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Abstract

Glyphosate-based herbicides are among the mostugeddand widely-used herbicides.
Studies have shown that commercial formulations ajdvants may be more toxic to non-
target organisms than the active ingredients albng,the mechanisms of action of these
chemicals remain unclear. The aim of this study teasvestigate then vitro effects of

glyphosate, a commercial formulation and adjuvdémeusing primary culture of hemocytes
from the European abalondaliotis tuberculata, a commonly farmed shellfish. Glyphosate
was found to have negligible effects on viabilppagocytic activities and lysosome stability
even with very high doses (i.e. 100 mg)LBy contrast, greater effects on viability were
observed for the commercial formulation and adjudone, with EGyvalues of 41.42 mg'L

1 and 1.85 mg L, respectively. These results demonstrate thatobkie sublethal effects (i.e.

phagocytic activity and destabilization of lysosémambranes) of formulated glyphosate
came from adjuvants and suggest they may be relkateckll and organelle membrane

destabilization.

1. Introduction

The quality of coastal waters greatly depends omdru activities in the upstream
areas. Among the various contaminants that magleeant, pesticides from agricultural and
domestic activities can be carried by freshwatier run-off and leaching processes and
subsequently contaminate marine coastal areas.[H8ibicide formulations containing
glyphosate as the active ingredient are among tbst mommonly used pesticides in the
world [4]. In these commercial formulations, adjotsaare used to promote the penetration of
the active ingredient into plant cuticles [5]. Tim@st common adjuvants in glyphosate-based
herbicides are polyethoxylated tallow amines (POEA&®sat can be formulated in an

oxide:tallow-amine ratio ranging from 5:1 to 25The half-life of POEAs in water has been



46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

estimated from 21 to 42 days suggesting that thisvant is relatively persistent in water [6].
For glyphosate itself, hydrolysis (>30 days for @iging from 5 to 9) and photolysis times
in water (69 and 77 days, for pH of 7 and 9, reBpely) also reveal its relative persistence
(e.q. [7]). Furthermore, studies have shown thgplgbsate is detectable in rivers [8-11] with
maximum concentrations higher than 100 [fg[12], in contrast to around 1 pg'lin coastal
waters [3,13]. Data from literature have indicatedt commercial formulations appeared
more toxic for a large panel of non-target orgasistTampared to glyphosate alone [4,14-16]
which may indicate toxicity of adjuvants alone ddgive or synergistic toxicity of adjuvants
with other(s) component(s) of the formulated compsu Indeed, the toxicity of POEAs has
already been demonstrated in different taxonomoeige such as amphibians [4], freshwater
crustaceans [17,18] and molluscs [19,20]. For eXxanthe embryotoxicity of POEAs was
guantified after 36 h of exposure considering katiested development and abnormalities in
D-shaped larvae of the Pacific oyst€rassostrea gigas [20]; the results suggested that
POEAs could be considered very toxic to embryo dhrdevelopment according to the

European toxicity classification [6].

The abaloneHaliotis tuberculata, is a marine gastropod species, which can be faurie
Northeast Atlantic from Senegal to Ireland. Abaldvae been used as sensitive species to
assess pollution of coastal areas [21,22] or thenpial toxicity of chemical compounds [23-
26]. In molluscs, the hemocytes are key componehthe immune system, responsible for
various mechanisms of defense, such as phagocyfeaikogen hydrolysis or Reactive
Oxygen Species (ROS) production [27-30]. In bivalveuch asCrassostrea gigas, many
types of hemocytes have been described, includasgephilic, basophilic and an intermix
between granulocytes, vesicular and blast-likescgll]. By contrast inH. tuberculata,
Travers et al. [30] have described only one typbeshocytes, i.e. hyalinocytes which can be

separated into to two sub-types: blast-like angdarells. As hemocytes play an essential role
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in mollusc immunity, the effects of contaminantstbase cells could lead to adverse effects
for the whole animal [32,33]. Indeed, experimerdaducted in the gastropd@iomphalaria
glabrata by de Monte et al [34] showed that infection wikie platyhelminthEchinostoma
paraensel caused a decrease of circulating hemocytes, asw thht association between
infection and exposure to the Roun8yponcentration equivalent to 36 mg bf glyphosate)
greatly increased the percentage of non-viables,cellaking the snails more vulnerable to
parasitic infections.

In vitro studies are useful tools to assess the potergkd mduced by anthropogenic
contaminants in the aquatic environments. Indelegelse tools provide good alternatives to
animal experimentation and take ethical issuesantwideration [35]Ln vitro methodologies
also allow assessment of the effects of multipletaxminant concentrations on the cells of a
limited number of individuals, thereby reducing iahility, and are easily reproducible.
Although the use oin vitro tools gives a limited view of the physiologicalopesses that
occur at than vivo level, cell culture provides precious information the mechanisms of
toxicity [24]. While several studies have been mh#d which focused on the effects of
various contaminants on bivalve hemocytasvitro (e.g. [36-38]), few ecotoxicological
investigations have been performedHatdiotis spp. hemocytes. However, in the 2010s, these
limited numbers of studies have increased, inclyidiose demonstrating the adverse effects
of metals [24,26], antibacterial agents [23] andidapressants [39] on hemocytes Hh
tuberculata. However, there is still a lack of data concerntiihg effects of herbicides on the

hemocytes of gastropods includidgtubercul ata.

The aims of this study were to assess ithe@itro effects of (1) glyphosaig2) a
commercial formulation containing glyphosate as ahtve ingredient (Roundup Expr&%s
and (3) POEA adjuvants on hemocytas H. tuberculata after 72h exposure by using 3

established biomarkers: viability assessment (M$3ag), phagocytosis (fluorescent beads)
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and lysosomal stability (neutral red retention gss&hagocytosis by hemocytes is the
cornerstone of the molluscan immune system [40sokpmes, cellular organelles, are
essential components of the humoral immune respansellusc species. Lysosomes content

is released after phagocytosis in order to digastidgn material.

2. Materials and methods

2.1. Hemocyte primary culture

Adult abalone (8-10 cm) were bred and provided ynEe Halioti€ (Plougerneau,
France). The animals were maintained in the Catdgr®echerche en Environnement Cotier
(CREC; Luc-sur-Mer, Normandy, France) in natural sea wateh aeration andd libitum

algae supplyl{aminaria sp. and Palmaria sp.) for a minimum of 2-weeks acclimation.

Primary cell culture of abalone hemocytes has begeaviously described
[24,26,41,42]. Briefly, hemocytes were sampled fritvi adductor muscle &f. tuberculata.
Hemolymph was withdrawn from a medio-lateral inmmsiusing a syringe fitted with a 25
gauge needle. In order to avoid any cell aggregatioe syringe was moisturized with an
Alsever solution (11mM glucose; 27 mM sodium citrate; 11.5 mM EDTA; 382 mM NaCl).
Hemolymph was transferred to a 15 mL centrifugestabd diluted 1:4 with Alsever solution.
Hemocytes were counted in triplicate by using armacacell counting chamber. Cells were
plated in 12-well culture plates (NUNCPenfield, New York, USA) at a density of 5 x 10
cells per well (MTT assay and phagocytosis ana)yses 96-well culture plates (neutral red
retention assay) at a density of 1 ¥ télls per well. Hemolymph was diluted 1:4 (v/v)thvi
sterile artificial sea water (ASSW). After 1 h, A&Svas removed and replaced with 500 pL
(12-well plates) or 200 pL (96-well plates) of geemodified Hank’s 199 medium (250 mM

NaCl, 10 mM KCI, 25 mM MgSO4, 2.5 mM CaCl2 and 10rkepes, 2 mM I-glutamine,
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100 pg mL* streptomycin, 60 ug mt penicillin G and 2 mM concanavalin; pH: 7.4). Cells
were incubated for 24 h before beginning any peiexposure. Cells were then exposed for
72 h to the different chemicals and all the cukuneere performed in an incubator at 17°C

without extra CQ.

2.2. Exposuresto chemicals

In the present study, glyphosate acid (97% pu€#S number: 1071-83-6) and the
POEA mixture were obtained from Dr. Ehrenstorfer i5{fi (Augsburg, Germany) whereas
Roundup Expre§s(Rex) was purchased from a garden centre. Rg; BRIl the concentrations
given in this study were expressed in glyphosateivatéents. All solutions of chemical
compounds used were prepared with sterile Hank'89vdedium. Three different endpoints
were studied: viability (MTT assay), lysosomal diigb (neutral red retention assay) and
phagocytic activities (fluorescent beads). The egksiconcentrations are provided as
supplementary data (S1 Table). For the MTT asskytha concentrations (from 0.1 to
100,000 pg ) were tested at least with the cells of four abefoand in triplicate (% 12).
For neutral red retention assay (NRRA) and phago@&dtivities the tested concentrations
were chosen according to previous MTT results fex &d POEAs: No Observed Effect
Concentration (NOEC) observed from MTT assay,.fECalculated from MTT, E&
calculated from MTT and finally Ef calculated from MTT. Glyphosate tested
concentrations for NRRA and phagocytic activitiesresponded to one low and two high
concentrations. For the NRRA and the phagocytiwities, all the concentrations were tested

at least with the cells of three abalones andphi¢ate (N> 9).
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2.3. Sudied endpoints

2.3.1. MTT assay

Cell viability was estimated using the 3-[4,5-dimgthiazol-2-yl]-2,5-
diphenyltetrazolium bromide (MTT) reduction assglis test was adapted to molluscan cell
cultures by Domart-Coulon et al. [43]. It measutles capacity of mitochondrial succinyl
dehydrogenase in living cells to convert MTT (yel)janto formazan (dark blue). Briefly, 50
uL of a stock solution (5 mg MLMTT in PBS) was added to culture plates (10% \Afder
24 h incubation, 50 uL of acidified isopranol (0J844CI) was added to each well in order to
dissolve neo-formed formazan. Absorbance was medsir570 nm with a 630 nm reference,
and results were expressed as percentages ofityiablative to absorbance of the negative

control group.

2.3.2. Phagocytic activity

The phagocytic rate of hemocytes was assessedoly ditometry as described
previously [24,26,39]. Briefly, the medium was rerad and replaced with 500 pL of
pesticide-free medium containing fluorescent latbgads (100 carboxylate-modified
FluoroSpheré¥hemocyte, yellow-green fluorescence, 1 pm diamétienecular Probéey.
After 1 h incubation, the medium was removed aril$ egere rinsed and then gently scraped
into 500 puL MPS (molluscan physiological salineheThemocyte samples were centrifuged
for 10 min at 500g and the resulting pellet was delicately fixed iQ03uL of 3%
formaldehyde for further analysis. Hemocytes wenalyed by using a Gallid% flow
cytometer (Beckman Coulf® A minimum of 20,000 events was considered fochea
sample. The level of fluorescence was evaluatedgufiLl channel. The percentage of
phagocytic cells was evaluated as the percentaembcytes that had engulfed at least three

beads (i.e. immunoefficiency).
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2.3.3. Neutral red retention assay (NRRA)

The stability of lysosomal membranes was assesgéebneutral red retention assay
(NRRA) as previously described [39] with modifieats. Hank's 199 medium was removed
and replaced by 300 pL of neutral red working sotu(2.10*> M neutral red in MPS: 400
mM NacCl ; 100 mM MgSQ; ; 20 mM HEPES 10mM CaCl2 ; 10 mM KCI. After 3 h of
incubation in the dark, neutral red solution wasoeed, cells were gently rinsed with MPS
and 200 pL of elution solution (1:50:49 v/v/v ok#ic acid, absolute ethanol, ultrapure water)
was added to each well. Plates were then genttatadi for 30 min in the dark. Finally, the
optical density of each well was read using a rplate reader (FlexStatior”3Molecular

DevicesLLC.; Chicago, USA) at 540 and 650 nm as a reference.

2.4. Satistical analyses

As the data from MTT assay and neutral red retardio not meet the assumption of
normality and homoscedasticity for an ANOVA, thedata were analyzed using non-
parametric Kruskal-Wallis (K-W) tests (k > 2) or MaWhitney tests (k = 2) for independent
samples. In case ofgHejection after a K-W tespost-hoc Dunn tests were used in order to
detect differences among the different concentnatidhe data for phagocytic activities and
NRRA fulfilled requirements for analysis by one wWANOVAs followed bya posteriori
Student-Newman-Keuls (SNK) tests or t-tests (k =TRe statistical analyses were performed
using STATISTICA 8.0 software (StatsdftTulsa, OK, USA). E values were computed

with non-linear regressions (Hill equation) usingcBI® macro REGTOX [44].

3. Results

3.1. MTT viability assay
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Glyphosate did not induce any significant decreasdTT activities even at very high
concentrations (100,000 pg')L (Fig. 1A). No differences from the negative cohtwere
found for Rx concentrations lower than 20,000 pg (Fig. 1B). However, exposure to
40,000 pg [* Rex caused a highly significant decrease of MTT vales 0.001) to 52.30%
(x 18.78) of the control viability. The viabilityedlined to 6.84% (= 4.75) of the control
viability at 100,000 pg L. The concentration leading to 50% mortality {g@vas 41,420 pg
L. After POEA exposure a significant (p < 0.001) rdese of hemocyte viability was
observed from 1280 pug'L(67.27 + 13.74% of the control viability) to 64p@ L* (3.42 +
1.93% of the control viability) (Fig. 1C). Finallgn EGo of 1855 pg [* was calculated for

exposures to POEAs.
3.2. Phagocytic activity

Under our experimental conditions, the percentageemocytes that engulfed three
beads or more was 33.90 + 7.91 for the controlgerAdglyphosate exposure, no significant
changes in phagocytic activities were observed. (BAg. Phagocytic activities significantly
decreased (p < 0.001) after exposures ¢ fiom 10,000 (NOEC MTT) to 68,000 ug'L
(ECso MTT) (Fig. 2B). Interestingly, the NOEC MTT condeation decreased phagocytic
activity (53.52 % = 16.43 of the control phagocysds Exposure to POEAs led to a
significant decrease (p < 0.001) in hemocytes pbwgsis at concentrations of 1024 pg L
(59.76 % =+ 15.57 of the control phagocytosis), 1920L" (61.09 % + 25.82 of the control
phagocytosis) and 3200 ug'l(53.55 %) (Fig. 2C). An overall comparison betwéka 3
chemicals tested at the NOEC MTT concentrationsakad significant differencep € 0.05)
with a more pronounced effect ofRcompared to glyphosate (the concentration of 10D,0
being considered as the NOEC MTT; p < 0.05) and POEA®(< 0.01) (Fig. 2). Whereas the

effects of Rx and POEAs on phagocytosis efficiency significamtiffered when exposed at
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EC,o MTT concentrationsp(< 0.05) it was no longer the case when expos&LCef MTT (p

=0.49) and Egy MTT (p = 0.48) concentrations.

3.3. Neutral red retention assay (NRRA)

Low doses of glyphosate (i.e. 0.1 pd)Linduced a slight but significant increase
(x1.29) of neutral red retention (NRR) in lysosomempared to control group € 0.05). In
contrary, the two highest doses of glyphosate (®y0g L* and 100,000 pgt) did not lead
to any significant changes in lysosomal stabiligyg( 3A) ( = 0.0256). A trend toward an
increase of neutral red retention in lysosomes alss observed in hemocytes exposed to the
lowest doses of B® (i.e. 0.1 pg [Y) but was not statistically significant (Fig. 3B).
Nevertheless, at higher doses afx® NRR values were significantlyp (< 0.001) lower
compared to the control and ranged from 12.03%&8%) at 10,000 pg t(NOEC MTT)to
2.74% (+ 5.81%) at 68,000 pg'L(ECs MTT). Finally, POEA exposure did not induce
significant modification of neutral red retentiop to 1024 pg * (ECy, MTT) compared to
the control (Fig. 3C). However, large significans$es of lysosome neutral red were observed
at 1920 (EGy MTT) and 3200 pg & (ECso MTT), with relative values of 1.61% (+ 4.37) and
0.54% (+ 3.52), respectively. The overall comparibetween the 3 chemicals tested at the
NOEC MTT or the 3 EC concentrations for NRR leditoilar results than those recorded for
phagocytic activity: at the NOEC MTT concentratipashigher effect of B compared to
glyphosate§ < 0.001) and POEA$(< 0.001), and only at EEMTT concentrations, a more

marked effect of B« by comparison to POEA® € 0.001).

4. Discussion

Hemocytes have a predominant role in the immungorese in molluscs and adverse

effects to these cells could lead to fatal consege® for the whole animal. Effects on
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hemocytes could be lethal and reflected by bionrarkach as MTT activities or sublethal by
affecting the phagocytic activity and/or the lysoso system.

At the range of concentrations tested, glyphosateot lead to significant changes in
hemocyte MTT activities while exposures to 1024 hifPOEAs and 25,000 pgLRex
induced a significant effect of 20% (&ft Beyond these values, cellular viability sharply
decreased and a dose-response curve was recordéloe freshwater snaBiomphalaria
glabrata, in vivo 24h-exposure to Roundup origifiaht the concentration of 36 mg'L
induced a significant increase of the number oflde@mocytes assessed by trypan blue vital
dye exclusion assay [34]. Viability tests basedrotochondrial activity (such as MTT assay)
are also sensitive endpoints that have been prelyiased to assess the toxicity of different
chemical compounds in marine molluscs. Domart-Qo@bal. [43] have shown the toxicity
of Mexel-432 (anti-fouling compound) on the heart cells@rfassostrea gigas and gill cells
from the clamRuditapes decussatus. In H. tuberculata hemocytes, viability tests using
mitochondrial activities were used to assess tfeciebf zinc [26], cadmium [24], triclosan
[23] and antidepressants [39]. To our knowledgedaia are available on the cytotoxicity of
the compounds studied in this work by usingitro mollusc cell cultures. Howevean vitro
toxicity of commercial formulations and adjuvan&shoeen previously reported in different
mammalian cell types and gives interesting poiritsoonparison with our results. Mesnage
and his collaborators [45] tested the viabilityh&ipatic (HepG2), embryonic (HEK293) and
placental (JEG3) cell lines after 24h exposure tgplgpsate or different commercial
glyphosate-based formulations and adjuvants. Thateors have demonstrated the very low
toxicity of glyphosate which was non-toxic on Hep €ells and slightly toxic on HEK293
and JEG3 cell lines with Egvalues of 19,300 mgtand 11,192 mgL, respectively. In our
study, the maximum tested concentration (100 my &f glyphosate had no effect on

hemocyte viability. This result was in accordancghwthe results from Mesnage and



261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

12

collaborators [45] which correspond to concentrati@lues 100 times higher than those
tested in this study. Exposure of hemocytes g &d POEASs led to the same patterns than
those observed by Mesnage et al. [45]: glyphosased commercial formulations expressed
a higher toxicity compared to glyphosate alone adfjdvants were the most toxic compounds.
Furthermore, the E{ values for abalone hemocytes were comparable th@éhEG, values
calculated for JEG3 cell line by Mesnage et al].[#%deed, the exposure to Roundup Grands
TravauX led to an EG of 32 mg [* (41.42 mg L for abalone hemocytes exposed &R
whereas the POE-15 (one of the ethoxylated amijuvant formulations) induced 50% of
cell mortality at the concentration of 1 mg (1.86 mg L* for abalone hemocytes exposed to
POEAs). Our results and data from the literatuiggest that the toxicity of glyphosate-based
compounds is not specific to cell types but seembet similar between mammalian’s cell
lines and cells from mollusc primary culture. Alese results suggest that the toxicity
mechanisms are not specific to a particular metalmthway but rather act on common

targets for different cell types.

Phagocytosis has been shown to be impaired byge laanel of contaminants [46].
Consequently, the phagocytic activity of marine aneshwater bivalves aftem vitro
exposures is a sensitive endpoint to assess thetefif pollutants at sublethal concentrations
[38]. After glyphosate exposure, a slight decreade phagocytosis occurred at the
concentration of 100,000 ug'lwhile no decreases in hemocyte viability were ol at
this concentration. Similarly, inhibition of phagwic activities was recorded aftergR
exposure from a concentration that did not leath&inhibition of mitochondrial succinyl
deshydrogenase (i.e. 10,000 pg.LA similar result was also observed by Bado-Nilé al.
[36] who have shown the inhibition of phagocytasi€. gigas exposedn vitro to pyrene and

fluorene without any decrease of cell viabilitykéwise, Luna-Acosta et g47] observed
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pronounced inhibition of phagocytosis@ gigas hemocytes aften vivo exposure of spat to

a mixture of pesticides and pharmaceuticals (5 figiuron, 5 pg Llisoproturon and 5 pgt
ibuprofen) but no decrease in cell viability wasakled. In addition, the exposure of abalone
hemocytes to clomipramin, citalopram, and paroxetdecreased phagocytosis whereas
amitryptilin induced a dose-related increase ofgolegtosis [39]. Authors hypothesized that
the increase in phagocytosis could be explainedhbyinteraction of amitryptilin with a
variety of receptors (e.g. histaminic, cholinergierotonin and adrenergic receptors) even if
all of these receptors have not been yet evidemmcallalone hemocytes. Such increases were
not observed after glyphosates;xror POEA exposures suggesting again that the meshan
of toxicity are not specific to a particular methbg@athway. Our results on phagocytosis and
those reported by the different authors highlidgifg potential in studying biomarkers such as
phagocytosis which could reveal early effects oltsdeefore any loss of viability. In the
Chinese craleriocheir sinensis exposed to a range of glyphosate concentratioom(#.4 to

98 mg L) up to 96h, Hong et al. [48] studied phagocytitivity by observing cells that had
incorporated fluorescent beads under an invertemtdscence microscope. After 6h exposure
to all glyphosate concentrations including 4.4 my these authors recorded a significant
decrease of phagocytic activity that tended to tothe lowest level at 96h. Therefore, the
comparison with the results recorded hereHntuberculata (no significant change for
exposure to 10 mg1) suggest a higher sensibility of the spediesinensis and/orin vivo
exposure. The Efg values for cellular tests were higher than theesponding values for
Daphnia magna and fish, indicating that the cellular tests (cell viability) are less sensitive

than whole organisms [49].

Lysosomes are able to sequester and accumulatega lumber of different

contaminants [50]. Literature reported that the$gnal system could be a target site for the
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toxic effects of different type of xenobiotics. Rwhnts could not only cause lysosome
membrane destabilization but also change the steicthe dynamic and the composition of
lysosomal system. Neutral red retention (NRR) iastered as a sensitive biomarker of
exposure to chemicals and contaminated areas &g ibeen used in various mollusc species
(e.g. [24,51,52). In the present study, the thtemmacals tested showed significant effects on
lysosome membrane but in different ways. Althoubyplgosate did not affect cell mortality at
any tested concentration, this molecule seemedirtaulate lysosomal system at low doses
suggesting a like-hormesis effect. Such resultse Haeen previously observed by various
authors: Canty et al. [53] who have reported aiaamt increase of NRR after 1 h and 24 h
in hemocytes of mussel#ytilus edulis) exposedn vivo to the organophosphate pesticide
azamethiphasBado-Nilles et al. [36] IrC. gigas hemocytes exposed vitro to dibenzo-[a,h]-
anthracene, and Braunbeck and Appelbaum [54Cyprinus carpio intestinal epithelium
exposedn vivo to ultra-low doses of the insecticide endosulfas.abalone hemocytes are
non-proliferative cells, the increase in NRR cancbasidered as an increase of the number
and/or the size of lysosomes in the exposed hemsclkysosomes size and number increases
have been reported in mollusc for a wide range arftaminants (e.g. [55,56]) and could
correspond to an unspecific sign of stress aftposure to a contaminant. ThexRand POEA
exposures did not induce a significant increasdRR even if some trends could be observed
at the lowest dose of contaminants. Conversely\sethero chemicals compounds led to a
drastic decrease of the NRR from exposures to N®HT concentration for B« and to
ECso MTT concentration for POEAS. It is interestingnote that this decrease appeared at
Rex concentrations which did not affect the cell viipi(i.e. 10,000 pg LY). Moreover, at the
concentration of POEAs that inhibited 50% of cadbility, the NRR value was near zero.
Such effects cannot be explained by cell lysisvany probably by a specific effect ofR

and to lesser extent POEAs, on the lysosomal sysktaim type of effect has been previously
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observed in the Haliotidae. IHaliotis rubra exposedn vivo to air, Song et al. [57] have
observed the early response of lysosomal systerenfocytes before any mortalities of
exposed abalone. In addition, NRR values drasyicddicreased when hemocytes fréin
tuberculata were exposeth vitro, for 48, h to different antidepressants [39]. Mprecisely,

the decrease was observed at the concentrationadepti to EGo MTT for amitryptiline, and
EC, MTT for paroxetine and citalopram. Likewise, a uetion in lysosome membrane
stability has been reported in mussel and oystggesed to heavy metal and this response has

been proposed as an indicator of cell damage [50].

It is important to note that the adverse effectdhef three chemical compound and
mixtures tested in the present study were obseraednon-realistic environmental
concentrations (> 1 pg Lfor glyphosate). Furthermore, the bioavailabiliy all the
chemicals was maximized by the experimental detigoause of the direct exposure of
targeted cells. The major disadvantagénofitro methods is the difficulty of extrapolating the
results toin vivo situations but they also have the advantages afgbeasy to use and
reproducible [39]. However, the results providedtlhy three endpoints, and particularly the
values of NOEC and EC determined with the MTT asabigwed us to classify the toxicity of
the chemicals as follows: glyphosateexR POEAs and other studies have already reported
this ranking (e.g. [4,16,58]). Further studies dtoalso includein vivo exposures irH.
tuberculata and other immune parameters should be investigatdded, parameters such as
the hemocyte concentration in hemolymph and theumel of hemocytes should be
considered because significant changes have beerdesl aftein vivo exposures to AMPA
or glyphosate for 7 days, respectively, from comegions as low as 1 pg™Lin Mytilus
galloprovincialis [59] and 10 pg [ in R philippinarum [60]. From a case study iN.

galloprovincialis in which both cellular and biochemical parameteesl tbeen affected,
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Matozzo and his collaborators [61] concluded toogeptial risk of glyphosate for aquatic
invertebrates. By a transcriptional study condudtethe Pacific oyster, Mottier et al. [62]
showed that the level of gene expression signifigancreased after sub-chronic exposures
to glyphosate from 0.1 pg L (mutli-xenobiotic resistance) or 100 pg'LGST and
metallothioneins). In digestive gland fronM. galloprovincialis, Milan et al. [63]
demonstrated a significant effect of the exposarg® pg ' glyphosate for 21 days on the

expression of 111 genes including some involveehitloplasmic reticulum stress response.

Mechanisms of POEA toxicity remain not fully explad but several authors have
suggested that non-ionic surfactants could inteveith the lipid bilayer and membrane
proteins altering fluidity and oxygen transport {&4]. The present results also suggest this
mode of action since the effects of Rountiapd POEAs seem to be related to the lysosomal

membrane stability and cytoplasmic membrane defom#@phagocytosis).

5. Conclusion

This study presents the first results on the edfeftglyphosate-based herbicidedHdn
tuberculta hemocytes and provided important information tonpare the toxicity of the
active ingredient with one of its commercial for@ibns and its associated adjuvants. While
no effect on cell viability appeared with any testeoncentration of glyphosate or at
concentrations below 20 mg'lof Rex, effects on cell membranes have been suggested at
sublethal concentrations, thus clearly demonsuadtue utility of multi-biomarker approaches
and in vitro exposures. The adjuvants seemed to be mainly regperfor the toxicity of
commercially formulated glyphosate. However, desfiie scarcity or lack of data about the
contamination of coastal environments, the toxioityhe tested molecules was most likely at

much higher level of magnitude of concentratioratthose observed in the environment.
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Fig. 1. Cell viability £ standard deviation (in % of valsl recorded for control group) after
72h exposure to glyphosate (A) Roundup Exptex) (B) and POEAs (C). For each

exposure condition, hemocytes came from the hemutyaf at least four abalones and each
one’s cells were used in triplicate. The concemngt that do not share a letter are

significantly different.
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Fig. 2. Phagocytic activity expressed as % of hemocytas lihd phagocytosed 3 beads or
more * standard deviation (in % of values recorfii@dcontrol group) after 72 h exposure to
glyphosate (A) Roundup Express®g{R (B) and POEAs (C). For each exposure condition,
hemocytes came from the hemolymph of at least tabedones, and a minimum of 20,000
events was considered for each sample. The coatiens that do not share a letter are

significantly different.



a b ab ab

a
5 5
: ol
e - [
g 150 5 E E E E
2 2 5 = = =
H T £ 100- o & B 8
(=] - <
§ 100 £ g & & &
£ £ z 2 2 2
: 504 E 501
g 5 be ¢ c
3 3
0 T Ll L) L] D-
Q A e O o
S o & & o @Q § %?Q ‘b@
D '\QQ N WV B ©
. A
Concentrations (ug L") Concentrations (ug L")
- a a a a
o
£ 150+
2
% E E
£ = =
£ 100 5 8
2 _ o O
£ = w w
3 504 o = ‘ !
£ L z
H S Bl - o
3 0 m

S T
(%) v

N N
Concentrations (ug L)

s ,5"9%

Fig. 3. Neutral red retention + standard deviation (in PAaues recorded for control group)
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one’s cells were used in triplicate. The concemngt that do not share a letter are

significantly different.



Highlights

* Glyphosate by-itself is practically non-toxic on Haliotis tuberculata hemocytes

» Toxicity of glyphosate based herbicides comes from adjuvants

» Sublethal effects occur at non-realistic environmental concentrations

* The mechanisms of toxicity seem to be linked to biological membrane destabilization



