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Abstract

Large language models (LLMs), such as001
GPT-4, LLaMA and Gemini, have achieved002
widespread success across a wide range of nat-003
ural language processing (NLP) tasks. Pretrain-004
ing is a foundational step in the LLM training005
process, where the model gains a general un-006
derstanding of language by exposure to vast007
amounts of text data. However, pretraining008
LLM comes with high costs and significant009
impacts on energy consumption and the envi-010
ronment. To alleviate this issue, we propose a011
simple and almost free lunch approach, which012
involves merging the LLM’s checkpoints that013
share training trajectories during the pretraining014
phase. Besides improving pretraining without015
increasing the compute budget, our method can016
relax the requirement of the label information017
in contrast to previous merging methods, which018
is achieved by leveraging generation quality as019
the indicator to determine the merging weight.020
Through various experiments, we demonstrate021
that the merged checkpoint can achieve supe-022
rior performance across multiple datasets com-023
pared to the best-performing individual check-024
point and still exhibits higher generalization025
performance in the out-of-distribution setting.026

1 Introduction027

The field of NLP has recently undergone a revolu-028

tion propelled by the emergence of large language029

models (such as Brown et al. (2020); Touvron et al.030

(2023); OpenAI (2023), inter alia). With the con-031

tinuous growth in the scale of language models and032

training data, LLMs exhibit various emerging ca-033

pabilities. It is capable of addressing diverse tasks034

by conditioning the models on just a few exam-035

ples or task-descriptive instructions (Brown et al.,036

2020; Dong et al., 2023). This new paradigm has037

achieved impressive results in a range of tasks, in-038

cluding logical reasoning and common-sense infer-039

ence (Brown et al., 2020; Wei et al., 2022; Kojima040

et al., 2022).041
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Figure 1: Illustration of Checkpoint Merging.

As we all know, training such a strong LLM 042

from scratch incurs significant costs. For instance, 043

training a Llama 2 70B model with 2T tokens needs 044

1,720,320 GPU hours (Touvron et al., 2023). Be- 045

sides the substantial requirements of training data, 046

advanced technology, computational resources and 047

skilled programmers, training an LLM from scratch 048

has a significant impact on energy consumption 049

and the environment (Faiz et al., 2024). For in- 050

stance, developing a transformer comprising 213 051

million parameters through neural architecture 052

search has been likened to the carbon dioxide equiv- 053

alent emissions of five cars over their entire lifes- 054

pans (Strubell et al., 2019). Therefore, one crucial 055

challenge within this domain is how to reduce con- 056

sumption and cost during the pretraining phase. 057

Recent efforts on efficient LLM pretraining in- 058

volve mixed-precision training (Shoeybi et al., 059

2020), pipeline parallelism (Liu et al., 2023), zero 060

redundancy optimizer (Rajbhandari et al., 2020), 061

depth up-scaling method (Kim et al., 2023), and 062

so on. While these approaches contribute to ef- 063

ficient training with reduced computational cost, 064

most of them focus on the model architecture or 065

the optimization process (Hou et al., 2022). 066
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Figure 2: Performance Delta: 11 checkpoints Merged
with Greedy Soup vs. Individual checkpoint Before
Merging on CMMLU. The black numbers represent the
original performance of the Checkpoint on two datasets.

Unlike recent studies on efficient LLM pretrain-067

ing, we focus on a simple but efficient strategy to068

enhance pretraining with minimal computational069

expenditure, i.e., “model merging”. Model merg-070

ing is defined as combining multiple models with a071

common architecture into a single one (the result072

is referred to “soup”) in parameter space, which073

can compensate for biases or errors that may exist074

in individual models in certain areas (Polyak and075

Juditsky, 1992; Wortsman et al., 2022). As a sim-076

ple and efficient technology, model merging has077

attracted increasing attention in the study of LM.078

For example, Jin et al. (2023) study the problem079

of merging individual LM fine-tuned on different080

training data sets to obtain a single model that per-081

forms well both across all data set domains. Yu082

et al. (2024) focus on merging multiple homolo-083

gous self-supervised fine-tuning LLMs to obtain084

new capabilities. Meanwhile, Wan et al. (2024)085

explore the merging of LLMs from a probabilistic086

distribution perspective for utilizing the collective087

capabilities and unique strengths of diverse LLMs.088

While extensive research has been devoted to089

model merging in LLM, there remains a paucity of090

studies focused on employing the model merging091

strategy to mitigate consumption and costs during092

the pretraining phase. Besides, existing approaches,093

such as Wortsman et al. (2022); Matena and Raffel094

(2022), require the inclusion of a labeled dataset to095

determine the merging weights applicable to each096

model, but in practice, a labeled dataset usually097

incurs high annotation costs, e.g., law-related or098

medical-related questions that often require profes- 099

sional knowledge to answer (Fu et al., 2023). There 100

are also some model merging methods without re- 101

quiring labeled data, such as uniform soup (Worts- 102

man et al., 2022), LAWA (Sanyal et al., 2023) and 103

RegMean (Jin et al., 2023). However, they may re- 104

sult in low-precision models due to different local 105

minima may be found in average weighted parame- 106

ters (Utans, 1996; Chen et al., 2017). 107

To fill this gap, we make the following efforts in 108

this paper: (1) Through pilot experiments, we ini- 109

tially investigate the characteristics of checkpoint 110

merging and find that: (a) There is a higher proba- 111

bility of achieving performance enhancement when 112

merging checkpoints that are adjacent during the 113

pretraining phase; (b) Merging two checkpoints is 114

wise, rather merging three or four checkpoints. Be- 115

sides, we also find that there is a positive correlation 116

between the generation quality and performance of 117

LLM. (2) Based on these findings, we can impose 118

a restriction on the merging of checkpoints and in- 119

troduce a new merging method, called generation 120

quality driven merging. Compared with previous 121

methods (Wortsman et al., 2022; Matena and Raf- 122

fel, 2022), the proposed method uses generation 123

quality as the indicator to determine the merging 124

weight and can relax the requirement of the labeled 125

datasets. 126

Experimental results demonstrate that our pro- 127

posed method achieves superior performance 128

across multiple datasets compared to the best- 129

performing individual models and exhibits higher 130

generalization performance on out-of-distribution 131

datasets. In particular, despite our proposed method 132

not requiring a labeled dataset, our model merging 133

approach can still outperform or approximate other 134

strong baselines that leverage the label information. 135

2 Preliminary Experiments 136

In this section, our experiments focus on analyzing 137

the merging of checkpoints from shared training 138

trajectories during the pre-training phase. Our pre- 139

liminary experiment mainly explores the following 140

three aspects: (1) The influence of checkpoint prox- 141

imity on the merging process; (2) The impact of the 142

number of checkpoints on the merging outcome; 143

2.1 Experimental Setup 144

Datasets. We utilized C-Eval (Huang et al., 2023) 145

and CMMLU (Li et al., 2024) as the experimen- 146

tal testbed to conduct preliminary investigations, 147
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Figure 3: Performance derived from the merging of mul-
tiple checkpoints on CMMLU. Merging is conducted
on intermediate checkpoints in Baichuan 2-7B using
Uniform Soup and Greedy Soup.

where C-Eval consists of 13948 multi-choice ques-148

tions spanning 52 diverse disciplines and four dif-149

ficulty levels, and CMMLU is a comprehensive150

evaluation benchmark covering 67 topics that span151

from elementary to advanced professional levels.152

Models. The checkpoints utilized in our pilot ex-153

periment are the 11 intermediate checkpoints of the154

7B LLM released by Baichuan 2 (Yang et al., 2023),155

ranging from the 220 billion tokens checkpoint to156

the 2,640 billion tokens checkpoint.157

2.2 How Checkpoint Proximity Affects the158

Model Merging?159

To explore the influence of checkpoint proximity160

on model merging, we conduct a comprehensive161

assessment of the merged soup on both C-Eval and162

CMMLU. Specifically, for pairwise merging, 11163

intermediate checkpoints from Baichuan 2-7B can164

yield a total of 55 (C2
11) merged checkpoint com-165

binations. We utilize in-context learning with 5166

demonstrations for model reasoning in both C-Eval167

and CMMLU. We employ “Greedy Soup” (Worts-168

man et al., 2022) to conduct pairwise checkpoint169

merging and compare the performance difference170

between the merged soup and the best-performing171

individual checkpoint before merging.172

Figure 2 presents the performance changes be-173

fore and after checkpoint merging. The dark boxes174

indicate performance improvement. It is worth not-175

ing that the results indicate there is a greater like-176

lihood of performance enhancement when merg-177

ing checkpoints that are adjacent in the pretrain-178

ing phase. For instance, merging ckpt-1320B with179

ckpt-1100B results in a 1.07% increase in accuracy 180

compared to ckpt-1320B in CMMLU. Conversely, 181

we can observe that, as the distance during the 182

pretraining phase increases, the performance of 183

the merged checkpoint soup tends to decrease. 184

For instance, compared to ckpt-2420B, merging 185

ckpt-2420B with ckpt-220B yields a substantial 186

accuracy decrease of 32.04% in CMMLU. The 187

same trend is also evident in the C-Eval dataset, 188

presented in Appendix Figure 5. 189

2.3 How Checkpoint Numbers Affect the 190

Merging? 191

Drawing from the findings of the aforementioned 192

experiments, we impose a restriction on the merg- 193

ing of checkpoints, limiting it to checkpoints that 194

are saved contiguously. Another aspect deserv- 195

ing attention is determining the optimal number 196

of checkpoints to be merged to achieve superior 197

performance. To this end, we investigate the influ- 198

ence of the number of checkpoints on the model 199

merging by incrementally increasing the number 200

of checkpoints. Specifically, we employ “Uniform 201

Soup” and “Greedy Soup” for merging checkpoints 202

on both C-Eval and CMMLU. We incrementally 203

extend from pairwise checkpoint merging to the 204

merging of four checkpoints, subsequently evaluat- 205

ing the performance of the merged soup. 206

The outcomes of merging multiple checkpoints are 207

presented in Figure 3. For a clearer and more in- 208

tuitive presentation of the outcomes of merging 209

multiple models, we showcase the results of merg- 210

ing checkpoints in the late stages of pretraining. All 211

the merged soups in the figure represent the merg- 212

ing of consecutive checkpoints before the speci- 213

fied point. It can be observed that the pairwise 214

merging of adjacent checkpoints generally leads 215

to better outcomes compared to the individual 216

checkpoint. 217

Additionally, the performance of merging 218

three or four checkpoints is weaker than that 219

of merging two checkpoints. Meanwhile, merg- 220

ing three or four checkpoints typically leads to a 221

performance drop, often even below that of the in- 222

dividual checkpoint before merging. For instance, 223

the combination of four checkpoints using Greedy 224

Soup and Uniform Soup resulted in a maximum 225

performance drop of 3.60% and 3.69% respectively, 226

compared to the best individual checkpoint on 227

CMMLU. We observe the same trend in C-EVAL, 228

as shown in the Appendix Figure 6. 229
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3 Methodology230

In this section, we first illustrate the formulation231

of checkpoint merging. Then, we introduce the im-232

plementation of our method, which can effectively233

and efficiently determine the merging weight.234

3.1 Checkpoint Merging235

When conducting LLM pretraining, we have al-236

ready saved multiple checkpoints at the time t, de-237

noted as {θ1, θ2, ..., θt}. The linear combination238

of these multiple checkpoints in parameter space239

is referred to as “Checkpoint Soup” and can be240

represented as:241

θ̃t =
t∑

i=1

λiθi s.t.
t∑

i=1

λi = 1 (1)242

where λi ∈ R denotes merging weight. Compared243

with ensemble on checkpoints (Dietterich, 2000),244

checkpoint merging is performed in the parame-245

ter space rather than the LLM output space, and246

meanwhile the checkpoint soup can be viewed as a247

new checkpoint along the training trajectory, which248

means the LLM can load the soup and continue249

pretraining.250

According to the key findings in pilot experi-251

ments, we only focus on pairwise merging in this252

paper, therefore, Equation 1 can be reformulated253

as:254

θ̃t = λtθt + (1− λt)θt−1 (2)255

The key factor affecting the performance of the256

checkpoint after merging is the choice of merging257

weights. Besides, we provide a theoretical analysis258

that offers insights into why linear checkpoint merg-259

ing can enhance model performance. We adopt260

three assumptions related to the actual characteris-261

tics of neural networks.262

Assumptions 1 (Smoothness). The performance263

function of the LLM f(θ) is differentiable, and its264

gradient ∇f(θ) is Lipschitz continuous:265

∥∇f(θ1)−∇f(θ2)∥ ≤ K∥θ1 − θ2∥, ∀θ1, θ2
(3)266

where constant K > 0.267

Assumptions 2 (Non-Convexity and Quadratic Ap-268

proximation). In LLMs, the performance func-269

tion is typically non-convex. However, for two270

adjacent checkpoints, we can approximate their271

performance behavior using a quadratic function.272

Specifically, for δ = θ − θt, we have273

f(θ) ≈ f(θt) +∇f(θt)
⊤δ +

1

2
δ⊤Htδ (4)274

where ||δ∥ is small, Ht is the Hessian matrix. 275

Assumptions 3 (Bounded Hessian). The eigenval- 276

ues of the Hessian matrix at θt are bounded: 277

λminI ⪯ Ht ⪯ λmaxI (5) 278

where λmin ≥ 0 and λmax > 0 are constants, and 279

I is the identity matrix. 280

Under the three assumptions mentioned above, we 281

can derive the performance of the merged check- 282

point satisfies f(θ̃t): 283

f(θ̃t) ≈ λtf(θt) + (1− λt)f(θt−1) + ∆ (6) 284

where ∆ is defined as: 285

∆ = (λt(1− λt)K + δ
1

2

[
λ2
t + (1− λt)

2
]
λmax)

× ∥θt − θt−1∥2

(7)

286

The detailed proof is shown in Appendix B. 287

3.2 Generation Quality Driven Merging 288

Previous studies (Wortsman et al., 2022; Matena 289

and Raffel, 2022) empirically demonstrate that it 290

is better to assign a higher weight to the model 291

exhibiting superior performance. In our work, 292

we choose perplexity as the basis for weight al- 293

location during checkpoint merging. Perplexity 294

is a common metric used to assess the language 295

model’s generating capability by quantifying the 296

uncertainty of a sequence, and can be denoted as: 297

ϕ(x) = exp{−1

t

t∑
i=1

log p(xi|x<i)} (8) 298

where p(xi|x<i) represents the log-likelihood in- 299

duced by the LLM and t denotes the sequence 300

length. The reasons why we select perplexity are 301

as follows: (a) Compared to previous methods that 302

rely on labeled data to calculate accuracy (Worts- 303

man et al., 2022) and approximate posterior in- 304

formation matrices (Matena and Raffel, 2022) as 305

the basis for model merging weight allocation, the 306

computation of perplexity does not require labeled 307

data. (b) Several studies (Xia et al., 2023; Schaef- 308

fer et al., 2023) have demonstrated that linear or 309

continuous metrics can produce smooth, continu- 310

ous, and predictable changes in model performance, 311

while nonlinear or discontinuous metrics may dis- 312

tort the performance of the model family, making 313

it appear sharp and unpredictable. As a continu- 314

ous measure, perplexity can effectively reflect the 315
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quality of a model’s generation of specific text. (c)316

During the pre-training process, certain tokens ex-317

hibit a trend of continuous learning (decreasing318

perplexity), while other tokens exhibit a trend of319

forgetting (increasing perplexity) or a stagnated320

trend. Additionally, LLMs with more computa-321

tional power and capacity, tend to overfit to the322

subset tokens initially and subsequently generalize323

better (Xia et al., 2023). This implies that during324

the pre-training phase, LLMs may exhibit varying325

degrees of proficiency in learning different types326

of knowledge, and perplexity serves as an effec-327

tive means of observing this phenomenon. Last328

but not least, there is a strong correlation between329

perplexity and performance across different check-330

points in the pre-training phase. The relationship331

between perplexity and performance at checkpoints332

is shown in the appendix A.3.333

In detail, given a held-out unlabeled dataset334

D = {xk}nk=1, and LLM checkpoints θt and θt−1,335

we can pass the dataset D through LLM with θt336

and θt−1, and obtain the perplexity ϕ(D|θt) and337

ϕ(D|θt−1). Since a smaller perplexity indicates338

a better generation quality on the dataset D, the339

merging weight λt in the generation quality driven340

checkpoint merging can be denoted as:341

λt =

1
ϕ(D|θt)

1
ϕ(D|θt) +

1
ϕ(D|θt−1)

(9)342

Correspondingly, The merged soup in the Equa-343

tion 2 can be written as:344

θ̃t =
ϕ(D|θt−1)θt + ϕ(D|θt)θt−1

ϕ(D|θt) + ϕ(D|θt−1)
(10)345

Note that, the proposed generation quality driven346

merging is not confined to pairwise checkpoint347

merging, but can readily extend to merging multi-348

ple checkpoints.349

4 Experiments350

Our anticipation is that the merged soup will of-351

fer two primary benefits to the community. First,352

by merging several individual checkpoints in the353

pretraining trajectory, we expect the merged soup354

can achieve better performance on the target355

dataset, which we call “In-distribution (IND)”356

setting, since determining weight and testing the357

merged soup use the data from the same distribu-358

tion. Second, the merged soup is also expected359

to showcase strong performance in the “Out-of-360

distribution (OOD)” setting, in other words, de-361

termining weight and testing the merged soup are362

respectively applied to datasets originating from 363

different distribution. We conduct evaluations on 364

multiple benchmarks to assess the performance of 365

the merged soup in both in-distribution and out- 366

of-distribution scenarios. Additionally, we explore 367

the effectiveness of our model merging method on 368

models of different scales. Finally, we analyze the 369

factors that influence checkpoint merging, i.e., data 370

quantity and input paradigms. 371

4.1 Experiment Setup 372

Datasets. Besides CMMLU (Li et al., 2024), and 373

C-EVAL (Huang et al., 2023), we further select 374

five benchmark datasets as the testbed: GSM8k 375

(Cobbe et al., 2021), MMLU (Hendrycks et al., 376

2021), MedMCQA (Pal et al., 2022), PIQA (Bisk 377

et al., 2019), WinoGrande (Sakaguchi et al., 2019). 378

Checkpoints Apart from the 11 checkpoints pro- 379

vided by Baichuan 2-7B (Yang et al., 2023), we 380

incorporate 10 checkpoints of size 7B released by 381

Deepseek (DeepSeek-AI et al., 2024) for experi- 382

ments. The latter encompasses checkpoints ranging 383

from 200 billion tokens to 2000 billion tokens. We 384

also utilize Pythia (Biderman et al., 2023) check- 385

points of varying scales, ranging from 70M to 2.8B. 386

Note that, based on the previous findings, all sub- 387

sequent experiments are constrained to pairwise 388

merging of adjacent checkpoints. 389

Baseline Merging Methods: In experiment, we 390

compare our proposed method with the follow- 391

ing strong baselines: (1) Individual Checkpoint 392

To better showcase the performance changes af- 393

ter model merging, we report the performance of 394

individual checkpoints before merging. Specifi- 395

cally, we define the average performance of all 396

individual models before merging as Avg.ckpt, and 397

the best performance achieved by the individual 398

checkpoint before merging as Best.ckpt. (2) Uni- 399

form Soup (Wortsman et al., 2022) is a straight- 400

forward approach that takes the average of weights 401

from all checkpoints. (3) Greedy Soup (Worts- 402

man et al., 2022) sequentially adds models to the 403

model soup and retains them in the soup if the ac- 404

curacy on the held-out data does not decrease. (4) 405

Fisher-Weighted Averaging (Fisher) (Matena and 406

Raffel, 2022) is a method based on the Laplace 407

approximation, where each checkpoint’s posterior 408

is approximated as a Gaussian distribution whose 409

precision matrix corresponds to its Fisher informa- 410

tion. (5) Regression Mean (RegMean) (Jin et al., 411

2023) is a method guided by weights that mini- 412
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Figure 4: Relative performance drop (%) of soups obtained by pairwise checkpoint merging compared to the
Best.ckpt. Positive values indicate performance improvement after merging. Box plots summarize the merged
performance of 11 checkpoints from Baichuan 2-7B on GSM8k, C-Eval, CMMLU, MMLU and MedMCQA (from
left to right). Green triangles indicate mean values and the orange lines represent the median values.

mize prediction differences between the merged413

soup and the individual models. It is worth not-414

ing that Uniform Soup is a data-free method, and415

our proposed method, as well as RegMean, only416

requires an unlabeled dataset. However, the Fisher417

and Greedy Soup depend on labeled datasets to418

compute approximate posterior information matri-419

ces and accuracy scores in order to assign weights420

to the different checkpoints.421

4.2 Checkpoint Merging in the IND setting422

The primary goal of checkpoint merging is to en-423

hance the performance of the merged soup, without424

the need for continuous pretraining. We initially425

test the performance of pairwise merging of 11426

checkpoints for each of the five tasks. Only fo-427

cusing on merging adjacent checkpoints, we have428

10 combinations of checkpoints in total. Figure 4429

illustrates the relative performance drop of various430

merging methods on Baichuan 2-7B with respect431

to the best performance achieved by the individ-432

ual checkpoint before merging (Best.ckpt). From433

the figure, we observe significant differences be-434

tween merging methods, with our proposed method435

demonstrating superior and more stable perfor-436

mance. For instance, compared to the Best.ckpt,437

the ten merged checkpoints obtained by using our438

method achieved an average improvement of 2.22% 439

on GSM8k. Furthermore, on the C-EVAL dataset, 440

our method demonstrates superior performance 441

over Uniform Soup, Greedy Soup, Fisher, and 442

RegMean methods, with improvements of 0.34%, 443

0.63%, 0.49%, and 0.59%, respectively. Mean- 444

while, our checkpoint merging method shows pos- 445

itive values on most of the merged soups. Fur- 446

thermore, despite Greedy Soup and Fisher requir- 447

ing labeled datasets for merging, our method still 448

achieves comparable or superior performance and 449

demonstrates stronger stability. We also note that 450

due to potentially significant performance discrep- 451

ancies between adjacent checkpoints during merg- 452

ing, especially in the early stages of LLM pre- 453

training, there might be a resultant performance 454

drop in the merged soup. 455

Table 1 presents the results of merging Deepseek 456

7B checkpoints from different pre-training stages 457

on C-Eval using various merging methods. It is 458

noted that in the early stage of pre-training (ckpt- 459

200B to ckpt-600B), the merged soups face chal- 460

lenges in achieving better results, primarily at- 461

tributed to the sharp decline in loss during the early 462

stage of model pre-training, resulting in significant 463

differences in the distribution of LLM parameters. 464

In the later stages of pre-training, merging meth- 465

6



Merged Checkpoint Avg.ckpt Best.ckpt Uniform Soup Greedy Soup Fisher RegMean Ours

ckpt-200B & ckpt-400B 27.26 29.31 26.19 25.95 28.29 25.98 27.62
ckpt-400B & ckpt-600B 28.83 29.31 27.40 27.56 26.90 28.63 27.52
ckpt-600B & ckpt-800B 29.23 30.12 29.54 30.28 29.03 30.72 29.71
ckpt-800B & ckpt-1000B 31.15 32.17 32.52 32.57 32.29 32.81 33.84
ckpt-1000B & ckpt-1200B 33.02 33.87 37.16 37.79 39.18 37.64 38.41
ckpt-1200B & ckpt-1400B 36.33 38.80 41.69 40.84 40.37 40.43 41.37
ckpt-1400B & ckpt-1600B 39.10 39.40 41.26 40.70 40.24 39.55 41.46
ckpt-1600B & ckpt-1800B 41.23 43.05 41.41 41.45 42.78 41.98 43.34
ckpt-1800B & ckpt-2000B 43.70 44.36 44.61 44.70 44.81 43.95 45.36

Average Result 34.43 35.60 35.75 35.76 35.99 35.75 36.51

Table 1: In-distribution performance when merging 10 checkpoints of Deepseek 7B on GSM8k. Uniform Soup,
Greedy Soup, Fisher, and Regmean are the model merging methods used for comparison.

Datasets Greedy Fisher Regmean Ours

CMMLU 56.3/56.6 56.5/56.2 56.8/56.6 56.7/56.7
MMLU 54.8/55.0 54.2/53.1 54.2/54.6 54.7/54.9
GSM8k 24.0/23.7 23.9/24.0 23.7/24.3 24.3/24.0

∆(↓) 0.8 1.5 1.2 0.5

Table 2: Out-of-distribution performance when merg-
ing Baichuan 2-7B ckpt-2200B and ckpt-2420B on the
C-Eval datasets. The data on the left and right sides
represent the performance of checkpoints merged on
the IND dataset and the C-EVAL dataset, respectively.
∆ denotes the total difference in performance between
IND and OOD on these three out-of-domain datasets.

ods tend to achieve more noticeable improvements466

relative to the best-performing individual check-467

point before merging. The results show that our468

merging algorithm attains the optimal average per-469

formance among the 10 model pairs, with improve-470

ments of 2.08%, 0.91%, 0.76%, 0.75%, 0.52%, and471

0.76% compared to the Avg.ckpt, Best.ckpt, Uni-472

form Soup, Greedy Soup, Fisher, and RegMean,473

respectively.474

4.3 Checkpoint Merging in the OOD setting475

Having established the relatively superior perfor-476

mance of our algorithm in in-distribution scenar-477

ios, we now turn our attention to another question,478

namely, Can the effectiveness of the merged soup,479

as determined within a specific dataset, generalize480

well when applied to a distinctly different dataset?481

Specifically, We merge the checkpoint using the482

Chinese dataset C-EVAL. We evaluate its perfor-483

mance on CMMLU, MMLU, and GSM8k, compar-484

ing it to the performance of checkpoints merged485

separately on these three datasets. We select ckpt-486

2200B and ckpt-2420B from Baichuan 2-7B for487

merging, since merging checkpoints from the later488

stages of pre-training typically leads to stable per- 489

formance improvements. 490

The results are displayed in Table 2. From the 491

table, we can find that despite the model merging 492

being dependent on C-EVAL, the merged check- 493

point still exhibits strong performance on other 494

datasets. This suggests that the merging of check- 495

points does not compromise their generalizability. 496

Besides, compared to other merging methods, our 497

approach shows the smallest average absolute per- 498

formance difference between IND and OOD. This 499

indicates that our merging method is least affected 500

by the merging dataset and is more likely to be 501

optimal across different domains. The checkpoint 502

obtained from our merging method demonstrates 503

stronger generalization capabilities. 504

4.4 Sensitivity Analysis 505

Checkpoint Merging on Models of Different 506

Scales. In this part, we explore the impact of LLM 507

parameter size on the effectiveness of our proposed 508

model merging method. We perform checkpoint 509

merging on Pythia models of different sizes and 510

evaluate the performance of the merged models 511

on the PIQA and WinoGrande datasets. Experi- 512

ments show that the performance improvement of 513

our proposed model merger is more stable across 514

parameter sizes ranging from 70M to 2.8B. The 515

results and analysis are presented in Appendix A.4. 516

The Impact of Checkpoint Merging on Model 517

Supervised Fine-Tuning. After confirming that 518

our merging method can obtain a superior and more 519

stable checkpoint in terms of performance, we ex- 520

plored whether the merged checkpoint can be gen- 521

eralized to post-training scenarios. Specifically, we 522

conduct an SFT experiment on the Alpaca dataset, 523

where we merged Deepseek-1800B and Deepseek- 524
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2000B based on the GSM8k dataset. The results525

are presented in Table 3, which demonstrates that526

the merged checkpoint serves as a better starting527

point.528

The Impact of Data Quantity on Checkpoint529

Merging. In actual situations, the number of530

available data also is a noteworthy concern, aside531

from cases where obtaining data labels is not pos-532

sible. Thus, we conduct a detailed examination of533

the influence of data quantity on model merging.534

Utilizing GSM8k for checkpoint merging, we ex-535

amine how the size of the sample influences the536

performance of the merged soup. Our investigation537

covered performance variations in both IND and538

OOD. We designate C-Eval, CMMLU, MMLU,539

and MedMCQA as OOD datasets, showcasing the540

average performance of the merged soup on these541

datasets. Table 7 shows that our merging method542

remains effective in both IND and OOD scenar-543

ios even when employing only 1/4 of the data for544

merging. Moreover, across different data quantities,545

the maximum performance change on the IND is546

0.45%, and the average performance change on the547

OOD datasets is only 0.03%. This indicates that548

our method can maintain consistent performance549

in situations with limited available datasets, and it550

is not sensitive to the quantity of available data.551

The Impact of Calculating Perplexity with Dif-552

ferent Input Paradigms on Checkpoint Merg-553

ing. The superior performance exhibited by554

LLMs on many downstream tasks relies on their555

in-context learning capability. Since the calcula-556

tion of perplexity can be influenced by context, a557

noteworthy question is how should we compute558

perplexity. Different forms of context can be cate-559

gorized into three types: (a) Original input, which560

includes held-out unlabeled instances xk, is defined561

as “Raw-input". (b) Zero-shot, which includes562

task instructions and xk, is defined as “Zero-Shot-563

Input". (c) Few-shot, which includes few demon-564

strations, task instructions, and xk, is defined as565

“Few-Shot-Input". We merge Baichuan 2-7B ckpt-566

2200B and ckpt-2420B checkpoints across a se-567

ries of datasets. The results in Appendix Table568

8 indicate that compared to calculating perplexity569

based solely on raw input, using Zero-Shot-Input570

and Few-Shot-Input to calculate perplexity can en-571

hance the performance of the merged model. For572

instance, in the case of Few-Shot-Input, the av-573

erage performance across five datasets increased574

from 44.12% to 44.73%. Additionally, the perfor-575

Datasets Deepseek-2000B Ours

PIQA 80.30 80.90(+0.60)
Hellswag 71.15 71.46(+0.31)
Winogrande 80.30 80.90(+0.60)

Table 3: Performance comparison of Deepseek-2000B
and the checkpoints merged from Deepseek-1800B and
Deepseek-2000B based on our method after supervised
fine-tuning on the Alpaca dataset.

mance improvement of Few-Shot-Input containing 576

demonstrations is relatively small, which may be 577

attributed to the reverse impact of the information 578

within the demonstrations on the perplexity. 579

Fine-grained Analysis of the Instance Level Per- 580

formance Before and After Checkpoint Merging. 581

An issue worth exploring is how the performance 582

enhancement observed on specific datasets mani- 583

fests at the dataset level after model merging. To 584

explore this question, we conduct a fine-grained 585

analysis of the performance of the models before 586

and after merging on the instance level. Specifi- 587

cally, we select ckpt-2200B and ckpt-2420B from 588

Baichuan 2-7B for merging and analyzing the sim- 589

ilarities and differences in the performance of the 590

model on five datasets before and after the merger. 591

Experiment results indicate that the performance 592

improvement brought about by model merging may 593

stem from its inheritance of the performance of the 594

models before merging. The results and analysis 595

are presented in the Appendix A.5. 596

5 Conclusion 597

This paper explores the reduction of LLM pretrain- 598

ing consumption without raising computational 599

costs through the adoption of a checkpoint merg- 600

ing approach. We first explore the characteristics 601

of checkpoint merging through some pilot exper- 602

iments. Subsequently, we propose a simple and 603

almost free lunch approach that determines the 604

merging weights based on the generation quality. 605

Through extensive experiments, we demonstrate 606

that our method outperforms the best-performing 607

individual model on multiple datasets and exhibits 608

superior performance and enhanced stability com- 609

pared to other merge methods. Furthermore, our 610

method also demonstrates higher generalization 611

performance on out-of-distribution datasets. Thus, 612

using generation quality as an indicator for LLM 613

checkpoint merging is a promising avenue for ex- 614

ploration. 615
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Limitations616

We note that perplexity may not be a reliable metric617

for evaluating the quality of text, as it is sensitive618

to the length of the text. Specifically, the perplexity619

of short text is likely to be much higher than that of620

long text. Several prior works (Zhang et al., 2021;621

Meister et al., 2023) have also shown that neither622

low nor high perplexity are direct indicators of text623

quality. Therefore, a more reliable indicator of text624

quality would be highly beneficial. Additionally,625

we observe that when the continual pre-training626

of LLM shows a performance decline on a spe-627

cific dataset, leveraging model merging methods to628

merge adjacent checkpoints during this trend often629

struggles to yield performance improvements.630
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A Appendix872

A.1 Related Work873

Model merging is an emerging trend in recent re-874

search. Unlike traditional model ensemble tech-875

niques, which combine the outputs of multiple876

models to enhance the overall performance of a877

system. Model merging aims to combine multiple878

models into a single model with diverse or superior879

capabilities. It has been demonstrated that model880

merging can enhance the performance, robustness,881

and generalization of models (Li et al., 2023). A882

series of methods for model merging has been pro-883

posed in recent years. In detail, Wortsman et al.884

(2022) propose "Model Soup" that averaging of885

weights across numerous models without incurring886

any additional inference or memory costs. Simi-887

larly, Cha et al. (2021); Ramé et al. (2023) delve888

into the utilization of weighted averaging for mod-889

els generated from different configurations, aiming890

to improve the out-of-distribution generalization.891

Matena and Raffel (2022) propose an alternative892

merging process aimed at overcoming the limita-893

tion of simple weight averaging, taking into ac-894

count potentially varying weights’ importance. Jin895

et al. (2023) proposed a dataless knowledge fu-896

sion method that merges models in their parameter897

space, guided by weights intended to minimize pre-898

diction discrepancies between the merged model899

and the individual models. Furthermore, expect-900

ing the mere merging of entire model parameters,901

(Wang et al., 2022; Huang et al., 2024) employed902

the application of linear mathematical operations903

to adapter parameters, resulting in superior general-904

ization performance. Although numerous effective905

model merging methods have been put forward,906

we notice a lack of attention paid to the utilization907

of model merging methodologies during the pre-908

training phase. In this paper, we merge checkpoints909

of LLM and propose a new method that leverages910

generation quality as the indicator to determine the911

merging weight.912

A.2 Pilot Experiments performance on913

C-Eval Dataset914

Checkpoint Proximity Affects Model Merging915

on C-Eval Dataset. We first demonstrate the im-916

pact of checkpoint proximity on model merging917

performance using the C-Eval (Huang et al., 2023)918

dataset. Figure 2 presents the performance changes919

before and after checkpoint merging on C-Eval920

dataset. It is worth noting that merging check-921
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Figure 5: Performance Delta: 11 checkpoints Merged
with Greedy Soup vs. Individual checkpoint Before
Merging on C-Eval. The black numbers represent the
original performance of the Checkpoint on two datasets.

points that are adjacent in the pretraining phase 922

is more likely to result in performance enhance- 923

ment (e.g., merging ckpt-1540B with ckpt-1320B 924

can notably improve 2.14% in accuracy compared 925

to ckpt-1540B in C-Eval). However, as the dis- 926

tance between checkpoints during the pre-training 927

phase increases, the performance of the merged 928

checkpoints tends to decline (e.g., compared to 929

ckpt-2420B, merging ckpt-2420B with ckpt-220B 930

yields a substantial accuracy decrease of 30.05% in 931

C-Eval), which is consistent with the observations 932

made on the CMMLU dataset. 933

Checkpoint Numbers Affects Model Merging 934

on C-Eval. Figure 3 shows the results of merg- 935

ing multiple models on the C-Eval dataset. Simi- 936

lar to CMMLU, the pairwise merging of adjacent 937

checkpoints generally leads to better outcomes 938

compared to the individual checkpoint. For in- 939

stance, in pairwise merging on Checkpoint, Greedy 940

Soup and Uniform Soup achieved performance 941

improvements of 2.65% and 2.36% on C-Eval, 942

respectively. Conversely, merging three or four 943

checkpoints tends to result in weaker performance 944

compared to merging just two checkpoints. For 945

instance, the combination of four checkpoints us- 946

ing Greedy Soup and Uniform Soup resulted in a 947

maximum performance drop of 3.16% and 3.50% 948

respectively, compared to the best individual check- 949

point on C-Eval. 950
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Uniform Soup and Greedy Soup.

A.3 How the LLM’s Performance on a Given951

Dataset Relates to its Proficiency in952

Generating the Same Dataset?953

The adeptness of a LLM in text generation is in-954

dicative of its level of familiarity with textual infor-955

mation, an aspect intricately tied to its evaluation.956

Within this section, we examine the relationship be-957

tween LLM’s performance on a given dataset and958

its proficiency in generating the same dataset by959

calculating Spearman’s rank correlation coefficient960

between accuracy and perplexity. Spearman’s rank961

correlation coefficient, a nonparametric measure of962

rank correlation, evaluates the extent to which the963

association between two variables can be charac-964

terized by a monotonic function. A positive value965

indicates a positive correlation between the two966

variables, with a larger numerical value signifying967

a stronger correlation.968

Perplexity is a common metric used to assess the969

reconstructive capability of LLM on text. Consider-970

ing an auto-regressive LLM, we use p(xi|x<i) de-971

note the log-likelihood induced by the LLM. Then972

we let ϕ(x) = exp{−1
t

∑M
i=1 log p(xi|x<i)} de-973

note the perplexity of sentence x, which quantifies974

the uncertainty of a sequence in relation to a spe-975

cific LLM. Since a smaller perplexity indicates976

the language model is familiar with instances in977

the dataset and assigns high probability to these978

instances. Therefore, to visually illustrate the re-979

lationship between the generation quality and the980

performance of LLM, we present accuracy and the981

reciprocal of perplexity on GSM8k in Figure 7.982
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Figure 7: The relationship between the reciprocal of
perplexity and accuracy on GSM8k.

Dataset GSM8k C-Eval CMMLU MMLU Medmcqa

Coefficient 0.937 0.527 0.615 0.853 0.328

Table 4: The Spearman’s rank correlation coefficients
between the accuracy and the reciprocal of perplexity
for 11 checkpoints on some benchmark datasets.

Meanwhile, we present the detailed Spearman’s 983

rank correlation coefficients between the accuracy 984

and the reciprocal of perplexity for 11 checkpoints 985

on several benchmark datasets in Table 4. From 986

Figure 7 and Table 4, we find that: All Spearman’s 987

rank correlation coefficients are positive, which 988

suggests a positive correlation between the gen- 989

eration quality and the performance of LLM on 990

the specified datasets. 991

A.4 Checkpoint Merging on Models of 992

Different Scales. 993

In this section, we conduct experiments with the 994

Pythia (Biderman et al., 2023) model using differ- 995

ent merging methods. We select the PIQA (Bisk 996

et al., 2019) and Winogrande (Sakaguchi et al., 997

2019) datasets for evaluation, and consider four 998

model sizes for Pythia: 70M, 410M, 2.8B. Table 5 999

and Table 6 present the performance of the merged 1000

models using different merging methods across the 1001

four model sizes on PIQA and WinoGrande, respec- 1002

tively. The results show that, across models of dif- 1003

ferent sizes, our merging method consistently out- 1004

performs the label-independent methods, Uniform 1005

Soup and Regmean, and also achieves better aver- 1006

age performance compared to the label-dependent 1007

methods, Greedy Soup and Fisher. Overall, the 1008

experiments show that, compared to other merg- 1009

ing methods, our approach provides more stable 1010

performance improvements. 1011
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PIQA 70M 410M 2.8B Average

Uniform 58.71 68.06 74.97 67.25
Greedy 58.71 68.06 74.76 67.18
Fisher 58.69 68.14 74.65 67.16
RegMean 58.96 68.32 74.72 67.33

Ours 59.42 68.17 74.81 67.47

Table 5: The results of merging Pythia models with
different parameter sizes using various merging methods
on the PIQA dataset.

Winogrande 70M 410M 2.8B Average

Uniform 51.07 53.83 61.09 55.33
Greedy 51.07 53.83 60.85 55.25
Fisher 52.08 53.88 60.57 55.51
RegMean 51.97 53.76 60.89 55.54

Ours 51.98 54.06 61.25 55.76

Table 6: The results of merging Pythia models with
different parameter sizes using various merging methods
on the Winogrande dataset.

A.5 Fine-grained Analysis of the Instance1012

Level Performance Before and After1013

Checkpoint Merging.1014

In this section, we select ckpt-2200B and ckpt-1015

2420B from Baichuan 2-7B for merging based on1016

our methods and analyze the similarities and dif-1017

ferences in the performance of the model on five1018

datasets before and after the merging. The results1019

are shown in Figure 8 to Figure 12. From the re-1020

sults, we can observe that there is a significant over-1021

lap between the correct and incorrect predictions of1022

the checkpoint before and after merging. Addition-1023

ally, when comparing the sizes of the independent1024

regions corresponding to ckpt-2200B, ckpt-2420B,1025

and the Merged-ckpt (represented by the orange,1026

green, and purple parts on the Venn diagram respec-1027

tively), we find that the merged checkpoint has the1028

smallest independent region. Based on the above1029

observations, we attribute the performance changes1030

resulting from checkpoint merging to the merged1031

checkpoint inheriting the performance of the pre-1032

merged checkpoints. From Figure 11 and Figure1033

12, we observe that the independent region of the1034

Merged-ckpt in the Venn diagram of positive sam-1035

ples in the GSM8k dataset and negative samples in1036

the MedMcqa dataset is slightly higher than that of1037

the checkpoint before merging (e.g., the indepen-1038

dent region size of the Merged-ckpt on GSM8k is1039

N Perplexity In-Distribution Out-of-Distribution

1/4 9.49 / 9.51 24.18 49.32
2/4 9.56 / 9.57 23.96 49.34
3/4 9.51 / 9.53 23.81 49.35
Full 9.50 / 9.52 24.26 49.35

Table 7: Enumerating various sample sizes (N, the
fraction of the dataset used for calculating genera-
tion quality) in merging ckpt-2200B and ckpt-2420B
on the GSM8k dataset. We report the in-distribution
performance and the average performance on out-of-
distribution (OOD) datasets.

Dataset Raw-Input Zero-Shot-Input Few-Shot-Input

GSM8k 24.26 24.18 24.26
C-Eval 54.72 57.19 55.55
CMMLU 56.73 56.75 56.66
MMLU 54.63 54.74 54.68
MedMCQA 30.25 30.78 30.54

Average Result 44.12 44.73 44.34

Table 8: Checkpoint merging based on perplexity cal-
culated from different input paradigms. We merge
Baichuan 2-7B ckpt-2200B and ckpt-2420B on the
GSM8k, C-Eval, CMMLU, MMLU and MedMCQA
datasets.

62, while ckpt-2200B is 44 and ckpt-2420B is 49). 1040

These anomalous phenomena may be attributed to 1041

the dramatic performance improvements and de- 1042

clines before and after the merging. 1043

B Proof for Linear Checkpoint Merging 1044

Bounds. 1045

Under the assumptions in section §3.1, We derive 1046

the bounds of f(θ̃t) through the following steps: 1047

1. Quadratic Approximation: 1048

Expand f(θ̃t) around θt using the quadratic 1049

approximation Eq.4 with δ = θ̃ − θt = (1 − 1050

λt)(θt−1 − θt): 1051

f(θ̃t) ≈ f(θt) +∇f(θt)
⊤δ +

1

2
δ⊤Htδ

= f(θt) + (1− λt)∇f(θt)
⊤(θt−1 − θt)+

1

2
(1− λt)

2(θt−1 − θt)
⊤Ht(θt−1 − θt)

(11) 1052

Similarly, expand f(θ̃t) around θt−1 with δ = θ̃ − 1053

θt−1 = λt(θt − θt−1): 1054

f(θ̃t) ≈ f(θt−1) +∇f(θt−1)
⊤δ +

1

2
δ⊤Ht−1δ

= f(θt−1) + λt∇f(θt−1)
⊤(θt − θt−1)

+
1

2
λ2
t (θt − θt−1)

⊤Ht−1(θt − θt−1).

(12) 1055

1056

Construct an averaged approximation by forming a 1057
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convex combination of equations Eq.11 and Eq.12,1058

where λ and λt are the respective weights.1059

f(θ̃t) ≈ λtf(θt) + (1− λt)f(θt−1)

+ λt(1− λt) [∇f(θt)−∇f(θt−1)]
⊤ (θt−1 − θt)

+
1

2

[
λ2
t (θt − θt−1)

⊤Ht−1(θt − θt−1)

+(1− λt)
2(θt−1 − θt)

⊤Ht(θt−1 − θt)
]

(13)1060

2. Bounding the Gradient Difference:1061

Under the assumption 1 in section §3.1, the term1062

L = [∇f(θt)−∇f(θt−1)]
⊤ (θt−1 − θt) can be1063

bounded as:1064

L ≤ ∥∇f(θt)−∇f(θt−1)∥ · ∥θt−1 − θt∥
= ∥∇f(θt)−∇f(θt−1)∥ · ∥θt − θt−1∥

≤ K∥θt − θt−1∥2.
(14)1065

3. Bounding the Hessian:1066

Under the assumption 3 in section §3.1, we can1067

obtain:1068

(θt − θt−1)
⊤Ht−1(θt − θt−1) ≤ λmax∥θt − θt−1∥2 (15)1069

1070
(θt − θt−1)

⊤Ht(θt − θt−1) ≤ λmax∥θt − θt−1∥2. (16)1071

4. Final Bound:1072

By combining equations Eq.13-16, we can ob-1073

tain:1074

f(θ̃t) ≥ λtf(θt) + (1− λt)f(θt−1)

− λt(1− λt)K∥θt − θt−1∥2

− 1

2

[
λ2
t + (1− λt)

2]λmax∥θt − θt−1∥2.

(17)1075

Similarly, the upper bounds for the performance1076

function be formalized as:1077

f(θ̃t) ≤ λtf(θt) + (1− λt)f(θt−1)

+ λt(1− λt)K∥θt − θt−1∥2

+
1

2

[
λ2
t + (1− λt)

2]λmax∥θt − θt−1∥2.

(18)1078

By combining equations Eq.17-18, we can obtain1079

that the performance of the merged checkpoint sat-1080

isfies:1081

f(θ̃t) ≈ λtf(θt) + (1− λt)f(θt−1)

±
(
λt(1− λt)K +

1

2

[
λ2
t + (1− λt)

2]λmax

)
∥θt − θt−1∥2.

(19)1082
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656 547

Figure 8: Degree of overlap between correct (left) and incorrect (right) samples on the C-Eval dataset before and
after checkpoint merging.

6082 4392

Figure 9: Degree of overlap between correct (left) and incorrect (right) samples on the CMMLU dataset before and
after checkpoint merging.

6699 5734

Figure 10: Degree of overlap between correct (left) and incorrect (right) samples on the MMLU dataset before and
after checkpoint merging.
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889

Figure 11: Degree of overlap between correct (left) and incorrect (right) samples on the GSM8k dataset before and
after checkpoint merging.

736

1664

Figure 12: Degree of overlap between correct (left) and incorrect (right) samples on the MedMCQA dataset before
and after checkpoint merging.
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