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Abstract

To improve the performance of the dual-001
encoder retriever, one effective approach is002
knowledge distillation from the cross-encoder003
ranker. Existing works prepare training in-004
stances by pairing each query with one positive005
and a batch of negatives. However, most hard006
negatives mined by advanced dense retrieval007
methods are still too trivial for the teacher to008
distinguish, preventing the teacher from trans-009
ferring abundant dark knowledge to the student010
through its soft label. To alleviate this issue, we011
propose ADAM, a knowledge distillation frame-012
work that can better transfer the dark knowl-013
edge held in the teacher with Adaptive Dark014
exAMples. Different from previous works that015
only rely on one positive and hard negatives as016
candidate passages, we create dark examples017
that all have moderate relevance to the query018
by strengthening negatives and masking posi-019
tives in the discrete space. Furthermore, as the020
quality of knowledge held in different training021
instances varies as measured by the teacher’s022
confidence score, we propose a self-paced dis-023
tillation strategy that adaptively concentrates024
on a subset of high-quality instances to conduct025
our dark-example-based knowledge distillation026
to help the student learn better. We conduct027
experiments on two widely-used benchmarks028
and verify the effectiveness of our method.029

1 Introduction030

Information retrieval (IR) that aims to identify rel-031

evant passages for a given query is an important032

topic for both academic and industrial areas, and033

has powered many downstream tasks such as open-034

domain QA (Chen et al., 2017) and knowledge-035

grounded conversation (Dinan et al., 2018). Typi-036

cally, IR systems usually follow the retrieve-and-037

re-rank paradigm (Hofstätter et al., 2020; Huang038

et al., 2020; Zou et al., 2021) where a fast retriever039

first retrieved a bundle of relevant passages from040

a large-scale corpus through pre-built indices and041
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Figure 1: Distributions of the prediction for the cross-
encoder of R2anker (Zhou et al., 2023) over MS-
MARCO. POS and NEG mean the distribution of posi-
tive and hard negatives respectively. The hard negatives
are provided by RocketQAv2 (Ren et al., 2021c).

then a more sophisticated ranker comes to re-rank 042

these candidate passages to further obtain more 043

accurate retrieval results. 044

Under this paradigm, recent years have wit- 045

nessed a growing number of works that utilize 046

pre-trained language models (PLMs) (Qu et al., 047

2021; Gao and Callan, 2021b) as retrievers and 048

rankers to build IR systems. Among these ef- 049

forts, there are two commonly adopted architec- 050

tures: cross-encoder (Devlin et al., 2019a) that 051

measure the relevance of a query-passage pair 052

through jointly modeling their deep interactions; 053

dual-encoder (Karpukhin et al., 2020; Qu et al., 054

2021) that encodes queries and passages separately 055

into dense representations and calculate the sim- 056

ilarity. Although dual-encoders are efficient for 057

billions of indices, they suffer from inferior perfor- 058

mance compared with cross-encoders since they 059

can’t capture the fine-grained semantic relevance 060

between the query and the passage due to the ab- 061

sence of their deep interactions (Luan et al., 2021a). 062

To help dual-encoders achieve better retrieval per- 063

formance, a common practice is to draw on the 064

powerful but cumbersome cross-encoder through 065

knowledge distillation (Yang et al., 2020; Zhang 066

et al., 2022; Ren et al., 2021c; Zeng et al., 2022; Lin 067

et al., 2023). Along this line of research, various 068

techniques are proposed to improve the knowledge 069
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transfer including data curriculum (Lin et al., 2023;070

Zeng et al., 2022), on-the-fly distillation (Zhang071

et al., 2022; Ren et al., 2021c) and new distillation072

objectives (Lu et al., 2022; Menon et al., 2022).073

Though effective, we argue that existing dense074

retrieval distillation methods may not fully exploit075

the dark knowledge deeply held by the teacher.076

In knowledge distillation (Xu et al., 2018; Lin077

et al., 2023), the student learns not just the highest-078

scored class from the soft labels provided by the079

teacher, but also the entire probability distribution080

over classes, as this contains comprehensive fine-081

grained information referred to as "dark knowl-082

edge". However, we empirically find that for ex-083

isting distillation methods, the soft labels (i.e., the084

probability distributions over one positive and mul-085

tiple negatives for a query) given by the teacher are086

too “sharp”, despite they already adopted hard neg-087

atives (Ren et al., 2021c). As illustrated in Figure 1,088

we draw the score distributions of the positive and089

negative pairs using a pre-trained cross-encoder090

teacher. It can be observed that the scores for most091

hard negatives are quite low (concentrated in (-7.5,092

-2.5)) and distributed far from the positives that093

have high scores. A similar observation is also094

drawn by Menon et al. (2022). This phenomenon095

indicates that even the hard negatives mined by the096

dense retriever are still too trivial for a well-trained097

cross-encoder teacher to distinguish, losing most098

of the utile dark knowledge.099

To alleviate this issue, we propose ADAM, a100

knowledge distillation framework that can better101

exploit dark knowledge deeply held in the teacher102

by distillation with adaptive dark examples. Our103

method originated from the intuition that a good104

soft label for the retriever to learn should be more105

smooth, which implies that the provided query-106

passage pairs should diversely distribute from107

highly-relevant pairs to loosely-relevant pairs from108

the view of the teacher. To fill the gap between109

highly-relevant pairs and loosely-relevant pairs ex-110

isting in current negative sampling methods, we111

propose two approaches to construct dark exam-112

ples that all have moderate relevance to the query.113

The first approach is to make negatives more rel-114

evant to the query by strengthening the negatives115

with the positive passage. The second approach is116

to make positives less relevant to the query by re-117

placing some randomly selected tokens with mask118

tokens. Considering that the newly created pas-119

sages have moderate relevance to the query, we120

believe it is more appropriate to call them dark121

examples instead of negatives. With these dark 122

examples added, we successfully make the score 123

distribution smoother as shown in Figure 3(b), so 124

that we can transfer more useful dark knowledge 125

from the teacher. Moreover, since the soft label 126

for different query-positive-negatives have differ- 127

ent “sharpness” which we consider as an indication 128

of how well the dark knowledge has been exploited, 129

we further propose a self-paced distillation strategy 130

that adaptively selects those examples whose soft 131

labels are sharp to conduct our dark-example-based 132

distillation to better transfer the dark knowledge. 133

We conduct experiments on two benchmarks, in- 134

cluding MS-MARCO (Nguyen et al., 2016) and 135

TREC Deep Learning 2019 (Craswell et al., 2020). 136

In both benchmarks, the model is required to select 137

the best response from a candidate pool. Evalua- 138

tion results indicate that our method is significantly 139

better than existing models on two benchmarks. We 140

will release all codes for the easy reproduction. To 141

sum up, our contributions is three-fold: 142

• Propose to augment dark examples including 143

reinforced negatives and noisy positives for 144

more effective knowledge distillation in IR; 145

• Propose to adaptively concentrate on high- 146

confidence training instances to better transfer 147

knowledge; 148

• Empirical verify of the effectiveness of the 149

proposed approach on two public datasets. 150

2 Related Works 151

There are two lines of research related to our work: 152

dense retriever and knowledge distillation. 153

Dense Retriever. To overcome the vocabu- 154

lary and semantic mismatch problems exist- 155

ing in conventional term-based approaches such 156

as BM25 (Robertson and Zaragoza, 2009), re- 157

searchers began to build neural retrievers upon 158

pre-trained language models (Devlin et al., 2019b; 159

Liu et al., 2019). In this way, the whole input 160

text can be represented as a dense vector in a low- 161

dimensional space (e.g., 768) and efficient retrieval 162

can be achieved by approximate nearest neighbor 163

search (ANN) algorithms such as FAISS (Johnson 164

et al., 2019). To learn a good dense retriever, vari- 165

ous attempts have been made including hard neg- 166

ative mining (Karpukhin et al., 2020; Luan et al., 167

2021a; Qu et al., 2021; Xiong et al., 2021; Zhan 168

et al., 2021a), retrieval-oriented pre-training (Lee 169

et al., 2019; Gao and Callan, 2021a,b), knowledge 170

distillation (Ren et al., 2021c; Zhang et al., 2022; 171

2



Lu et al., 2022), etc. We mainly focus on knowl-172

edge distillation in this paper.173

Knowledge Distillation. Knowledge distilla-174

tion (Hinton et al., 2015) aims to transfer the knowl-175

edge from a powerful teacher model to a student176

model to help it learn better. To achieve this goal,177

the student model is provided with the teacher’s out-178

puts as the supervision signal that it is enforced to179

mimic. There are multiple types of supervision sig-180

nals for the student to learn, including the teacher’s181

output logits (Hinton et al., 2015), intermediate182

representations (Romero et al., 2014), relations of183

representations (Park et al., 2019), etc. In the con-184

text of dense retrieval distillation, researchers ba-185

sically adopt the cross-encoder as the teacher and186

use the teacher’s probability distribution over can-187

didate passages as the supervision signal. On this188

basis, several studies (Ren et al., 2021c; Zhang189

et al., 2022; Lu et al., 2022) explored on-the-fly190

distillation to jointly optimize the teacher and the191

student, Zeng et al. (2022) and Lin et al. (2023)192

combined knowledge distillation with curriculum193

strategies to gradually improve the student. Dif-194

ferent from existing work, we focus on the quality195

of knowledge held in the teacher’s soft label and196

propose to distill with adaptive dark examples to197

better transfer the dark knowledge to the student.198

3 Methodology199

In this section, we first introduce the preliminar-200

ies in dense retrieval distillation, then present our201

dark example augmentation method and adaptive202

distillation with dynamic data selection.203

3.1 Preliminary204

Task Description In this work, we study the205

learning of the dense retriever following the gen-206

eral setting of dense retrieval in existing work (Qu207

et al., 2021; Ren et al., 2021c; Zhang et al., 2022).208

Formally, there is a training set D = {(qi,Pi)}ni=1209

where qi is the query and Pi is the set of candidate210

passages. Commonly, Pi consists of a positive pas-211

sage p+i and m negative passages P−
i = {p−i,j}mj=1212

constructed by random negative sampling (Hen-213

derson et al., 2017; Gillick et al., 2018) or hard214

negative mining (Xiong et al., 2020; Karpukhin215

et al., 2020; Qu et al., 2021). Based on D, we aim216

to learn a retriever that can select the most relevant217

passage from the whole candidate pool.218

Dual-Encoders A typical text retrieval system219

adopts the retrieve-and-rank paradigm, where the220

retriever is responsible for collecting a bubble of 221

candidate passages and the ranker further re-ranks 222

them. Considering the trade-off between efficiency 223

and accuracy, dual-encoders (DE) (Karpukhin et al., 224

2020; Luan et al., 2021a; Qu et al., 2021) are of- 225

ten chosen as the retriever while cross-encoders 226

(DE) (Devlin et al., 2019b) are usually adopted as 227

the ranker.1 228

The dual-encoder-based retriever Encde is re- 229

sponsible for encoding the given query qi and each 230

of the candidate passage pj into dense vectors 231

Encde(qi), Encde(pj) ∈ Rh. Then the relevance 232

score for qi and pj is simply calculated as the inner 233

product of their representations: 234

Rde(qi, pj) = Encde(qi)
⊤ · Encde(pj). (1) 235

To fulfill this goal, the retriever is typically trained 236

with supervised contrastive loss: 237

Lsup = − log
expRde(qi,p

+
i )

expRde(qi,p
+
i )+

∑
p−i,j∈P

−
i

expRde(qi,p
−
i,j)

. 238

Cross-Encoders The cross-encoder ranker Encce 239

is in charge of calculating the matching score of qi 240

and pj more accurately as it can model their fine- 241

grained interactions, and re-ranking the retrieved 242

candidate passages provided by the retriever to 243

improve the retrieval results. Concretely, given 244

a query qi and a passage pj , the input is formed as 245

the concatenation of q and p with [CLS] in the be- 246

ginning and [SEP] as their separation and is fed into 247

transformer (Vaswani et al., 2017). The represen- 248

tation of [CLS] in the top layer is used to calculate 249

the relevance score with a projection head f(·): 250

Rce(qi, pj) = f(Encce([CLS], qi, [SEP], pj)). (2) 251

Knowledge Distillation in IR As cross-encoders 252

are more capable of measuring the relevance of 253

qi and pj than dual-encoders but at a cost of com- 254

putational inefficiency, it’s promising to transfer 255

the knowledge from the strong cross-encoders to 256

the weak dual-encoders through knowledge distil- 257

lation (Zhang et al., 2022; Ren et al., 2021c; Zeng 258

et al., 2022; Lu et al., 2022; Lin et al., 2023). In 259

dense retrieval distillation, as both the positive pas- 260

sage p+i and the negatives P−
i can be treated uni- 261

formly, we use Pi = {p+i } ∪ P−
i to denote the 262

whole candidate set of passages. The relevance 263

1We will use retriever and dual-encoder interchangeably.
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Figure 2: Illustration of dark examples. The solid rectan-
gle and triangles mean the gold passage and the negative
passages respectively. Dotted rectangles and circles de-
note noisy positives and mixed samples respectively.

score of qi and each pj ∈ Pi can be calculated264

using a dual-encoder Encde and a cross encoder265

Encce using Eq. 1 and Eq. 2. Then, the probability266

distributions over candidate passages of the dual-267

encoder and the cross-encoder pde,i,pce,i ∈ R|Pi|268

are calculated by normalizing the relevance scores269

over Pi, where each element is calculated as:270

R̂j
de,i =

expRde(qi,pj)∑
pk∈Pi

eRde(qi,pk)

R̂j
ce,i =

expRce(qi,pj)∑
pk∈Pi

expRce(qi,pk)
.

(3)271

To distill the knowledge from the cross-encoder272

to the dual-encoder, the distribution of the cross-273

encoder R̂ce,i is considered as the soft label that274

guides the learning of the dual-encoder by minimiz-275

ing the KL-divergence between R̂ce,i and R̂de,i:276

Lkd = −
∑

(qi,Pi)∈D

KL-Div(R̂ce,i||R̂de,i) (4)277

3.2 Dark Examples Construction278

When transferring the knowledge from the cross-279

encoder teacher to the dual-encoder student using280

Eq. 4, the set of candidate passages Pi plays a vital281

role. Previous works in dense retrieval distilla-282

tion (Zhang et al., 2022; Ren et al., 2021c; Zeng283

et al., 2022; Lu et al., 2022; Lin et al., 2023) sim-284

ply follow the supervised learning setting where285

they utilize Pi = {p+i } ∪ P−
i as the candidate set.286

However, by empirical analyses on Fig. 1, we have287

found that the negative set P−
i produced by exist-288

ing hard negative mining approaches (Qu et al.,289

2021) is too trivial for the cross-encoder teacher,290

which makes the soft label provided by the cross-291

encoder teacher too sharp at the positive passage292

and therefore prevents the student from learning293

utile dark knowledge hidden in the distribution of 294

other passages (i.e., negatives). 295

We suppose smoother soft labels naturally ob- 296

tained (instead of scaled by softmax temperature) 297

can be better knowledge carriers that transfer the 298

dark knowledge. Given the teacher and the query, 299

we point out that the natural way to smoothen the 300

soft label is to operate on the set of candidate pas- 301

sages, or more precisely, to replace the original set 302

of candidate passages Pi that are either too relevant 303

or too irrelevant from the teacher’s view with new 304

ones P̃i whose relevance to the query cannot be 305

easily tell apart by the cross-encoder teacher. 306

To construct the new set of candidate passages 307

that satisfy this desired characteristic, we propose 308

two dual approaches that operate on the original 309

positive passage p+i and the negative set P−
i respec- 310

tively. We name the newly constructed passages in 311

P̃i dark examples to demonstrate that can no longer 312

be simply categorized into positives and negatives 313

as they have moderate relevance to the query. An 314

illustration of dark examples is shown in Figure 2. 315

It should be noticed that it is the specific setting of 316

knowledge distillation where the supervision signal 317

is derived from the teacher’s soft label instead of 318

human labels that make it possible to learn from 319

dark examples. 320

Sampled Negatives. Early works (Henderson 321

et al., 2017; Gillick et al., 2018) randomly choose 322

negative passages by considering the passages 323

of other query-passage pairs within the same 324

mini-batch as the negatives. More recently, re- 325

searchers use BM25 (Karpukhin et al., 2020) or 326

dual-encoders (Xiong et al., 2020) to select hard 327

negatives globally from the whole candidate pas- 328

sages with the fast retrieval method (Qu et al., 2021; 329

Ren et al., 2021c). We will compare the effective- 330

ness of random negatives (denoted as Rand) and 331

hard negatives (denoted as Hard) with our method 332

(denoted as Dark) in experiments. 333

Dark Examples with Reinforced Negatives The 334

reasonable way to create dark examples based on 335

P−
i is to make hard negatives harder, or in other 336

words, more relevant to the query. To achieve this 337

goal, it is non-trivial to accurately edit the seman- 338

tics of a negative passage towards increasing its 339

relevance to the query with controllable text gen- 340

eration techniques. Instead, we propose a rather 341

simple yet effective approach that mixes up query- 342

relevant content with negative passages to direct- 343

edly strength their relevance to the query. Based on 344
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this motivation, we consider mixing up hard nega-345

tives with the positive passage2. Formally, given a346

training example (qi, p
+
i ,P

−
i ), we concatenate p+i347

with each of the negative passage p−i,j to form the348

set of dark examples for qi:349

N rein
i = {p+i [SEP]p

−
i,j}

m
j=1. (5)350

Here, we choose to mix-up passages at the lexical351

level instead of the embedding space (Guo et al.,352

2019) because our method can produce valid lan-353

guage inputs and can preserve the relevant cues354

while introducing some less-relevant content. We355

also tried mixing-up negatives with the positive in356

the embedding space but found this kind of mix-357

up resulted in low-quality predictions of the cross-358

encoder teacher since it has never seen samples359

based on mixed embeddings during training.360

Dark Examples with Noisy Positive Different361

from the above approach that creates dark examples362

by making hard negatives harder, we also consider363

the opposite direction: making the positive passage364

p+ not that relevant to the query by introducing365

noise. We achieve this goal by input-masking (De-366

vlin et al., 2019b). Given the positive passage p+i367

for the query qi, we randomly sample a subset of368

tokens from p+i and replace them with the special369

token [MASK] with the masking ratio mr:370

Nmask
i = {MASKmr(p

+
i )}mr . (6)371

To generate noisy positives with more diverse rele-372

vant to the query, we use masking with a variety of373

masking ratios.374

3.3 Distillation with Adaptive Dark Examples375

We have elaborated our motivation and approach376

to create dark examples, the remaining question377

is how to conduct effective knowledge distillation378

with dark examples. Existing knowledge distilla-379

tion methods using all the labeled data without dis-380

tinction, which we argue is sub-optimal. As knowl-381

edge distillation relies on the teacher’s prediction382

as the supervision signal, the “quality” of knowl-383

edge held in the teacher’s soft label naturally varies384

among different training examples. We assume that385

those training examples that the teacher is more386

confident than others are better carriers of knowl-387

edge for three reasons: (1) These instances are far388

2We also tried to make the hard negatives even harder by
mixing up hard negatives with the query following Kalantidis
et al. (2020), however, we found little change in performance.

from the decision boundaries of the model, and 389

thus the corresponding passages are more likely 390

to be true positives and true negatives, avoiding 391

data noise. (2) Only the knowledge held in the 392

instances that the teacher can cope with well are 393

reliable and worth to be learned by the student. 394

(3) The teacher’s soft label for the high-confidence 395

instances is too sharp, which indicates the dark 396

knowledge held in these reliable instances has not 397

been well exploited. 398

Therefore, we propose to adaptively concentrate 399

on these high-confidence training instances during 400

the training process to conduct our dark-example- 401

based knowledge distillation. Formally, for a train- 402

ing instance, we can calculate the log-probability 403

of the positive passage p+i against negatives P−
i 404

with the teacher as the confidence score: 405

C(qi) = log
expRce(qi,p

+
i )

expRce(qi,p
+
i )+

∑
p−i,j∈P

−
i

expRce(qi,p
−
i,j)

.

(7) 406

Suppose the training process consists of T 407

epochs, in each epoch t, we can sort a batch of 408

training instances Bt in ascending order based on 409

the confidence scores. Then we adaptively select 410

the subset of instances B̂t in the batch that have the 411

highest confidence scores with the ratio (1− t
2∗T ) 412

to construct dark examples: 413

B̃t = argmax
qi∈Bt,B̃t⊂Bt,∥B̃t∥=(1− t

2∗T )×b

C(qi). (8) 414

where b is the batch size for training. 415

Thereby, we have two sets in each step of the 416

t-th training epoch: the original training batch Bt 417

and the subset with the highest confidence that has 418

both original candidate passages and our created 419

dark examples B̃t. We jointly optimize the student 420

with the supervised loss (Eq. 3.1) on Bt and the 421

knowledge distillation loss (Eq. 4) on B̃t: 422

Lt = λ·
∑
Bt∈D

∑
(qi,Pi)∈Bt

Lsup +
∑
B̂t∈D

∑
(qi,P̃i)∈B̃t

Lkd.

(9) 423

where P̃i = {P−
i ∪ Nmix

i ∪ Nmask
i } is the new 424

candidate set for qi, and λ is a hyper-parameter as 425

a trade-off between the supervised objective and 426

distillation objective with adaptive dark examples. 427

4 Experiments 428

We evaluate our method on two public human- 429

annotated real-world benchmarks, namely MS- 430

Marco and TREC Deep Learning 2019. 431
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Methods PLM KD MS-MARCO Dev TREC DL 19
MRR@10 R@50 R@1000 NDCG@10 R@100

Sparse retrieval
BM25 (anserini) (Yang et al., 2017a) - - 18.7 59.2 85.7 50.6 -
doc2query (Nogueira et al., 2019b) - - 21.5 64.4 89.1 - -
DeepCT (Dai and Callan, 2019b) BERTbase - 24.3 69.0 91.0 55.1 -
docTTTTTquery (Nogueira et al., 2019a) - - 27.7 75.6 94.7 - -
UHD-BERT (Jang et al., 2021) BERTbase - 29.6 77.7 96.1 - -
COIL-full (Gao et al., 2021) BERTbase - 35.5 - 96.3 70.4 -
UniCOIL (Lin and Ma, 2021) BERTbase - 35.2 80.7 95.8 - -
SPLADE-max (Formal et al., 2021) BERTbase - 34.0 - 96.5 68.4 -
Unifierlexicon (Shen et al., 2023) coConbase ✓ 39.7 - 98.1 73.3 -

Dense retrieval
DPR-E (Ren et al., 2021c) ERNIEbase - 32.5 82.2 97.3 - -
ANCE (single) (Xiong et al., 2020) RoBERTabase - 33.0 - 95.9 65.4 44.5
TAS-Balanced (Hofstätter et al., 2021a) BERTbase ✓ 34.0 - - 71.2 -
ME-BERT (Luan et al., 2021b) BERTlarge - 34.3 - - - -
ColBERT (Khattab and Zaharia, 2020a) BERTbase - 36.0 82.9 96.8 67.0 -
ColBERT v2 (Santhanam et al., 2021) BERTbase ✓ 39.7 86.8 98.4 72.0 -
ADORE+STAR (Zhan et al., 2021b) RoBERTabase - 34.7 - - 68.3 -
Condenser (Gao and Callan, 2021a) BERTbase - 36.6 - 97.4 - -
RocketQA (Qu et al., 2021) ERNIEbase - 37.0 85.5 97.9 - -
PAIR (Ren et al., 2021a) ERNIEbase - 37.9 86.4 98.2 - -
CoCondenser (Gao and Callan, 2022) BERTbase - 38.2 - 98.4 - -
RocketQAV2 (Ren et al., 2021c) BERTbase ✓ 38.8 86.2 98.1 - -
AR2 (Zhang et al., 2022) BERTbase ✓ 39.5 - 98.6 - -
CL-DRD (Zeng et al., 2022) DistilBERT ✓ 38.2 - - 72.5 45.3
ERNIE-Search (Lu et al., 2022) BERTbase ✓ 40.1 87.7 98.2 - -
RetroMAE (Xiao et al., 2022) BERTbase ✓ 39.3 87.0 98.5 - -
Unifierdense (Shen et al., 2023) coConbase ✓ 38.8 - 97.6 71.1 -
bi-SimLM (Wang et al., 2023) BERTbase ✓ 39.1 87.3 98.6 69.8 -
PROD (Lin et al., 2023) ERNIE-2.0-BASE ✓ 39.3 87.1 98.4 73.3 48.4
InDi (Cohen et al., 2024) coConbase - 38.8 86.6 98.5 - -

Rand KD (Teacher = RocketQAV2) BERTbase ✓ 38.14 86.92 98.17 - -
Hard KD (Teacher = RocketQAV2) BERTbase ✓ 39.13 87.60 98.51 - -
ADAM (Teacher = RocketQAV2) BERTbase ✓ 39.79 88.07 98.64 72.1 50.3

Rand KD (Teacher = R2anker) BERTbase ✓ 38.13 85.96 97.87 - -
Hard KD (Teacher = R2anker) BERTbase ✓ 39.99 87.62 98.12 - -
ADAM (Teacher = R2anker) BERTbase ✓ 41.00 88.54 98.48 73.4 49.8

Table 1: Passage retrieval results on MS-MARCO and TREC DL 19 datasets. PLM is the abbreviation of the
pre-trained language Model. KD indicates whether a model is distilled by a ranker. We copy the results from original
papers and leave them blank if the original paper does not report the result. The best results are in underlined fonts.

4.1 Datasets and Evaluation Metrics432

Consisting with previous studies on dense informa-433

tion retrieval (Hofstätter et al., 2021b; Xiong et al.,434

2021), we use popular passage retrieval datasets,435

MS-MARCO (Nguyen et al., 2016). The dataset436

contains 8.8M passages from Web pages gathered437

from Bing’s results to real-world queries. The438

training set contains about 500k pairs of query439

and relevant passage, and the dev set consists of440

6, 980 queries. Based on the queries and pas-441

sages in the dataset, MS-MARCO passage retrieval442

and ranking tasks were created. Following pre-443

vious works (Zeng et al., 2022), we report the444

performance on MS-MARCO Dev set as well as445

TREC Deep Learning (DL) 2019 set (Craswell446

et al., 2020) which includes 43 queries. We report447

MRR@10 and Recall@50/1K for MS-MARCO,448

and nDCG@10 and Recall@100 for TREC DL 19. 449

4.2 Baselines 450

To make a comprehensive comparison, we choose 451

both sparse and dense passage retrievers as base- 452

lines. Please refer to Appendix A.1 for the details 453

of baseline methods. 454

4.3 Implementation Details 455

Consisting with the setting of RocketQA V2 (Ren 456

et al., 2021c), we choose the learned dual-encoder 457

in the first step of RocketQA (Qu et al., 2021) 458

as the initialization of our dense retriever3. We 459

adopt two advanced cross-encoder rankers as our 460

teacher model: RocketQAV2 (Ren et al., 2021c) 461

3The retriever can also be replaced with other trained re-
triever. We observed that using the trained model to initialize
the retriever can help achieve slightly better results.

6



and R2anker (Zhou et al., 2023)4. We randomly462

select m hard negatives provided by Ren et al.463

(2021c) for each query. For supervised learning,464

a positive passage and all the selected negatives465

are used. While for distillation, the candidate pas-466

sage set for a query consists of m original nega-467

tives, m dark examples in Nmix
i , and 5 dark exam-468

ples in Nmask
i with different masking ratios mr ∈469

{0.15, 0.25, 0.35, 0.45, 0.55}. We set the number470

of negatives m to 10 from {5, 10, 15, 20, 25, 30}5.471

We set the maximum lengths for queries and pas-472

sages as 32 and 128. The dropout rate is set473

to 0.1 on the cross-encoder. In training, we use474

AdamW (Loshchilov and Hutter, 2017) as the op-475

timizer to train the model. We set the batch size476

as 128, the peak learning rate as 5e − 5, and the477

warm-up steps as 100. We set the weight λ for478

the supervised objective as 0.01 by varying it in479

{0.001, 0.01, 0.05, 0.1, 0.5}.480

4.4 Overall Performance481

We report the overall evaluation results on MS-482

MARCO and TREC Deep Learning 2019 respec-483

tively. On both benchmarks, we not only show the484

performance of our dual-encoder retriever under485

knowledge distillation from two different cross-486

encoder teachers, but also provide comparisons487

between different choices of construction of candi-488

date set Pi. The main results are shown in Table 1.489

We can draw three main conclusions:490

Our created dark examples improve the perfor-491

mance of knowledge distillation over hard nega-492

tives and random negatives. With the same cross-493

encoder as the teacher, we analyze the impact of494

how the candidate set of passages is constructed. It495

can be observed that using random negatives results496

in poor performance and the integration of hard497

negative mining indeed improve the performance.498

When equipped with our created dark examples499

which are even harder than existing hard negatives,500

our model further makes a substantial improvement501

over that using hard negatives.502

Our framework ADAM is compatible with dif-503

ferent teachers. To test the generalization ability504

over different teachers, we conduct experiments505

using two advanced cross-encoders (R2anker and506

4The results of BM25-reranking on MS-MARCO Dev for
R2anker (Zhou et al., 2023) and RocketQAV2 (Ren et al.,
2021c) are 40.1 and 40.7 respectively.

5We found m = 15 to be the optimal parameter. However,
considering that our method will expand the number of nega-
tives with the augmented dark examples, we set m=10 in our
experiment.

Methods MRR@10

ADAM 38.99

w/o. N rein (Eq.5) 38.82
w/o. Nmask (Eq.6) 38.76
w/o. {N rein & Nmask } 38.64
w/o. {N rein & Nmask & ADA } 38.61
w/o. {N rein & Nmask & ADA & Lsup} 38.36

Table 2: Ablation results on MS-Marco. We report the
reranking performance.

RocketQAV2) as the teacher. Consistent improve- 507

ment can be observed when using our proposed 508

dark examples for knowledge distillation with the 509

two different teachers. Moreover, we can compare 510

the effectiveness of the two teachers. When using 511

random negatives, knowledge distillation with the 512

two teachers results in comparable results. But 513

when using hard negatives and dark examples, the 514

model distilled by R2anker yields significantly bet- 515

ter performance than its counterparts. Therefore, 516

for the remaining ablation studies and analyses, we 517

use R2anker as the teacher by default. 518

With R2anker as the teacher, our method (the bot- 519

tom line) achieves superior performance over most 520

baselines. Our model achieves 41.00 on MRR@10 521

on the development set of MS-MARCO, outper- 522

forming most of the existing methods and is com- 523

parable with SimLM (Wang et al., 2023) which 524

is obtained by a time-consuming large-scale pre- 525

training followed with a cumbersome multi-stage 526

supervised fine-tuning. 527

4.5 Ablation study 528

We have analyzed the overall performance on two 529

benchmarks and proved the effectiveness of our 530

method. Here, we conduct ablation studies to verify 531

the indispensability of each crucial design. We 532

provide the results of the ablation study in Table 2. 533

Dark examples. Recall that we propose two 534

types of methods to construct dark examples: (1) 535

strengthening negatives (N rein) by mixing with 536

the positive to make negatives more relevant to 537

the query, and (2) polluting positives ((Nmask)) 538

to make positives not that relevant. We first test 539

the individual effect of N rein and Nmask. When 540

removing each of them individually, performance 541

drops can be observed. And when we remove both 542

of them, the model performs worse. This observa- 543

tion indicates that the incorporation of both N rein 544

and Nmask is beneficial to the overall performance. 545

Distillation with adaptive dark examples. In 546

addition to dark examples, we also introduce a self- 547

paced distillation algorithm that can better trans- 548
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Figure 3: (a) The impact of m; (b) Distributions of
model prediction for the R2anker over MS-MARCO.

fer dark knowledge with adaptive dark examples.549

When this strategy is removed, we create dark ex-550

amples for all the training instances. It can be seen551

that distillation adaptively using the subset of in-552

stances that the teacher is most confident is better553

than using the whole training set, which is in ac-554

cord with our assumption that the instances with555

higher confidence are a better carrier of knowledge.556

Distillation with additional supervised loss. Al-557

though the teacher’s soft label provides abundant558

dark knowledge for the student to learn, we also559

involve the traditional supervised loss. We can560

observe that although the weight λ for supervised561

loss is quite small (i.e., 0.01), we find this term562

indispensable for the overall performance.563

4.6 Discussions564

The impact of the number of negatives. When con-565

structing the training set, the number of negatives566

plays a vital role as it also indirectly controls the567

number of dark examples. To explore the effect of568

the number of negative samples as well as to find569

the best choice for m, we conduct experiments on570

different m6. As illustrated in Figure 3(a), when571

m is small, increasing m brings a positive effect572

and leads to the best performance when m = 15.573

But as the curve indicates, incorporating more neg-574

atives brings no benefit, which is also in line with575

existing findings (Karpukhin et al., 2020). The576

above trend also indicates that too many trivial577

negatives (m > 15) can not always bring improve-578

ment while incorporating our dark examples can579

still bring improvement to the knowledge transfer.580

The phenomenon also reveals the importance of581

distillation data in IR knowledge transfer.582

The impact of mask rate and the number of noisy583

positives. We further investigate how the mask584

rate and the number of noisy positives influence585

the performance of ADAM. Due to the limited586

computation resource, we test several typical set-587

6To better analyze the impact of the number of negative
samples, we conduct the experiment on the model without
adaptive dark examples.

Methods MRR@10

mr = {0.15, · · · , 0.55} (ADAM) 38.99

mr = 5× {0.15} 38.73
mr = 5× {0.35} 38.82
mr = 5× {0.55} 38.85
mr = 5× {0.75} 38.77
mr = {0.15, · · · , 0.45} 38.95
mr = {0.15, · · · , 0.65} 38.96

Table 3: The impact of mask ration and the number of
noisy positives.

tings for comparison, as shown in Table 3. First, 588

for a fixed number of masking positives (a.k.a., 589

5), the performance increases until the mask ratio 590

reaches a certain value, and then drops when the 591

mask rate keeps increasing. The results are rational 592

since too smaller mask ratio results in too many 593

highly-relevant candidates while a larger mask ra- 594

tio leads to too many loosely-relevant candidates. 595

Notably, we can observe that masking with a vari- 596

ety of masking ratios is better than masking with a 597

mono masking ratio. 598

The impact of dark examples on the output dis- 599

tribution of ranker. Finally, we examine the impact 600

of dark examples on the output distribution of the 601

ranker. As illustrated in Figure 3(b), we draw the 602

score distributions of the positive, negative candi- 603

dates, and negative candidates plus dark examples 604

using a teacher (R2anker) over MS-MARCO. It can 605

be observed that the scores for most original hard 606

negatives are quite low and distributed far from the 607

positives that have high scores. By incorporating 608

these dark examples, we are able to improve the 609

smoothness of the score distribution and prob our 610

teacher model with a wider range of candidates that 611

are more diversely relevant to the query. This en- 612

ables us to more effectively transfer valuable "dark" 613

knowledge from the teacher model. 614

5 Conclusion 615

In this paper, we propose a knowledge distillation 616

framework that can better transfer the dark knowl- 617

edge in the cross-encoder with adaptive dark ex- 618

amples to help the dual-encoder achieve better per- 619

formance. We propose two approaches to create 620

dark examples that are much harder for the cross- 621

encoder teacher to distinguish than typical hard 622

negatives to transfer more dark knowledge. Fur- 623

ther, we propose a self-paced distillation strategy 624

that transfers the knowledge adaptively with high- 625

confidence training instances. Experimental results 626

in two widely-used benchmarks verify the effec- 627

tiveness of our proposed method. 628
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Limitations629

(i) Training computation overheads: although hav-630

ing the same inference complexity as any other631

dense retrieval models, our approach requires more632

computation resources during training as it expands633

the number of negatives with the augmented dark634

examples. (ii) More analysis on noisy positives:635

due to the limited computation resource, we only636

test and compare several typical settings of noisy637

positives, better strategies for constructing noisy638

positives (e.g., better masking methods and varying639

the number of noisy positives) can be explored to640

further improve the performance.641
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A Appendix996

A.1 Baselines997

To make a comprehensive comparison, we choose998

the following state-of-the-art approaches as base-999

lines. These methods contain both sparse and dense1000

passage retrievers.1001

The sparse retrieval methods include the tradi-1002

tional retriever BM25 (Yang et al., 2017b) and1003

several representative sparse retrievers, including1004

doc2query (Lu et al., 2020), DeepCT (Dai and1005

Callan, 2019a), docTTTTT-query (Nogueira et al.,1006

2019a), UHD-BERT (Jang et al., 2021), COIL-1007

full (Gao et al., 2021), UniCOIL (Lin and Ma,1008

2021), and SPLADE-max (Formal et al., 2021).1009

The dense retrieval methods produce con-1010

tinuous neural vectors for each passage and1011

query. The methods include DPR-E (Qu1012

et al., 2021), ANCE (Xiong et al., 2021),1013

TAS-Balanced (Hofstätter et al., 2021b), ME-1014

BERT (Luan et al., 2021a), ColBERT (Khat-1015

tab and Zaharia, 2020b), ColBERT v2 (San-1016

thanam et al., 2021), NPRINC (Lu et al.,1017

2021), ADORE+STAR (Zhan et al., 2021a), Con-1018

denser (Gao and Callan, 2021a), RocketQA (Qu1019

et al., 2021), PAIR (Ren et al., 2021b), CoCon-1020

denser (Gao and Callan, 2022), RoketQAV2 (Ren1021

et al., 2021c), AR2 (Zhang et al., 2022), CL-1022

DRD (Zeng et al., 2022), ERNIE-Search (Lu1023

et al., 2022), RetroMAE (Xiao et al., 2022), Uni-1024

fier (Shen et al., 2023), bi-SimLM (Wang et al.,1025

2023), PROD (Lin et al., 2023) and InDi (Cohen1026

et al., 2024). Some of them are enhanced by knowl-1027

edge distillation from the ranker. For example,1028

RoketQAV2, AR2, and ERNIE-Search introduce1029

the on-the-fly distillation method. CL-DRD and1030

PROD propose progressive distillation with a data1031

curriculum to gradually improve the student.1032

A.2 More Discussions1033

Methods MRR@10

Adaptive-THC (ADAM) 38.99
Adaptive-SHC 38.68
Adaptive-TLC 38.65
Full 38.71

Table 4: Comparison of different data curriculums.
Adaptive-THC and Adaptive-TLC mean selecting high-
confidence samples and low-confidence samples given
by the ranker respectively based on Equation (7) during
training. Full means the model is trained with all sam-
ples.

Comparison of different data curriculums. To 1034

demonstrate the effect of our adaptive strategy 1035

(Eq.8), we compare our strategy with several differ- 1036

ent strategies, including selecting low-confidence 1037

samples given by the ranker (denoted as Adaptive- 1038

TLC), selecting high-confidence samples given by 1039

the student (denoted as Adaptive-SHC), and using 1040

all training samples (denoted as Full). The evalua- 1041

tion results are shown in Table 4. First, we can find 1042

that selecting high-confidence samples given by the 1043

teacher lead to better performance than using low- 1044

confidence samples given by the teacher. Second, 1045

signals provided by the teacher are better than that 1046

provided by the student, as Adaptive-THC outper- 1047

forms Adaptive-SHC. Finally, our ADAMchieves 1048

better results than using the whole instances in 1049

training, which indicates the effectiveness of our 1050

proposed method. 1051
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