt tokens as ϕ = {ϕ1, · · · , ϕp}217

where ϕi ∈ Rd. To adapt hθ over D using soft218

prompts, ϕ is appended to xi to form the sequence219

{ϕ;xi} ∈ R(p+ni)×d as input to the encoder or220

decoder in hθ. During backpropagation, the pre-221

trained parameters θ are frozen and gradient up-222

dates are applied only to ϕ when maximizing the223

likelihood of the output yi as224

argmax
ϕ

log hθ({ϕ,xi}). (1)225

The size of the learnable prompts ϕ is very small226

compared to that of the pre-trained parameters θ.227

Nonetheless, soft prompting has shown consider-228

able performance over various language tasks with229

results comparable to fine-tuning. This motivates230

us to consider whether we can achieve unlearning231

in LLMs by optimizing continuous prompt tokens.232

3.2 Problem Formulation 233

Given a training dataset Dtr that was observed 234

during pre-training of hθ, we assume a forget 235

set, Dtr
f ⊂ Dtr, as the data intended for forget- 236

ting/removal from hθ. Simultaneously, we define 237

a retain set Dtr
r = Dtr \ Dtr

f comprising the re- 238

maining samples. Then, the goal of unlearning is 239

to forget the token sequences in Dtr
f while main- 240

taining inference utility on Dtr
r . For our work, we 241

focus on the task of text classification and inter- 242

pret unlearning as the forgetting of the predictive 243

output token sequences yi ∈ Dtr
f . Essentially, we 244

de-correlate text features and their corresponding 245

labels for the relevant forget samples but preserve 246

the classification performance on the retain sam- 247

ples. To this end, we aim to design a soft prompting 248

framework to obtain optimized prompt tokens that 249

can guide the base model toward the forget and 250

retain objectives. With our framework, we aim to 251

address the following research questions. 252

RQ1: How can soft prompting be utilized to effec- 253

tively unlearn subsets of training data in the text 254

classification domain? 255

RQ2: How can soft prompting be implemented to 256

achieve utility preservation with forgetting? 257

RQ3: How efficient is soft prompting-based un- 258

learning compared to fine-tuning and re-training? 259

3.3 Method 260

As soft prompts can be trained to encode signals 261

from a dataset with the purpose of adapting a pre- 262

trained LLM to a specific downstream task, we 263

anticipate that the strategy can also be utilized to 264

encode relevant information from an unlearning 265

dataset containing forget and retain samples. Here, 266

we propose the framework SPUL that leverages 267

soft prompting to obtain effective prompt tokens 268

ϕ from an unlearning dataset Dtr for text classifi- 269

cation. Since one of the unlearning objectives in 270

our framework is to promote feature and text de- 271

correlation for forget samples, we design a loss at- 272

tuned to enforcing misclassification for the respec- 273

tive text inputs. Specifically, we force the model 274

to associate each input forget text sequence with a 275

generic output token instead of its true label. We 276

construct a generic label set Ȳ that is disjoint from 277

the task labels and contains tokens such as neutral 278

or unknown and define a loss over the forget inputs, 279

Lf =
∑

(xi,.)∈Dtr
f

l(ŷi|{ϕ,xi}, ȳi), (2) 280
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where ȳi denotes a uniform random sample drawn281

from the pre-defined generic label set Ȳ , and l(·)282

refers to the standard cross-entropy loss. Ideally,283

Lf allows the prompt tokens ϕ to capture specific284

nuances from the samples in Dtr
f and consequently285

guide the LLM to change its predictive sequence286

for an arbitrary example containing the learned dis-287

tinctions. Simultaneously, unlearning also aims288

to preserve the predictive performance for sam-289

ples not included in the forget set. In our SPUL290

framework, the prepended prompt tokens ϕ should291

not change the predictive sequences for xj ∈ Dtr
r .292

Therefore, to preserve inference utility on the retain293

set, we define a loss using their true labels as294

Lr =
∑

(xj ,yj)∈Dtr
r

l(ŷj |{ϕ,xj}, yj), (3)295

where l(·) again represents the cross-entropy loss.296

Lr ensures that the model’s utility on the retain297

set does not degrade with the addition of prompt298

tokens. We further constrain the predictive dis-299

tribution of the base model such that hθ({ϕ,xj})300

reflects hθ(xj) for any xj ∈ Dtr
r . We quantify this301

difference using KL divergence as302

Lkl =
∑

(xj ,.)∈Dtr
r

KL(hθ({ϕ,xj})||hθ(xj)), (4)303

where KL(·) denotes the KL divergence term.304

hθ({ϕ,xj}) represents the base model’s predic-305

tive distribution conditioned on inputs prepended306

with the learnable prompt tokens and hθ(xj) refers307

to the output distribution conditioned only on the308

input text sequence. We utilize Lkl in addition to309

Lr to avoid large deviations in the base model’s310

output due to the influence from Lf . Finally, at311

each time step t during training, we update ϕ by312

optimizing the overall loss obtained as313

L = Lf + α · Lr + β · Lkl, (5)314

where α and β are hyperparameters that specify the315

contribution of the respective loss components.316

4 Experiments317

4.1 Experimental Setup318

Datasets We evaluate SPUL on two standard319

NLP datasets SST-2 (Socher et al., 2013) and Yelp320

polarity (Zhang et al., 2015) for the task of senti-321

ment classification. The datasets contain reviews322

with each text sequence being labeled as a positive323

or negative sentiment. To build a realistic unlearn- 324

ing scenario where unlearning requests from each 325

user would likely include multiple related training 326

samples, we preprocess the datasets to construct 327

the forget and retain sets such that the forget sam- 328

ples are semantically similar to each other (Yelp) 329

or refer to common entities (SST-2). 330

For SST-2, we first perform Named Entity 331

Recognition to identify named personalities, se- 332

lect a specific set of entities, and sample all re- 333

lated reviews to form the forget set Dtr
f . The 334

remaining reviews are consequently assigned to 335

the retain set Dtr
r . We perform a similar par- 336

titioning using the selected entities on the test 337

set to obtain Dte
f and Dte

r . After preprocessing, 338

the constructed sets Dtr
f /Dtr

r /Dte
f /D

te
r contains 339

1425/46331/610/19855 samples. For the Yelp 340

polarity dataset, we perform k-means clustering 341

with cosine distance on the training data to divide 342

the reviews into semantically similar groups. We 343

randomly select a subset of the clusters and group 344

them to form the Dtr
f and the rest as Dtr

r . We utilize 345

the same cluster centers to infer cluster identities 346

for the test data and form the sets Dte
f and Dte

r ac- 347

cordingly. For Yelp, Dtr
f /Dtr

r /Dte
f /D

te
r includes 348

5081/95012/885/18089 samples. 349

Baselines We assess the effectiveness of SPUL 350

by comparing its performance against multiple 351

SOTA parameter-tuning baselines. Gradient As- 352

cent (GA) (Jang et al., 2023) optimizes pre-trained 353

LLM parameters on the forget set by maximiz- 354

ing the cross-entropy loss in place of the standard 355

minimization. Fine-tuning with Random Labels 356

(RL) (Golatkar et al., 2020; Yao et al., 2024a) simi- 357

larly optimizes the base model on the forget set but 358

by enforcing convergence on random labels. We 359

use the generic label set discussed in Section 3.3 360

as the random labels for RL. Gradient Ascent + 361

KL Divergence (GA + KL) and Gradient Ascent + 362

Descent (GA+GD) integrate parameter optimiza- 363

tion using the retain set with GA to balance forget- 364

ting effectiveness with utility (Yao et al., 2024a). 365

The former defines a KL-divergence constraint on 366

the LLM’s output distribution and the latter imple- 367

ments the standard cross-entropy loss. Note that 368

for all four baselines, we perform full fine-tuning 369

of the LLM following prior works based on their 370

publicly available implementations. 371

Settings We use LLaMA-2-7B (Touvron et al., 372

2023) as the base LLM to evaluate our SPUL frame- 373

4



Table 1: SPUL Unlearning performance compared to baselines

Dataset Method Train Retain (Dtr
r ) Train Forget (Dtr

f ) Test Retain (Dte
r ) Test Forget (Dte

f )

ACC(%)↑ F1(%)↑ ACC(%)↓ F1(%)↓ ACC(%)↑ F1(%)↑ ACC(%)↓ F1(%)↓

SST-2

Vanilla 37.50 44.66 31.79 38.34 37.51 44.67 29.67 36.85
QLoRA 99.89 99.89 99.72 99.72 95.57 95.57 96.07 96.07

GA 55.66 39.80 53.93 37.83 55.96 40.16 56.89 41.25
RL 33.31 48.08 13.82 22.97 31.00 45.56 14.26 24.18

GA+KL 55.64 39.87 53.96 38.07 55.94 40.24 56.89 41.47
GA+GD 97.17 97.50 13.75 20.58 94.43 94.76 11.31 17.18

SPUL 99.15 99.39 12.98 22.94 94.93 95.24 16.07 27.42

Yelp

Vanilla 89.55 89.88 89.29 89.62 90.03 90.33 86.89 87.37
QLoRA 99.31 99.31 99.49 99.49 98.42 98.41 98.76 98.76

GA 66.11 63.48 67.90 64.62 65.13 62.37 67.91 64.24
RL 53.00 67.75 52.84 66.78 52.75 67.40 49.94 65.01

GA+KL 46.85 32.90 50.32 35.57 46.27 32.26 51.19 35.97
GA+GD 99.23 99.42 79.69 86.98 97.76 98.00 80.90 88.19

SPUL 89.74 93.43 55.03 70.48 89.63 93.29 60.23 74.69

work. We further validate the unlearning effec-374

tiveness of our method with OPT-1.3B (Zhang375

et al., 2022) and LLaMA-2-13B (Touvron et al.,376

2023). To ensure familiarization with the unlearn-377

ing dataset, we fine-tune the base LLMs on the full378

training dataset Dtr = Dtr
f ∪Dtr

r for 10 (2) epochs379

on SST-2 (Yelp) with a learning rate set to 0.0001380

and context length to 1024 using QLoRA (Dettmers381

et al., 2023). We treat this fine-tuned version of382

the LLM as the base model for unlearning. As for383

the configurations of SPUL, we fix the learning384

rate at 0.0001 across all LLMs, datasets and vary385

prompt token length p among {10, 20, 30, 40, 50}.386

We also vary the regularization parameters α as387

{0.1, 0.5, 1.0} and β as {0.0, 0.1, 0.5, 1.0}1. We388

train our unlearning framework for a total of 10389

epochs. As for baseline model specifications, we390

conduct a parameter search for the best learning391

rates and report the most competitive results after 1392

epoch of training. All experiments are conducted393

on NVIDIA A100 GPUs with 40GB RAM and we394

report the evaluation metrics over a single run due395

to the resource-intensive nature of the experiments.396

Evaluation We demonstrate the efficacy of the397

unlearning framework by evaluating the methods398

based on the research questions posed in Sec-399

tion 3.2. To quantify how well our SPUL frame-400

work addresses RQ1, we report the accuracy and401

weighted F1 on the forget set, Dtr
f , which signifies402

whether the learned soft prompts can de-correlate403

the text features and labels. As Dte
f is composed of404

text sequences semantically or lexically similar to405

1We note that advanced approaches, e.g., utility function,
Pareto-based, and constraint-based methods, can be potentially
adopted to determine values of α and β.

Dtr
f , the prompt tokens should result in a compara- 406

ble performance decline on Dte
f . To evaluate SPUL 407

based on RQ2, we report model performance on 408

Dtr
r and consequently Dte

r . We emphasize the dif- 409

ferences in the accuracy and F1 scores of the base 410

model before and after unlearning to signify utility 411

preservation. Finally, to answer RQ3, we report the 412

number of training parameters and required GPU 413

hours and compare them against baseline metrics. 414

4.2 Experimental Results 415

Main Results We include our main results with 416

LLaMA-2-7B in Table 1. We report performance 417

metrics for the original pre-trained LLM denoted 418

as Vanilla and the fine-tuned base model denoted as 419

QLoRA. We notice that the Vanilla results are con- 420

siderably poorer for SST-2 compared to Yelp which 421

validates our setup of fine-tuning the original LLM 422

on the datasets for memorization. We attribute 423

the difference in utility to the fact that the text se- 424

quences in Yelp are significantly longer and provide 425

more contextual information. Nonetheless, after 426

fine-tuning with QLoRA, the LLM’s performance 427

increases to similar margins for both datasets. 428

From Table 1, we observe that SPUL signifi- 429

cantly reduces accuracy and F1 on Dtr
f compared 430

to QLoRA demonstrating forgetting efficiency. At 431

the same time, the difference in utility between 432

SPUL and QLoRA for Dtr
r is minimal showing 433

that our method can promote unlearning while also 434

preserving inference utility. Moreover, the met- 435

rics for Dte
f and Dte

r reflect those reported for Dtr
f 436

and Dtr
r showing that the soft prompts effectively 437

impose unlearning constraints on samples unseen 438

during training. We observe similar performance 439
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Figure 1: Embedding visualization results on SST-2 with QLoRA and SPUL

trends for Yelp. Although the performance drop440

for Dtr
f and Dte

r are not equally as large as SST-2,441

the forget utility with the learned tokens is signifi-442

cantly lesser in comparison to the base model. We443

conjecture that the additional context provided by444

descriptive Yelp reviews restricts the forgetting ca-445

pacity of the LLM. Also point out that utility loss446

in retain sets is smaller than forget sets.447

Furthermore, SPUL outperforms baseline meth-448

ods by a significant margin; compared to GA and449

RL, which optimize model parameters based only450

on the Dtr
f , SPUL consistently preserves infer-451

ence utility on the retain sets with comparable or452

even lower metrics on the forget set. GA+KL and453

GA+GD optimize model parameters based on both454

Dtr
f and Dtr

r . However, GA+KL performs poor on455

both datasets. GA+GD performs especially well456

on SST-2 but fails to enhance forget quality on457

Yelp which has more descriptive reviews. The pro-458

posed SPUL framework can however attain effec-459

tive unlearning with the least loss of model util-460

ity. Among the compared methods, SPUL achieves461

significantly better overall trade-offs between the462

contrasting unlearning objectives of performance463

degradation and utility preservation.464

Visualization We also visualize model outputs465

to show the effectiveness of our SPUL method.466

We utilize outputs from the last embedding layer467

of the LLM and map them onto a t-SNE diagram468

as shown in Fig. 1. The plots represent 500 data469

points randomly sampled from the training dataset470

in SST-2 for each label. In the plots, we use colors471

to differentiate the retain and forget examples and472

use shapes to differentiate the positive and nega-473

tive examples. We visualize the embeddings from474

QLoRA, i.e., the base model before unlearning and475

we observe a clear divide between the positively 476

and negatively labeled samples in the embedding 477

space. The retain and forget samples are clustered 478

together within the regions defined by each label. 479

For the t-SNE plot of SPUL, i.e., the embeddings 480

obtained after pretending the learned soft prompts, 481

we notice a clear separation between the retain and 482

forget samples as indicated by the blue and orange 483

regions in Fig. 1. This shows that the soft prompts 484

truly capture the differences between the forget and 485

retain sets. Moreover, the retain samples are further 486

grouped into clusters per their labels. On the other 487

hand, the positive and negative forget samples are 488

mixed together. This shows that the soft prompt to- 489

kens learned by SPUL successfully guide the LLM 490

to unlearn text and label correlation for the forget 491

samples while preserving predictive utility on the 492

retain set. 493

Referring back to Table 1, SPUL metrics on 494

Dtr
f and Dte

f closely resemble each other for both 495

SST-2 and Yelp. We make similar observations for 496

Dtr
r and Dte

r . Our visualization results also show 497

that the output embeddings for forget samples are 498

not distinguishable between labels. Compared to 499

QLoRA visualization, model outputs for positive 500

and negative retain samples are closer in the em- 501

bedding space as well. As a result, in a black-box 502

Membership Inference Attack (MIA) (Shokri et al., 503

2017) scenario, it would be challenging to infer 504

whether a particular forget sample was observed 505

during training based only on model outputs. 506

Hyperparameter Study We conduct a series of 507

experiments to investigate the influence of the hy- 508

perparameters α and β on the unlearning perfor- 509

mance of the proposed SPUL framework and report 510

the results in Table 2 for the SST-2 dataset. The hy- 511
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Table 2: SPUL performance on SST-2 across varying α and β values at p = 30

α β
Train Retain (Dtr

r ) Train Forget (Dtr
f ) Test Retain (Dte

r ) Test Forget (Dte
f )

ACC(%)↑ F1(%)↑ ACC(%)↓ F1(%)↓ ACC(%)↑ F1(%)↑ ACC(%)↓ F1(%)↓

0.1

0.0 90.84 92.69 9.12 16.55 89.50 91.15 10.33 18.40
0.1 92.59 93.75 6.81 12.62 90.77 91.85 10.16 18.29
0.5 96.77 97.91 8.70 15.98 93.01 94.10 11.15 19.81
1.0 85.19 88.00 8.49 15.47 84.64 87.19 10.66 19.02

0.5

0.0 98.17 98.69 11.86 21.17 94.34 94.87 14.59 25.07
0.1 97.57 97.95 11.09 19.88 94.22 94.58 11.97 21.08
0.5 97.74 98.35 13.82 24.21 93.97 94.57 17.21 29.08
1.0 93.87 94.66 11.51 20.39 91.62 92.36 14.59 25.03

1.0

0.0 97.52 97.91 12.14 21.60 94.22 94.65 15.57 26.50
0.1 98.64 98.96 12.14 21.54 94.63 94.97 16.07 27.41
0.5 99.15 99.39 12.98 22.94 94.93 95.24 16.07 27.42
1.0 95.70 96.19 14.88 25.75 93.05 93.55 17.38 29.18

Table 3: SPUL performance on SST-2 across varying sizes of forget sets

τ
Train Retain (Dtr

r ) Train Forget (Dtr
f ) Test Retain (Dte

r ) Test Forget (Dte
f )

ACC(%)↑ F1(%)↑ ACC(%)↓ F1(%)↓ ACC(%)↑ F1(%)↑ ACC(%)↓ F1(%)↓

25% 99.37 99.60 26.69 42.07 95.10 95.38 39.84 56.22
50% 97.66 98.47 18.96 31.78 93.80 94.62 23.61 37.60

100% 95.70 96.19 14.88 25.75 93.05 93.55 17.38 29.18

Figure 2: SPUL performance on SST-2 across varying
p at α = 1 and β = 1

perparameters control the influence of the retain set512

on the learned soft prompts via losses Lr and Lkl513

respectively. We fix the number of prompt tokens p514

at 30 for all results and vary α in {0.1, 0.5, 1.0} and515

β among {0.0, 0.1, 0.5, 1.0}. From Table 2, we ob-516

serve that at a fixed α, unlearning efficacy is fairly517

unaffected by the change in the value of β. Model518

utility on the retain set, however, slightly increases519

as β increases from 0.0 to 0.5 as Lkl gets more sig-520

nificance in the overall loss. We generally observe521

the best retain performance at β = 0.5. The value of522

α influences performance on both forget and retain523

sets; higher α values benefit retain performance by524

prioritizing utility preservation whereas lower α525

values improve unlearning efficacy.526

We also study the effect of the number of prompt527

tokens, represented by p, on the unlearning effec-528

tiveness of SPUL. We fix both α and β at 1 and run 529

experiments with p ranging from 10 to 50 on SST-2 530

and report results in Fig. 2. We find that inference 531

utility on retain sets Dtr
r and Dte

r is largely unaf- 532

fected by the different choice of p. However, we 533

observe the most competitive forget performance 534

at p = 30 with increasing accuracy and F1 as p 535

increases/decreases. We speculate that the soft 536

prompts mostly encode information from the forget 537

set, for instance, the named entities in SST-2 whose 538

reviews are unlearned, and ultimately instruct the 539

LLM to misclassify examples with similar encod- 540

ings. Accordingly, a larger p generally benefits our 541

soft prompting framework as made evident by the 542

decline in forget metrics but may require longer 543

training for optimal performance. 544

Forget Set Size To demonstrate the stability of 545

our method w.r.t. the size of forget data, we eval- 546

uate SPUL on varying sizes of the train forget set 547

Dtr
f by sub-sampling τ = {25%, 50%, 100%} of 548

the original forget set constructed for SST-2. For 549

the test forget set Dte
f and the retain sets Dts

r and 550

Dte
r , we use the same sets defined in Section 4.1 for 551

all three configurations of Dtr
f to facilitate compari- 552

son. We present the results from this experiment on 553

SST-2 in Table 3. Our results indicate that SPUL 554

can achieve utility preservation across differing 555

numbers of forget samples with minimal loss as 556
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Table 4: SPUL performance on SST-2 dataset using OPT-1.3B and LLaMA-2-13B

LLM Method Train Retain (Dtr
r ) Train Forget (Dtr

f ) Test Retain (Dte
r ) Test Forget (Dte

f )

ACC(%)↑ F1(%)↑ ACC(%)↓ F1(%)↓ ACC(%)↑ F1(%)↑ ACC(%)↓ F1(%)↓

OPT-1.3B
Vanilla 3.05 5.68 1.68 3.20 3.24 6.03 3.28 6.08
QLoRA 99.47 99.47 99.16 99.16 95.39 95.39 95.25 95.25
SPUL 94.87 96.89 16.84 28.74 91.65 93.51 17.87 29.84

LLaMA-2-13B
Vanilla 61.04 70.96 59.65 69.51 60.32 70.38 59.18 68.79
QLoRA 99.48 99.48 99.30 99.30 96.02 96.02 95.90 95.90
SPUL 98.87 98.93 5.97 11.25 95.50 95.60 7.38 13.54

more forget samples are added to Dtr
f . In contrast557

to the retain metrics, SPUL clearly performs better558

for the forget metrics when more forget samples559

are present in the data for SST-2. Experimental560

results on Yelp presented in Table 1 also highlight561

the robustness of SPUL against large forget sets as562

we assign more than 5000 samples to Dtr
f . As the563

training data contains comparatively fewer forget564

samples than retain samples, having a larger Dtr
f565

allows the framework to emphasize the forgetting566

objective thus improving the unlearning efficacy.567

Results on LLaMA-2-13B and OPT-1.3B We568

additionally evaluate the unlearning efficacy of our569

SPUL on different LLMs. In particular, we pur-570

posely choose OPT-1.3B with fewer parameters571

and LLaMA-2-13B with almost double the param-572

eters compared to LLaMA-2-7B. In addition to573

the unlearning efficacy, this study also evaluates574

the scalability of our SPUL framework. We fix575

the hyperparameters α and β at 1 and p at 30 and576

report the results for SST-2 in Table 4. We first577

observe that the Vanilla inference with OPT-1.3B578

model performs noticeably poorer than LLaMA-2-579

7B whereas LLaMA-2-13B significantly improves580

over the initial metrics. This may be attributed to581

the pre-trained models’ complexity which affects582

their generalization ability. We similarly perform583

fine-tuning using QLoRA to ensure the unlearning584

dataset has been memorized by the respective LLM.585

Moreover, SPUL can effectively achieve the forget586

and retain unlearning objectives as made evident587

by the low forget accuracy and F1 compared to588

the retain metrics that closely resemble the base589

model’s performance. The results also indicate590

that the larger the LLM, the better it adapts to the591

unlearning task in our SPUL framework.592

Efficiency For LLMs, retraining from scratch is593

practically infeasible due to computational time594

and resources required for a huge set of parame-595

ters. Although fine-tuning pre-trained LLMs incurs596

less costs than retraining, the cost is still high. For 597

instance, the LLM architectures used in our exper- 598

iments require gradient updates for 1.42B, 6.74B, 599

and 13B parameters for OPT-1.3B, LLaMA-2-7B, 600

and LLaMA-2-13B respectively when implement- 601

ing unlearning based on fine-tuning. When p = 30, 602

our SPUL reduces the computation cost by only 603

optimizing 604K, 1.19M, and 1.49M parameters 604

while freezing LLM parameters. Further increasing 605

p only linearly scales the number of training param- 606

eters. We also look at the running time of SPUL 607

on the SST-2 compared against baseline methods 608

and find the execution time required by each model 609

of SPUL, GA + KL, and GA+GD for one training 610

epoch is fairly similar, around 1020 GPU seconds, 611

as SPUL also accesses LLM parameters during 612

backpropagation. GA and RL methods are much 613

quicker with approximate 40 GPU seconds of per 614

epoch training time as these methods only consider 615

the forget set. Nonetheless, SPUL avoids the over- 616

head associated with updating LLM parameters, 617

making it more resource-efficient. 618

5 Conclusion 619

In this work, we investigate unlearning in LLMs 620

to remove the influence of unwanted training ex- 621

amples during text classification. We present a 622

soft prompting strategy to unlearn subsets of train- 623

ing data while keeping pre-trained LLM parame- 624

ters frozen to maintain the model’s generalizability. 625

Our SPUL framework optimizes a small number of 626

prompt tokens using a multi-objective loss function 627

defined on disjoint training data subsets represent- 628

ing the forget data that is subjected to removal and 629

the retain data that aims to preserve model utility. 630

Experimental evaluation on sentiment classification 631

datasets demonstrates the superior efficiency of our 632

soft prompting-based unlearning over fine-tuning- 633

based baselines. We also empirically show that 634

SPUL can adapt to multiple LLMs and is robust to 635

a high number of unlearning samples. 636
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Limitations637

We address the limitations of this work in the fol-638

lowing. Our experiments primarily focus on open-639

source LLMs as the soft prompting framework re-640

quires access to frozen pre-trained parameters to641

compute gradients for the soft prompts despite not642

needing to update the LLM parameters. Further-643

more, this work focuses on the task of text clas-644

sification, specifically sentiment classification for645

the formulation of the unlearning framework and646

evaluation. Future research could explore the ef-647

ficiency of soft prompting to achieve unlearning648

in the context of NLP tasks such as text genera-649

tion, question answering, text summarization, and650

so on. Also, the soft prompting unlearning frame-651

work has not been evaluated comprehensively as652

we emphasize performance metrics to demonstrate653

unlearning efficacy. We note that there is a lack654

of an extensive evaluation pipeline for LLM un-655

learning in the current literature. Further research656

is needed to evaluate the robustness of the frame-657

work subject to model-stealing attacks, MIAs, and658

jailbreaking attempts.659

Broader Impacts660

In this study, our focus is to achieve LLM un-661

learning in a resource-efficient manner. We aim662

to enable forgetting of unwanted and undesirable663

knowledge as per users’ requests while maintain-664

ing model efficiency to avoid exploitation of pro-665

tected information. The datasets used for evalua-666

tion are publicly available and implemented within667

the intended use. Our usage of publicly available668

pre-trained LLMs also adheres to the associated li-669

censes. We hope our study can further the research670

and literature on resource-efficient LLM unlearn-671

ing.672
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