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Abstract

Large language models (LLMs), such as
GPT-4, LLaMA and Gemini, have achieved
widespread success across a wide range of nat-
ural language processing (NLP) tasks. Pretrain-
ing is a foundational step in the LLM training
process, where the model gains a general un-
derstanding of language by exposure to vast
amounts of text data. However, pretraining
LLM comes with high costs and significant
impacts on energy consumption and the envi-
ronment. To alleviate this issue, we propose a
simple and almost free lunch approach, which
involves merging the LLM’s checkpoints that
share training trajectories during the pretraining
phase. Besides improving pretraining without
increasing the compute budget, our method can
relax the requirement of the label information
in contrast to previous merging methods, which
is achieved by leveraging generation quality as
the indicator to determine the merging weight.
Through various experiments, we demonstrate
that the merged checkpoint can achieve supe-
rior performance across multiple datasets com-
pared to the best-performing individual check-
point and still exhibits higher generalization
performance in the out-of-distribution setting.

1 Introduction

The field of NLP has recently undergone a revolu-
tion propelled by the emergence of large language
models (such as Brown et al. (2020); Touvron et al.
(2023); OpenAl (2023), inter alia). With the con-
tinuous growth in the scale of language models and
training data, LLMs exhibit various emerging ca-
pabilities. It is capable of addressing diverse tasks
by conditioning the models on just a few exam-
ples or task-descriptive instructions (Brown et al.,
2020; Dong et al., 2023). This new paradigm has
achieved impressive results in a range of tasks, in-
cluding logical reasoning and common-sense infer-
ence (Brown et al., 2020; Wei et al., 2022; Kojima
etal., 2022).

Training Step

Figure 1: Ilustration of Checkpoint Merging.

As we all know, training such a strong LLM
from scratch incurs significant costs. For instance,
training a Llama 2 70B model with 2T tokens needs
1,720,320 GPU hours (Touvron et al., 2023). Be-
sides the substantial requirements of training data,
advanced technology, computational resources and
skilled programmers, training an LLM from scratch
has a significant impact on energy consumption
and the environment (Faiz et al., 2024). For in-
stance, developing a transformer comprising 213
million parameters through neural architecture
search has been likened to the carbon dioxide equiv-
alent emissions of five cars over their entire lifes-
pans (Strubell et al., 2019). Therefore, one crucial
challenge within this domain is how to reduce con-
sumption and cost during the pretraining phase.

Recent efforts on efficient LLM pretraining in-
volve mixed-precision training (Shoeybi et al.,
2020), pipeline parallelism (Liu et al., 2023), zero
redundancy optimizer (Rajbhandari et al., 2020),
depth up-scaling method (Kim et al., 2023), and
so on. While these approaches contribute to ef-
ficient training with reduced computational cost,
most of them focus on the model architecture or
the optimization process (Hou et al., 2022).
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Figure 2: Performance Delta: 11 checkpoints Merged
with Greedy Soup vs. Individual checkpoint Before
Merging on CMMLU. The black numbers represent the
original performance of the Checkpoint on two datasets.

Unlike recent studies on efficient LLM pretrain-
ing, we focus on a simple but efficient strategy to
enhance pretraining with minimal computational
expenditure, i.e., “model merging”. Model merg-
ing is defined as combining multiple models with a
common architecture into a single one (the result
is referred to “soup”) in parameter space, which
can compensate for biases or errors that may exist
in individual models in certain areas (Polyak and
Juditsky, 1992; Wortsman et al., 2022). As a sim-
ple and efficient technology, model merging has
attracted increasing attention in the study of LM.
For example, Jin et al. (2023) study the problem
of merging individual LM fine-tuned on different
training data sets to obtain a single model that per-
forms well both across all data set domains. Yu
et al. (2024) focus on merging multiple homolo-
gous self-supervised fine-tuning LL.Ms to obtain
new capabilities. Meanwhile, Wan et al. (2024)
explore the merging of LLMs from a probabilistic
distribution perspective for utilizing the collective
capabilities and unique strengths of diverse LLMs.

While extensive research has been devoted to
model merging in LLM, there remains a paucity of
studies focused on employing the model merging
strategy to mitigate consumption and costs during
the pretraining phase. Besides, existing approaches,
such as Wortsman et al. (2022); Matena and Raffel
(2022), require the inclusion of a labeled dataset to
determine the merging weights applicable to each
model, but in practice, a labeled dataset usually
incurs high annotation costs, e.g., law-related or

medical-related questions that often require profes-
sional knowledge to answer (Fu et al., 2023). There
are also some model merging methods without re-
quiring labeled data, such as uniform soup (Worts-
man et al., 2022), LAWA (Sanyal et al., 2023) and
RegMean (Jin et al., 2023). However, they may re-
sult in low-precision models due to different local
minima may be found in average weighted parame-
ters (Utans, 1996; Chen et al., 2017).

To fill this gap, we make the following efforts in
this paper: (1) Through pilot experiments, we ini-
tially investigate the characteristics of checkpoint
merging and find that: (a) There is a higher proba-
bility of achieving performance enhancement when
merging checkpoints that are adjacent during the
pretraining phase; (b) Merging two checkpoints is
wise, rather merging three or four checkpoints. Be-
sides, we also find that there is a positive correlation
between the generation quality and performance of
LLM. (2) Based on these findings, we can impose
a restriction on the merging of checkpoints and in-
troduce a new merging method, called generation
quality driven merging. Compared with previous
methods (Wortsman et al., 2022; Matena and Raf-
fel, 2022), the proposed method uses generation
quality as the indicator to determine the merging
weight and can relax the requirement of the labeled
datasets.

Experimental results demonstrate that our pro-
posed method achieves superior performance
across multiple datasets compared to the best-
performing individual models and exhibits higher
generalization performance on out-of-distribution
datasets. In particular, despite our proposed method
not requiring a labeled dataset, our model merging
approach can still outperform or approximate other
strong baselines that leverage the label information.

2 Preliminary Experiments

In this section, our experiments focus on analyzing
the merging of checkpoints from shared training
trajectories during the pre-training phase. Our pre-
liminary experiment mainly explores the following
three aspects: (1) The influence of checkpoint prox-
imity on the merging process; (2) The impact of the
number of checkpoints on the merging outcome;

2.1 Experimental Setup

Datasets. We utilized C-Eval (Huang et al., 2023)
and CMMLU (Li et al., 2024) as the experimen-
tal testbed to conduct preliminary investigations,
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Figure 3: Performance derived from the merging of mul-
tiple checkpoints on CMMLU. Merging is conducted
on intermediate checkpoints in Baichuan 2-7B using
Uniform Soup and Greedy Soup.

where C-Eval consists of 13948 multi-choice ques-
tions spanning 52 diverse disciplines and four dif-
ficulty levels, and CMMLU is a comprehensive
evaluation benchmark covering 67 topics that span
from elementary to advanced professional levels.

Models. The checkpoints utilized in our pilot ex-
periment are the 11 intermediate checkpoints of the
7B LLM released by Baichuan 2 (Yang et al., 2023),
ranging from the 220 billion tokens checkpoint to
the 2,640 billion tokens checkpoint.

2.2 How Checkpoint Proximity Affects the
Model Merging?

To explore the influence of checkpoint proximity
on model merging, we conduct a comprehensive
assessment of the merged soup on both C-Eval and
CMMLU. Specifically, for pairwise merging, 11
intermediate checkpoints from Baichuan 2-7B can
yield a total of 55 (C7;) merged checkpoint com-
binations. We utilize in-context learning with 5
demonstrations for model reasoning in both C-Eval
and CMMLU. We employ “Greedy Soup” (Worts-
man et al., 2022) to conduct pairwise checkpoint
merging and compare the performance difference
between the merged soup and the best-performing
individual checkpoint before merging.

Figure 2 presents the performance changes be-
fore and after checkpoint merging. The dark boxes
indicate performance improvement. It is worth not-
ing that the results indicate there is a greater like-
lihood of performance enhancement when merg-
ing checkpoints that are adjacent in the pretrain-
ing phase. For instance, merging ckpt-1320B with

ckpt-1100B results in a 1.07% increase in accuracy
compared to ckpt-1320B in CMMLU. Conversely,
we can observe that, as the distance during the
pretraining phase increases, the performance of
the merged checkpoint soup tends to decrease.
For instance, compared to ckpt-2420B, merging
ckpt-2420B with ckpt-220B yields a substantial
accuracy decrease of 32.04% in CMMLU. The
same trend is also evident in the C-Eval dataset,
presented in Appendix Figure 5.

2.3 How Checkpoint Numbers Affect the
Merging?

Drawing from the findings of the aforementioned
experiments, we impose a restriction on the merg-
ing of checkpoints, limiting it to checkpoints that
are saved contiguously. Another aspect deserv-
ing attention is determining the optimal number
of checkpoints to be merged to achieve superior
performance. To this end, we investigate the influ-
ence of the number of checkpoints on the model
merging by incrementally increasing the number
of checkpoints. Specifically, we employ “Uniform
Soup” and “Greedy Soup” for merging checkpoints
on both C-Eval and CMMLU. We incrementally
extend from pairwise checkpoint merging to the
merging of four checkpoints, subsequently evaluat-
ing the performance of the merged soup.

The outcomes of merging multiple checkpoints are
presented in Figure 3. For a clearer and more in-
tuitive presentation of the outcomes of merging
multiple models, we showcase the results of merg-
ing checkpoints in the late stages of pretraining. All
the merged soups in the figure represent the merg-
ing of consecutive checkpoints before the speci-
fied point. It can be observed that the pairwise
merging of adjacent checkpoints generally leads
to better outcomes compared to the individual
checkpoint.

Additionally, the performance of merging
three or four checkpoints is weaker than that
of merging two checkpoints. Meanwhile, merg-
ing three or four checkpoints typically leads to a
performance drop, often even below that of the in-
dividual checkpoint before merging. For instance,
the combination of four checkpoints using Greedy
Soup and Uniform Soup resulted in a maximum
performance drop of 3.60% and 3.69% respectively,
compared to the best individual checkpoint on
CMMLU. We observe the same trend in C-EVAL,
as shown in the Appendix Figure 6.



3 Methodology

In this section, we first illustrate the formulation
of checkpoint merging. Then, we introduce the im-
plementation of our method, which can effectively
and efficiently determine the merging weight.

3.1 Checkpoint Merging

When conducting LLLM pretraining, we have al-
ready saved multiple checkpoints at the time ¢, de-
noted as {61,602, ...,0;}. The linear combination
of these multiple checkpoints in parameter space
is referred to as “Checkpoint Soup” and can be
represented as:

t t
Q:Zwi sty Ni=1 (1)
=1 =1

where \; € R denotes merging weight. Compared
with ensemble on checkpoints (Dietterich, 2000),
checkpoint merging is performed in the parame-
ter space rather than the LLM output space, and
meanwhile the checkpoint soup can be viewed as a
new checkpoint along the training trajectory, which
means the LLLM can load the soup and continue
pretraining.

According to the key findings in pilot experi-
ments, we only focus on pairwise merging in this
paper, therefore, Equation 1 can be reformulated
as: B

Or = MO + (1 — A\i)0i—1 @)

The key factor affecting the performance of the
checkpoint after merging is the choice of merging
weights. Besides, we provide a theoretical analysis
that offers insights into why linear checkpoint merg-
ing can enhance model performance. We adopt
three assumptions related to the actual characteris-
tics of neural networks.

Assumptions 1 (Smoothness). The performance
function of the LLM f(6) is differentiable, and its
gradient V f(0) is Lipschitz continuous:

IVf(61) = Vf(0)]| < K|[6h — 02, V01,62
3)
where constant K > 0.
Assumptions 2 (Non-Convexity and Quadratic Ap-
proximation). In LLMs, the performance func-
tion is typically non-convex. However, for two
adjacent checkpoints, we can approximate their
performance behavior using a quadratic function.
Specifically, for § = 6 — 6, we have

£(6) = §(6) + VF@)TS + 0TS (4

where ||d]| is small, H; is the Hessian matrix.

Assumptions 3 (Bounded Hessian). The eigenval-
ues of the Hessian matrix at 8; are bounded:

)\minI j Ht j )\maxl (5)

where A\pin > 0 and A\,.x > 0 are constants, and
1 is the identity matrix.

Under the three assumptions mentioned above, we
can derive the performance of the merged check-
point satisfies f(6;):

FO) = NF(0) + (1= N)f(Bim1) + A (6)

where A is defined as:

A=(MN1-X)K + 5% (A + (1= A)?] Amax)

x |16y — 1|
@)

The detailed proof is shown in Appendix B.

3.2 Generation Quality Driven Merging

Previous studies (Wortsman et al., 2022; Matena
and Raffel, 2022) empirically demonstrate that it
is better to assign a higher weight to the model
exhibiting superior performance. In our work,
we choose perplexity as the basis for weight al-
location during checkpoint merging. Perplexity
is a common metric used to assess the language
model’s generating capability by quantifying the
uncertainty of a sequence, and can be denoted as:

t

6(r) = exp{—; Dlogplailec)})  ®)

=1

where p(x;|x<;) represents the log-likelihood in-
duced by the LLM and ¢ denotes the sequence
length. The reasons why we select perplexity are
as follows: (a) Compared to previous methods that
rely on labeled data to calculate accuracy (Worts-
man et al., 2022) and approximate posterior in-
formation matrices (Matena and Raffel, 2022) as
the basis for model merging weight allocation, the
computation of perplexity does not require labeled
data. (b) Several studies (Xia et al., 2023; Schaef-
fer et al., 2023) have demonstrated that linear or
continuous metrics can produce smooth, continu-
ous, and predictable changes in model performance,
while nonlinear or discontinuous metrics may dis-
tort the performance of the model family, making
it appear sharp and unpredictable. As a continu-
ous measure, perplexity can effectively reflect the



quality of a model’s generation of specific text. (c)
During the pre-training process, certain tokens ex-
hibit a trend of continuous learning (decreasing
perplexity), while other tokens exhibit a trend of
forgetting (increasing perplexity) or a stagnated
trend. Additionally, LLMs with more computa-
tional power and capacity, tend to overfit to the
subset tokens initially and subsequently generalize
better (Xia et al., 2023). This implies that during
the pre-training phase, LLMs may exhibit varying
degrees of proficiency in learning different types
of knowledge, and perplexity serves as an effec-
tive means of observing this phenomenon. Last
but not least, there is a strong correlation between
perplexity and performance across different check-
points in the pre-training phase. The relationship
between perplexity and performance at checkpoints
is shown in the appendix A.3.

In detail, given a held-out unlabeled dataset
D = {z},}}_,, and LLM checkpoints ¢; and 6;_,
we can pass the dataset D through LLM with 6;
and 6;_1, and obtain the perplexity ¢(D|6;) and
¢(D|0;—1). Since a smaller perplexity indicates
a better generation quality on the dataset D, the
merging weight \; in the generation quality driven
checkpoint merging can be denoted as:

A= — <1>(Dl|9t) . 9)
oD T SO0

Correspondingly, The merged soup in the Equa-
tion 2 can be written as:
g, — ¢(D]01-1)0: + $(D|6:)0;—1
&(DI6:) + H(Df—1)
Note that, the proposed generation quality driven
merging is not confined to pairwise checkpoint

merging, but can readily extend to merging multi-
ple checkpoints.

(10)

4 Experiments

Our anticipation is that the merged soup will of-
fer two primary benefits to the community. First,
by merging several individual checkpoints in the
pretraining trajectory, we expect the merged soup
can achieve better performance on the target
dataset, which we call “In-distribution (IND)”
setting, since determining weight and testing the
merged soup use the data from the same distribu-
tion. Second, the merged soup is also expected
to showcase strong performance in the “Out-of-
distribution (OOD)” setting, in other words, de-
termining weight and testing the merged soup are

respectively applied to datasets originating from
different distribution. We conduct evaluations on
multiple benchmarks to assess the performance of
the merged soup in both in-distribution and out-
of-distribution scenarios. Additionally, we explore
the effectiveness of our model merging method on
models of different scales. Finally, we analyze the
factors that influence checkpoint merging, i.e., data
quantity and input paradigms.

4.1 Experiment Setup

Datasets. Besides CMMLU (Li et al., 2024), and
C-EVAL (Huang et al., 2023), we further select
five benchmark datasets as the testbed: GSM8k
(Cobbe et al., 2021), MMLU (Hendrycks et al.,
2021), MedMCQA (Pal et al., 2022), PIQA (Bisk
et al., 2019), WinoGrande (Sakaguchi et al., 2019).

Checkpoints Apart from the 11 checkpoints pro-
vided by Baichuan 2-7B (Yang et al., 2023), we
incorporate 10 checkpoints of size 7B released by
Deepseek (DeepSeek-Al et al., 2024) for experi-
ments. The latter encompasses checkpoints ranging
from 200 billion tokens to 2000 billion tokens. We
also utilize Pythia (Biderman et al., 2023) check-
points of varying scales, ranging from 70M to 2.8B.
Note that, based on the previous findings, all sub-
sequent experiments are constrained to pairwise
merging of adjacent checkpoints.

Baseline Merging Methods: In experiment, we
compare our proposed method with the follow-
ing strong baselines: (1) Individual Checkpoint
To better showcase the performance changes af-
ter model merging, we report the performance of
individual checkpoints before merging. Specifi-
cally, we define the average performance of all
individual models before merging as Avg.ckpt, and
the best performance achieved by the individual
checkpoint before merging as Best.ckpt. (2) Uni-
form Soup (Wortsman et al., 2022) is a straight-
forward approach that takes the average of weights
from all checkpoints. (3) Greedy Soup (Worts-
man et al., 2022) sequentially adds models to the
model soup and retains them in the soup if the ac-
curacy on the held-out data does not decrease. (4)
Fisher-Weighted Averaging (Fisher) (Matena and
Raffel, 2022) is a method based on the Laplace
approximation, where each checkpoint’s posterior
is approximated as a Gaussian distribution whose
precision matrix corresponds to its Fisher informa-
tion. (5) Regression Mean (RegMean) (Jin et al.,
2023) is a method guided by weights that mini-
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Figure 4: Relative performance drop (%) of soups obtained by pairwise checkpoint merging compared to the
Best.ckpt. Positive values indicate performance improvement after merging. Box plots summarize the merged
performance of 11 checkpoints from Baichuan 2-7B on GSM8k, C-Eval, CMMLU, MMLU and MedMCQA (from
left to right). Green triangles indicate mean values and the orange lines represent the median values.

mize prediction differences between the merged
soup and the individual models. It is worth not-
ing that Uniform Soup is a data-free method, and
our proposed method, as well as RegMean, only
requires an unlabeled dataset. However, the Fisher
and Greedy Soup depend on labeled datasets to
compute approximate posterior information matri-
ces and accuracy scores in order to assign weights
to the different checkpoints.

4.2 Checkpoint Merging in the IND setting

The primary goal of checkpoint merging is to en-
hance the performance of the merged soup, without
the need for continuous pretraining. We initially
test the performance of pairwise merging of 11
checkpoints for each of the five tasks. Only fo-
cusing on merging adjacent checkpoints, we have
10 combinations of checkpoints in total. Figure 4
illustrates the relative performance drop of various
merging methods on Baichuan 2-7B with respect
to the best performance achieved by the individ-
ual checkpoint before merging (Best.ckpt). From
the figure, we observe significant differences be-
tween merging methods, with our proposed method
demonstrating superior and more stable perfor-
mance. For instance, compared to the Best.ckpt,
the ten merged checkpoints obtained by using our

method achieved an average improvement of 2.22%
on GSMB8k. Furthermore, on the C-EVAL dataset,
our method demonstrates superior performance
over Uniform Soup, Greedy Soup, Fisher, and
RegMean methods, with improvements of 0.34%,
0.63%, 0.49%, and 0.59%, respectively. Mean-
while, our checkpoint merging method shows pos-
itive values on most of the merged soups. Fur-
thermore, despite Greedy Soup and Fisher requir-
ing labeled datasets for merging, our method still
achieves comparable or superior performance and
demonstrates stronger stability. We also note that
due to potentially significant performance discrep-
ancies between adjacent checkpoints during merg-
ing, especially in the early stages of LLM pre-
training, there might be a resultant performance
drop in the merged soup.

Table 1 presents the results of merging Deepseek
7B checkpoints from different pre-training stages
on C-Eval using various merging methods. It is
noted that in the early stage of pre-training (ckpt-
200B to ckpt-600B), the merged soups face chal-
lenges in achieving better results, primarily at-
tributed to the sharp decline in loss during the early
stage of model pre-training, resulting in significant
differences in the distribution of LLM parameters.
In the later stages of pre-training, merging meth-



Merged Checkpoint Avg.ckpt Best.ckpt Uniform Soup Greedy Soup Fisher RegMean Ours
ckpt-200B & ckpt-400B 27.26 29.31 26.19 25.95 28.29 25.98 27.62
ckpt-400B & ckpt-600B 28.83 29.31 27.40 27.56 26.90 28.63 27.52
ckpt-600B & ckpt-800B 29.23 30.12 29.54 30.28 29.03 30.72 29.71
ckpt-800B & ckpt-1000B 31.15 32.17 32.52 32.57 32.29 32.81 33.84
ckpt-1000B & ckpt-1200B 33.02 33.87 37.16 37.79 39.18 37.64 38.41
ckpt-1200B & ckpt-1400B 36.33 38.80 41.69 40.84 40.37 4043 41.37
ckpt-1400B & ckpt-1600B 39.10 39.40 41.26 40.70 40.24 39.55 41.46
ckpt-1600B & ckpt-1800B 41.23 43.05 41.41 41.45 42.78 41.98 43.34
ckpt-1800B & ckpt-2000B 43.70 44.36 44.61 44.70 44.81 43.95 45.36
Average Result 34.43 35.60 35.75 35.76 35.99 35.75 36.51

Table 1: In-distribution performance when merging 10 checkpoints of Deepseek 7B on GSM8k. Uniform Soup,
Greedy Soup, Fisher, and Regmean are the model merging methods used for comparison.

Datasets  Greedy Fisher = Regmean Ours
CMMLU 56.3/56.6 56.5/56.2 56.8/56.6 56.7/56.7
MMLU  54.8/55.0 54.2/53.1 54.2/54.6 54.7/54.9
GSMS8k  24.0/23.7 23.9/24.0 23.7/24.3 24.3/24.0
AW 0.8 1.5 1.2 0.5

Table 2: Out-of-distribution performance when merg-
ing Baichuan 2-7B ckpt-2200B and ckpt-2420B on the
C-Eval datasets. The data on the left and right sides
represent the performance of checkpoints merged on
the IND dataset and the C-EVAL dataset, respectively.
A denotes the total difference in performance between
IND and OOD on these three out-of-domain datasets.

ods tend to achieve more noticeable improvements
relative to the best-performing individual check-
point before merging. The results show that our
merging algorithm attains the optimal average per-
formance among the 10 model pairs, with improve-
ments of 2.08%, 0.91%, 0.76%, 0.75%, 0.52%, and
0.76% compared to the Avg.ckpt, Best.ckpt, Uni-
form Soup, Greedy Soup, Fisher, and RegMean,
respectively.

4.3 Checkpoint Merging in the OOD setting

Having established the relatively superior perfor-
mance of our algorithm in in-distribution scenar-
108, we now turn our attention to another question,
namely, Can the effectiveness of the merged soup,
as determined within a specific dataset, generalize
well when applied to a distinctly different dataset?
Specifically, We merge the checkpoint using the
Chinese dataset C-EVAL. We evaluate its perfor-
mance on CMMLU, MMLU, and GSM8k, compar-
ing it to the performance of checkpoints merged
separately on these three datasets. We select ckpt-
2200B and ckpt-2420B from Baichuan 2-7B for
merging, since merging checkpoints from the later

stages of pre-training typically leads to stable per-
formance improvements.

The results are displayed in Table 2. From the
table, we can find that despite the model merging
being dependent on C-EVAL, the merged check-
point still exhibits strong performance on other
datasets. This suggests that the merging of check-
points does not compromise their generalizability.
Besides, compared to other merging methods, our
approach shows the smallest average absolute per-
formance difference between IND and OOD. This
indicates that our merging method is least affected
by the merging dataset and is more likely to be
optimal across different domains. The checkpoint
obtained from our merging method demonstrates
stronger generalization capabilities.

4.4 Sensitivity Analysis

Checkpoint Merging on Models of Different
Scales. In this part, we explore the impact of LLM
parameter size on the effectiveness of our proposed
model merging method. We perform checkpoint
merging on Pythia models of different sizes and
evaluate the performance of the merged models
on the PIQA and WinoGrande datasets. Experi-
ments show that the performance improvement of
our proposed model merger is more stable across
parameter sizes ranging from 70M to 2.8B. The
results and analysis are presented in Appendix A.4.

The Impact of Checkpoint Merging on Model
Supervised Fine-Tuning. After confirming that
our merging method can obtain a superior and more
stable checkpoint in terms of performance, we ex-
plored whether the merged checkpoint can be gen-
eralized to post-training scenarios. Specifically, we
conduct an SFT experiment on the Alpaca dataset,
where we merged Deepseek-1800B and Deepseek-



2000B based on the GSM8k dataset. The results
are presented in Table 3, which demonstrates that
the merged checkpoint serves as a better starting
point.

The Impact of Data Quantity on Checkpoint
Merging. In actual situations, the number of
available data also is a noteworthy concern, aside
from cases where obtaining data labels is not pos-
sible. Thus, we conduct a detailed examination of
the influence of data quantity on model merging.
Utilizing GSM8k for checkpoint merging, we ex-
amine how the size of the sample influences the
performance of the merged soup. Our investigation
covered performance variations in both IND and
OOD. We designate C-Eval, CMMLU, MMLU,
and MedMCQA as OOD datasets, showcasing the
average performance of the merged soup on these
datasets. Table 7 shows that our merging method
remains effective in both IND and OOD scenar-
ios even when employing only 1/4 of the data for
merging. Moreover, across different data quantities,
the maximum performance change on the IND is
0.45%, and the average performance change on the
OOD datasets is only 0.03%. This indicates that
our method can maintain consistent performance
in situations with limited available datasets, and it
is not sensitive to the quantity of available data.

The Impact of Calculating Perplexity with Dif-
ferent Input Paradigms on Checkpoint Merg-
ing. The superior performance exhibited by
LLMs on many downstream tasks relies on their
in-context learning capability. Since the calcula-
tion of perplexity can be influenced by context, a
noteworthy question is how should we compute
perplexity. Different forms of context can be cate-
gorized into three types: (a) Original input, which
includes held-out unlabeled instances x, is defined
as “Raw-input". (b) Zero-shot, which includes
task instructions and x, is defined as “Zero-Shot-
Input". (c) Few-shot, which includes few demon-
strations, task instructions, and x, is defined as
“Few-Shot-Input". We merge Baichuan 2-7B ckpt-
2200B and ckpt-2420B checkpoints across a se-
ries of datasets. The results in Appendix Table
8 indicate that compared to calculating perplexity
based solely on raw input, using Zero-Shot-Input
and Few-Shot-Input to calculate perplexity can en-
hance the performance of the merged model. For
instance, in the case of Few-Shot-Input, the av-
erage performance across five datasets increased
from 44.12% to 44.73%. Additionally, the perfor-

Datasets Deepseek-2000B Ours

PIQA 80.30 80.90(+0.60)
Hellswag 71.15 71.46(+0.31)
Winogrande 80.30 80.90(+0.60)

Table 3: Performance comparison of Deepseek-2000B
and the checkpoints merged from Deepseek-1800B and
Deepseek-2000B based on our method after supervised
fine-tuning on the Alpaca dataset.

mance improvement of Few-Shot-Input containing
demonstrations is relatively small, which may be
attributed to the reverse impact of the information
within the demonstrations on the perplexity.

Fine-grained Analysis of the Instance Level Per-
formance Before and After Checkpoint Merging.
An issue worth exploring is how the performance
enhancement observed on specific datasets mani-
fests at the dataset level after model merging. To
explore this question, we conduct a fine-grained
analysis of the performance of the models before
and after merging on the instance level. Specifi-
cally, we select ckpt-2200B and ckpt-2420B from
Baichuan 2-7B for merging and analyzing the sim-
ilarities and differences in the performance of the
model on five datasets before and after the merger.
Experiment results indicate that the performance
improvement brought about by model merging may
stem from its inheritance of the performance of the
models before merging. The results and analysis
are presented in the Appendix A.S.

5 Conclusion

This paper explores the reduction of LLM pretrain-
ing consumption without raising computational
costs through the adoption of a checkpoint merg-
ing approach. We first explore the characteristics
of checkpoint merging through some pilot exper-
iments. Subsequently, we propose a simple and
almost free lunch approach that determines the
merging weights based on the generation quality.
Through extensive experiments, we demonstrate
that our method outperforms the best-performing
individual model on multiple datasets and exhibits
superior performance and enhanced stability com-
pared to other merge methods. Furthermore, our
method also demonstrates higher generalization
performance on out-of-distribution datasets. Thus,
using generation quality as an indicator for LLM
checkpoint merging is a promising avenue for ex-
ploration.



Limitations

We note that perplexity may not be a reliable metric
for evaluating the quality of text, as it is sensitive
to the length of the text. Specifically, the perplexity
of short text is likely to be much higher than that of
long text. Several prior works (Zhang et al., 2021;
Meister et al., 2023) have also shown that neither
low nor high perplexity are direct indicators of text
quality. Therefore, a more reliable indicator of text
quality would be highly beneficial. Additionally,
we observe that when the continual pre-training
of LLM shows a performance decline on a spe-
cific dataset, leveraging model merging methods to
merge adjacent checkpoints during this trend often
struggles to yield performance improvements.
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A Appendix
A.1 Related Work

Model merging is an emerging trend in recent re-
search. Unlike traditional model ensemble tech-
niques, which combine the outputs of multiple
models to enhance the overall performance of a
system. Model merging aims to combine multiple
models into a single model with diverse or superior
capabilities. It has been demonstrated that model
merging can enhance the performance, robustness,
and generalization of models (Li et al., 2023). A
series of methods for model merging has been pro-
posed in recent years. In detail, Wortsman et al.
(2022) propose "Model Soup" that averaging of
weights across numerous models without incurring
any additional inference or memory costs. Simi-
larly, Cha et al. (2021); Ramé et al. (2023) delve
into the utilization of weighted averaging for mod-
els generated from different configurations, aiming
to improve the out-of-distribution generalization.
Matena and Raffel (2022) propose an alternative
merging process aimed at overcoming the limita-
tion of simple weight averaging, taking into ac-
count potentially varying weights’ importance. Jin
et al. (2023) proposed a dataless knowledge fu-
sion method that merges models in their parameter
space, guided by weights intended to minimize pre-
diction discrepancies between the merged model
and the individual models. Furthermore, expect-
ing the mere merging of entire model parameters,
(Wang et al., 2022; Huang et al., 2024) employed
the application of linear mathematical operations
to adapter parameters, resulting in superior general-
ization performance. Although numerous effective
model merging methods have been put forward,
we notice a lack of attention paid to the utilization
of model merging methodologies during the pre-
training phase. In this paper, we merge checkpoints
of LLM and propose a new method that leverages
generation quality as the indicator to determine the
merging weight.

A.2 Pilot Experiments performance on
C-Eval Dataset

Checkpoint Proximity Affects Model Merging
on C-Eval Dataset. We first demonstrate the im-
pact of checkpoint proximity on model merging
performance using the C-Eval (Huang et al., 2023)
dataset. Figure 2 presents the performance changes
before and after checkpoint merging on C-Eval
dataset. It is worth noting that merging check-
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Figure 5: Performance Delta: 11 checkpoints Merged
with Greedy Soup vs. Individual checkpoint Before
Merging on C-Eval. The black numbers represent the
original performance of the Checkpoint on two datasets.

points that are adjacent in the pretraining phase
is more likely to result in performance enhance-
ment (e.g., merging ckpt-1540B with ckpt-1320B
can notably improve 2.14% in accuracy compared
to ckpt-1540B in C-Eval). However, as the dis-
tance between checkpoints during the pre-training
phase increases, the performance of the merged
checkpoints tends to decline (e.g., compared to
ckpt-2420B, merging ckpt-2420B with ckpt-220B
yields a substantial accuracy decrease of 30.05% in
C-Eval), which is consistent with the observations
made on the CMMLU dataset.

Checkpoint Numbers Affects Model Merging
on C-Eval. Figure 3 shows the results of merg-
ing multiple models on the C-Eval dataset. Simi-
lar to CMMLU, the pairwise merging of adjacent
checkpoints generally leads to better outcomes
compared to the individual checkpoint. For in-
stance, in pairwise merging on Checkpoint, Greedy
Soup and Uniform Soup achieved performance
improvements of 2.65% and 2.36% on C-Eval,
respectively. Conversely, merging three or four
checkpoints tends to result in weaker performance
compared to merging just two checkpoints. For
instance, the combination of four checkpoints us-
ing Greedy Soup and Uniform Soup resulted in a
maximum performance drop of 3.16% and 3.50%
respectively, compared to the best individual check-
point on C-Eval.
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Figure 6: Performance derived from the merging of
multiple checkpoints on C-Eval. Merging is conducted
on intermediate checkpoints in Baichuan 2-7B using
Uniform Soup and Greedy Soup.

A.3 How the LLM’s Performance on a Given
Dataset Relates to its Proficiency in
Generating the Same Dataset?

The adeptness of a LLM in text generation is in-
dicative of its level of familiarity with textual infor-
mation, an aspect intricately tied to its evaluation.
Within this section, we examine the relationship be-
tween LLLM’s performance on a given dataset and
its proficiency in generating the same dataset by
calculating Spearman’s rank correlation coefficient
between accuracy and perplexity. Spearman’s rank
correlation coefficient, a nonparametric measure of
rank correlation, evaluates the extent to which the
association between two variables can be charac-
terized by a monotonic function. A positive value
indicates a positive correlation between the two
variables, with a larger numerical value signifying
a stronger correlation.

Perplexity is a common metric used to assess the
reconstructive capability of LLM on text. Consider-
ing an auto-regressive LLM, we use p(z;|z<;) de-
note the log-likelihood induced by the LLM. Then
we let (z) = exp{~ M, logp(aifac;)} de-
note the perplexity of sentence x, which quantifies
the uncertainty of a sequence in relation to a spe-
cific LLM. Since a smaller perplexity indicates
the language model is familiar with instances in
the dataset and assigns high probability to these
instances. Therefore, to visually illustrate the re-
lationship between the generation quality and the
performance of LLM, we present accuracy and the
reciprocal of perplexity on GSM8k in Figure 7.
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Figure 7: The relationship between the reciprocal of
perplexity and accuracy on GSM8Kk.

Dataset | GSM8k C-Eval CMMLU MMLU Medmcga

Coefficient ‘ 0.937 0.527 0.615 0.853 0.328

Table 4: The Spearman’s rank correlation coefficients
between the accuracy and the reciprocal of perplexity
for 11 checkpoints on some benchmark datasets.

Meanwhile, we present the detailed Spearman’s
rank correlation coefficients between the accuracy
and the reciprocal of perplexity for 11 checkpoints
on several benchmark datasets in Table 4. From
Figure 7 and Table 4, we find that: All Spearman’s
rank correlation coefficients are positive, which
suggests a positive correlation between the gen-
eration quality and the performance of LLM on
the specified datasets.

A.4 Checkpoint Merging on Models of
Different Scales.

In this section, we conduct experiments with the
Pythia (Biderman et al., 2023) model using differ-
ent merging methods. We select the PIQA (Bisk
et al., 2019) and Winogrande (Sakaguchi et al.,
2019) datasets for evaluation, and consider four
model sizes for Pythia: 70M, 410M, 2.8B. Table 5
and Table 6 present the performance of the merged
models using different merging methods across the
four model sizes on PIQA and WinoGrande, respec-
tively. The results show that, across models of dif-
ferent sizes, our merging method consistently out-
performs the label-independent methods, Uniform
Soup and Regmean, and also achieves better aver-
age performance compared to the label-dependent
methods, Greedy Soup and Fisher. Overall, the
experiments show that, compared to other merg-
ing methods, our approach provides more stable
performance improvements.



PIQA 70M 410M 2.8B Average
Uniform  58.71 68.06 7497  67.25
Greedy 58.71 68.06 7476  67.18
Fisher 58.69 68.14 74.65 67.16
RegMean 58.96 68.32 7472  67.33
Ours 59.42 68.17 74.81 6747

Table 5: The results of merging Pythia models with
different parameter sizes using various merging methods
on the PIQA dataset.

N Perplexity In-Distribution Out-of-Distribution
1/4  9.49/9.51 24.18 49.32
2/4  9.56/9.57 23.96 49.34
3/4  9.51/9.53 23.81 49.35
Full 9.50/9.52 24.26 49.35

Table 7: Enumerating various sample sizes (N, the
fraction of the dataset used for calculating genera-
tion quality) in merging ckpt-2200B and ckpt-2420B
on the GSM8k dataset. We report the in-distribution
performance and the average performance on out-of-
distribution (OOD) datasets.

Winogrande 70M 410M 2.8B Average Dataset Raw-Input  Zero-Shot-Input  Few-Shot-Input

K GSM8k 24.26 24.18 24.26
Uniform 51.07 53.83 61.09 55.33 C-Eval 54.72 57.19 55.55
Greedy 51.07 53.83 60.85 55.25 ;TE{LJU gi-g :461.;51 22-22
Fisher 5208 53.88 60.57 5551 MedMCOA T02e 078 r0sa
RegMean 51.97 5376 60.89  55.54 Average Result  44.12 44.73 44.34
Ours 5198 54.06 61.25 55.76

Table 6: The results of merging Pythia models with
different parameter sizes using various merging methods
on the Winogrande dataset.

A.5 Fine-grained Analysis of the Instance
Level Performance Before and After
Checkpoint Merging.

In this section, we select ckpt-2200B and ckpt-
2420B from Baichuan 2-7B for merging based on
our methods and analyze the similarities and dif-
ferences in the performance of the model on five
datasets before and after the merging. The results
are shown in Figure 8 to Figure 12. From the re-
sults, we can observe that there is a significant over-
lap between the correct and incorrect predictions of
the checkpoint before and after merging. Addition-
ally, when comparing the sizes of the independent
regions corresponding to ckpt-2200B, ckpt-2420B,
and the Merged-ckpt (represented by the orange,
green, and purple parts on the Venn diagram respec-
tively), we find that the merged checkpoint has the
smallest independent region. Based on the above
observations, we attribute the performance changes
resulting from checkpoint merging to the merged
checkpoint inheriting the performance of the pre-
merged checkpoints. From Figure 11 and Figure
12, we observe that the independent region of the
Merged-ckpt in the Venn diagram of positive sam-
ples in the GSM8k dataset and negative samples in
the MedMcqa dataset is slightly higher than that of
the checkpoint before merging (e.g., the indepen-
dent region size of the Merged-ckpt on GSM8Kk is
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Table 8: Checkpoint merging based on perplexity cal-
culated from different input paradigms. We merge
Baichuan 2-7B ckpt-2200B and ckpt-2420B on the
GSMB8k, C-Eval, CMMLU, MMLU and MedMCQA
datasets.

62, while ckpt-2200B is 44 and ckpt-2420B is 49).
These anomalous phenomena may be attributed to
the dramatic performance improvements and de-
clines before and after the merging.

B Proof for Linear Checkpoint Merging
Bounds.

Under the assumL)tions in section §3.1, We derive
the bounds of f(6;) through the following steps:
1. Quadratic Approximation:

Expand f (é) around 6; using the quadratic
approximation Eq.4 with § = 6 — 6, (1-—
)\t)(Gt_l — 0t>:

F(G) ~ f(0) +VF0) 6+ %tha
= f(0:) + (1 — )\t)Vf(et)T(Qt,1 —04)+

1
51— M) (Or—1 — 0) " Hy(0—1 — 60)

an

Similarly, expand f (évt) around 0;_1 with § = 0 —
Or—1 = Me(6r — 6i—1):

FB) % F(Bs) + V(1) 5+ 56T Hed

= f(0r=1) + NV f(0:=1) " (0 — 01—1)

+%)\$(6t - 9t71)THt71(9t —0:—1).
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Construct an averaged approximation by forming a



convex combination of equations Eq.11 and Eq.12,
where )\ and \; are the respective weights.

F(0:) = Ao f(0:) + (1= Ae) f(B-1)
A= N) [VF(O) = VF(Or1)]" (011 — 0:)
o [0 )T H 6 -0
+(1 — )\t)2(9t71 — ot)THt(Htfl — 91&)}
(13)
2. Bounding the Gradient Difference:
Under the assumption 1 in section §3.1, the term
L = [Vf(0)—Vf(_1)]" (§;-1 — ;) can be
bounded as:
L<|[Vf(0r) = Vf(Oe1) - [|0c—1 — Ol
= [IVf(0:) = Vf(Orn)[| - 0: — O—sll  (14)
< K6 — 01|

3. Bounding the Hessian:
Under the assumption 3 in section §3.1, we can
obtain:

(0 — 0i—1) " Hy—1(8: — 04—1) < Amax |0 — 0—1]]> (15)

(0 — 0:—1) " He (0 — 0:—1) < Amax|fs — 0:—1])>. (16)

4. Final Bound:
By combining equations Eq.13-16, we can ob-
tain:

F(0) = Mf(0:) + (1= Xe)f(0e-1)
= A(1 = A)K|0: — 6p—1 (17)
— 5 DE 4 (1= A0 Al 0 — 001

Similarly, the upper bounds for the performance
function be formalized as:

F(B2) < Aef(B0) + (1= Ae) f(Be-r)
F (1= M) K0 — 0,1 ||? (18)
1
+ 5 [)\? + (1 - >\t)2] )\maxHat - 9t—1||2-
By combining equations Eq.17-18, we can obtain

that the performance of the merged checkpoint sat-
isfies:

FO) = N f(00) + (1= Xe) f(Bi1)
1

:l: ()\z(l — )\t)K + 5 [)\f + (1 - )\t)2] )\max> ||0t - 9t71||24

2
19)
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ckpt-22008 ckpt-2420B ckpt-2200B ckpt-2420B

Merged-ckpt Merged-ckpt

Figure 8: Degree of overlap between correct (left) and incorrect (right) samples on the C-Eval dataset before and
after checkpoint merging.

ckpt-2200B ckpt-2420B ckpt-2200B ckpt-24208

Merged-ckpt Merged-ckpt

Figure 9: Degree of overlap between correct (left) and incorrect (right) samples on the CMMLU dataset before and
after checkpoint merging.

ckpt-2200B ckpt-2420B ckpt-2200B ckpt-2420B

Merged-ckpt Merged-ckpt

Figure 10: Degree of overlap between correct (left) and incorrect (right) samples on the MMLU dataset before and
after checkpoint merging.
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ckpt-2420B ckpt-2200B

ckpt-2200B I I ckpt-2420B

Merged-ckpt Merged-ckpt

Figure 11: Degree of overlap between correct (left) and incorrect (right) samples on the GSM8k dataset before and
after checkpoint merging.

ckpt-2200B

ckpt-2420B ckpt-2420B

ckpt-2200B l

Merged-ckpt

Merged-ckpt

Figure 12: Degree of overlap between correct (left) and incorrect (right) samples on the MedMCQA dataset before
and after checkpoint merging.
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