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Abstract

Reasoning about images with rich text, such001
as charts and documents, is a critical applica-002
tion of vision-language models (VLMs). How-003
ever, VLMs often struggle in these domains004
due to the scarcity of diverse text-rich vision-005
language data. To address this challenge, we006
present CoSyn, a framework that leverages the007
coding capabilities of text-only large language008
models (LLMs) to automatically create syn-009
thetic text-rich multimodal data. Given input010
text describing a target domain (e.g., “nutri-011
tion fact labels”), CoSyn prompts an LLM to012
generate code (Python, HTML, LaTeX, etc.)013
for rendering synthetic images. With the un-014
derlying code as textual representations of the015
synthetic images, CoSyn can generate high-016
quality instruction-tuning data, again relying on017
a text-only LLM. Using CoSyn, we constructed018
a dataset comprising 400K images and 2.7M019
rows of vision-language instruction-tuning data.020
Comprehensive experiments on seven bench-021
marks demonstrate that models trained on our022
synthetic data achieve state-of-the-art perfor-023
mance among competitive open-source mod-024
els, including Llama 3.2, and surpass propri-025
etary models such as GPT-4V and Gemini 1.5026
Flash. Furthermore, CoSyn can produce syn-027
thetic pointing data, enabling VLMs to ground028
information within input images, showcasing029
its potential for developing multimodal agents030
capable of acting in real-world environments.031

1 Introduction032

Instruction-tuned vision-language models (VLMs)033

have shown strong performance across a range of034

multimodal tasks (Radford et al., 2021; OpenAI,035

2023; Liu et al., 2023). However, these tasks typ-036

ically focus on general image understanding over037

natural images rather than the specialized reason-038

ing required for text-rich images such as charts,039

documents, diagrams, signs, labels, and screen-040

shots. Understanding and reasoning over text-rich041
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Figure 1: Given a novel task (e.g., answering questions
about nutrition facts), our code-guided generation sys-
tem can produce targeted synthetic data to enhance the
performance of VLMs on that specific task.

images is crucial for many applications, includ- 042

ing analyzing scientific literature and figures (Asai 043

et al., 2024), improving accessibility for users with 044

visual impairments (Gurari et al., 2018), and en- 045

abling agentic workflows in real-world environ- 046

ments (Xie et al., 2024). Effectively interpreting 047

these structured visual formats requires both tex- 048

tual comprehension and spatial reasoning, which 049

current models struggle with due to the limited 050

availability of high-quality, realistic, and diverse 051

vision-language datasets (Methani et al., 2020). 052

To address these challenges and inspired by the 053

fact that text-rich images are typically rendered 054

from code, we develop Code Guided Synthetic 055

data generation system (CoSyn), a flexible frame- 056

work for generating diverse synthetic text-rich mul- 057

timodal data for vision-language instruction tun- 058

ing. As illustrated in Figure 2, CoSyn can gen- 059

erate multimodal data for various target domains 060

from a short natural language query, such as book 061

covers. CoSyn leverages text-only LLMs, which 062

excel at code generation, to produce both data and 063

code that render diverse text-rich images using 11 064

supported rendering tools (e.g., Python, HTML, 065

LaTeX). Grounded in the underlying code repre- 066

sentation of the images, textual instructions are also 067
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generated by the text-only LLM to create vision-068

language instruction-tuning datasets.069

Using this framework, we construct the CoSyn-070

400K, as shown in Figure 3, a large-scale and di-071

verse synthetic vision-language instruction-tuning072

dataset tailored for text-rich image understanding.073

We comprehensively evaluate the effectiveness of074

training on CoSyn-generated synthetic data across075

seven text-rich VQA benchmarks. Our model076

achieves state-of-the-art performance among com-077

petitive open-source models and surpasses propri-078

etary models such as GPT-4V and Gemini 1.5. No-079

tably, training on CoSyn synthetic data enables080

sample-efficient learning, achieving stronger per-081

formance with less data. In addition, CoSyn can082

synthesize chain-of-thought (CoT) reasoning data083

(Wei et al., 2022), improving performance on tasks084

requiring multi-hop reasoning. A fine-grained anal-085

ysis of question types in ChartQA (Masry et al.,086

2022) reveals that training on CoSyn-400K results087

in stronger generalization to human-written ques-088

tions. In contrast, models trained solely on exist-089

ing academic datasets often overfit to biased train-090

ing data, overperforming on templated or machine-091

generated questions but struggling with more real-092

istic, human-asked queries.093

We then identify a key limitation of open-source094

VLMs that they struggle to generalize to out-of-095

domain tasks they were not trained on. As shown096

in Figure 1, we introduce NutritionQA, a novel097

benchmark for understanding photos of nutrition098

labels, with practical applications like aiding users099

with visual impairments. Open-source VLMs per-100

form poorly on this novel task, even after training101

on millions of images. However, by training on102

CoSyn-400K, our model adapts strongly to this103

novel domain in a zero-shot setting with signifi-104

cantly less training data. Remarkably, by gener-105

ating just 7K in-domain synthetic nutrition label106

examples using CoSyn for fine-tuning, our model107

surpasses most open VLMs trained on millions of108

images. This highlights CoSyn’s data efficiency109

and ability to help VLMs adapt to new domains110

through targeted synthetic data generation.111

Finally, beyond the standard VQA task, we use112

CoSyn to generate synthetic pointing training data,113

which is particularly useful in agentic tasks. The114

pointing data enables VLMs to retrieve coordinates115

for specific elements in a screenshot given a query116

like “Point to the Checkout button” (Deitke et al.,117

2024). Our model trained on synthetic pointing118

data achieves state-of-the-art performance on the119

ScreenSpot click prediction benchmark (Baechler 120

et al., 2024). Overall, our work demonstrates that 121

synthetic data is a promising solution for advancing 122

vision-language models in understanding text-rich 123

images and unlocking their potential as multimodal 124

digital assistants for real-world applications. 125

2 Related Work 126

Vision Language Models. Tsimpoukelli et al. 127

(2021) first demonstrate that pre-trained, frozen 128

language models can be extended to process vi- 129

sual inputs. Previous works fuse vision and lan- 130

guage modalities using different strategies, such as 131

cross-attention mechanisms (Alayrac et al., 2022) 132

and Q-Former (Li et al., 2023). More recent ar- 133

chitectures have converged on using MLP layers 134

to project visual features into the language space 135

(Liu et al., 2023). However, these architectures 136

are often imbalanced, with the language backbone 137

substantially larger than the visual encoder. As a 138

result, without high-quality image-text data, mod- 139

els may overly rely on language priors, leading to 140

hallucinations in their responses (Bai et al., 2024). 141

Our work addresses this issue by generating high- 142

quality multimodal data for text-rich images. 143

Text-rich Images Understanding. Chart under- 144

standing and text-rich image understanding con- 145

tinue to challenge state-of-the-art models as natu- 146

rally occurring vision-language data that can sup- 147

port training for understanding text-rich images is 148

still scarce (Kahou et al., 2017; Kafle et al., 2018; 149

Xu et al., 2023; Mukhopadhyay et al., 2024). In 150

addition to charts and plots, a number of datasets 151

address other kinds of text-rich images such as doc- 152

uments, infographics, diagrams and figures, and 153

screenshots (Siegel et al., 2016; Mathew et al., 154

2021, 2022; Baechler et al., 2024; Roberts et al., 155

2024) have been made available. Many of these 156

benchmarks are limited in size and scope, diversity 157

of visualization types, and question types, making 158

them suitable for evaluation but not for training 159

data that could lead to generalized performance. 160

Synthetic Data for VLM. Generating synthetic 161

images with annotations grounded in known 162

source representations has been widely used in do- 163

mains with limited vision-language data (Johnson- 164

Roberson et al., 2017; Johnson et al., 2017; 165

Cascante-Bonilla et al., 2022; Zhang et al., 2024). 166

This approach has been applied to chart and plot 167

VQA typically using a limited small set of chart 168

types and by instantiating handcrafted question 169

2



<!DOCTYPE html> <html 

lang="en"> <body>

… …

</body> </html>

Give me a dataset of book covers.

Matplotlib Chart Pipeline

LaTeX Table Pipeline

Mermaid Diagram Pipeline

HTML Document Pipeline

… …

1
1
 T

o
o
ls

2
0
 P

ip
e
li

n
e
s

CodeData GenerationTopic Generation

Generated Topic: 

A novel about “Extraterrestrial 

Flora & Fauna: An Illustrated 

Guide to the Unique Plant”.

Selected Persona: A sci-fi novelist constantly 

bouncing off ideas for new alien worlds.
Textual Instruction

Generated Data: 

{author: sci-fi novelist,

key elements: Luminae 

Spiralis, Skythera, … }

Q: How many illustrated

elements are shown on 

the book cover? A: 6.200K Personas

R
en

d
er

C
on

tex
t

fo
r

L
L

M

Figure 2: The overview of our Code Guided Synthetic data generation system (CoSyn), which has 20 generation
pipelines based on 11 render tools. Given a user query, e.g., “book cover,” CoSyn selects the appropriate pipelines
and starts with generating diverse topics conditioned on personas, then synthesizes detailed data for code generation.
The code renders the image and is also fed as context for an LLM to construct instruction-tuning data.

templates (Kahou et al., 2017; Kafle et al., 2018;170

Methani et al., 2020; Singh and Shekhar, 2020).171

Following this, Li and Tajbakhsh (2023) and Car-172

bune et al. (2024a) explore using text-only LLMs173

to generate annotations or Q&A pairs from table174

or text descriptions associated with charts to train175

VLMs. Other recent approaches, similar to the pro-176

cedure in this work, explore generating data and177

code to render synthetic charts (Han et al., 2023;178

Shinoda et al., 2024; Xia et al., 2024) while us-179

ing the data and code representation to generate180

annotations and Q&A. These works generate syn-181

thetic data that is still highly limited in terms of182

the diversity of topics, figure types, and rendering183

pipelines, which is important for generalizing to184

out-of-distribution tasks. In our work, we expand185

the scope of our generation beyond charts to en-186

compass a wider range of diverse text-rich images.187

3 Problem Formulation188

Given a text query q about an image type, e.g.,189

flow charts, our goal is to create a synthetic mul-190

timodal dataset Dq =
{
(I, T )

}
, where I is the191

image, and T is the textual instruction-tuning data192

(e.g., question-answer pairs). Dq is used to train a193

VLM to improve its ability to understand images194

related to q. The core idea of our approach is using195

code C as the intermediate representation to bridge196

the image and text. The overall generation process197

can be decomposed as follows:198

P
(
I, T |q

)
= PLM

(
C|q

)
· P

(
I|C

)
· PLM

(
T |C

)
199

where PLM
(
C|q

)
represents prompting a language200

model to generate code C, which is executed to201

render the image, P
(
I|C

)
. PLM

(
T |C

)
uses code202

C (without the image) as context for an LLM to203

generate the textual instruction-tuning data.204

4 CoSyn System 205

Figure 2 illustrates the workflow of our Code- 206

Guided Synthetic data generation system (CoSyn). 207

The system takes a language input, such as “gen- 208

erate a dataset of book covers”, and outputs a mul- 209

timodal dataset. Based on the input query, CoSyn 210

selects one of 20 generation pipelines built on 11 211

rendering tools. The process starts with topic gener- 212

ation, conditioned on a sampled persona that guides 213

the style and content. Next, the system generates 214

data content and converts it into code, which is 215

then executed to render synthetic images. Finally, 216

using the code as context, we prompt the LLM to 217

generate corresponding textual instructions. 218

In the following, we provide detailed explana- 219

tions of the rendering tools supported by CoSyn, 220

the tailored generation pipelines based on these 221

tools, our persona-driven approach to diversify con- 222

tent and styles, and the large-scale dataset of 400K 223

synthetic images generated by CoSyn. 224

Rendering Tools. We integrate various rendering 225

tools to generate diverse types of images, forming 226

the foundation of CoSyn’s ability for text-rich im- 227

age generation. For example, Matplotlib, Plotly, 228

and Vega-Lite are used to create different types of 229

charts. LaTeX and HTML are used for documents 230

and tables, while Mermaid and Graphviz generate 231

diagrams. We utilize SVG and Asymptote to cre- 232

ate vector graphics and math-related content. For 233

specialized tasks, we rely on Lilypond to generate 234

music sheets and RDKit for chemical structures. 235

We implement customized functions for each tool 236

to execute LLM-generated code and obtain corre- 237

sponding rendered images. These tools collectively 238

enable CoSyn to produce a wide range of high- 239

quality, text-rich synthetic images. 240

Pipelines. We design 20 pipelines based on 11 241
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Figure 3: Our CoSyn-400K dataset consists of 9 categories of text-rich images with 2.7M instruction-tuning data.
More qualitative examples, along with question-answer annotations, are available in Figure 12 -18 in Appendix C.

rendering tools.1 Each pipeline follows the same242

procedure: (1) Topic generation to define the theme243

of this synthetic example, (2) Data generation to244

populate the detailed contents, (3) Code generation245

to create executable code that renders the image,246

and (4) Instruction generation uses the code as247

context to produce textual instruction-tuning data.248

Each stage is controlled by tailored prompts cus-249

tomized for the image category and rendering tool.250

Figure 8 shows an example of all prompt templates251

used in the HTML Document pipeline.252

Use personas for diversity. LLMs often strug-253

gle to generate diverse synthetic data using sam-254

pling parameters alone (Yu et al., 2023), with bi-255

ases leading to repetitive outputs across different256

runs. Recent work (Ge et al., 2024) shows that257

incorporating personas in prompts can improve di-258

versity by enabling models to generate from varied259

perspectives. CoSyn adopts personas to enhance260

diversity during the Topic Generation stage. Each261

persona is a short sentence describing a personality262

or identity. For example, as shown in the middle263

of Figure 2, we sample a persona “a sci-fi novelist264

who likes alien worlds”, which results in a topic of265

“a novel about Extraterrestrial Flora & Fauna” for266

generating the book cover image. We use the 200K267

personas released by Ge et al. (2024).268

Implementation details. CoSyn is built on the269

DataDreamer library (Patel et al., 2024), which270

supports robust multi-stage synthetic data genera-271

tion pipelines that are easy to maintain, reproduce,272

and extend. DataDreamer documents the prompts273

and parameters used at each generation stage and274

1Some tools are used in multiple pipelines, e.g., HTML is
used for generating documents, tables, and charts.

implements several efficient techniques, such as 275

parallel generation and response caching, to op- 276

timize performance. For the data and code gen- 277

eration stages, we use Claude-3.5-Sonnet, which 278

performs well in coding tasks (Anthropic, 2024b). 279

For instruction-tuning data generation, we select 280

GPT-4o-mini (OpenAI, 2023) for its cost efficiency. 281

CoSyn-400K. As shown in Figure 3, we use CoSyn 282

to generate a large-scale synthetic dataset of 400K 283

images across nine categories: charts, documents, 284

math problems, tables, diagrams, vector graphics, 285

music sheets, electrical circuits, and chemical struc- 286

tures. Since CoSyn is controlled via language in- 287

puts, it can easily generate diverse, fine-grained im- 288

age types by varying the input queries. For instance, 289

we use over 100 queries to generate document data 290

covering receipts, resumes, meal plans, etc. Some 291

queries used for CoSyn-400K are provided in Ap- 292

pendix A.3. This ensures that our dataset covers 293

a broad range of domains. The following sections 294

validate how our synthetic datasets enhance the 295

ability of VLMs to understand text-rich images. 296

5 Experimental Setup 297

Our experiments aim to verify the value of our 298

synthetic data in the supervised fine-tuning stage 299

of training vision-language models. This section 300

introduces the architecture of our model, training 301

strategy, datasets we used, baselines for compari- 302

son, and other details on implementation. 303

Model Architecture. We follow the same image 304

preprocessing and architecture as Molmo (Deitke 305

et al., 2024), which uses the MLP layer to con- 306

nect the vision encoder and a pretrained LLM. We 307
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Model ChartQA DocVQA InfoVQA TableVQA AI2D TextVQA ScreenQA Average

GPT-4V 78.1 87.2 75.1 60.5 89.4 78.0 41.6 72.8
Gemini 1.5 Flash 85.4 89.9 75.3 72.6 91.7 78.7 40.1 76.2
Claude-3 Opus 80.8 89.3 55.6 70.0 88.1 67.5 39.8 70.2

PaliGemma-3B† 71.4 84.8 47.8 46.4 73.3 76.5 32.2 61.8
BLIP-3-4B† 60.0 61.4 31.5 24.3 74.2 71.0 26.2 49.8
Cambrian-7B† 73.3 77.8 41.6 40.6 73.0 71.7 44.4 64.2
LLaVA-1.5-7B†∗ 17.8 28.1 25.8 33.1 55.5 58.2 17.6 33.7
LLaVA-Next-8B† 69.5 78.2 43.8 43.9 71.6 65.3 34.2 58.1
LLaVA-OneVision-7B† 80.0 87.5 68.8 64.6 81.4 78.3 46.3 72.4
Pixtral-12B 81.8 90.7 50.8 67.0 79.0 75.7 39.4 69.2
Llama 3.2 11B 83.4 88.4 63.6 51.1 91.9 73.1 87.7 77.0

Ours (7B)† 86.3 90.0 70.5 65.8 91.9 82.0 80.1 80.9
Ours (7B-zero-shot)†∗ 80.8 82.9 59.8 64.9 83.9 72.7 78.1 74.7

Table 1: Results on 7 text-rich benchmarks. The result of the best-performing open-source model is bold, and the
second-best is underlined. Models with † stand for open data and code for multimodal training. Models with ∗ are
zero-shot models, which means the models are not trained on instances from any of the evaluation datasets.

choose OpenAI’s CLIP (ViT-L/14 336px) (Radford308

et al., 2021) as the vision backbone and Mistral-7B309

(Jiang et al., 2023) as the language model.310

Training Process. We adopt the same training311

strategy as Molmo (Deitke et al., 2024), which312

consists of two stages: (1) Pre-training on dense313

captions from PixMo-Cap and (2) Supervised fine-314

tuning on three categories of datasets below:315

• Evaluation Datasets. We evaluate our model on316

seven text-rich benchmarks, including ChartQA317

(Masry et al., 2022), DocVQA (Mathew et al.,318

2021), InfographicVQA (Mathew et al., 2022),319

TableVQA-Bench (Kim et al., 2024), AI2 Dia-320

grams (Kembhavi et al., 2016), TextVQA (Singh321

et al., 2019), and ScreenQA (Baechler et al.,322

2024). We adopt their official metrics for cal-323

culating performance. In total, we have 138K324

training images from the evaluation datasets.2325

• Auxiliary Datasets. We select additional aca-326

demic datasets for fine-tuning: VQAv2 (Goyal327

et al., 2017), GQA (Hudson and Manning, 2019),328

OK-VQA (Marino et al., 2019), OCR-VQA329

(Mishra et al., 2019), A-OKVQA (Schwenk et al.,330

2022), ScienceQA (Lu et al., 2022), TabMWP331

(Lu et al., 2023), ST-VQA (Biten et al., 2019),332

TallyQA (Acharya et al., 2019), DVQA (Kafle333

et al., 2018), FigureQA (Kahou et al., 2017), and334

PlotQA (Methani et al., 2020). The auxiliary335

datasets contain around 1M training images.336

• Synthetic Datasets. As introduced in Sec 4 and337

also shown in Figure 3, our synthetic datasets338

include 400K text-rich images from 9 categories.339

Our best-performing model uses all three cate-340

2TableVQA is an eval-only benchmark (no training split),
and we do not use the training split from ScreenQA.

gories of datasets above. We also trained a zero- 341

shot model using only auxiliary and synthetic data 342

without any examples from the evaluation datasets, 343

which still exhibits competitive benchmark perfor- 344

mance, as shown in the last row of Table 1. 345

Baselines. We compare our model against recent 346

open-source VLMs with a similar scale (7B), in- 347

cluding PaliGemma-3B (Beyer et al., 2024), BLIP- 348

3-4B (Xue et al., 2024), Cambrian-7B (Tong et al., 349

2024), LLaVA-1.5-7B (Liu et al., 2023), LLaVA- 350

Next-8B (Liu et al., 2024), LLaVA OneVision-7B 351

(Li et al., 2024), Pixtral-12B (Agrawal et al., 2024). 352

We also compare with proprietary models: GPT-4V 353

(OpenAI, 2023), Gemini-1.5-Flash (Team, 2024), 354

and Claude-3 Opus (Anthropic, 2024a). 355

Implementation Details. We train our model on 356

TPU v3-128 with a batch size of 32. Our best- 357

performing model is trained for 60K steps, taking 358

about 30 hours. The checkpoints with the highest 359

validation performance are retained for testing. 360

6 Results 361

This section covers (1) the competitive perfor- 362

mance of the model trained on our synthetic data 363

(Sec 6.1), (2) the comprehensive analyses to high- 364

light the benefits of synthetic data (Sec 6.2), and 365

(3) the effectiveness of synthetic pointing data in 366

improving VLMs for web agent tasks (Sec 6.3). 367

6.1 Main Results 368

Table 1 compares our model’s performance with 369

both open and closed models across seven text-rich 370

benchmarks. On average, our 7B model achieves 371

the highest performance, surpassing the second- 372

best model (Llama 3.2 11B) by 3.9%. Notably, our 373
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Figure 4: Ablation on training data selection. Aux,
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on eight benchmarks. The detailed performance break-
down on each benchmark is in Table 7.

model ranks first in four out of the seven datasets374

and second in the remaining three. More surpris-375

ingly, our zero-shot model (the last row in Table 1)376

outperforms most open and closed models without377

exposure to any training instances from the evalua-378

tion datasets. In contrast, these competing models379

often rely on benchmark training data and are thus380

not true zero-shot models. This result demonstrates381

that the capabilities learned from our synthetic data382

can transfer effectively to downstream tasks.383

6.2 Analysis384

In the following experiments, we quantify the con-385

tribution of synthetic data to the benchmark perfor-386

mance by ablating the combinations of fine-tuning387

datasets. Then, we demonstrate that our CoSyn388

system can efficiently assist VLMs in generalizing389

to novel tasks. Finally, we show that synthetic data390

can help mitigate the overfitting of biases.391

Synthetic data boosts the performance. Table392

4 presents an ablation study on the choices of su-393

pervised fine-tuning data. In the zero-shot settings,394

when the model is trained on auxiliary datasets395

(over 1M training images not directly from the396

evaluation tasks), it fails to generalize effectively397

to the evaluation tasks, with a substantial perfor-398

mance gap of 14.1% below GPT-4V. However, us-399

ing only 400K synthetic samples achieves a perfor-400

mance comparable to GPT-4V. Our best zero-shot401

model surpasses GPT-4V when jointly training syn-402

thetic and auxiliary data. Under the supervised403

settings, training with in-domain data alone yields404

strong performance. However, adding 1M auxiliary405

samples provides a modest improvement of 1.4%,406

while incorporating synthetic data results in a more407

significant 3.6% boost. These results demonstrate408

the effectiveness of synthetic data in enhancing409
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Figure 5: Zero shot performance on NutritionQA.
The x-axis denotes the number of training examples
used for the instruction-tuning stage. The models on the
upper left side demonstrate better data efficiency.

VLMs’ performance on text-rich tasks. 410

Zero-shot Generalization on a Novel Task. 411

Vision-language models typically rely on in- 412

domain data to perform well on specific tasks. 413

When encountering a novel task, such as answering 414

questions about nutrition labels in Figure 1, mod- 415

els without seeing similar examples during training 416

may struggle with this novel task. However, our 417

CoSyn system enables controllable data generation. 418

Given the task name as input, CoSyn can generate 419

task-specific data to fine-tune the model. 420

To validate this, we annotated a small evaluation 421

dataset called NutritionQA, which includes 100 422

examples of questions about photos of nutrition 423

labels. Some questions require multi-hop reason- 424

ing, as Figure 10 illustrates. We evaluated GPT-4V 425

and several open-source VLMs on this dataset and 426

report the performance in Figure 5. The x-axis in 427

Figure 5 represents the amount of data used during 428

the instruction fine-tuning stage. 429

Despite being trained on millions of images, 430

we observe that open-source VLMs are not data- 431

efficient and perform poorly on this novel task 432

compared to GPT-4V. Although many open-source 433

VLMs claim to achieve GPT-4V-level performance, 434

they fall short when tested on new tasks in the wild. 435

Without synthetic data, our model (Eval + Aux) 436

achieves results similar to those of open models. 437

However, when trained on 400K synthetic samples, 438

our model matches GPT-4V’s performance. 439

More impressively, we used CoSyn to generate 440

7K synthetic nutrition label samples and fine-tuned 441

the model using only this 7K data. The resulting 442

model outperforms most open-source VLMs on the 443

NutritionQA task. These results demonstrate that 444

code-guided synthetic data is an effective and effi- 445

cient method for adapting VLMs to new domains. 446
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Figure 6: Ablation of using Chain-of-Thought rea-
soning. Short Answer represents prompting model to
output the answer as short as possible. + CoT stands for
providing Chain-of-Thought reasoning before giving
the final answer. Results on all datasets are in Table 6.

Synthetic Data for Chain-of-Thought Reason-447

ing. Existing text-rich datasets, such as ChartQA448

(Masry et al., 2022), are typically annotated with449

short answers. However, questions like “Compute450

the mean of the data in the plot” require step-by-451

step mathematical reasoning to arrive at the correct452

answer. Models trained only with short-answer su-453

pervision may fail to learn proper plot comprehen-454

sion, but instead overfitting to annotation biases in455

these datasets. On the contrary, our CoSyn-400K456

includes explanation text alongside the short an-457

swer. Each instruction-tuning example consists of458

a (question, explanation, short answer) triplet, en-459

abling models to learn chain-of-thought (CoT) rea-460

soning. During fine-tuning, we design two prompt461

templates for our synthetic data:462

CoT Prompt: <Question> Provide reasoning
steps and then give the short answer.

<Explanation> Answer: <Answer>
463

Short Answer Prompt: <Question> Answer

with as few words as possible. <Answer>
464

Those prompts allow VLMs to switch between465

the two answering styles and perform CoT reason-466

ing when necessary. Figure 6 shows that incor-467

porating CoT reasoning improves performance on468

ChartQA, TableVQA, and NutritionQA, as these469

datasets contain examples requiring multi-hop rea-470

soning. However, we observe that adding CoT471

reasoning reduces performance on DocVQA and472

InfoVQA. We find this decline is caused by an-473

swer biases in these benchmarks. Specifically, the474

ground-truth answers favor short responses, often475

penalizing more detailed and verbal responses. For476

instance, in DocVQA, the ground-truth for an ex-477

ample is “T-Th”, whereas the model responds with478

“Tuesday to Thursday”. Although the response is479

Machine
Generated

Human
Annotated

Training Testing

26.1

73.9 50.0

50.0

ChartQA Average Machine Human ∆ ↓

PaliGemma-3B 71.4 88.5 54.2 34.3
ChartPali-5B 77.3 93.7 60.9 32.8

Ours (w/o Syn) 81.4 92.2 70.4 21.8
Ours (w/ Syn) 86.3 93.4 79.1 14.2

Table 2: Results on human and machine-generated
questions of ChartQA. The pie charts above display the
percentage distribution of two question types in training
and testing. ∆ (↓ lower is better) denotes the perfor-
mance gap between human and machine questions.

correct, the strict string-matching metric assigns 480

it a zero score. This highlights key limitations of 481

current multimodal benchmarks, including answer- 482

ing biases and rigid evaluation metrics that fail to 483

capture the full extent of a model’s capabilities. 484

Synthetic Data for Mitigating Biases. Our previ- 485

ous experiments reveal answering biases in multi- 486

modal benchmarks, which VLMs trained solely on 487

these datasets often inherit. To further validate this 488

issue, we analyze ChartQA and observe a distribu- 489

tion shift in question types. As shown in the pie 490

charts above Table 2, some ChartQA questions are 491

human-annotated, while others are generated by 492

the language model T5 (Raffel et al., 2020), which 493

is heavily influenced by prompt phrasing and lim- 494

ited to a fixed set of question templates. During 495

training, most questions (73.9%) in ChartQA are 496

machine-generated, while the test set contains an 497

even distribution of human-annotated and machine- 498

generated questions. Models trained exclusively on 499

ChartQA tend to overfit to T5-generated questions. 500

Table 2 illustrates this issue: PaliGemma (Beyer 501

et al., 2024) and ChartPali (Carbune et al., 2024b) 502

achieve high accuracy on machine-generated ques- 503

tions but experience a significant performance drop 504

of over 30% on human-annotated questions. 505

Similarly, without synthetic data, our model 506

shows a noticeable 21.8% gap between the two 507

question types. However, incorporating synthetic 508

data during training reduces this gap to 14.2%, im- 509

proving the model’s ability to answer human-asked 510

questions. This suggests that synthetic data can 511

mitigate overfitting on benchmarks and enhance 512

VLMs’ usability in real-world applications. 513
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(b) Real Screenshot Pointing

Q: Click the View All button.

(a) Synthetic Pointing Data Generation
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Source Code Edited Code

Question: Point to the Help button.

<!DOCTYPE html> 

<body>

</body> 

</html>

<!DOCTYPE html> 

<body>

</body> 

</html>

Answer: x = 90  y = 70
Extract Coordinates

Figure 7: The overview of enabling VLMs to point through synthetic data. (a) We synthesize pointing data by
prompting an LLM to generate pointing questions and edit the code to draw the answer points explicitly. (b) We
demonstrate that the VLM trained on synthetic pointing data can be generalized to real agentic tasks.

6.3 Synthetic Pointing Data514

Pointing enables vision-language models to answer515

questions by providing specific points on images.516

This functionality allows models to ground their517

responses in visual content and interact with envi-518

ronments, which is crucial for developing digital519

agents. We find that we can synthesize pointing520

data using our code-guided generation system.521

Method. Since we have access to the source code522

for all generated images, we can prompt an LLM523

to modify the code to draw points on the images524

explicitly. As illustrated in Figure 7, we feed the525

image’s source code as context to the LLM, which526

generates a pointing question and edits the code to527

draw points with a predefined color. By extracting528

the pixel values of these points, we can obtain their529

exact (x, y) coordinates.3 We then use this point-530

ing data to train VLMs, enabling them to answer531

questions by providing point coordinates. In total,532

we generate pointing data for 65K synthetic images.533

Figure 19 shows some qualitative examples from534

our synthetic pointing dataset.535

Setup. We evaluate pointing ability on ScreenSpot536

(Cheng et al., 2024), where the task requires mod-537

els to provide the correct click location based on a538

given instruction. ScreenSpot contains screenshots539

from mobile phones, desktops, and web pages. To540

assess the effectiveness of our synthetic pointing541

data, we compare it to the model trained on PixMo-542

point (Deitke et al., 2024), which consists of 155K543

human-annotated images. Our best-performing544

model uses both PixMo-point and synthetic point-545

ing data. Additionally, we compare against exist-546

ing methods like CogAgent (Hong et al., 2024),547

SeeClick (Cheng et al., 2024), and UGround (Gou548

et al., 2024), which is trained on 1.3M screenshots.549

3The coordinates are normalized to (0, 100) to mitigate the
influence of image resolution.

Mobile Desktop Web Avg

Model Text Icon Text Icon Text Icon

GPT-4o 20.2 24.9 21.1 23.6 12.2 7.8 18.3
CogAgent 67.0 24.0 74.2 20.0 70.4 28.6 47.4
SeeClick 78.0 52.0 72.2 30.0 55.7 32.5 53.4
UGround 82.8 60.3 82.5 63.6 80.4 70.4 73.3

Synthetic 90.8 53.3 78.4 58.6 80.0 47.1 68.0
Human 84.2 59.0 88.1 52.9 76.5 50.5 68.5
Combined 89.0 65.1 87.6 65.7 83.0 58.7 74.9

Table 3: Click accuracy on ScreenSpot. We report
our models trained on different pointing data. Human
stands for using the human-annotated data from PixMo-
point (Deitke et al., 2024). Combined means combining
human-annotated data with our synthetic pointing data.

Results. Table 3 compares the click accuracy of 550

our models with previous methods. Using 65K 551

synthetic pointing samples, our model achieves 552

performance comparable to the one trained on 553

155K human-annotated samples. When combin- 554

ing synthetic and human data, our model achieves 555

state-of-the-art performance on ScreenSpot, sur- 556

passing the recent UGround (Gou et al., 2024), 557

which was trained on 1.3M screenshots. These re- 558

sults demonstrate that synthetic pointing data is a 559

data-efficient approach for improving VLM perfor- 560

mance on agentic tasks involving click prediction. 561

7 Conclusion 562

In this work, we introduced CoSyn, a framework 563

for generating synthetic data that significantly en- 564

hances VLM performance on text-rich image under- 565

standing. Our comprehensive analysis highlights 566

the advantages of synthetic data for domain gen- 567

eralization, data efficiency, and bias mitigation. 568

Our work demonstrates that the coding capabili- 569

ties of text-only LLMs can effectively assist multi- 570

modal learning and unleash the potential of vision- 571

language models for real-world applications. 572
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Limitation573

The effectiveness of synthetic data depends heav-574

ily on the quality and diversity of the prompts and575

rendering pipelines used for data generation. For576

highly specialized or underrepresented domains,577

generating sufficiently diverse data remains chal-578

lenging and may require careful prompt engineer-579

ing or additional customization of rendering tools.580

Targeted synthetic data generation may be essential581

for certain tasks to achieve adequate performance,582

and ensuring relevance and coverage still requires583

domain-specific expertise. Synthetic data also may584

not fully capture the complexity of real-world data585

in some scenarios. Therefore, improving the diver-586

sity and realism of synthetic data to better support587

models in highly variable or evolving domains is a588

reasonable avenue for future research. Finally, our589

current synthetic data is limited to English and may590

require further extension for multilingual support.591

Ethical Statement592

To the best of our knowledge, this work presents593

no significant ethical concerns. We note, however,594

that the use of synthetic data can propagate biases595

present in the generation model used. Conversely,596

synthetic data can also help mitigate biases and597

expand coverage, as demonstrated in this work, by598

greatly expanding the domains present in vision-599

language instruction-tuning training data to yield600

stronger generalized performance.601
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Cărbune, Jason Lin, Jindong Chen, and Abhanshu 628
Sharma. 2024. Screenai: A vision-language model 629
for ui and infographics understanding. Preprint, 630
arXiv:2402.04615. 631

Zechen Bai, Pichao Wang, Tianjun Xiao, Tong He, 632
Zongbo Han, Zheng Zhang, and Mike Zheng Shou. 633
2024. Hallucination of multimodal large language 634
models: A survey. arXiv preprint arXiv:2404.18930. 635

Lucas Beyer, Andreas Steiner, André Susano Pinto, 636
Alexander Kolesnikov, Xiao Wang, Daniel Salz, 637
Maxim Neumann, Ibrahim Alabdulmohsin, Michael 638
Tschannen, Emanuele Bugliarello, Thomas Un- 639
terthiner, Daniel Keysers, Skanda Koppula, Fangyu 640
Liu, Adam Grycner, Alexey Gritsenko, Neil Houlsby, 641
Manoj Kumar, Keran Rong, Julian Eisenschlos, 642
Rishabh Kabra, Matthias Bauer, Matko Bošn- 643
jak, Xi Chen, Matthias Minderer, Paul Voigtlaen- 644
der, Ioana Bica, Ivana Balazevic, Joan Puigcerver, 645
Pinelopi Papalampidi, Olivier Henaff, Xi Xiong, 646
Radu Soricut, Jeremiah Harmsen, and Xiaohua Zhai. 647
2024. PaliGemma: A versatile 3B VLM for transfer. 648
arXiv preprint arXiv:2407.07726. 649

Ali Furkan Biten, Ruben Tito, Andres Mafla, Lluis 650
Gomez, Marçal Rusinol, Ernest Valveny, CV Jawa- 651
har, and Dimosthenis Karatzas. 2019. Scene text 652
visual question answering. In ICCV. 653

Victor Carbune, Hassan Mansoor, Fangyu Liu, Rahul 654
Aralikatte, Gilles Baechler, Jindong Chen, and Ab- 655
hanshu Sharma. 2024a. Chart-based reasoning: 656
Transferring capabilities from llms to vlms. arXiv 657
preprint arXiv:2403.12596. 658

Victor Carbune, Hassan Mansoor, Fangyu Liu, Rahul 659
Aralikatte, Gilles Baechler, Jindong Chen, and Ab- 660
hanshu Sharma. 2024b. Chart-based reasoning: 661
Transferring capabilities from llms to vlms. arXiv 662
preprint arXiv:2403.12596. 663

Paola Cascante-Bonilla, Hui Wu, Letao Wang, Roge- 664
rio S Feris, and Vicente Ordonez. 2022. Simvqa: 665
Exploring simulated environments for visual ques- 666
tion answering. In Proceedings of the IEEE/CVF 667
Conference on Computer Vision and Pattern Recog- 668
nition, pages 5056–5066. 669

Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, 670
Yantao Li, Jianbing Zhang, and Zhiyong Wu. 2024. 671
Seeclick: Harnessing gui grounding for advanced 672
visual gui agents. Preprint, arXiv:2401.10935. 673

Matt Deitke, Christopher Clark, Sangho Lee, Rohun 674
Tripathi, Yue Yang, Jae Sung Park, Mohammadreza 675
Salehi, Niklas Muennighoff, Kyle Lo, Luca Soldaini, 676

9

https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://arxiv.org/abs/2402.04615
https://arxiv.org/abs/2402.04615
https://arxiv.org/abs/2402.04615
https://arxiv.org/abs/2401.10935
https://arxiv.org/abs/2401.10935
https://arxiv.org/abs/2401.10935


et al. 2024. Molmo and pixmo: Open weights and677
open data for state-of-the-art multimodal models.678
arXiv preprint arXiv:2409.17146.679

Tao Ge, Xin Chan, Xiaoyang Wang, Dian Yu, Haitao680
Mi, and Dong Yu. 2024. Scaling synthetic data681
creation with 1,000,000,000 personas. Preprint,682
arXiv:2406.20094.683

Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie,684
Cheng Chang, Yiheng Shu, Huan Sun, and Yu Su.685
2024. Navigating the digital world as humans do:686
Universal visual grounding for gui agents. arXiv687
preprint arXiv:2410.05243.688

Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv689
Batra, and Devi Parikh. 2017. Making the V in VQA690
matter: Elevating the role of image understanding691
in Visual Question Answering. In Conference on692
Computer Vision and Pattern Recognition (CVPR).693

Danna Gurari, Qing Li, Abigale J Stangl, Anhong Guo,694
Chi Lin, Kristen Grauman, Jiebo Luo, and Jeffrey P695
Bigham. 2018. Vizwiz grand challenge: Answering696
visual questions from blind people. In Proceedings of697
the IEEE conference on computer vision and pattern698
recognition, pages 3608–3617.699

Yucheng Han, Chi Zhang, Xin Chen, Xu Yang,700
Zhibin Wang, Gang Yu, Bin Fu, and Hanwang701
Zhang. 2023. Chartllama: A multimodal llm for702
chart understanding and generation. arXiv preprint703
arXiv:2311.16483.704

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng705
Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan Wang,706
Yuxiao Dong, Ming Ding, et al. 2024. Cogagent: A707
visual language model for gui agents. In Proceedings708
of the IEEE/CVF Conference on Computer Vision709
and Pattern Recognition, pages 14281–14290.710

Drew A Hudson and Christopher D Manning. 2019.711
Gqa: A new dataset for real-world visual reasoning712
and compositional question answering. In Proceed-713
ings of the IEEE/CVF conference on computer vision714
and pattern recognition, pages 6700–6709.715

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-716
sch, Chris Bamford, Devendra Singh Chaplot, Diego717
de las Casas, Florian Bressand, Gianna Lengyel, Guil-718
laume Lample, Lucile Saulnier, et al. 2023. Mistral719
7b. arXiv preprint arXiv:2310.06825.720

Justin Johnson, Bharath Hariharan, Laurens Van721
Der Maaten, Li Fei-Fei, C Lawrence Zitnick, and722
Ross Girshick. 2017. Clevr: A diagnostic dataset723
for compositional language and elementary visual724
reasoning. In Proceedings of the IEEE conference725
on computer vision and pattern recognition, pages726
2901–2910.727

Matthew Johnson-Roberson, Charles Barto, Rounak728
Mehta, Sharath Nittur Sridhar, Karl Rosaen, and Ram729
Vasudevan. 2017. Driving in the matrix: Can virtual730
worlds replace human-generated annotations for real731
world tasks? In 2017 IEEE International Conference732

on Robotics and Automation (ICRA), page 746–753. 733
IEEE Press. 734

Kushal Kafle, Brian Price, Scott Cohen, and Christopher 735
Kanan. 2018. DVQA: Understanding data visualiza- 736
tions via question answering. In CVPR. 737

Samira Ebrahimi Kahou, Vincent Michalski, Adam 738
Atkinson, Ákos Kádár, Adam Trischler, and Yoshua 739
Bengio. 2017. FigureQA: An annotated fig- 740
ure dataset for visual reasoning. arXiv preprint 741
arXiv:1710.07300. 742

Aniruddha Kembhavi, Mike Salvato, Eric Kolve, Min- 743
joon Seo, Hannaneh Hajishirzi, and Ali Farhadi. 744
2016. A diagram is worth a dozen images. In ECCV. 745

Yoonsik Kim, Moonbin Yim, and Ka Yeon Song. 2024. 746
Tablevqa-bench: A visual question answering bench- 747
mark on multiple table domains. arXiv preprint 748
arXiv:2404.19205. 749

Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, 750
Feng Li, Hao Zhang, Kaichen Zhang, Yanwei 751
Li, Ziwei Liu, and Chunyuan Li. 2024. LLaVA- 752
OneVision: Easy visual task transfer. arXiv preprint 753
arXiv:2408.03326. 754

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. 755
2023. Blip-2: Bootstrapping language-image pre- 756
training with frozen image encoders and large lan- 757
guage models. In International conference on ma- 758
chine learning, pages 19730–19742. PMLR. 759

Shengzhi Li and Nima Tajbakhsh. 2023. Scigraphqa: A 760
large-scale synthetic multi-turn question-answering 761
dataset for scientific graphs. arXiv preprint 762
arXiv:2308.03349. 763

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan 764
Zhang, Sheng Shen, and Yong Jae Lee. 2024. Llava- 765
next: Improved reasoning, ocr, and world knowledge. 766

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae 767
Lee. 2023. Visual instruction tuning. In NeurIPS. 768

Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai- 769
Wei Chang, Song-Chun Zhu, Oyvind Tafjord, Peter 770
Clark, and Ashwin Kalyan. 2022. Learn to explain: 771
Multimodal reasoning via thought chains for science 772
question answering. In NeurIPS. 773

Pan Lu, Liang Qiu, Kai-Wei Chang, Ying Nian Wu, 774
Song-Chun Zhu, Tanmay Rajpurohit, Peter Clark, 775
and Ashwin Kalyan. 2023. Dynamic prompt learning 776
via policy gradient for semi-structured mathematical 777
reasoning. In ICLR. 778

Kenneth Marino, Mohammad Rastegari, Ali Farhadi, 779
and Roozbeh Mottaghi. 2019. OK-VQA: A visual 780
question answering benchmark requiring external 781
knowledge. In CVPR. 782

Ahmed Masry, Do Long, Jia Qing Tan, Shafiq Joty, 783
and Enamul Hoque. 2022. ChartQA: A benchmark 784
for question answering about charts with visual and 785
logical reasoning. In ACL. 786

10

https://arxiv.org/abs/2406.20094
https://arxiv.org/abs/2406.20094
https://arxiv.org/abs/2406.20094
https://doi.org/10.1109/ICRA.2017.7989092
https://doi.org/10.1109/ICRA.2017.7989092
https://doi.org/10.1109/ICRA.2017.7989092
https://doi.org/10.1109/ICRA.2017.7989092
https://doi.org/10.1109/ICRA.2017.7989092
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/


Minesh Mathew, Viraj Bagal, Rubèn Tito, Dimosthenis787
Karatzas, Ernest Valveny, and CV Jawahar. 2022.788
InfographicVQA. In WACV.789

Minesh Mathew, Dimosthenis Karatzas, and CV Jawa-790
har. 2021. DocVQA: A dataset for VQA on docu-791
ment images. In WACV.792

Nitesh Methani, Pritha Ganguly, Mitesh M Khapra, and793
Pratyush Kumar. 2020. PlotQA: Reasoning over sci-794
entific plots. In WACV.795

Anand Mishra, Shashank Shekhar, Ajeet Kumar Singh,796
and Anirban Chakraborty. 2019. Ocr-vqa: Visual797
question answering by reading text in images. In798
ICDAR.799

Srija Mukhopadhyay, Adnan Qidwai, Aparna Garimella,800
Pritika Ramu, Vivek Gupta, and Dan Roth. 2024.801
Unraveling the truth: Do VLMs really understand802
charts? a deep dive into consistency and robustness.803
In Findings of the Association for Computational804
Linguistics: EMNLP 2024, pages 16696–16717, Mi-805
ami, Florida, USA. Association for Computational806
Linguistics.807

OpenAI. 2023. GPT-4 technical report. arXiv preprint808
arXiv:2303.08774.809

Ajay Patel, Colin Raffel, and Chris Callison-Burch.810
2024. DataDreamer: A tool for synthetic data gener-811
ation and reproducible LLM workflows. In Proceed-812
ings of the 62nd Annual Meeting of the Association813
for Computational Linguistics (Volume 1: Long Pa-814
pers), pages 3781–3799, Bangkok, Thailand. Associ-815
ation for Computational Linguistics.816

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya817
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-818
try, Amanda Askell, Pamela Mishkin, Jack Clark,819
Gretchen Krueger, and Ilya Sutskever. 2021. Learn-820
ing transferable visual models from natural language821
supervision. In ICML.822

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine823
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,824
Wei Li, and Peter J Liu. 2020. Exploring the lim-825
its of transfer learning with a unified text-to-text826
transformer. Journal of machine learning research,827
21(140):1–67.828

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.829
Know what you don’t know: Unanswerable ques-830
tions for SQuAD. In Proceedings of the 56th Annual831
Meeting of the Association for Computational Lin-832
guistics (Volume 2: Short Papers), pages 784–789,833
Melbourne, Australia. Association for Computational834
Linguistics.835

N Reimers. 2019. Sentence-bert: Sentence embed-836
dings using siamese bert-networks. arXiv preprint837
arXiv:1908.10084.838

Jonathan Roberts, Kai Han, Neil Houlsby, and Samuel839
Albanie. 2024. Scifibench: Benchmarking large mul-840
timodal models for scientific figure interpretation.841
arXiv preprint arXiv:2405.08807.842

Dustin Schwenk, Apoorv Khandelwal, Christopher 843
Clark, Kenneth Marino, and Roozbeh Mottaghi. 2022. 844
A-OKVQA: A benchmark for visual question answer- 845
ing using world knowledge. In ECCV. 846

Risa Shinoda, Kuniaki Saito, Shohei Tanaka, Tosho Hi- 847
rasawa, and Yoshitaka Ushiku. 2024. Sbs figures: 848
Pre-training figure qa from stage-by-stage synthe- 849
sized images. arXiv preprint arXiv:2412.17606. 850

Noah Siegel, Zachary Horvitz, Roie Levin, Santosh 851
Divvala, and Ali Farhadi. 2016. Figureseer: Parsing 852
result-figures in research papers. In Computer Vision– 853
ECCV 2016: 14th European Conference, Amsterdam, 854
The Netherlands, October 11–14, 2016, Proceedings, 855
Part VII 14, pages 664–680. Springer. 856

Amanpreet Singh, Vivek Natarjan, Meet Shah, Yu Jiang, 857
Xinlei Chen, Devi Parikh, and Marcus Rohrbach. 858
2019. Towards VQA models that can read. In CVPR. 859

Hrituraj Singh and Sumit Shekhar. 2020. Stl-cqa: 860
Structure-based transformers with localization and 861
encoding for chart question answering. In Proceed- 862
ings of the 2020 Conference on Empirical Methods 863
in Natural Language Processing (EMNLP), pages 864
3275–3284. 865

Zayne Sprague, Fangcong Yin, Juan Diego Rodriguez, 866
Dongwei Jiang, Manya Wadhwa, Prasann Singhal, 867
Xinyu Zhao, Xi Ye, Kyle Mahowald, and Greg Dur- 868
rett. 2024. To cot or not to cot? chain-of-thought 869
helps mainly on math and symbolic reasoning. arXiv 870
preprint arXiv:2409.12183. 871

Gemini Team. 2024. Gemini 1.5: Unlocking multi- 872
modal understanding across millions of tokens of 873
context. arXiv preprint arXiv:2403.05530. 874

Shengbang Tong, Ellis Brown, Penghao Wu, Sanghyun 875
Woo, Manoj Middepogu, Sai Charitha Akula, Jihan 876
Yang, Shusheng Yang, Adithya Iyer, Xichen Pan, 877
et al. 2024. Cambrian-1: A fully open, vision-centric 878
exploration of multimodal LLMs. In NeurIPS. 879

Maria Tsimpoukelli, Jacob L Menick, Serkan Cabi, 880
SM Eslami, Oriol Vinyals, and Felix Hill. 2021. Mul- 881
timodal few-shot learning with frozen language mod- 882
els. Advances in Neural Information Processing Sys- 883
tems, 34:200–212. 884

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 885
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, 886
et al. 2022. Chain-of-thought prompting elicits rea- 887
soning in large language models. Advances in neural 888
information processing systems, 35:24824–24837. 889

Renqiu Xia, Bo Zhang, Hancheng Ye, Xiangchao 890
Yan, Qi Liu, Hongbin Zhou, Zijun Chen, Min 891
Dou, Botian Shi, Junchi Yan, et al. 2024. Chartx 892
& chartvlm: A versatile benchmark and founda- 893
tion model for complicated chart reasoning. arXiv 894
preprint arXiv:2402.12185. 895

11

https://doi.org/10.18653/v1/2024.findings-emnlp.973
https://doi.org/10.18653/v1/2024.findings-emnlp.973
https://doi.org/10.18653/v1/2024.findings-emnlp.973
https://doi.org/10.18653/v1/2024.acl-long.208
https://doi.org/10.18653/v1/2024.acl-long.208
https://doi.org/10.18653/v1/2024.acl-long.208
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/P18-2124


Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan896
Li, Siheng Zhao, Ruisheng Cao, Toh Jing Hua, Zhou-897
jun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu,898
Yiheng Xu, Shuyan Zhou, Silvio Savarese, Caim-899
ing Xiong, Victor Zhong, and Tao Yu. 2024. Os-900
world: Benchmarking multimodal agents for open-901
ended tasks in real computer environments. Preprint,902
arXiv:2404.07972.903

Zhengzhuo Xu, Sinan Du, Yiyan Qi, Chengjin Xu, Chun904
Yuan, and Jian Guo. 2023. Chartbench: A bench-905
mark for complex visual reasoning in charts. arXiv906
preprint arXiv:2312.15915.907

Le Xue, Manli Shu, Anas Awadalla, Jun Wang, An Yan,908
Senthil Purushwalkam, Honglu Zhou, Viraj Prabhu,909
Yutong Dai, Michael S Ryoo, et al. 2024. xGen-MM910
(BLIP-3): A family of open large multimodal models.911
arXiv preprint arXiv:2408.08872.912

Yue Yu, Yuchen Zhuang, Jieyu Zhang, Yu Meng,913
Alexander Ratner, Ranjay Krishna, Jiaming Shen,914
and Chao Zhang. 2023. Large language model as915
attributed training data generator: A tale of diversity916
and bias. Preprint, arXiv:2306.15895.917

Jieyu Zhang, Le Xue, Linxin Song, Jun Wang, Weikai918
Huang, Manli Shu, An Yan, Zixian Ma, Juan Car-919
los Niebles, Caiming Xiong, et al. 2024. Provision:920
Programmatically scaling vision-centric instruction921
data for multimodal language models. arXiv preprint922
arXiv:2412.07012.923

12

https://arxiv.org/abs/2404.07972
https://arxiv.org/abs/2404.07972
https://arxiv.org/abs/2404.07972
https://arxiv.org/abs/2404.07972
https://arxiv.org/abs/2404.07972
https://arxiv.org/abs/2306.15895
https://arxiv.org/abs/2306.15895
https://arxiv.org/abs/2306.15895
https://arxiv.org/abs/2306.15895
https://arxiv.org/abs/2306.15895


A Implementation Details924

A.1 Prompts925

We provide the prompt templates in Figure 8 for926

the HTMLDocumentPipeline as an example to il-927

lustrate the prompts used across our code-guided928

synthetic data generation pipelines.929

Topic Generation: You are an expert in document generation and
have a broad knowledge of different topics.
My persona is: “PERSONA” I want you to generate NUM_TOPICS
topics for FIGURE_TYPE that I will be interested in or I may see
during my daily life given my persona.
Here are the requirements:
1. Each topic is a high-level summary of the contents in FIG-
URE_TYPE with some design details, e.g., "the utility bill for the
month of January 2022 with a detailed breakdown of charges".
2. The topics should be diverse to help me generate varied docu-
ments. Each topic should be unique and not overlap with others.
3. The topics are conditioned on the document type. Please ensure
the topics you provided can be best visualized in "FIGURE_TYPE".
4. All topics must be in English, even if the persona is non-English.
5. List NUM_TOPICS topics for "PERSONA" and separate them
with a | character, e.g., topic1 | topic2 | ...... | topicN.
Do not include any additional text at the beginning or end of your
response.

Data Generation: You are an expert in content creation and have
broad knowledge about various topics.
My persona is: "PERSONA" I need some materials about "TOPIC",
which can be used to generate a FIGURE_TYPE.
Here are the requirements:
1. The materials should be related to the topic and customized
according to my persona. Its structure must be suitable for the
FIGURE_TYPE.
2. The materials should be realistic, and the contents should be
named using real-world entities. Do not use placeholder names like
xxA, xxB, etc. Do not use template data like [Name], [Date], etc.
3. The materials should be diverse and contain information from
different aspects of the topic to ensure the document is informative.
4. Do not provide too many materials. Just provide key pieces of
information that are essential for a **one-page document.**
5. All materials must be in English, even if the persona is non-
English.
Please provide the materials in JSON format without additional text
at the beginning or end.

Code Generation: You are an expert web designer and are good
at writing HTML to create documents.
My persona is: "PERSONA" I have some materials about TOPIC
which can be used to generate a FIGURE_TYPE.
Here are the materials (JSON format):
<data> DATA </data>
Please use HTML and CSS to generate a FIGURE_TYPE using the
data provided.
Here are the requirements:
1. **Style Requirements**: Feel free to use any CSS framework,
libraries, JavaScript plugins, or other tools to create the document.
(1) Try to be creative and make the web page style, fonts, colors,
borders and visual layout unique with CSS. Taking persona, topic,
and document type into consideration when designing the docu-
ment.
(2) Select the appropriate design scale (e.g., margins, page size,
layout, etc) to ensure the information in the document is clear and
easy to understand, with no text overlapping, etc.
(3) **Do not make the page too long or too sparse.** All contents
should be in **one page**. This is very important.
2. **Code Requirements**:
(1) You need to hardcode the provided data into the HTML script to
generate the document. Be careful with the syntax and formatting
of the HTML.
(2) Put everything in one HTML file. Do not use external CSS or
JavaScript files.
3. **Output Requirements**: Put “‘html at the beginning and “‘ at the
end of the script to separate the code from the text.
Please don’t answer with any additional text in the script, your whole
response should be the HTML code which can be directly executed.

Instruction Generation: You are an expert in data analysis and
good at asking questions about documents. My persona is: "per-
sona" I want you to generate some question-answer pairs of a
FIGURE_TYPE about TOPIC, which I would ask. Instead of show-
ing the document, I provide the data and the code that generates
the document.
<data> DATA </data> <code> CODE </code>
Please come up with a list of *reasonable questions* that people will
ask when they see the rendered document. Here are the require-
ments:
1. **Question Types**: All questions should be short-answer ques-
tions that are answerable based on the visual information in the doc-
ument. All questions can be answered with a single word, phrase,
or number. (as short as possible)
(1) **Information Retrieval questions** ask for specific information
in the document, such as numbers, names, dates, titles, etc. The
questions should cover different aspects (areas) of the document.
This is the most common type of question.
(2) **Reasoning questions** require reasoning over multiple informa-
tion in the document. These questions should be more challenging
and require a deeper understanding of the document.
(3) **Document Type-specific questions** are questions that are
specific and unique to this document type FIGURE_TYPE. These
questions should be tailored to the content and structure of the
document.
2. **Response Format**: Use | to separate the question, explanation,
and concise answer for each example.
(1) Follow this format: question | explanation | concise answer, e.g.,
what is the total revenue? | The total revenue is the sum of all
revenue sources in the document, which is $2000 + $3000 + $5000
= $10000. | $10000
(2) Separate the question-answer pairs by double newlines. ques-
tion1 | explanation1 | answer1
question2 | explanation2 | answer2...
(3) Do not provide too many questions, 5-10 questions are enough.
Focus on the diversity and quality of the questions. Try to cover
different aspects of the document.
(4) The concise answer should be as short as possible and directly
answer the question. The answer should be faithful and exactly
the same as what you would expect to see in the document, don’t
rephrase it. All words in the answer should be processed in natural
language, no coding terms/characters.
Please follow the format strictly and do not include any additional
text at the beginning or end of your response.

Figure 8: Prompt templates used for HTML Document
Pipeline, including all four stages of generation: topic,
data, code, and instruction.

A.2 Rendering Tools and Pipelines 930

We design 20 generation pipelines built on 11 ren- 931

dering tools to support the creation of nine cate- 932

gories of text-rich images:(1) Charts: Matplotlib 933

VegaLite, Plotly, LaTeX, HTML; (2) Documents: 934

LaTeX, HTML; (3) Tables: LaTeX, Matplotlib, 935

Plotly, HTML; (4) Diagrams: Graphviz, LaTeX, 936

Mermaid; (5) Math Problems: LaTeX; (6) Vector 937

Graphics: SVG, Asymptote; (7) Music Sheets: 938

LilyPond; (8) Electrical Circuits: LaTeX; (9) 939

Chemical Structures: Rdkit. In addition, we im- 940

plement a separate pipeline for generating pointing 941

data using HTML as the rendering tool. 942

A.3 Queries to Construct CoSyn-400K 943

Since CoSyn accepts textual queries to control data 944

generation, we use a diverse set of queries for each 945

type of text-rich image to ensure broad domain 946

coverage. Below are some examples of the queries 947

used to generate CoSyn-400K: 948

13



• Charts: Bar, Line, Pie, Diverge bar, Bubble,949

Scatter, Histogram, Area, Box plot, Heatmap, Er-950

ror bar, Radar chart, Rose chart, Stem plot, Stairs951

plot, Violin chart, 2D contour, Distplots, Log952

plot, Ternary plots/contour, Candlestick charts,953

Time series, etc. (51 queries in total)954

• Documents: Letter, Form, Report, Receipt,955

Invoice, Restaurant menu, Newsletter, Sched-956

ule, Manual, Brochure, Transaction document,957

Agenda, Memo, Financial report, Telephone958

records, Note, Budget, Meeting minutes, Bill,959

Catalog, Email, Fax, Policy document, Resume,960

Infographics, Process infographic, Statistical in-961

fographic, etc. (107 queries in total)962

• Math Problems: Algebra, Counting, Probability,963

Geometry, Number theory, Precalculus, Prealge-964

bra, Intermediate Algebra, Statistics, Functions,965

Complex numbers, Logarithms, Inequalities, Lin-966

ear equations, Exponents, Series, College Alge-967

bra, Calculus, Advanced calculus, Linear algebra,968

Solid geometry, Analytic geometry, Polynomial969

arithmetic, etc. (110 queries in total)970

• Tables: Financial table, Simple table, Pivot table,971

Comparison table, Timeline table, Decision table,972

Truth table, Lookup table, Periodic table, Statis-973

tical table, Timetable, Hierarchical table, Matrix974

table, Contingency table, Logarithmic table, Cor-975

relation table, etc. (35 queries in total)976

• Diagrams: Flow chart, Directed graph, Undi-977

rected graph, Decision tree, Mind map, Gantt978

charts, Finite state machine, Quadrant chart,979

Chord diagrams, Network diagrams, Sankey di-980

agram, Entity relationship diagram, Sequence981

diagrams, Bottom-up flow chart, Timeline, State982

diagram, Concept map, Family tree, Program-983

ming flowchart, etc. (34 queries in total)984

• Vector Graphics: Visual intelligence test, Spa-985

tial intelligence test, Geometry, Solid geom-986

etry, Analytic geometry, Polynomial graphs,987

Trigonometry, Polar coordinates, Coordinate sys-988

tem, Topology, Graph theory, Plane geometry,989

Functions, Calculus, Vectors, Angles, Perimeter990

and area problems, etc. (36 queries in total)991

• Sheet Music: Classical, Pop, Rock, Jazz,992

Blues, Hip Hop, Rap, Electronic, Country, Folk,993

Rhythm and blues, Soul, Reggae, Metal, Punk,994

Theme, Dance, etc. (34 queries in total)995

• Electrical Circuits: Series, Parallel, Hybrid,996

Household appliances, Industrial appliances, Mo-997

bile device, Low-power appliances, High-power998

appliances, etc. (30 queries in total)999

• Chemical Structures: Drug, Organic, Inor-1000

ganic, Protein, Acids, Bases, Gases, Liquids, 1001

Solids, Oxidizers, Flammable liquids, Toxic 1002

chemicals, Hazardous chemicals, Aromatic com- 1003

pounds, Aliphatic compounds, Polymers, Metals, 1004

Alloys, Electrolytes, etc. (100 queries in total) 1005

A.4 Academic Datasets 1006

During the supervised fine-tuning stage, we in- 1007

clude academic datasets in addition to our synthetic 1008

datasets. Below, we provide details on the size of 1009

these datasets and the evaluation metrics used. 1010

Dataset Size. The number in parentheses indicates 1011

the number of training images for each dataset: 1012

ChartQA (28.3K), DocVQA (39.5K), Infograph- 1013

icVQA (23.9K), AI2 Diagrams (11.4K), TextVQA 1014

(34.6K), VQAv2 (82.8K), GQA (72.1K), OK-VQA 1015

(9.0K), OCR-VQA (166.0K), A-OKVQA (17.1K), 1016

ScienceQA (6.2K), TabMWP (23.1K), ST-VQA 1017

(18.9K), TallyQA (133.0K), DVQA (200.0K), Fig- 1018

ureQA (100.0K), PlotQA (160.0K). We downsam- 1019

ple some very large synthetic datasets, such as 1020

DVQA, FigureQA, and PlotQA, to balance the 1021

dataset size. In total, we use approximately 1.1M 1022

images from academic datasets. 1023

Evaluation Metrics. We adopt their official evalu- 1024

ation metrics for the seven text-rich datasets. For 1025

ChartQA, we use relaxed correctness, which al- 1026

lows a 5% difference for float number answers. 1027

For DocQA and InfoQA, we report Average 1028

Normalized Levenshtein Similarity (ANLS). For 1029

TableVQA, we report the average performance 1030

across the four subsets (VTabFact, VWTQ, VWTQ- 1031

Syn, FinTabNetQA) using the metrics provided 1032

in this repo. We report the multiple choice accu- 1033

racy for AI2D, VQA score (Goyal et al., 2017) for 1034

TextVQA, and SQuAD F1 score (Rajpurkar et al., 1035

2018) for ScreenQA. 1036

A.5 Training Details 1037

Image Preprocessing. We adopt the same im- 1038

age preprocessing as Molmo (Deitke et al., 2024), 1039

where each input image is cropped into multiple 1040

overlapping crops before being encoded by CLIP. 1041

During training, we limit the maximum number of 1042

crops to 12, but we increase it to 25 at testing time 1043

to accommodate the high resolution of text-rich 1044

images. This strategy boosts the inference perfor- 1045

mance without increasing training costs. 1046

Hyper Parameters. We set the maximum se- 1047

quence length for training is 2304 tokens. We use 1048

the same learning rate of 1e-6 for the MLP con- 1049
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nector, LLM, and visual encoder, with batch size1050

32. The best-performing model is trained for 60K1051

steps with 200 warm-up steps and a cosine sched-1052

uler with an end factor of 0.1. All experiments are1053

run on a single TPU v3-128.1054

B Additional Analysis1055

We conduct additional analyses below to investi-1056

gate further why our synthetic data can effectively1057

enhance vision-language models.1058

Our synthetic data is more diverse. To quantify1059

the diversity of images and text in our synthetic1060

dataset D =
{
(I, T )

}
, we propose the following1061

two metrics to compute the diversity:1062

Diversity(D)Image =
1

|D|2−|D|
∑

Ii∈D
∑i ̸=j

Ij∈D
(
1− sim(Ii, Ij)

) (1)1063

1064

Diversity(D)Text =
1

|D|2−|D|
∑

Ti∈D
∑i ̸=j

Tj∈D
(
1− sim(Ti, Tj)

) (2)1065

where sim(·) is the cosine similarity function. Both1066

metrics compute the average pairwise cosine dis-1067

tance between the features of every instance in1068

the dataset. For image diversity, we extract fea-1069

tures using CLIP, while for text diversity, we use1070

Sentence-BERT (Reimers, 2019) to obtain embed-1071

dings of question-answer pairs. Table 4 shows that1072

our synthetic charts are significantly more diverse1073

than those in existing datasets, such as FigureQA1074

and ChartQA, in both image and text diversity.1075

Dataset Image Diversity Text Diversity

FigureQA 0.268 0.567
DVQA 0.307 0.752
PlotQA 0.420 0.743
ChartQA 0.340 0.742
Ours (Charts) 0.596 0.823

Table 4: Compare image and text diversity across
different chart datasets. We randomly sample 10K
instances from each dataset to compute the results.

Diversity correlates with model performance.1076

We observe that data diversity significantly affects1077

model performance on downstream tasks. To in-1078

vestigate this, we compare synthetic chart data gen-1079

erated using only a single tool (Matplotlib) with1080

charts generated by all five tools available in our1081

CoSyn system. As shown in Table 5, using multiple1082

tools results in higher image diversity and notably1083

improved performance on ChartQA. This experi-1084

ment underscores the importance of data diversity1085

for enhancing the generalizability of models.1086

n. of Tools Diversity ChartQA

Average Machine Human

Single 0.572 73.9 66.5 81.5
Multiple 0.607 75.2 68.6 82.0

Table 5: Single vs. Multiple Rendering Tools for Data
Generation. Each row uses the same number of 45K
synthetic images. Single only uses Matplotlib, while
Multiple involves four other rendering tools: HTML,
LaTex, Plotly, and VegaLite.
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Figure 9: Scaling the Size of Synthetic Data. We eval-
uate the zero-shot performance on ChartQA of models
fine-tuned on increasing numbers of synthetic images.

Scaling the size of synthetic data. In addition 1087

to diversity, the scale of synthetic data also im- 1088

pacts model performance. As shown in Figure 9, 1089

increasing the number of synthetic chart images 1090

leads to improved performance on ChartQA. This 1091

demonstrates that scaling up synthetic data can fur- 1092

ther enhance VLMs on downstream tasks. Due to 1093

resource constraints, our final dataset consists of 1094

400K images, which cost us about $8,000. Future 1095

work could explore scaling up the dataset size to 1096

push the boundaries of synthetic data’s potential. 1097

LLM for Data Generation ChartQA

Average Machine Human

GPT-4o 72.4 65.8 78.9
Claude-3.5-sonnet 77.2 71.0 83.8

Table 8: Compare the LLMs used for synthetic data
generation. For both LLMs, we create 100K synthetic
charts for fine-tuning the VLMs. We report the zero-
shot evaluation results on ChartQA.

Compare LLMs for synthetic data generation. 1098

In the default setting, CoSyn uses Claude-3.5- 1099

sonnet as the underlying LLM for code generation. 1100

To highlight the importance of strong coding ca- 1101

pabilities, we compare it with data generated by 1102

GPT-4o. As shown in Table 8, synthetic data gen- 1103

erated by Claude-3.5-sonnet yields significantly 1104
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Prompt Type ChartQA DocVQA InfoVQA TableVQA AI2D TextVQA ScreenQA NutritionQA

CoT 86.3 87.4 63.8 65.8 86.0 70.9 79.0 76.0
Short Answer 83.1 90.0 70.5 64.3 91.9 82.0 80.1 62.0

Table 6: Alation of using chain-of-thought (CoT) in prompts. CoT means letting the model provide reasoning
steps before giving the final answer. Short Answer prompts the model to answer with as few words as possible.

FT Data ChartQA DocVQA InfoVQA TableVQA† AI2D TextVQA ScreenQA† Average

Aux only∗ 60.7 56.2 39.7 43.1 81.7 68.5 61.3 58.7
Syn only∗ 79.4 80.5 60.1 64.4 68.6 63.6 76.6 70.5
Aux + Syn∗ 80.8 82.9 59.8 64.9 83.9 72.7 78.1 74.7

Eval only 77.4 87.4 63.8 51.8 91.3 81.1 78.1 75.9
Eval + Aux 81.4 87.9 68.2 53.6 91.6 81.8 77.0 77.3
Eval + Aux + Syn 86.3 90.0 70.5 65.8 91.9 82.0 80.1 80.9

Table 7: Alation of the data selection for supervised fine-tuning. Aux, Syn, and Eval stand for auxiliary, synthetic,
and evaluation datasets, respectively. The rows with ∗ represent zero-shot models (without using any training
examples from any of the evaluation datasets). The datasets with † are test-only datasets (no training splits), which
means all numbers on these datasets are zero-shot performance.

better results than GPT-4o. Our qualitative observa-1105

tion reveals that GPT-4o has a higher failure rate in1106

code generation, particularly for less common cod-1107

ing languages or libraries. This result emphasizes1108

that a strong LLM is essential for the successful1109

synthetic data generation for VLMs.1110

Quantify the contributions of synthetic data. Ta-1111

ble 7 presents the performance across benchmarks1112

using different combinations of supervised fine-1113

tuning data. A clear trend shows that synthetic1114

data significantly contributes in both zero-shot and1115

supervised settings. Adding our synthetic data con-1116

sistently boosts performance on each benchmark.1117

The impact of Chain-of-thought reasoning. We1118

compare the performance of CoT and short-answer1119

prompts in Table 6. CoT reasoning improves perfor-1120

mance on ChartQA, TableVQA, and NutritionQA,1121

where questions require multi-hop and mathemat-1122

ical reasoning that aligns with the findings in lan-1123

guage tasks (Sprague et al., 2024). However, short-1124

answer prompts yield better results for the other1125

five datasets due to their annotation biases favoring1126

concise responses. CoT responses tend to be more1127

verbose, which may not match the ground-truth1128

answers exactly, resulting in a performance drop.1129

Document Pointing Task. To further validate1130

the effectiveness of our synthetic pointing data,1131

we introduce DocPointQA, a new pointing task1132

with 300 question-point pairs annotated from the1133

DocVQA validation set (Figure 11). We compare1134

models trained on human-annotated PixMo-point1135

data (155K examples), our synthetic pointing data1136

(65K examples), and their combination. Since1137

DocPointQA requires multiple-point answers, we 1138

report precision, recall, F1 score, and L2 dis- 1139

tance (lower is better) after mapping predicted 1140

points to ground truth, following the same setup 1141

as Molmo (Deitke et al., 2024). As shown in Ta- 1142

ble 9, the model trained on our synthetic data out- 1143

performs the one trained on PixMo-point. Perfor- 1144

mance improves even further when both datasets 1145

are combined, demonstrating the effectiveness of 1146

synthetic data in enhancing the pointing capabili- 1147

ties of vision-language models. 1148

Pointing Data Precision Recall F1 Distance ↓

PixMo-point 49.7 49.3 52.7 17.3

Synthetic (Ours) 63.8 66.1 62.8 9.2
Combined (Ours) 69.9 70.6 70.7 8.8

Table 9: Zero-shot Pointing on DocPointQA. We
compare the models trained on different pointing data.
Combined stands for combining PixMo-point (human-
annotated) (Deitke et al., 2024) with our synthetic data.

C Qualitative Examples 1149

Figure 10 and 11 show the examples from our an- 1150

notated NutritionQA and DocPointQA. Figures 12 1151

- 18 list examples from the 9 categories of synthetic 1152

text-rich images. Figure 19 illustrates examples 1153

from the synthetic pointing dataset. 1154

Use Of AI Assistants. We use AI to fix some typos 1155

and grammar. Authors write all contents. 1156
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Q: How many servings do I need to fulfill 

the daily value of Cholesterol? A: 2.

Q: I have taken 1000mg of sodium 

today. Can I eat this without exceeding 

the suggested daily value? A: No.

Q: How many capsules per 

container? A: 56.

Figure 10: Examples from our newly collected NutritionQA dataset.

Q: Help me find the total of owned 

and leased quota pounds. Q: Show me the total computed postage.

Q: Point out the total unsatisfactory hemoglobin 

levels for both males and females aged 13-16.

Figure 11: Examples from our newly collected DocPointQA dataset.

Q: Which neighborhood has the highest 

insurance premium? A: Malibu.

Q: Which land type has the smallest 

percentage of available land for 

development? A: Industrial Zones.

Q: How did the unemployment 

rates in the UK and EU compare 

in 2005? A: EU had higher.

Figure 12: Randomly selected examples from our synthetic chart data.
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Q: What is the 

total monthly 

budget for the 

marketing 

initiatives?

A: $2,700.

Q: What is 

the first 

step in the 

checklist? 

A: Initial 

Detection.

Q: What is one key 

indicator used in 

rehabilitation 

programs?

A: Recidivism rates

Figure 13: Randomly selected examples from our synthetic document data.

Q: Which year had the lowest sales for 

Interior Trim? A: 2020

Q: Which month had the highest customer 

foot traffic? A: December.

Q: What is the status of of 

Château de Chambord? 

A: Excellent.

Figure 14: Randomly selected examples from our synthetic table data.

Q: Give your solution to this math problem.

A: $a = 1$

Q: Can you 

answer this 

question?

A: 2

Figure 15: Randomly selected examples from our synthetic math data.
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Q: What steps are involved immediately 

before making a prediction?

A: Model Training and Prediction.

Q: What is the final outcome of the process illustrated 

in the diagram? A: Sleep Stage Classification.

Q: Which safety practice involves emergency 

contacts? A: Emergency Contacts.

Figure 16: Randomly selected examples from our synthetic diagram data.

Q: You estimate its height to be 100 meters and its base 

radius to be 150 meters. What is the volume of this 

volcanic cone in cm^3? A: $750,000\pi$ cm^3.

Q: What is the shortest total distance to 

visit all four stores, starting and ending at 

Store A? A: 23.48 units

Q: The turn has a angle of 33°, and the width of the track 

is 58 feet. What is the height difference between the 

inside and outside edges of the track? A: 38 feet

Figure 17: Randomly selected examples from our synthetic vector graphic data.

Q: What is the key 

signature of this music?

A: E major.
Q: What is the 

voltage of this 

circuit? A: 120V.

Q: What is the main use of 

menthol in throat lozenges?

A: Soothing effect.

Figure 18: Randomly selected examples from our synthetic sheet music, circuits and chemical structures.
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Q: Point out the page load 

time performance of the 

website, which indicates the 

site's speed optimization

A: (64.1, 73.7)

Q: Generate points for all issues where 

opposition exceeds 60%. 

A: (56.2, 61.1) (56.2, 81.4)

Q: Provide a point where users can toggle 

event notifications. A: (35.7, 76.9)

Q: Identify which logo represents FC 

Rosengård in this match. A: (22.1, 56.2)

Q: Point out the main title of the book. 

A: (50.0, 10.9)

Q: Highlight all services 

that cost more than $30. 

A: (88.7, 54.6) (88.6, 61.1)

Q: Show me the pasta icon 

for the Italian dish. 

A: (15.0, 26.3)

Q: Find Michael Jackson songs that are longer 

than 4 minutes. A: (9.8, 12.7) (9.8, 26.4)

Q: Point the button to submit application for the 

Senior Financial Data Analyst. A: (32.8, 25.5)

Figure 19: Randomly selected examples from our synthetic pointing data.
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