Under review as a conference paper at ICLR 2026

OFFLINE FEDERATED DEEP REINFORCEMENT LEARN-
ING WITH AWARENESS OF EXPECTED RETURNS AND
POLICY INCONSISTENCY

Anonymous authors
Paper under double-blind review

ABSTRACT

Offline Federated Deep Reinforcement Learning (FDRL) methods aggregate multi-
ple client-side offline Deep Reinforcement Learning (DRL) models, each trained
locally, to facilitate knowledge sharing while preserving privacy. Existing offline
FDRL methods assign client weights during global aggregation using either simple
averaging or Q-values, but they neglect the combined consideration of Q-values
and policy inconsistency, the latter of which reflects the distributional discrepancy
between the learned policy and the policy from offline data. This causes clients
with no significant advantages in one aspect but obvious disadvantages in the other
to disproportionately affect the global model, thereby degrading its capabilities
in that aspect. During local training, clients in existing methods are compelled to
fully adopt the global model, which negatively impacts clients when the global
model is weak. To address these limitations, we propose a novel federated learning
framework that can be seamlessly integrated into current offline FDRL approaches
to improve their performance. Our method considers both policy inconsistency and
Q-values to determine the weights of client models, with the latter adjusted by a
scaling factor to align with the magnitude of the former. The aggregated global
model is then distributed to clients, who minimize the discrepancy between their
models and the global one. The impact of this discrepancy is reduced if the client’s
model ability exceeds that of the global model, mitigating the effect of a weaker
global model. Experiments on the Datasets for Deep Data-Driven Reinforce-
ment Learning (D4RL) demonstrate that our method enhances four state-of-the-art
(SOTA) offline FDRL methods in terms of return and D4RL score.

1 INTRODUCTION

Offline DRL enables learning a policy from static data without prolonged environmental interactions,
and is widely used in areas like recommendation systems Chen et al.|(2024) and autonomous driving
Lee et al.| (2024a). However, a single offline DRL model often faces inefficient learning due to limited
data diversity, emphasizing the need for knowledge sharing among multiple models. Offline FDRL
Zhou et al.|(2024a)Park & Woo| (2022)) addresses this by enabling distributed training and knowledge
sharing across devices or edge nodes, without sharing raw data, thereby improving learning efficiency
and preserving data privacy.

The main challenge in offline FDRL lies in how to aggregate client models and how to use the
aggregated global model to train client models. Existing offline FDRL methods can be classified
into two types. The first approach uses simple averaging to aggregate local models, as seen in|Yue
et al. (2024bl)) Yue et al.| (2024a)Zhou et al.| (2024a)Park & Woo| (2022))Woo et al. (2024)Wen et al.
(2023)), but this method fails to prioritize higher-performing client models. The second approach
assigns client weights in the global aggregation based on Q-values, as in|Rengarajan et al.| (2024),
where clients with higher Q-values are given more weight in the aggregation process. However, the
global aggregation and local training of existing methods have the following limitations, leading
to suboptimal policies. First, existing methods fail to comprehensively consider both policy
inconsistency and Q-values when calculating client importance in global aggregation. Since
offline DRL learns a policy by fitting to offline data, maximizing the expected returns of actions and
ensuring the policy’s fit to offline data are equally important, and both help offline DRL learn a policy

Under review as a conference paper at ICLR 2026

with high long-term returns Figueiredo Prudencio et al.|(2024)Levine et al.|(2020). Maximizing the
expected returns of actions is achieved by increasing Q-values, while improving the policy’s fit to
offline data requires minimizing policy inconsistency, which is the gap between the current policy
and the potential policy represented by the offline dataset Figueiredo Prudencio et al.|(2024)Levine
et al.|(2020). Thus, relying solely on Q-values for weight allocation may cause local models with no
significant expected return advantage but poor data fit to occupy a larger share in the global model,
severely degrading its data-fitting ability. On the other hand, focusing solely on policy inconsistency
to calculate client importance neglects clients with higher expected returns, failing to effectively
maximize the global model’s expected return. Second, existing methods make the local models
fully adopt the global model’s knowledge during local training. Since there is no guarantee that
the global model’s performance will always be better than all local models, a weak global model may
negatively impact some stronger local models, degrading their performance.

Motivated by these observations, this work aims to propose a generic federated learning framework
that can be seamlessly integrated into existing offline FDRL approaches to improve their performance.
To address the first limitation, we use both policy inconsistency and Q-values to determine the
importance of each client. For policy inconsistency, we use the current policy to predict actions
and quantify the discrepancy between these predicted actions and those from the offline data using
a distributional discrepancy metric, such as Jensen-Shannon (JS) Divergence. The Q-value is then
scaled by a factor from the reciprocal of the average absolute Q-value of a mini-batch, aligning it
with the magnitude of policy inconsistency to calculate client importance. Clients upload their local
models and calculated importance to the server, which normalizes the importance via softmax to
derive weights. The models are then aggregated with these weights to form the global model, which
is sent back to the clients for local training. To address the second limitation, we reduce the impact
of a weaker global model on the local models. During local training, each client minimizes the
discrepancy between its local model and the global model to learn from the latter. In this process, we
assess the abilities of both the global and local models using the same method employed in global
aggregation, which combines policy inconsistency and Q-value. If a client’s ability exceeds that
of the global model, the influence of the discrepancy is reduced with a decay factor, mitigating the
negative effects of a weaker global model on local model updates.

The key contributions are summarized as follows: 1) We introduce a novel, generic federated learning
framework that considers both policy inconsistency and Q-values to calculate the importance of
each client in global aggregation, and reduces the influence of a weak global model on stronger
local models during local training; 2) We present a complexity analysis of our method, as well as
a theoretical analysis to explain the superior performance of our approach compared to existing
methods; 3) Extensive experiments demonstrate that our method improves four SOTA offline FDRL
methods on the D4RL dataset, achieving higher returns and D4RL scores.

2 RELATED WORK

Offline DRL. Offline DRL learns a policy from a static dataset generated by a behavior policy,
reducing the need for extensive environment interactions |[Figueiredo Prudencio et al.| (2024)Levine
et al.[(2020). A key challenge is minimizing policy inconsistency, where the policy must reduce the
gap between its state-action distribution and that of the offline dataset [Figueiredo Prudencio et al.
(2024)Levine et al.|(2020). Solutions such as regularization |[Fujimoto & Gu! (2021), data rebalancing
Jiang et al.| (2023)Yu et al.| (2022)Hong et al.| (2023), and weighted behavior cloning Peng et al.
(2023)L1u et al.| (2024) have been proposed to address this. However, conventional offline DRL is
limited to training on a fixed dataset, restricting the model’s ability to learn beyond it.

Federated Learning (FL). Federated Learning (FL) is a distributed machine learning approach
where clients collaboratively train a shared model without exchanging data, ensuring privacy. FedAvg
is one example that enables this collaboration without data sharing McMahan et al.| (2017)Lee et al.
(2024Db)). A challenge in FL is data heterogeneity, which can slow down and destabilize convergence
Karimireddy et al.| (2020)Wang et al.| (2024) Ahmed et al.| (2024). To address this, methods such as
FedProx |Karimireddy et al.|(2020) have been proposed to reduce the gap between local and global
models. Recently, FL has been applied to fine-tune large models |Wu et al.|(2024)Liu et al.| (2025)Ye
et al.| (2024). While FL focuses on supervised learning with local client data, offline FDRL aims
to train a policy using offline samples, targeting a policy better than the one represented by those

Under review as a conference paper at ICLR 2026

samples. This requires the development of aggregation strategies for offline FDRL that differ from
traditional FL to address data heterogeneity effectively.

FDRL. FDRL trains DRL models in a federated learning manner, ensuring privacy while enabling
knowledge sharing. Previous research focused on online FDRL, including Horizontal Federated
Deep Reinforcement Learning (HFDRL) and Vertical Federated Deep Reinforcement Learning
(VFDRL). HFDRL involves independent agents in different environments (Cha et al.|(2020)Jiang et al.
(2025))Wang et al.| (2023)), while VFDRL emphasizes collaboration in a shared environment with
limited observations Zhuo et al. (2019). Due to inefficiencies in prolonged online interactions, offline
FDRL has emerged, training multiple offline client DRL models with local static datasets. Existing
offline FDRL methods fall into two groups: one uses simple averaging to aggregate client models
Yue et al.| (2024b) Yue et al.| (2024a)Zhou et al.| (2024a)Park & Wool| (2022)Woo et al. (2024))Wen
et al.| (2023)), which ignores client heterogeneity, and the other uses Q-values Rengarajan et al.|(2024)
to calculate client weights. However, existing offline FDRL methods have two limitations. First,
they fail to comprehensively consider both policy inconsistency and Q-values when calculating
client importance, which leads to clients with no significant advantage in one aspect but obvious
disadvantages in the other, impairing the global model in that aspect. Second, they force clients to
fully adopt the global model, which harms stronger clients when the global model is weak.

3 PRELIMINARIES

FL. FL aggregates models from various clients into a global model § without sharing local device
data. The aggregated model is then redistributed to each client for local training. Let N, be the total
number of clients, with each client operating a local model. Let £, represent the loss over the local
data for the i-th client model 6;, and w; represent the weight assigned to the i-th client. The objective
of FL is to minimize the loss function £, which is the weighted aggregation of individual clients’
losses. This can be expressed as: ming £ = min Zii“l w; L;(0;). The aggregation method, including
how w; is computed, is crucial in FL. For example, w; can be determined by the ratio of n; (the
sample batch size for the ¢-th client) to the total sum of all n; values. Recently, FL has introduced
several advanced model aggregation techniques, such as FedProx |Yuan & Li/(2022), FedCAda Zhou
et al.|(2024Db), and FedAdam [Ju et al.| (2024).

Offline DRL. DRL is a learning method based on the Markov Decision Process (MDP), defined as
M = (S, A, r,P,), which includes the state space S, action space A, reward function r, transition
dynamics P, and discount factor . Unlike conventional DRL, which obtains samples through
interaction with the environment, offline DRL aims to learn a policy 7 using a static dataset D that
contains transitions (s, a,, s’) without further interaction. Each tuple (s, a,r, s’) in D represents
the state, action, reward, and next state, collected by a behavior policy 7,. The goal of offline
DRL is to learn a policy 7(s) that maximizes the long-term reward J(7(s)) over the static dataset:

J(m(s)) = maxE [ZZ_T:t vyi=tr; | so, ao} where T is the learning duration, and ¢ starts at 0.

In offline DRL, since the dataset D is pre-collected through another policy, the agent samples a
mini-batch Dy from D at each step to update the model. This mini-batch has a different distribution
from the current actor being updated, represented by the difference between the actor’s predicted
actions @ = 7(s; #*) and the offline actions a. This difference, referred to as policy inconsistency, is
minimized in offline DRL. In DRL, the actor-critic method is a widely used framework comprising
two key components. The actor, denoted as 8, parameterizes the policy 7(s; 8*), while the critic,
represented by 6, parameterizes the Q function Q(s, a; #). The Q function estimates the expected
cumulative reward when following the policy 7, starting from state s and taking action a. It is

ey | sp = s,a4 = a].

mathematically expressed as: Q,(s,a) = E, [ZiT:t y
Offline FDRL. The offline FDRL implementation operates in a distributed offline setting, where N,
agents collaboratively develop a policy under the guidance of a central server, without sharing raw
trajectories or interacting with the environment. Each agent¢ € {1, ..., N, } maintains a local dataset

. D; . . .
D; = { (si, G Qi Ti g sg) j) }j: |» containing transition tuples generated by an unknown policy. The

objective is to discover an optimal policy by leveraging the distributed datasets {Dl}f\gl maximizing
the long-term reward. To achieve this, offline FDRL allows each client to train a local model 6; for
a certain number of epochs using its local dataset D;. The server then aggregates the models from

Under review as a conference paper at ICLR 2026

all participating clients, weighted accordingly, to obtain a global model 6, which is represented as

0= ZZ 1 w;B;. This global model is sent back to the clients for continued training. The process of
local training followed by global aggregation is repeated until the global model is fully trained. The
performance of various offline FDRL methods is assessed based on the cumulative reward from the
global model, with higher values reflecting better performance.

Existing offline FDRL methods have two limitations. 1) Inefficient global aggregation methods.
One group of methods|Yue et al.|(2024b)Yue et al.| (2024a)Zhou et al.|(2024a)Park & Woo|(2022))Woo
et al.[(2024))Wen et al.| (2023) calculates client weights w; by averaging (e.g., w; = N%L), which
overlooks the fact that heterogeneous clients should be assigned different weights. Another approach
Rengarajan et al.| (2024) assigns client weights based on Q-value size, for example w; o @;, but
it neglects policy inconsistency. This is likely to cause clients with no significant advantages in
Q-values but poor data-fitting abilities to occupy a larger share in global aggregation and severely
degrade its data-fitting ability. 2) Inefficient local training methods. During local training, existing
methods force clients to fully adopt the global model’s experience, causing a weak global model to
negatively impact local models.

4 METHODOLOGY

This section outlines the framework and details, followed by a complexity analysis of our method.

4.1 THE FRAMEWORK FOR OUR METHOD

Fig. [T]illustrates the framework of our method, which includes local model training and global
aggregation. During the global aggregation phase, each client samples a mini-batch from its local
dataset and computes the policy inconsistency using both the actions predicted by the policy and
the offline actions. This is combined with the Q-value to determine each client’s importance, which,
along with the local model, is uploaded to the server. The server computes the weight of each client
using softmax normalization based on importance and performs a weighted sum of their models to
obtain the global model. In the local training phase, the global model is sent to each client, where
it minimizes the discrepancy between local and global models. A decay factor is applied to reduce
the impact of the global model on local updates when the global model’s performance, as evaluated
through policy inconsistency and Q-value, is weaker than the local model’s performance. Once local
training is complete, global aggregation occurs again, repeating this process until training ends.

|
— Download |
------ » Upload |
|

|

|

D
cxxmm Dataset e Predicted
.I y actions

|

|

|

|

} +Samp|mg

} j ! Mini-batch ------- actions inconsistenc:
i I

|

- —CD
%g § g %8 % | Calculation of client importance

Client 1 Client 2 «++ ClientN-1 ClientN

uoleUIqUWIOD

(@]
>
=
=l
=
=)
Is]
S
=
®
=
o
)

Figure 1: The framework of our approach. Here, N clients participate in federated learning, with
each client calculating its own importance in the same manner.

4.2 GLOBAL AGGREGATION

After local training on each client for a specified number of epochs, the models are uploaded to the
server for aggregation. Let Qgq, (s, a) represent the Q-value for the i-th client, typically generated
by the first critic in the local offline DRL model, 9? the actor for the i-th client, and a; the action
from the ¢-th client’s mini-batch Dy;, which is sampled from the static dataset D;. The importance
assessment for each client considers both the Q-value and the policy inconsistency, Dis(0% (s), a;).

Under review as a conference paper at ICLR 2026

The importance I; for the i-th client is defined as: I; = E (s o)p,,; [kiQga: (s, a) — Dis(0!'(s), a;)].
Here, Dis(6!(s), a;) can be computed using any distributional difference metric, such as the squared
difference: Dis(0! (s),a;) = (mgu(s) — a;)?. The server aggregates local models as follows.

(1) Calculating Policy Inconsistency: Besides the basic squared difference, advanced distribu-
tion discrepancy measures such as the JS divergence, a robust method for assessing distribution
differences and resistant to outliers, can be used. Specifically, we first compute the difference
between the predicted and offline actions, Ty (s) — a;, and map this difference to a multivariate

Gaussian distribution A/(u, 2). The multivariate Gaussian is ideal for modeling complex action
distributions in DRL within high-dimensional spaces |Williams| (1992) [Todorov et al.| (2012) [Nasiri+
any et al. (2021) [Hollenstein et al.[(2022). The mean and covariance (u,) are given by: p =

2
o7 C o (700 () = 00)3 T = (s Semrenns (700 (5) = ai = 1) (o () — s = o).
Next, we compute the JS divergence to evaluate Dis(0! (s), a;) between the distribution N (1,)

and the standard multivariate Gaussian distribution A/ (0, oI), where I is the identity matrix and
o = 0.15 is a commonly used value, as follows: Dis(6%(s),a;) = JSD (N (p, X)|N(0,01)) =

1KLD (N(u, E)HW) + 1KLD (/\/(o, UI)||W) where JSD(/||) de-
notes the JS Divergence (JSD) and KLD(:||-) represents the Kullback-Leibler Divergence (KLD).

(2) Calculating Client Importance: Here, we mainly calculate r;, which balances (mgu (s) — a;)?
and Qye; (s, a), and is given by: k; =

The term ~; is necessary because

\’Dloﬂ Z(e ,a;)~Do; 1Q(sisa0)]”
each client clips actions to the range of [-1, 1], ensuring that Dis(0!'(s), a;) does not become too
large, which could significantly differ in magnitude from @Qye; (s, a). For instance, when using the
squared difference, (mgn (s) — a;)?, Dis(6"(s), a;) can be at most 4. Therefore, we use the inverse
of the average absolute Q-values over a mini-batch to scale Qge; (s, @) to a similar magnitude as
Dis(60!(s), a;). Then, we obtain the importance vector for the clients, I = (I3, I, ..., Iy,).

(3) Weighted Aggregation: We normalize the importance values of I using the softmax operation, as
each client’s importance I; may differ in magnitude. The normalized values of I are then used as
weights, w = (wq, wa, ..., wn,), as follows: w = (wy, wa, ..., wy,) = softmax (I, Iz, ..., In,) =

1 I I . . . s . .
(Z 1\89 1lefi 5> f}f 126” s ey Zej.\é:aeli) . The resulting weight w; is positively correlated with ;. A higher
I; indicates greater importance of the client, thus receiving a larger weight w; in the global aggregation.

Finally, we compute the aggregated global model 6}, , ., Gflobal at the server using a weighted sum

of the clients actors and critics: 6}, ., = ZZ L w0t ,Hglobal Zz L wlﬂQ

4.3 LOCAL TRAINING

After global aggregation, the global critics 6 lobar @nd global actor 0, , , are obtained. These global
models are then downloaded by the clients, which aim to reduce the discrepancy between their local
models and the global models, denoted as £(global, local), in order to learn from the global model.
Since local models may outperform the global model, each client (e.g., client ¢) evaluates both the
global model’s performance, denoted as I,;,, and its own performance, denoted as I;, by randomly
sampling a mini-batch before each local update.

If I, > I,,, a decay factor 3; is applied to reduce the influence of L(global, local) on the local
model update (e.g., client 7), where 3! = 5571 * (, with (3; initially set to 1 and (set to 0.99. Here, ¢
represents the current iteration of the local update, during which the global model’s performance is
weaker than that of client 7. As the global model increasingly underperforms in more local updates,
its influence on the local model continues to diminish, as indicated by ﬁf Ly ¢, which essentially
corresponds to a stronger penalty for the weaker global model. Conversely, if I; < I,, the decay
factor S; for this local update is set to 1. Each local model’s critic and actor updates are as follows:

(1) Updating Critics: Let Q o, (s, a) represent the Q-value from the j-th global critic 9§-gbal,

0 giobat

and Q) o (s, a) represent the Q-value from the j-th critic 019 7 for client i. The loss for the j-th
critic GZ-QJ' of the i-th client is then given by: GZ-QJ' = arg minL(G?j),L(G?j) = Llocal(ﬁl@j) +
L)

Under review as a conference paper at ICLR 2026

2
% 2 (5,0)€Do; <Q9Qj (s,a) — Q,e; (s,a)) where Elocal(OiQ) denotes the baseline offline

global
FDRL method’s original critic loss. For example, Eloca](ﬁlQ) is typically computed as follows:

. . 2
Elocal(GiQ’) = argmme?j |D—1(M| Z(s,a)eDm (yL — Qe?f (s, a)) where the target Q-value y; for the
i-th client is computed as: y; < 7; + yminj—q o Qggj/(sg, ;) where a; + ngu(s,’i) + € and

e ~ N (0,0.2) is noise added to the target actor’s actions, clipped to the range [—1, 1]. Here, v is the
discount factor.

(2) Updating Actor: Next, we update the clients’ actors. Let Elocal(ﬁf) denote the original
loss for the i-th client’s actor A in the baseline offline FDRL method, which is typically com-

puted as —ﬁ 2 (50,a0)€Dos QG?I (st, Fgé‘r(St)) + |D71m-| 2 (s0,a0)eDy; (Tor (St) — a;)?. The final

loss for the i-th client’s actor, £(6}'), is given by: mgn = argminL(0}'), L(0]') = Lioca(0}') +
9 U

% Z(S’a)epm (7795(3) — Trgn (s)) where 7. represents the policy of 6%, the local up-

global

date involves L(global, local) being defined differently for the critic and actor. For the critic,

L(global,local) = ﬁZ(s,a)eDm (QGQJ-

global
2
1
[Dos | Z(Sﬂl)GDm‘ (71’95(8) o 7Teglobm(s)))

Complexity Analysis: Our method has a time complexity of O(N, + N, - |Dy;|), with a detailed
computation provided in Appendix [A.2] introducing minimal computational overhead to existing
offline FDRL methods. Since no new model components are added or changes made to the model
upload/download process, the space complexity and communication cost remain the same as with
current offline FDRL methods. Additionally, the appendix includes pseudocode (A.3) and a
theoretical analysis (A.4) for our approach.

2
(s,a) — @, (5,@)) , while for the actor, it is

5 EXPERIMENT AND ANALYSIS

This section details the experimental settings, results, and analysis. Each method is tested with five
different random seeds.

5.1 EXPERIMENT SETTINGS

(1) Baselines. Four SOTA offline FDRL methods: Federated Diffusion Q-Learning (FDQL) Wen
et al.[(2023), Federated DRL with Dual Regularization (FDRLDR) Yue et al.| (2024b)), Federated
Offline Reinforcement Learning (FORL) |Yue et al.|(2024a), and Federated Ensemble-Directed
Offline Reinforcement Learning Algorithm (FEDORA) Rengarajan et al.| (2024).

(2) Benchmarks. We use the D4RL dataset Fu et al.| (2020) as a benchmark, which includes four
offline MuJoCo tasks: HalfCheetah, Hopper, Walker2d, and Ant. Our setup involves 20 clients, each
with a local dataset of size |D;| = 5000. The global model is evaluated on the expert dataset for the
four MuJoCo tasks. To simulate real-world scenarios, we: 1) Different Datasets for Clients: 10
clients’ data are sampled randomly without replacement from the D4RL expert dataset, while the
other 10 clients’ data are sampled randomly without replacement from the D4RL medium dataset; 2)
Clients Unaware of Dataset Quality: Both clients and the server are unaware of dataset quality,
with no access to the environment; 3) Random Client Participation: In each federated learning
round ¢, we randomly select NV, = 10 clients to participate in the federated learning process. Each
client performs 7" = 20 epochs of local training per round, equating to about 380 local gradient steps.

(3) Metrics. We evaluate different methods using four metrics: the final D4RL score (presented in
the main text), the final episode return (presented in the main text), the episode return (presented
in the appendix), and D4RL score (presented in the appendix). The episode return is the average
reward per communication round, typically displayed as a curve showing its progression. The D4RL
score is a metric used to evaluate offline DRL performance, utilizing the normalized reward [Fu et al.
(2020) and displayed as a curve showing training progress. The final D4RL score is the average

Under review as a conference paper at ICLR 2026

Table 1: Comparison with SOTA methods in terms of final episode return (Mean + Standard
deviation). Bold text indicates that our method achieves better average results than the corresponding
baseline. The same presentation format is used for the other tables.

Methods | HalfCheetah | Hopper | Walker2d | Ant

FDQL 5031.07 &= 775.86 1424.06 £ 305.45 3065.37 = 948.57 3028.94 4 1453.11
Ours+FDQL 5747.2 +£1180.18 1621.01 £ 442.34 3566.6 = 613.21 3127.13 £+ 1356.95
FDRLDR 5716.45 &+ 534.46 1426.13 £ 476.2 3407.13 + 651.35 2428.22 + 952.39
Ours+FDRLDR | 5838.47 4 723.02 | 1382.66 £ 336.58 3467.93 +700.12 | 2959.29 + 1029.58
FORL 4810.62 + 1083.0 1506.8 + 349.45 2895.01 4 618.22 2163.45 + 1311.0
Ours+FORL 6143.2 +1038.35 1716.11 £ 642.87 3292.47 +918.16 | 2667.41 +1125.41
FEDORA 3041.12 4 2279.27 | 1588.71 £ 381.44 3122.96 + 840.22 1537.28 £ 931.17
Ours+FEDORA | 5755.13 £ 701.9 2727.99 £ 1166.83 | 5018.6 + 16.67 2267.79 £ 1212.57

Table 2: Comparison with SOTA methods in terms of final D4RL score (Mean + Standard deviation).

Methods | HalfCheetah | Hopper | Walker2d | Ant

FDQL 42.78 +6.25 44.38 + 9.39 68.78 4+ 20.66 79.77 £+ 34.55
Ours+FDQL 48.55 + 9.51 50.43 + 13.59 77.66 + 13.36 82.1 +32.27
FDRLDR 48.3 £4.3 44.44 + 14.63 74.18 £14.19 65.48 4+ 22.65
Ours+FDRLDR | 49.28 +5.82 | 43.11 +10.34 75.51+15.25 | 77.23 £25.89
FORL 41.0 £ 8.72 46.92 £+ 10.74 63.03 +13.47 59.19 + 31.17
Ours+FORL 51.74 £ 8.36 53.35 £ 19.75 71.69 + 20.0 71.17 + 26.76
FEDORA 26.75+18.36 | 49.44 +11.72 67.99 + 18.3 44.3 +£22.14
Ours+FEDORA | 48.61 +5.65 | 84.44 +35.85 | 109.29 +£0.36 | 61.67 + 28.83

DA4RL score from the global model over the last 10 communication rounds, while the final episode
return is the average episode return over the same period. Higher values in these metrics are favored.

(4) Implementation. The appendix presents the implementation details of our method.
The software stack required for the experiments includes Torch 1.2.0, Gym 0.16.0, and mujoco-py
1.50.0.1, whereas the hardware configuration comprises an Intel Core i7-9700 processor, 64 GB
RAM, and an NVIDIA RTX 2080 GPU.

5.2 COMPARISON WITH SOTA OFFLINE FDRL METHODS

This section presents our improvements to four SOTA methods across four D4RL tasks: HalfCheetah,
Hopper, Walker2d, and Ant, evaluated in terms of final episode return and D4RL score. The final
episode return is provided in Table [T} and the final D4RL score is shown in Table[2] The results
indicate that after integrating our method, by replacing the existing global aggregation methods
with ours, the performance of existing offline FDRL methods improves in almost all cases, with
higher episode returns and D4RL scores. This demonstrates that our global aggregation method helps
existing methods achieve better performance.

Among the four baseline methods, FDRLDR, FDQL, and FORL aggregate client models by averaging
with equal weight. However, due to client heterogeneity, this approach fails to prioritize higher-
performing models. Similarly, FEDORA computes weights based solely on the Q-values of client
models, ignoring the impact of policy inconsistency on offline FDRL performance. This may cause
clients with no significant advantages in Q-values but poor data-fitting abilities to obtain higher
weights in global aggregation, which severely degrades the global model’s data-fitting ability and
fails to fully maximize the expected returns of its policy. Meanwhile, existing methods require local
models to fully adopt the global model, leading to weak global models negatively impacting local
models. In contrast, our method integrates policy inconsistency and Q-values to compute client
weights, thereby amplifying the impact of client models with better overall performance on the global
model. Additionally, our method assesses both the global and local models’ capabilities, mitigating
the negative impact of a weak global model on local models.

5.3 ABLATION STUDY AND HYPERPARAMETER SENSITIVITY ANALYSIS

This section first presents an ablation study, demonstrating that 1) assessing client model importance
solely based on policy inconsistency, referred to as Global Aggregation Using Policy Inconsistency
(GAPI), and 2) not using a decay strategy for the influence of the global model on local models,
referred to as Our Approach Without Decay (OWD) (¢ = 1), are both suboptimal. The former

Under review as a conference paper at ICLR 2026

Table 3: Ablation study and hyperparameter sensitivity analysis (Mean £ Standard deviation).

Methods | FDQL | FDRLDR | FORL | FEDORA

baseline 42.78 +6.25 | 48.3+4.3 41.0+8.72 | 26.75 4 18.36
GAPI+baseline 45.64 +8.49 | 48.8+£6.27 | 50.27+£6.65 | 46.38 £ 6.32
OWD-+baseline 4512+ 8.87 | 45.05+6.14 | 48.02+6.62 | 48.53 + 6.39
Ours (0.8)+baseline | 45.32+9.13 | 48.47+5.04 | 46.84 £4.57 | 47.29 +4.82
Ours (0.9)+baseline | 47.8+7.03 | 47.78£7.32 | 44.34+£6.9 | 45.11 +6.57
Ours+baseline 48.55 +9.51 | 49.28 £ 5.82 | 51.74 +8.36 | 48.61 £ 5.65

Table 4: Comparison with different distribution measures (Mean £ Standard deviation).

Methods | FDQL | FDRLDR | FORL | FEDORA
SD+baseline 45.66 £ 5.41 | 47.42+5.73 | 49.2+829 | 45.82+5.83
KLD+baseline 43.924+6.51 | 45.20 £8.31 | 49.76 +5.27 | 44.59 + 6.9

JSD+baseline (Ours) | 48.55 £9.51 | 49.28 £5.82 | 51.74 £8.36 | 48.61 £5.65

emphasizes the need to use both policy inconsistency and Q-value simultaneously to evaluate client
model importance, while the latter highlights the necessity of applying a decay strategy. We then
perform a sensitivity analysis on the hyperparameter ¢ in our method. Two baselines are set up: 1)
Ours (0.8), where the decay strategy is applied with { = 0.8; and 2) Ours (0.9), where the decay
strategy is applied with ¢ = 0.9. We use four SOTA methods as baselines, with HalfCheetah as the
validation task. The experimental results, presented in Table E], are based on final D4RL scores.

First, we analyze the ablation study, specifically comparing the integration of GAPI into existing
methods (GAPI+baseline), the integration of OWD into existing methods (OWD-+baseline), and
our approach (Ours+baseline). The results show that GAPI+baseline produces a weaker D4RL
score compared to our approach. This is because relying solely on policy inconsistency fails to
identify clients with higher expected returns, represented by Q-values, preventing the global model
from effectively maximizing the policy’s expected returns, leading to suboptimal performance.
Furthermore, without a decay strategy, as seen in the OWD-+baseline method, the weaker global
model negatively impacts the local models. A decay strategy helps mitigate this issue by improving
local model performance, thereby enhancing the global model.

Next, we analyze the hyperparameter sensitivity. The results show that Ours (0.8) and Ours
(0.9) perform worse compared to our method (¢ = 0.99), confirming the optimality of our current
hyperparameter settings. If the decay rate is too large, as in Ours (0.8) and Ours (0.9), performance
deteriorates. This is because, during certain local updates, the global model may be weaker than the
client model 7, and a high decay level (e.g., ¢ = 0.9) reduces the global model’s negative impact by
adjusting 3; to 0.9 (from an initial value of 1). If the global model weakens further, (3; decreases
further (e.g., to 0.81), drastically reducing the global model’s influence on the local model. However,
due to the inherent instability of DRL model performance Xu et al.| (2025b)Xu et al.|(2025a), where
the global model may be weaker than the local model during some updates, this does not imply
that the global model always provides negative experiences or consistently performs worse than the
local model. Therefore, an excessively large decay level reduces the potential for the global model
to positively influence local model updates, leading to a suboptimal global model. Based on these
results, the decay level should not be too large (e.g., using a very small ().

5.4 COMPARISON WITH DIFFERENT DISTRIBUTION MEASURES

This section evaluates our method’s performance using various metrics to assess policy inconsistency,
focusing on three indicators: Squared Difference (SD), KLD, and JSD. The experimental results
presented in Table [4] analyze the final DARL score, with HalfCheetah as the validation task. Our
results indicate that the method achieves optimal performance when employing JSD to measure
policy inconsistency. Unlike SD, which is based on Euclidean geometry, JSD uses a multivariate
Gaussian distribution to capture differences among actions, making it particularly suitable for high-
dimensional actions common in DRL tasks, such as those in MuJoCo. Furthermore, JSD provides a
more sophisticated approach than KLD, as it mitigates the asymmetry inherent in KLD, ensuring a
more reasonable assessment of policy inconsistency. As a result, both qualitative and quantitative
analyses have led us to select JSD as our preferred metric for measuring policy inconsistency.

Under review as a conference paper at ICLR 2026

Table 5: Comparison under different federated learning configurations (Mean =+ Standard deviation).

Federation with varying proportions of medium participants

Methods FORL (25% medium) FDRLDR (25%) FORL (75% medium) FDRLDR (75%)
Baseline 62.94 + 13.33 59.23 + 16.62 41.86 £+ 5.99 45.25 + 4.37
Ours + baseline 63.92 + 15.47 64.71 £13.9 43.59 +6.93 45.87 + 3.31
Different numbers of local training epochs
Methods FORL (10) FDRLDR (10) FORL (30) FDRLDR (30)
Baseline 38.28 +10.13 41.86 = 6.5 41.46 £ 7.11 43.29 £ 7.94
Ours + baseline 40.26 + 7.27 44.68 £+ 5.31 46.1 +£9.24 48.04 + 6.56
More clients with the fixed proportion of aggregation participants
Methods FDRLDR (15:30) FORL (15:30) FDRLDR (20:40) FORL (20:40)
Baseline 47.79 £6.29 38.72 £9.49 51.05 £ 5.57 46.45 £ 7.58
Ours + baseline 50.8 +6.42 49.41 +£94 52.78 + 8.41 52.93 +4.44
Different proportions of aggregation participants
Methods FDRLDR (5:20) FORL (5:20) FDRLDR (15:20) FORL (15:20)
Baseline 48.67 +10.02 45.13 +10.39 43.88 + 6.32 42.98 £ 7.58
Ours + baseline 51.57 +6.53 48.52 + 4.36 48.62 + 3.69 45.69 + 8.75
Different client dataset sizes
Methods FDRLDR (2500) FORL (2500) FDRLDR (10000) FORL (10000)
Baseline 28.9 £ 8.14 28.04 £ 7.77 79.81 +7.39 78.18 +10.67
Ours + baseline 33.44 + 9.92 31.3 £8.76 83.88 £ 7.91 82.45 £ 8.78

5.5 COMPARISON UNDER DIFFERENT FEDERATED LEARNING CONFIGURATIONS

This section compares our method with existing approaches across five different federated learning
configurations to further demonstrate its superiority. First, we explore federation with varying
proportions of medium client participants, adjusting the proportion of clients using the medium
dataset to 25% and 75%. Second, we examine different numbers of local training epochs by changing
the local training duration after each global aggregation to 10 and 30 epochs. Third, we maintain
a fixed proportion of 50% aggregation participating clients while varying both the total number of
clients and those participating in global aggregation to 30:15 and 40:20. Fourth, we compare the
performance of different methods with client local datasets of sizes |D;| set to 2500 and 10000.
Lastly, we analyze different proportions of aggregation participants, keeping the total number of
clients at 20 and setting participation ratios to 5:20 and 15:20. The experiments use FORL and
FDRLDR, the two most recent methods, as baselines, with HalfCheetah as the validation task.

The experimental results for the five federated learning configurations are summarized in Table 5]
showing the final DARL scores. These results demonstrate that, even with varying configurations,
such as the reduced proportion of clients utilizing the expert dataset as shown in Table 5} our method
consistently improves SOTA offline FDRL methods, further validating its effectiveness. Despite these
variations, our method benefits existing approaches in both global aggregation and local training
designs. First, incorporating policy inconsistency and Q-values enables a more comprehensive
evaluation of client significance, enhancing global aggregation. Meanwhile, reducing the interference
of a weak global model on local models contributes to improving local training.

6 CONCLUSION

This work introduces a novel federated learning framework that can be seamlessly integrated into
existing offline FDRL approaches to enhance their performance. Specifically, we consider both policy
inconsistency and Q-value to compute the weights for each client model. These weighted models
are aggregated into a global model, which is then distributed to clients. The clients minimize the
discrepancy between their models and the global model. During local updates, we reduce the impact
of this discrepancy when the client’s model outperforms the global model. Extensive experiments on
the D4RL dataset show that our method improves four SOTA offline FDRL methods in both return
and D4RL score. Future work will explore advanced metrics to measure policy inconsistency.

Under review as a conference paper at ICLR 2026

REFERENCES

Syed Thouheed Ahmed, V Vinoth Kumar, TR Mahesh, LV Narasimha Prasad, AK Velmurugan,
V Muthukumaran, and VR Niveditha. Fedopt: federated learning-based heterogeneous resource
recommendation and optimization for edge computing. Soft Computing, pp. 1-12, 2024.

Han Cha, Jihong Park, Hyesung Kim, Mehdi Bennis, and Seong-Lyun Kim. Proxy experience replay:
Federated distillation for distributed reinforcement learning. IEEE Intelligent Systems, 35(4):
94-101, 2020.

Xiaocong Chen, Siyu Wang, Julian McAuley, Dietmar Jannach, and Lina Yao. On the opportunities
and challenges of offline reinforcement learning for recommender systems. ACM Transactions on
Information Systems, 42(6):1-26, 2024.

Rafael Figueiredo Prudencio, Marcos R. O. A. Maximo, and Esther Luna Colombini. A survey on
offline reinforcement learning: Taxonomy, review, and open problems. IEEE Transactions on
Neural Networks and Learning Systems, 35(8):10237-10257, 2024.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132-20145, 2021.

J. Hollenstein, S. Auddy, M. Saveriano, et al. Action noise in off-policy deep reinforcement learning:
Impact on exploration and performance. arXiv preprint arXiv:2206.03787, 2022.

Zhang-Wei Hong, Aviral Kumar, Sathwik Karnik, Abhishek Bhandwaldar, Akash Srivastava, Joni
Pajarinen, Romain Laroche, Abhishek Gupta, and Pulkit Agrawal. Beyond uniform sampling: Of-
fline reinforcement learning with imbalanced datasets. Advances in Neural Information Processing
Systems, 36:4985-5009, 2023.

Li Jiang, Sijie Cheng, Jielin Qiu, Haoran Xu, Wai Kin Chan, and Zhao Ding. Offline reinforcement
learning with imbalanced datasets. arXiv preprint arXiv:2307.02752, 2023.

Wenzheng Jiang, Ji Wang, Xiongtao Zhang, Weidong Bao, Cheston Tan, and Flint Xiaofeng Fan.
Fedhpd: Heterogeneous federated reinforcement learning via policy distillation. arXiv preprint
arXiv:2502.00870, 2025.

Li Ju, Tianru Zhang, Salman Toor, and Andreas Hellander. Accelerating fair federated learning:
Adaptive federated adam. IEEE Transactions on Machine Learning in Communications and
Networking, 2:1017-1032, 2024.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International conference on machine learning, pp. 5132-5143. PMLR, 2020.

Dongsu Lee, Chanin Eom, and Minhae Kwon. Ad4rl: Autonomous driving benchmarks for offline
reinforcement learning with value-based dataset. In 2024 IEEFE International Conference on
Robotics and Automation (ICRA), pp. 8239-8245. IEEE, 2024a.

Su Hyeong Lee, Sidharth Sharma, Manzil Zaheer, and Tian Li. Efficient adaptive federated optimiza-
tion. arXiv preprint arXiv:2410.18117, 2024b.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Shirong Liu, Chenjia Bai, Zixian Guo, Hao Zhang, Gaurav Sharma, and Yang Liu. Selfbc: Self
behavior cloning for offline reinforcement learning. arXiv preprint arXiv:2408.02165, 2024.

Xiao-Yang Liu, Rongyi Zhu, Daochen Zha, Jiechao Gao, Shan Zhong, Matt White, and Meikang Qiu.
Differentially private low-rank adaptation of large language model using federated learning. ACM
Transactions on Management Information Systems, 16(2):1-24, 2025.

10

Under review as a conference paper at ICLR 2026

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273-1282. PMLR, 2017.

Soroush Nasiriany, Vitchyr H. Pong, Ashvin Nair, Alexander Khazatsky, Glen Berseth, and Sergey
Levine. Disco rl: Distribution-conditioned reinforcement learning for general-purpose policies. In
2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 6635-6641, 2021.

Ju-eun Park and Honguk Woo. Federated offline reinforcement learning for autonomous systems. In
International Conference on Computer and Communication Engineering, pp. 107-117. Springer,
2022.

Zhiyong Peng, Changlin Han, Yadong Liu, and Zongtan Zhou. Weighted policy constraints for
offline reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 37, pp. 9435-9443, 2023.

Desik Rengarajan, Nitin Ragothaman, Dileep Kalathil, and Srinivas Shakkottai. Federated ensemble-
directed offline reinforcement learning. Advances in Neural Information Processing Systems, 37:
6154-6179, 2024.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 50265033,
2012.

Jiayi Wang, Shigiang Wang, Rong-Rong Chen, and Mingyue Ji. A new theoretical perspective on
data heterogeneity in federated optimization. arXiv preprint arXiv:2407.15567, 2024.

Jin Wang, Jia Hu, Jed Mills, Geyong Min, Ming Xia, and Nektarios Georgalas. Federated ensemble
model-based reinforcement learning in edge computing. [EEE Transactions on Parallel and
Distributed Systems, 34(6):1848—-1859, 2023.

Jiabao Wen, Huiao Dai, Jingyi He, Meng Xi, Shuai Xiao, and Jiachen Yang. Federated offline
reinforcement learning with multimodal data. IEEE transactions on consumer electronics, 70(1):
4266-4276, 2023.

R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8:229-256, 1992.

Jiin Woo, Laixi Shi, Gauri Joshi, and Yuejie Chi. Federated offline reinforcement learning: Collabo-
rative single-policy coverage suffices. arXiv preprint arXiv:2402.05876, 2024.

Feijie Wu, Zitao Li, Yaliang Li, Bolin Ding, and Jing Gao. Fedbiot: LIm local fine-tuning in federated
learning without full model. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 3345-3355, 2024.

Huaqing Xiong, Tengyu Xu, Lin Zhao, Yingbin Liang, and Wei Zhang. Deterministic policy gradient:
Convergence analysis. In Uncertainty in Artificial Intelligence, pp. 2159-2169. PMLR, 2022.

Meng Xu, Xinhong Chen, and Jianping Wang. Policy correction and state-conditioned action
evaluation for few-shot lifelong deep reinforcement learning. IEEE Transactions on Neural
Networks and Learning Systems, 36(4):6843-6857, 2025a.

Meng Xu, Xinhong Chen, Zihao Wen, Weiwei Fu, and Jianping Wang. A two-stage selective
experience replay for double-actor deep reinforcement learning. IEEE Transactions on Neural
Networks and Learning Systems, pp. 1-16, 2025b.

Rui Ye, Rui Ge, Xinyu Zhu, Jingyi Chai, Du Yaxin, Yang Liu, Yanfeng Wang, and Siheng Chen.
Fedllm-bench: Realistic benchmarks for federated learning of large language models. Advances in
Neural Information Processing Systems, 37:111106—-111130, 2024.

Tianhe Yu, Aviral Kumar, Yevgen Chebotar, Karol Hausman, Chelsea Finn, and Sergey Levine.
How to leverage unlabeled data in offline reinforcement learning. In International Conference on
Machine Learning, pp. 25611-25635. PMLR, 2022.

11

Under review as a conference paper at ICLR 2026

Xiaotong Yuan and Ping Li. On convergence of fedprox: Local dissimilarity invariant bounds, non-
smoothness and beyond. Advances in Neural Information Processing Systems, 35:10752—-10765,
2022.

Sheng Yue, Yongheng Deng, Guanbo Wang, Ju Ren, and Yaoxue Zhang. Federated offline reinforce-
ment learning with proximal policy evaluation. Chinese Journal of Electronics, 33(6):1360-1372,
2024a.

Sheng Yue, Zerui Qin, Xingyuan Hua, Yongheng Deng, and Ju Ren. Federated offline policy
optimization with dual regularization. In IEEE INFOCOM 2024-IEEE Conference on Computer
Communications, pp. 811-820. IEEE, 2024b.

Doudou Zhou, Yufeng Zhang, Aaron Sonabend-W, Zhaoran Wang, Junwei Lu, and Tianxi Cai.
Federated offline reinforcement learning. Journal of the American Statistical Association, 119
(548):3152-3163, 2024a.

Liuzhi Zhou, Yu He, Kun Zhai, Xiang Liu, Sen Liu, Xingjun Ma, Guangnan Ye, Yu-Gang Jiang, and
Hongfeng Chai. Fedcada: Adaptive client-side optimization for accelerated and stable federated
learning. arXiv preprint arXiv:2405.11811, 2024b.

Hankz Hankui Zhuo, Wenfeng Feng, Yufeng Lin, Qian Xu, and Qiang Yang. Federated deep
reinforcement learning. arXiv preprint arXiv:1901.08277, 2019.

A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

This paper only uses LLMs to polish text and not for any other purpose.

A.2 COMPLEXITY ANALYSIS

This section demonstrates the complexity introduced by the unique components of our method
compared to existing offline FDRL methods. Time complexity: In the global aggregation phase,
each client computes the Q-values and policy inconsistency for its local model, resulting in a
time complexity of O(N, - |Dg;|). Then, computing each client’s weight incurs a complexity of
O(N,). Thus, the overall time complexity for global aggregation is O(N, + N, - |Do;|). In the
local training phase, each client calculates the difference between the global and local models and
minimizes it, leading to a time complexity of O(N, - |Dy;|). Therefore, the total time complexity is
O(N, + N, - |Dy;l), which introduces minimal additional computational cost to the existing offline
FDRL methods. Lastly, since our method does not introduce new model components or alter the
process of model upload and download, there is no increase in Space complexity or Communication
cost compared to existing offline FDRL methods.

A.3 THE PSEUDOCODE

The training for the server is outlined in Algorithm|[I}

The training process for each client is detailed in Algorithm 2]

A.4 THEORETICAL ANALYSIS

This section provides a theoretical analysis of how our method improves upon existing offline FDRL
approaches by additionally considering policy inconsistency. We start by introducing an assumption
and four lemmas to prove Theorem 1. From Theorem 1, we derive Theorem 2, which demonstrates
why our method improves current approaches by incorporating policy inconsistency into global
aggregation. Building on Theorem 2, we establish Theorem 3, which derives the upper bound on
the performance gap between our method and the theoretically optimal global policy. Finally, using
Definition 1, we derive Lemma 5, leading to Theorem 4, which highlights the difference between the
Q-values of our method and the optimal global policy.

12

Under review as a conference paper at ICLR 2026

Algorithm 1 Training procedure of our method (Server)

1: Initialize the global model (6);,,,;: (9?[obal)

2: Initialize the maximum number of communication rounds £, and the number of clients N,.
3: Set round =1

4: repeat

5. fork=1to N, do

Client k receives the global model (6},,,,.,;, onbal)

Client k updates its local model based on the received global model (05 lobal® 93 obal)
Client k£ computes its importance
9: end for
10: Compute client weights
11: Aggregate the models from the clients
12: Distribute the updated global model (6", ., 9;2[obal)
13: round + +
14: until £, — round =0

PR D

Algorithm 2 Training procedure of our method (Client)

I: Initialize the actor 6%, the critics 91 and 092, along with the target networks 8+, §91, and 92,

2: Initialize the dataset D, the maximum number of communication rounds £, and the maximum
duration T for each local training.

3: round =1

4: repeat

5: Decay 5 if necessary

6: fort=1toT do

7: Sample a random mini-batch Dy from D to update the model

8: Update the critics

9: Update the actor
10: Every d steps, update the target networks: §95 « 70@ + (1- T)9Q3' LOH O 4 (1 —

)0 forj = 1,2
11: end for
12: Each client uploads the models 6*, §91, and 692 to the server
13: round + +
14: until £, — round =0

13

Under review as a conference paper at ICLR 2026

Assumption 1: In DRL, the reward magnitude |r(s)] is limited by a constant R, such that |r(s)| <
Ry

Definition 1: A function is Lipschitz continuous if its rate of change remains within a fixed bound.
For any two points x and y, a constant K exists such that:

1f(x) = FW)ll < Kllz —yl| €]

This implies that the function’s rate of change is constrained by K across the entire domain.

Lemma 1: The research presented in [Xiong et al|(2022) indicates that the objective for DRL,
J(m(s)), can be restructured as follows:

T(a(5)) = T2 Eampisrio ()] @

L_ represents a constant positive value applicable to any given policy.

Here, T—

Lemma 2: Let Dis™(*) : S — R be the occupancy measure associated with policy 7 Xiong et al.
(2022), defined as:

Dis™®) = / Z(l —Y)Y'po(s)p (s — s t,7)ds 3)
S =0

Here, p(s — §',t,m) denotes the probability density of transitioning from state s to state s’ in ¢
steps, under policy 7. According to the findings presented in Xiong et al.| (2022), the expression for
E,.pis~ [r(8)] can be formulated as follows:

By pism [(5)] :/Sr(s)Dis’T(S)ds)

Lemma 3: Let f : S C R™ — R be a function. If p < ¢ and the interval [p, ¢] lies within S, then

the inequality
q
|ty
p

Proof: Let us start by considering the integrand f(x). For each = € [p, ¢], we have:

< / (@) |de)

holds true.

[f(@)| = f(z) if f(z) 20, and [f(z)|=—f(x) if f(z)<O (©)

when we take the integral, we can directly compare the integrals of | f(z)| and f(x):

/qlf(:v)ldxz /qf(w)dw it f(z) >0,
p . p .)
and /|f(;v)|d:r2—/ flz)dz if f(x) <0

/pq f(z)dx

Lemma 4: The research conducted in|Xiong et al.|(2022) indicates that for any two actions, 71 (s)
and 2 (s) from the set A, there exists a positive constant K, such that the following relationship is
satisfied:

Thus, we have:

< / (@) d ®)

This completes the proof.

14

Under review as a conference paper at ICLR 2026

/ ‘Dis”l(s) — Dis™®) | ds < K, meagi |71(s) — m2(s)]| ®
S S

Lemma 5: In DRL, the critic, often a neural network, computes the Q-value, and current studies
assume it satisfies the Lipschitz continuity condition. From Definition 1, for a constant K, the
following inequality holds:

[Q (s,74(s)) — Q(s, 7P (s))|| < Kq |7 (s) — 7P (s)]| (10)

Theorem 1: For two policies, 7% (s) and 77 (s), the difference between J(74(s)) and J (75 (s)) can
be bounded as follows:

T (x4 (s)) — J(xP(s))|
(Lengnal) 1% ’Eseris”A(s) [7”(8)] - EstiS"B(S) [T(S)H

~y
/ r(s) (DisﬂA(S) — Dis”B(S)) ds

L=v1/s

7/ |r(s)] ’DisﬂA(s) — Dis™®

(Assumptionl) R
< M /’Dzs’r () _ Dis™

(Lemma?2) 1

(Lemma3)
< ds

(Lemma4) RA[K
< = max|r%(s) — 77 (s)]|

1-— 568
(11
This derivation shows that the difference in long-term cumulative rewards JJ between two policies is
proportional to their discrepancy, with % acting as a positive constant valid for all policies.

Theorem 2: Let 74 (s) be the policy of the k-th local model, assuming it has the minimum policy
inconsistency with its corresponding offline dataset policy 7rkf f (s) among all clients. The global

model’s policy is represented as 7(s) = S h¢ b WeTk(s), while 7* (s) denotes the theoretical optimal
global policy. The difference between the optimal policy J(7*(s)) and the policy learned by various
offline FDRL methods J(7(s)) can be bounded as follows:

(5" (s)) = 7 (x(5))

= 7 (3)) + T (r? (5)) = T (i () = T(m(s))]

< () = T ()] + T () = T ()

= 17(x*(5)) = T)] + 1T () + () = T (m(s) = () (12)
< 1w (5)) = T ()] + T () = ()| + 1 (m(s) = T (5))

< P (o (5) = 5 ()] + mag 2 (0) = w9+ ma e (s) = (o))

Discussion: In this derivation, the terms maxges [|7*(s) — szf()|| + maxses ||7roff() — mr(9)]|
remain constant across different offline FDRL methods. Our approach gives greater weight wy, to
models from clients with minimal policy inconsistency during global aggregation, resulting in a
smaller difference between 7(s) = ZkN:“I wi g (s) and 7, (s). Consequently, maxges ||mx(s) —
m(s)|| is reduced compared to existing offline FDRL methods. This leads to a tighter upper bound on
the performance difference between our method and the theoretically optimal global policy, allowing
our method to more closely approach the optimal global policy. Therefore, by incorporating policy
inconsistency into global aggregation, our approach improves current offline FDRL methods.

Theorem 3: In offline FDRL, each client’s local model minimizes the policy inconsistency with
the offline dataset, bounding the difference between the offline policy and the trained local policy

by p1, such that max.cs ||7er F(s) = mx(s)|| < p1. The communication frequency between global

15

Under review as a conference paper at ICLR 2026

and local models is limited, with local models undergoing global aggregation after a fixed number
of epochs, which bounds the difference between each local model and the global model by po.
Additionally, since both the offline policy and the global model’s optimal policy are fixed, the

difference between them is bounded by ps. Therefore, we have maxses ||7x(s) — 7(s)|| < p2 and

maxges ||[7*(s) — wsz(s)H < ps. As aresult, the upper bound for |J(7*(s)) — J(7(s))] is given

by:

< Ry K,

[(s) = J(r(s))l < = (1 + P2+ ps) (13)

Theorem 4: Let Q) (s, 7*(s)), Q (s, mx(s)), @ (s, ﬂsz(s)), and Q (s, m(s)) denote the Q-values for
the global model’s optimal policy 7*(s), the k-th local model’s policy 7k (s), the offline policy of the

k-th local model ﬂzf / (s), and the global model’s policy 7 (s), respectively. According to Lemma 5,
the upper bound on the difference between @ (s, 7*(s)) and Q(s, w(s)) is given by:

1Q (5,7 () = Q (5, 7(s))]

=@ (s.7" () = Qs 7 (5) + QUs, mp () = Q (5. 7(5))||

< @7 () = Qs m ()| + | Qs 72 (5) = Q (s, m(s)) |

= @7 (5) = Qs ()| + | @0, 72 (90) + Qs mi () = Qs () — Qs w(9))|
QG 7 (9) = Qs () + @, 12 () = Qs ()| + Q5. mi(5)) = Qls, ()

(Lemmab)

<

Ko (=) = mi)] +
< Kq (p1+ p2 + p3)

72 (5) = mus)|| + lIme(s) = w(s)]))
(14)

A.5 IMPLEMENTATION DETAILS

Each client uses the same DRL model, which consists of a three-layer Multi-Layer Perceptron (MLP)
with 256 neurons in each hidden layer and ReLU activation for both the actor and critic. The actor’s
output layer uses Tanh activation. Both components share a fixed learning rate of 0.001 and are
optimized using the Adam optimizer. Mini-batches contain 256 samples, with a discount factor of
0.99. The target network is updated every 2 steps using a soft update rate of 0.005. We assess policy
inconsistency using the JSD method, which our experiments have shown to be the most effective
approach. (is set to 0.99.

A.6 COMPARISON WITH SOTA OFFLINE FDRL METHODS

This section presents our improvements to four SOTA methods across four MuJoCo tasks in D4RL.:
HalfCheetah, Hopper, Walker2d, and Ant, evaluated in terms of episode return and D4RL score.

Fig. 2] shows the experimental results in terms of episode return, while Fig. [5] presents the results
based on the D4RL score. The results indicate that after integrating our method, which replaces
the existing global aggregation methods, the performance of offline FDRL methods improves in
almost all cases, with higher episode returns and D4RL scores. This demonstrates that our global
aggregation method helps existing methods achieve better performance.

A.7 ABLATION STUDY AND HYPERPARAMETER SENSITIVITY ANALYSIS

This section first presents an ablation study, demonstrating that 1) assessing client model importance
solely based on policy inconsistency, referred to as Global Aggregation Using Policy Inconsistency
(GAPI), and 2) not using a decay strategy for the influence of the global model on local models,
referred to as Our Approach Without Decay (OWD) ((= 1), are both suboptimal. The former
emphasizes the need to use both policy inconsistency and Q-value simultaneously to evaluate client

16

Under review as a conference paper at ICLR 2026

FORL
8000 1 — FDQL
—— Ours+FORL
—— Ours+FDQL
6000 1
£
5 40004
&
20004
04
200 400 600 800 1000
‘Communication Round
(a) HalfCheetah
FORL
] — FDQL
5000 —— Ours+FORL
—— Ours+FDQL
40004
< 3000
H
&
20004
1000
04
0 200 400 600 800 1000
‘Communication Round
(c) Walker2d

Return

Return

3000 1 FORL
—— FDQL
= Ours+FORL
2500 —— Ours+FDQL
2000 4
1500
1000
500 -
0
200 400 600 800 1000
Communication Round
(b) Hopper
FORL
—— FDQL
5000 —— Ours+FORL
—— Ours+FDQL
4000 1
3000 4
2000 4
1000
04
—1000 - T T T T y
200 400 600 800 1000
Communication Round
(d) Ant

Figure 2: Comparison with SOTA offline FDRL methods in terms of episode return. Here, we use
FORL and FDQL as the baseline. In these figures, the x-axis represents the communication rounds,
and the y-axis shows the return achieved by the server in each round. The bold curve depicts the
average performance, with the shaded area indicating the standard deviation across five runs. The
same format is used in the other figures.

17

Under review as a conference paper at ICLR 2026

FDRLDR
8000 —— FEDORA
—— Ours+FDRLDR
—— Ours+FEDORA
6000
4000 1
&
20001
oA
—2000 1
0 200 400 600 800 1000
Communication Round
(a) HalfCheetah
| FDRLDR
6000 —— FEDORA
= Ours+FDRLDR
—— Ours+FEDORA
5000 1
4000 1
g 30001
20001
1000 -
oA
0 200 400 600 800 1000

Communication Round

(c) Walker2d

Figure 3: Comparison with SOTA offline FDRL methods in terms of episode return. Here, we use

FDRLDR and FEDORA as the baseline.

18

Return

5000 FDRLDR
—— FEDORA
—— Ours+FDRLDR
= Ours+FEDORA
4000 —r——
3000
&
2000
10004
04
0 200 400 600 800 1000
‘Communication Round
(b) Hopper
5000 FDRLDR
—— FEDORA
= Ours+FDRLDR
—— Ours+FEDORA
4000 —
3000
2000
1000 4
04
~1000

400 600
Communication Round

(d) Ant

800 1000

Under review as a conference paper at ICLR 2026

704 FORL
—— FDQL
—— Ours+FORL
60 —— Ours+FDQL
504
© 40
5
@
g 30
3
204
104
04
0 200 400 600 800 1000
‘Communication Round
(a) HalfCheetah
1201
FORL
— FDQL
= Ours+FORL
1004 —— Ours+FDQL
801
@
8
3 604
z
g
3
404
201
oA
0 200 400 600 800 1000

Communication Round

(c) Walker2d

FORL
—— FDQL
—— Ours+FORL
80 —— Ours+FDQL
60 -
g
5
@
Z 40
3
204
04
0 200 400 600 800 1000
‘Communication Round
(b) Hopper
1404 FORL
— FDQL
= Ours+FORL
1201 —— Ours+FDQL
100 A
® 804
5
@
g 60
3
404
204
0
0 200 400 600 800 1000

Communication Round

(d) Ant

Figure 4: Comparison with SOTA offline FDRL methods in terms of D4RL score. Here, we use
FORL and FDQL as the baseline.

19

Under review as a conference paper at ICLR 2026

FDRLDR
—— FEDORA
604 —— Ours+FDRLDR
—— Ours+FEDORA
40
g
5
&
g 204
3
oA
—204
0 200 400 600 800 1000
‘Communication Round
(a) HalfCheetah
140 o
FDRLDR
—— FEDORA
120 = Ours+FDRLDR
—— Ours+FEDORA
100 4
° 804
5
@
g 60
3
404
204
oA
0 200 400 600 800 1000

Communication Round

(c) Walker2d

Figure 5: Comparison with SOTA offline FDRL methods in terms of D4RL score. Here, we use

FDRLDR and FEDORA as the baseline.

20

D4RL Score

DA4RL Score

FDRLDR
—— FEDORA
1404 —— Ours+FDRLDR
= Ours+FEDORA
1204
1004
80
60+
40
20
04
0 200 400 600 800 1000
‘Communication Round
(b) Hopper
FDRLDR
1204 —— FEDORA
= Ours+FDRLDR
—— Ours+FEDORA
1004 e

0 200

400 600
Communication Round

(d) Ant

800 1000

Under review as a conference paper at ICLR 2026

model importance, while the latter highlights the necessity of applying a decay strategy. We then
perform a sensitivity analysis on the hyperparameter ¢ in our method. Two baselines are set up: 1)
Ours (0.8), where the decay strategy is applied with { = 0.8; and 2) Ours (0.9), where the decay
strategy is applied with ¢ = 0.9. We use four SOTA methods as baselines, with HalfCheetah as the
validation task. The experimental results, presented in Fig. [6] are based on D4RL scores. From the
experimental results, it can be seen that the full version of our method with ¢ = 0.99 achieves the

highest D4RL scores.

70 FDOL 70 FDRLDR
= GAPI+FDQL = GAPI+FDRLDR
—— OWD+FDQL =—— OWD+FDRLDR
= Ours (0.8)+FDQL 60+ = Ours (0.8)+FDRLDR
60 —— Ours (0.9)+FDQL = Ours (0.9)+FDRLDR
Ours+FDQL Ours+FDRLDR
e e e e 504 * R)
501 Y
] A'Wmﬂmwm\:ﬁ ol Ao W
v |y e \ i
3401 (o Ao
g A £ ol
8 30| Tﬂ{“ 8 DA
A) 204 /’
204 i
\‘ 104
104 |
\‘ o]
01 w’ T T T T T T T T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000
‘Communication Round ‘Communication Round
(a) FDQL (b) FDRLDR
80
FEDORA 704
= GAPI+FEDORA = GAPI+FORL
=—— OWD+FEDORA =—— OWD+FORL
604 — Ours (0.8)+FEDORA 60 —— Ours (0.8)+FORL
= Ours (0.9)+FEDORA = Ours (0.9)+FORL

Ours+FEDORA Ours+FORL

50

407 ‘,,,»,,,.. R N LA e !
W ‘dﬁ»"-vf‘""""“" & el : it
i, NP
\f 204 “J‘\w;"*
| |
‘J

104

DARL Score
DARL Score

ol

-104
0 200 400 600 800 1000 0 200 400 600 800 1000

Communication Round

Communication Round

(c) FEDORA (d) FORL

Figure 6: Ablation study and hyperparameter sensitivity analysis

A.8 COMPARISON WITH DIFFERENT DISTRIBUTION MEASURES

This section evaluates our method’s performance using various metrics to assess policy inconsistency,
focusing on three indicators: Squared Difference (SD), KLD, and JSD. The experimental results
presented in Fig.[7] analyze the D4RL score, with HalfCheetah as the validation task. Our results
indicate that the method achieves optimal performance when employing JSD to measure policy
inconsistency.

A.9 COMPARISON UNDER DIFFERENT FEDERATED LEARNING CONFIGURATIONS

This section compares our method with existing approaches across five different federated learning
configurations to further demonstrate its superiority. First, we explore federation with varying
proportions of medium client participants, adjusting the proportion of clients using the medium
dataset to 25% and 75%. Second, we examine different numbers of local training epochs by changing
the local training duration after each global aggregation to 10 and 30 epochs. Third, we maintain
a fixed proportion of 50% aggregation participating clients while varying both the total number of
clients and those participating in global aggregation to 30:15 and 40:20. Fourth, we compare the

21

Under review as a conference paper at ICLR 2026

704 SD+FDQL
—— KLD+FDQL
—— JSD+FDQL (Our)
60 1
504
£ a0
3
g
3 30
204
104
01 T T T T T T
0 200 400 600 800 1000
‘Communication Round
(a) FDQL
704 SD+FEDORA
—— KLD+FEDORA
—— JSD+FEDORA (Our)
60
504
o 404
5
&
2 304
g
3
204
104
04
0 200 400 600 800 1000

Communication Round

(c) FEDORA

7041 SD+FDRLDR
—— KLD+FDRLDR
—— JSD+FDRLDR (Our)
60|
50
o 404
g
&
2 30
g
20
104
o]
0 200 400 600 800 1000
‘Communication Round
SD-+FORL
704 —— KLD+FORL
—— JSD+FORL (Our)
60|
50
£ 40
&
4
2
£ 30
20
104
o]
200 400 600 800 1000

Communication Round

(d) FORL

Figure 7: Comparison with different distribution measures

22

Under review as a conference paper at ICLR 2026

performance of different methods with client local datasets of sizes |D;| set to 2500 and 10000.
Lastly, we analyze different proportions of aggregation participants, keeping the total number of
clients at 20 and setting participation ratios to 5:20 and 15:20. The experiments use FORL and
FDRLDR, the two most recent methods, as baselines, with HalfCheetah as the validation task.

The experimental results for the five federated learning configurations are summarized in Fig. [§]to
Fig.[12} displaying the D4RL scores. These results demonstrate that, even with varying configurations,
such as the reduced proportion of clients utilizing the expert dataset as shown in Fig.[8] our method
consistently improves SOTA methods, further validating its effectiveness.

100 FORL FORL
= Ours+FORL 60 = Ours+FORL
= FDRLDR = FDRLDR
= Ours+FDRLDR = Ours+FDRLDR
80 504

60

D4RL Score
D4RL Score
w
S

404

0 200 400 600 800 1000 0 200 400 600 800 1000
Communication Round Communication Round

(a) 15% medium participants (b) 75% medium participants

Figure 8: Federation with varying proportions of medium participants

~
=)
!

FORL FORL

o
S
!

= Ours+FDRLDR

v
o
!

D4RL Score
D4RL Score
»
=)
!

N w
5 S
! !

=
o
L

o
!

0 200 400 600 800 1000 0 200 400 600 800 1000
Communication Round Communication Round

(a) 10 epochs (b) 30 epochs

Figure 9: Different numbers of local training epochs

23

Under review as a conference paper at ICLR 2026

D4RL Score

(a) A total of 30 clients, with 15 participants involved.

D4RL Score

(a) A total of 20 clients, with 5 participants involved.

DARL Score

80 FORL FORL
—— Ours+FORL 704 —— Ours+FORL
— FDRLDR — FDRLDR
—— Ours+FDRLDR —— Ours+FDRLDR
—_ 60
60
504
£ 401
40 4
% 30
204
20
10
0 o1
0 200 400 600 800 1000 0 200 400 600 800 1000

Communication Round Communication Round

(b) A total of 40 clients, with 20 participants involved.

Figure 10: More clients with the fixed proportion of aggregation participants

FORL 701 FORL
704 = Ours+FORL
604 — FDRLDR
—— Ours+FDRLDR
601 T S T
50
504
o 40
404 S
&
2 30
304 g 30
20 204
10 104
0 od
0 200 400 600 800 1000 0 200 400 600 800 1000

Communication Round Communication Round

(b) A total of 20 clients, with 15 participants involved.

Figure 11: Different proportions of aggregation participants

FORL
= Ours+FORL
—— FDRLDR
—— Ours+FDRLDR

501

40

D4RL Score

~104
0 200 400 600 800 1000 0 200 400 600 800
Communication Round Communication Round

10‘00
(a) The dataset size for the client is 2500. (b) The dataset size for the client is 10000.

Figure 12: Different client dataset sizes.

24

	Introduction
	Related work
	Preliminaries
	Methodology
	The framework for our method
	Global Aggregation
	Local Training

	Experiment and Analysis
	Experiment Settings
	Comparison with SOTA offline FDRL methods
	Ablation study and hyperparameter sensitivity analysis
	Comparison with different distribution measures
	Comparison under different federated learning configurations

	Conclusion
	Appendix
	The Use of Large Language Models (LLMS)
	Complexity analysis
	The pseudocode
	Theoretical analysis
	Implementation Details
	Comparison with SOTA offline FDRL methods
	Ablation study and hyperparameter sensitivity analysis
	Comparison with different distribution measures
	Comparison under different federated learning configurations

