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Abstract

Integrating large language models (LLMs) into recommender systems has created
new opportunities for improving recommendation quality. However, a comprehen-
sive benchmark is needed to thoroughly evaluate and compare the recommendation
capabilities of LLMs with traditional recommender systems. In this paper, we
introduce RECBENCH, which systematically investigates various item representa-
tion forms (including unique identifier, text, semantic embedding, and semantic
identifier) and evaluates two primary recommendation tasks, i.e., click-through rate
prediction (CTR) and sequential recommendation (SeqRec). Our extensive experi-
ments cover up to 17 large models and are conducted across five diverse datasets
from fashion, news, video, books, and music domains. Our findings indicate that
LLM-based recommenders outperform conventional recommenders, achieving up
to a 5% AUC improvement in CTR and up to a 170% NDCG@ 10 improvement
in SeqRec. However, these substantial performance gains come at the expense of
significantly reduced inference efficiency, rendering LLMs impractical as real-time
recommenders. We have released our code' and data® to enable other researchers
to reproduce and build upon our experimental results.

1 Introduction

Recommender systems are essential for providing personalized information to internet users. The
design of these systems typically involves balancing objectives such as fairness, diversity, and
interpretability. In industrial applications, however, accuracy and efficiency are paramount. Accuracy
underpins user experience, greatly influencing user satisfaction and engagement, while efficiency is
crucial for timely recommendation delivery and system deployment.

In recent years, the integration of large language models (LLMs) into recommender systems (denoted
as LLM+RS) has garnered significant attention from academia and industry. These integrations fall
into two main paradigms [1, 2, 3, 4]: LLM-FOR-RS and LLM-AS-RS. LLM-FOR-RS enhances
traditional deep learning-based recommender models (DLRMs) through advanced feature engineering
or encoding techniques using LLMs [5, 6]. This paradigm acts as a plug-in module, easily integrating
with existing recommender systems, offering high efficiency, and improving accuracy without substan-
tial overhead, making it ideal for industrial applications. Conversely, LLM-AS-RS employs LLMs
directly as recommenders to generate recommendations. This paradigm excels in specific contexts,
such as cold-start scenarios [7], and tasks requiring natural language understanding and generation,
like interpretable and interactive recommendations [8, 9, 10]. Despite its potential, the extremely low
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Figure 1: Illustration of DLRM and LLM recommender in two scenarios. Each represents
a placeholder that can be filled with various item representations, including unique identifier, ,
or semantic identifier.

inference efficiency of large models poses challenges for high-throughput recommendation tasks.
Nevertheless, LLM-AS-RS is reshaping traditional recommendation pipeline designs.

Several benchmarks have been proposed for LLM-AS-RS, including LLMRec [11], PromptRec [12],
and others [13, 14, 15]. However, as shown in Table 1, these benchmarks have limitations: (i) they
often evaluate only a single recommendation scenario, (ii) their coverage of item representation
forms for alignment within LLMs is narrow, typically limited to conventional unique identifier or
formats, and (iii) they assess a relatively small number of traditional models, large-scale models, and
datasets, leading to an incomplete and fragmented performance landscape in this domain.

To address existing gaps, we propose the RECBENCH platform for a comprehensive evaluation of
the LLM-AS-RS paradigm. Firstly, we explore various item representation and alignment methods
between recommendation scenarios and LLMs, including unique identifier, , and

, and semantic identifier, to assess their impact on recommendation performance. Secondly,
the benchmark covers two main recommendation tasks: click-through rate (CTR) prediction and
sequential recommendation (SeqRec), representing pair-wise and list-wise recommendation scenarios,
respectively. Thirdly, our study evaluates up to 17 LLMs, encompassing general-purpose models like
Llama [16]) and recommendation-specific models like RecGPT [17]. This extensive evaluation sup-
ports multidimensional comparisons across models of varying sizes (e.g., OPTpse and OPTiye), from
different institutions (e.g., Llama and Qwen), and different versions from the same institution (e.g.,
Llama-175 and Llama-3gg). Fourthly, experiments are conducted across 5 recommendation datasets
from diverse domains—including fashion (HM [18]), news (MIND [19]), video (MicroLens [20]),
books (Goodreads [21]), and music (Amazon CDs [22])-to ensure balanced comparisons without
reliance on a single platform. Fifthly, we assess both recommendation accuracy and efficiency,
providing a holistic comparison between conventional DLRMs and LLM-AS-RS. Our evaluation
includes zero-shot and fine-tuning approaches: zero-shot examines LLMs’ inherent recommendation
and reasoning abilities, while fine-tuning evaluates their adaptability in new scenarios.

In summary, our RECBENCH benchmark provides a comprehensive evaluation of the LLM-AS-RS
paradigm, revealing several key insights: Firstly, while LLM-based recommenders show significant
performance improvements across various scenarios, their efficiency limitations hinder practical
deployment. Future research should prioritize developing inference acceleration techniques for LLMs
in recommendations. Secondly, conventional DLRMs enhanced with LLM support (LLM-FOR-RS
paradigm, Group C in Figure 2) can achieve up to 95% of the performance of standalone LLM
recommenders while operating much faster. Thus, enhancing the integration of LLM capabilities into
conventional DLRMs is a promising research direction. We hope that our established, reusable, and
standardized RECBENCH will lower the evaluation barrier and accelerate the development of new
models within the recommendation community.

2 Preliminaries and Related Work

We first introduce various forms of item representation, which is the foundation of recommender sys-
tems. Then, we present a unified evaluation framework (Fig. 1). Next, we review representative work
to highlight current advancements. Finally, we compare our RECBENCH with existing benchmarks.

Item Representations. Item representation is a critical component of recommender systems. Since
the introduction of deep learning in this field, the most prevalent approach [23, 24, 25] has been to



Table 1: Comparison of RECBENCH with existing benchmarks within the LLM-AS-RS paradigm.
“~” indicates that, despite its claims, LLMRec does not practically support list-wise recommendation.

Benchmark Zhangetal. OpenP5 LLMRec PromptRec Jiangetal. RSBench RECBENCH
Year 2021 2024 2023c 2024b 2024 2024b (ours)
#DLRM 2 9 13 4 6 0 10
Scale #LLM 4 2 7 4 7 1 17
#Dataset 1 10 1 3 4 3 5
Zero-shot v X v v X v v
Scheme .
Fine-tune v v v v v X v
unique identifier X v v X X X v
Item v X v v v v v
Representation X X X X X X v
semantic identifier X X X X X X v
. Pair-wise X v v v v v v
Scenario . .
List-wise v v X X X v
Metric Quﬂal'ny v v v v v v v
Efficiency X X X X X X v

use item unique identifier. These identifiers initially lack intrinsic meaning, and their corresponding
vectors are randomly initialized and will be learned from user—item collaborative signals.

With advancements in computational power and the advent of the big data era, item content—such as
product images and news headlines—has increasingly been utilized for item representation. Simple
modules like convolutional neural networks [26] and attention networks [27] are designed to encode
item into unified item representations based on for the recommendation models.

In recent years, the pretrained and open-source language models are widely integrated with the rec-
ommendation model and served as the end-to-end item encoder, fine-tuned with the recommendation
tasks. The has been proven to be more effective than previous shallow networks
with , as the former introduce rich general semantics into the recommendation model [28, 29].

Additionally, a new form of item representation: semantic identifier, is introduced recently. With
semantic embeddings obtained from LLMs, discrete encoding techniques like RQ-VAE [30] are
used to map items into unique, shareable identifier combinations. Items with similar content are
characterized by longer common subsequences. The use of semantic identifier not only efficiently
compresses the item vocabulary but also maintains robust semantic relationships during training [31].

The emergence and advantages of the semantic identifier have reshaped sequential recommendation
methods, also known as generative retrieval [32, 33, 34, 35]. They provide new input forms and
alignment strategies between LLMs and recommender systems, paving the way for advancements in
the LLM-AS-RS paradigm [36, 31].

Recommendation Scenarios Evaluated. As LLMs exhibit significant reasoning capabilities across
various domains [37, 38, 39], the recommendation community is exploring their direct application
to recommendation tasks [40, 41]. This LLM-AS-RS paradigm abandons conventional DLRMs,
seeking to harness the robust semantic understanding and deep Transformer architectures of LLMs to
capture item features and model user preferences and generate recommendation results. To assess how
LLMs operate within this paradigm, we examine two common recommendation scenarios (Fig. 1):

Pair-wise Recommendation, also known as straightforward recommendation [42], corresponds to
the traditional Click-Through Rate (CTR) prediction task [23, 24]. The input consists of a user-item
pair, and the LLM is expected to output a recommendation score for this pair (e.g., the predicted
likelihood that the user will click on the item).

List-wise Recommendation typically corresponds to sequential recommendation tasks [43, 44]. The
input comprises a sequence of items with positive feedback from a user, and the LLM is expected to
predict the next item that the user is likely to engage with. In contrast to DLRMs that use structured
feature inputs, the LLM-AS-RS paradigm requires concatenating inputs in natural language and
guiding the LLM to generate the final results.

LLMs as Recommender Systems. The progression of LLM-AS-RS can be divided into three stages:
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Figure 2: (Left) Various forms of item representations. (Right) Groups chosen for benchmarking and
their representative methods. N/A: there is no or few related work, and it will not be evaluated.

Stage One: Zero-shot Recommendations with LLMs. Early studies explored whether general-purpose
LLMs could perform recommendations without fine-tuning. While their performance lagged behind
traditional DLRMs [13, 40, 41, 45], they outperformed random baselines, revealing limited yet
meaningful recommendation capabilities. As LLMs could only process textual input, served as
the universal item representation across domains, bridging LLMs and recommender systems.

Stage Two: Fine-Tuning LLMs for Recommendation. This stage adapted LLMs to recommendation
tasks via supervised fine-tuning. Approaches like Uni-CTR [46] and Recformer [47] aligned recom-
mender systems with LLMs using semantic text in pair-wise learning. Others, such as P5 [48, 42]
and VIP5 [49], introduced non-textual signals (e.g., item unique identifier) for multi-task learning on
Amazon data. Models like LLaRA [50] and LLM4IDRec [51] further advanced LLMs’ ability to
model user behavior through sequential recommendation fine-tuning.

Stage Three: Integration of Semantic Identifiers with LLMs. Recently, researchers combined semantic
identifier with LLMs to enhance recommendation performance [52]. For instance, LC-Rec [36]
extended the multi-task learning paradigm of P5 but replaced item representations with semantic
identifiers, achieving breakthrough results. STORE [31] introduced a parallel semantic tokenization
approach that each token represents a unique perspective of item content.

Comparison with Previous Benchmarks. Table 1 provides a summary of existing benchmarks
within the LLM-AS-RS paradigm. [13] was a pioneering effort in using language models for
sequential recommendation, evaluating BERT’s recommendation capabilities in both zero-shot and
fine-tuning scenarios using the MovieLens dataset [53]. This work marks the inception of research
into using LLMs directly as recommender systems.

Building on the P5 method [48], OpenP5 [42] evaluated multiple recommendation scenarios alongside
conventional methods, albeit using only unique identifiers for item representation. PromptRec [12]
focused on cold-start scenarios, comparing LLMs with conventional deep learning recommendation
models (DLRMs) using solely semantic text for zero-shot recommendation, highlighting the advan-
tages of LLMs in content understanding. The study by [14] employed multidimensional evaluation
metrics but fine-tuned LLMs exclusively using semantic text. RSBench [15] primarily optimized for
conversational recommendation scenarios but utilized only a single LLM and lacked comparisons
with traditional recommendation models. LLMRec [11] emulated P5 by training LL.Ms through
multitask learning and employed both unique identifiers and semantic text as item representations.
However, LLMRec did not incorporate semantic identifiers into item representations and conducted
experiments solely on the Amazon Beauty dataset [22], which limits its generalizability.

Our RECBENCH provides a comprehensive evaluation of the recommendation capabilities of 17
LLMs across 5 datasets. Utilizing 4 different forms of item representation and assessed in both
pair-wise and list-wise recommendation scenarios, our benchmark uniquely evaluates the efficiency
of recommendation models, aligning with the principles of Green Al [54] in the era of large models.



3 Proposed Benchmark: RECBENCH

This section details our benchmarking approaches for two main recommendation scenarios.

3.1 Pair-wise Recommendation

Pair-wise recommendation estimates the probability %, ; that a user u interacts with (e.g., clicks on)
an item t. Models are typically trained with binary cross-entropy loss:

L== " [Yutloghus+ (1= yus)log(l = fus)], 6]
(u,t)eD

where D is the set of all user—item interactions. As illustrated in Figure 1, we use user behavior
sequence as the user-side feature.

Group A: Deep CTR models with unigue identifier. For these models, each item embedding t is
randomly initialized. A user is represented by averaging the embeddings of items in their behavior
sequence:

1 M
u= 5D b @
i=1
where N, is the sequence length. The CTR model ¢ predicts the click probability as:
Jup = @ (u,t). 3)

The models selected for benchmarking are DNN, PNN [55], DCN [23], DCNv2 [23], DeepFM [24],
MaskNet [56], FinaIMLP [57], Autolnt [58], and GDCN [59].

Group B: Deep CTR models with . These models learn item representations from textual
features:

1

where [V, is the text sequence length, and w; denotes the item text sequence embeddings. The models
selected for benchmarking include DNNex(, DCNV2;¢y, Autolntiey;, and GDCNeys.

Group C: Deep CTR models with . Here, item embeddings are initialized with
pretrained semantic representations:

t=yg(w), &)

where g represents a large language model. The models selected for benchmarking are DNNepp,
DCNV2cip, Autolnten,, and GDCNg,,, models.

Group D: LLM with unique identifier. Following P5 [48], we treat item unique identifiers as special
tokens and fine-tune LLMs for recommendation. The classification logits lyes and [, for the YES and
NO tokens are obtained from the final token. After softmax normalization over these two tokens, the
click probability is:

ehes

yu7t - el)’es + elno : (6)

The models selected for benchmarking are P5S-BERT e, PS-OPT350Mm, P5S-OPT) 5, and P5-Llama-375.

Group E: LLM with . Here, items are represented solely by their textual features, without
adding extra tokens. Owing to their natural language understanding, these LLMs are evaluated
in both zero-shot and fine-tuned settings. We benchmark general-purpose models such as GPT-
3.5 [45], the LLaMA series [60, 61, 16], Qwen [62], OPT [63], Phi [64], Mistral [65], GLM [66],
DeepSeek-Qwen-2 [67], as well as recommendation-specific models like P5 [48] and RecGPT [17].

Group F: LLM with semantic identifier. For this group, we replace single unique identifier with
multiple semantic identifiers per item. The models selected for benchmarking are SID-BERT},, and
SID-OPTj3s0Mm, which use BERTy,g. and OPT3500 as LLM backbone, respectively.



3.2 List-wise Recommendation

List-wise recommendation predicts the next item ¢,,, that a user u will interact with, given their
o
i

historical behavior sequence s,, = {sy, } .711. The model is trained with categorical cross-entropy

1oss: (f(8u.1.))
,C — _ 1 exp Suv Uy , 7
g e (50, ) @

where U denotes the set of users, ¢, is the true next item, 7 is the candidate set, and f(s,,t’)
computes the compatibility score.

ueU

Group G: SeqRec models with unique identifier. We benchmark a typical sequential recommen-
dation model, SASRec [43], which uses unique item identifiers. The prediction score is computed
as:

f(su7 tul) = Vgi hui71 b (8)
where h,,, , contains user history up to 7 — 1, and v,,, is the latent classification vector for item ¢,,,.

Group H: SeqRec models with semantic identifier. In this group, we extend the next-token
prediction task (as in Group G) by representing each item with multiple semantic identifiers instead
of a single unique identifier. This formulation decomposes an item into a sequence of tokens, where
each valid token combination corresponds to a specific item. We benchmark the SID-SASRec model,
which use SASRec model as backbone. During inference, we employ an autoregressive decoding
strategy using beam search. At each decoding step, the model predicts a set of candidate tokens and
maintains the top K partial sequences (beams) based on their cumulative scores. However, since the
item representation is structured as a path in a pre-constructed semantic identifier tree, standard beam
search can produce token sequences that do not correspond to any valid item.

To overcome this limitation, we introduce a conditional beam search (CBS) technique. In our CBS
approach, the semantic identifier tree organizes valid token sequences as paths from the root to a leaf
node. At every decoding step, the candidate tokens for each beam are filtered to retain only those that
extend the current partial sequence to a valid prefix in the semantic identifier tree. This restriction
ensures that each beam can eventually form a complete, valid item identifier. Only the tokens that
lead to a leaf node-representing a complete and valid semantic identifier sequence—are allowed to
contribute a positive prediction logit. We use _cgs to denote inference with CBS.

Group I: LLMs with unique identifier. We extend the LLM-based framework to list-wise recom-
mendation by incorporating item unique identifiers directly into the input prompt. The model is
fine-tuned on the next-item prediction task by minimizing the categorical cross-entropy loss (Eqs. 7
and 8). P5S-BERT}ase, P5-Qwen-2g s, PS-Qwen-2 sg, and P5-Llamasg are chosen for benchmarking.

Group J: LLMs with semantic identifier. Compared with Group I, we replace item unique identifier
with semantic identifier in the input prompt. The model is fine-tuned using the categorical cross-
entropy loss as in Eqs. 7 and 8. Conditional beam search is employed to ensure the decoded semantic
identifier sequence maps to a valid item. We benchmark SID-BERTy,,. and SID-Llama-375.

4 Experimental Settings

4.1 Datasets

To avoid reliance on a single platform, we conduct all the experiments on five datasets from distinct
domains and institutions: H&M for fashion recommendation, MIND for news recommendation,
MicroLens for video recommendation, Goodreads for book recommendation, and CDs for music
recommendation. Moreover, since the training and testing data sizes of the original datasets vary
significantly, the comprehensive evaluation scores of the final models could be influenced by these
discrepancies. To mitigate this issue, we perform uniform preprocessing on all datasets to obtain
approximately similar dataset sizes. The specific details of the datasets are summarized in Table 4.

4.2 Evaluation Metrics

Following common practice [68, 69], we evaluate recommendation performance using widely adopted
metrics, including ranking metrics such as GAUC, NDCG, and MRR, as well as matching metrics



like F1 and RECALL. However, due to space limitations, we present only the GAUC metric for
pair-wise recommendation tasks and NDCG @ 10 for list-wise recommendation scenarios. The full
evaluation results will available on our webpage.

All the experiments are trained on a single Nvidia A100 GPU device. Except for the zero-shot setting,
all results are averaged over five runs, with statistically significant differences observed (p < 0.05).
Moreover, we use the latency (ms) metric to evaluate the model’s inference efficiency, calculated as
the average time per inference over 1,000 runs.

4.3 Implementation Details

Data Pre-processing. For datasets lacking user behavior sequences (i.e., H&M, CDs, Goodreads,
and MicroLens), we construct these sequences by arranging each user’s positive interactions in
chronological order. In the pair-wise recommendation scenario, for datasets without provided
negative samples (i.e., MicroLens and H&M), we perform negative sampling for each user with a
negative ratio of 2. Additionally, we truncate user behavior sequences to a maximum length of 20 to
ensure consistency across datasets. For deep CTR models, i) we utilize the nltk package to tokenize
the text data and subsequently retain only those tokens present in the GloVe vocabulary [70] under
the settings, and we did not use pretrained GloVe vectors during training; ii) we use Llama-1;g
model to extract the pretrained item embeddings under the settings.

Semantic Identifier Generation. We employ the pipeline proposed by TIGER [32] to generate
semantic identifier. First, we use an LLM, i.e., SentenceBERT [71], to extract embeddings for each
item content. Then, we perform discretization training using the RQ-VAE [30] model on these
embeddings. Following common practice [32, 31, 33], we utilize a 4-layer codebook, with each layer
having a size of 256. The representation space of this codebook approximately reaches 4 billion.

Identifier Vocabulary. Regardless of whether we use unique identifier or semantic identifier, we
construct new identifier vocabularies for the LLM. Specifically, the vocabulary size V' matches the
number of items when using unigue identifier, or V.= 256 x 4 = 1,024 when using semantic
identifier. We initialize a randomly generated embedding matrix Eiq € RY*9, where d is the
embedding dimension of the current LLM.

Model Fine-tuning. We employ the low-rank adaptation (LoRA) technique [72] for parameter-
efficient fine-tuning of large language models. For the pair-wise recommendation scenario, LoRA
is configured with a rank of 32 and an alpha of 128, whereas for the list-wise recommendation
scenario, these parameters are set to (128, 128). The learning rate is fixed at 1 X 10~* for LLM-based
models and 1 x 102 for other models. In addition, we set the batch size to 5,000 for all deep CTR
models, 64 for models with fewer than 7B parameters, and 16 for models with 7B parameters. All
the experiments are conducted on a single Nvidia A100 GPU device. Except for the zero-shot setting,
all results are averaged over five runs, with statistically significant differences observed (p j 0.05).

S Pair-wise Recommendation: Results and Findings

This section provides a detailed analysis of results from pair-wise recommendation.?

5.1 Zero-shot vs. Fine-tuned LLMs

Most LLMs exhibit limited zero-shot recommendation capabilities; however, models pre-
trained on data with implicit recommendation signals, such as Mistral [65], GLM [66], and
Qwen-2 [62], perform significantly better. Fine-tuning boosts the recommendation accuracy
of LLMs, with Llama-375 improving by up to 43%.

Table 2 (last block) presents the zero-shot performance of various LLMs on pair-wise recommen-
dation scenario. Our findings reveal that most LLMs struggle with general recommendation tasks.
These models appear to have difficulty extracting user interest patterns from behavior sequences and

3Due to space limits, additional results are in the appendix and supplement.



Table 2: Comparison between fine-tuned LLM and conventional DLRMsS in the pair-wise recommen-
dation scenario. We report the AUC metric. CPU and GPU inference time are in millisecond.

Item Repri ion | Rec der | ¥y MIND B MicroLens Goodreads ©» CDs [§ H&M Overall CPU  GPU
Conventional DLRMs

DNN 0.6692 0.7421 0.5831 0.5757  0.7952 0.6731 043 1.69

PNN 0.6581 0.7359 0.5801 0.5331  0.7648 0.6544  1.00 1.70

DeepFM 0.6670 0.7594 0.5782 0.5681 0.7749 0.6695  0.98 1.65

DCN 0.6625 0.7410 0.5902 0.5780  0.7913 0.6726  1.07 1.67

unique identifier DCNv2 0.6707 0.7578 0.5778 0.5664 0.7950 0.6735  4.29 3.62
MaskNet 0.6631 0.7179 0.5719 0.5532  0.7481 0.6508  3.08 1.71

FinalMLP 0.6649 0.7600 0.5807 0.5670  0.7858 0.6717  1.72 1.74

Autolnt 0.6690 0.7451 0.5879 0.5789  0.8027 0.6767 142 2.29

GDCN 0.6704 0.7571 0.5948 0.5784  0.8120 0.6825  1.20 2.02

DNNiext 0.6867 0.7741 0.5857 0.5655  0.8475 0.6919 473 3.72

. DCNV2;ex 0.6802 0.7804 0.5789 0.5577  0.8560 0.6906  4.91 3.12
Autolntyey 0.6701 0.7761 0.5803 0.5687  0.8490 0.6888 539 3.87

GDCNexe 0.6783 0.7842 0.5796 0.5641 0.8555 0.6923  5.09 3.77

DNNepmp 0.7154 0.8141 0.5997 0.5848  0.8717 0.7171 1.42 2.09

DCNV2emp 0.7167 0.8061 0.5999 0.5944  0.8626 0.7159  8.28 5.31

Autolntepy, 0.7081 0.8099 0.6015 0.5560  0.8594 0.7070  2.04 3.09

GDCNemp 0.7093 0.7997 0.5943 0.5828  0.8565 0.7085  1.77 2.54

Fine-tuned LLMs

P5-BERT ¢ 0.5507 0.5850 0.5038 0.5162  0.5402 05392 3640 833
unique identifier P5-OPThyse 0.6330 0.5099 0.5031 0.4989  0.4939 0.5278  286.56 16.37
P5-OPTlyrge 0.6512 0.6984 0.5110 0.5281  0.6177 0.6013  950.89 15.50
P5-Llama-375 | 0.6697 0.7457 0.5780 0.5688  0.7260 0.6576 6350 35.20
BERT )5 0.7175 0.8066 0.5148 0.5789  0.8635 0.6962 5326  11.08
) OPTp 0.7346 0.8016 0.5889 0.5850  0.5121 0.6444 1140 16.38
- Llama-375 0.7345 0.8328 0.6826 0.6268  0.8771 0.7508 6800 65.11
Mistral-275 0.7353 0.8295 0.6680 0.6754  0.8810 0.7578 7680 76.14
semantic identifier SID-BERT},se | 0.5704 0.5860 0.4914 0.5042  0.5401 0.5384 3640 8.33
SID-OPThyse 0.5987 0.4989 0.5004 04977  0.4957 05183  286.56 16.37
Zero-shot LLMs
BERT}use 0.4963 0.4992 0.4958 0.5059  0.5204 0.5035 5326  11.08
OPT3s0m 0.5490 0.4773 0.5015 0.5093  0.4555 0.4985 33234 14.99
OPT\p 0.5338 0.5236 0.5042 0.4994  0.5650 05252 1140 16.38
Llama-15 0.4583 0.4572 0.4994 04995  0.4035 0.4636 3170 71.10
Llama-275 0.4945 0.4877 0.5273 0.5191 04519 0.4961 6200 71.90
Llama-3gp 0.4904 0.5577 0.5191 0.5136  0.5454 0.5252 6800 65.11
Llama-3.1gp 0.5002 0.5403 0.5271 0.5088  0.5462 0.5245 6580 66.39
Mistral;g 0.6300 0.6579 0.5718 0.5230  0.7166 0.6199 7680 76.14
text GLM-49p 0.6304 0.6647 0.5671 0.5213  0.7319 0.6231 9690 83.38
Qwen-2 55 0.4868 0.5717 0.5148 0.5043  0.6287 0.5413 54373 34.89
Qwen-2; 55 0.5411 0.6072 0.5264 0.5174  0.6615 0.5707 1420 40.01
Qwen-27p 0.5862 0.6640 0.5494 0.5256  0.7124 0.6075 6150 70.47
DS-Qwen-275 | 0.5127 0.5631 0.5165 0.5146  0.5994 0.5413 7520 61.60
Phi-23 0.4851 0.5078 0.5049 04991  0.5447 0.5083 2100 61.58
GPT-3.5 0.5057 0.5110 0.5122 0.5046  0.5801 05227 - -
RecGPT7g 0.5078 0.4703 0.5083 0.5019  0.4875 0.4952 7160 54.34
P5Beauy 0.4911 0.5017 0.5027 0.5447  0.4845 05049  74.11 12.30

assessing the relevance between user interests and candidate items. Moreover, specialized recommen-
dation models such as P5 [48] and RecGPT [17] also underperformed in our evaluations. They can
effectively capture item semantics on fine-tuned datasets but lack strong generalization and zero-shot
inference capabilities. Notably, the Mistral [65], GLM [66], and Qwen-2 [62] models demonstrated
comparatively robust CTR prediction performance, with the recommendation effectiveness of Qwen-2
showing a positive correlation with model size. These models may have been exposed to diverse web
content, including user interactions signals, enhancing their generalization for recommendation tasks.

We perform instruction tuning on various LLMs to align them with recommendation tasks. Table 2
shows that this fine-tuning yields a relative improvement in recommendation accuracy ranging
from 22% to 43%, highlighting the importance of domain-specific alignment. Notably, Llama-3;5
outperformed Mistral-275 on the MicroLens and Goodreads datasets. Although Mistral-2 ranked
in the top three for zero-shot scenarios, Llama-3’s overall performance of was comparable, while
smaller models such as BERT and OPT consistently lagged behind. These results emphasize the
superior semantic understanding and deep reasoning capabilities inherent in larger models.



Table 3: Comparison between LLM recommenders and conventional DLRMs in the list-wise rec-
ommendation scenario. We display NDCG@ 10 metric in this table. CPU inference time are in
millisecond. “.cgs” means using conditional beam search (see Sec 3.2) during inference.

Item Representation ‘ Recommender 1 MIND i MicroLens Goodreads »CDs K H&M Overall CPU

Conventional DLRMs

SASRecs, 0.0090 0.0000 0.0165 0.0016  0.0209 0.0096  23.30

unique identifier SASRecq., 0.0097 0.0006 0.0224 0.0012  0.0297 0.0127 3843

! SASReca, 0.0241 0.0297 0.0548 0.1041 0.1235 0.0672  51.77
SASReco 0.0119 0.0312 0.0601 0.1267  0.1191 0.0698  103.41

SID-SASRecs, 0.0266 0.0028 0.0029 0.0000  0.0084 0.0081  36.12

SID-SASRecs.cps  0.0849 0.0123 0.0127 0.0007  0.0422 0.0306  66.67

semantic identifier SID-SASRecq. 0.0225 0.0047 0.0038 0.0140  0.0097 0.0109  59.08

’ SID-SASRecg.cgs  0.0647 0.0179 0.0141 0.0331  0.0406 0.0341 9041

SID-SASReco. 0.0201 0.0044 0.0039 0.0136  0.0165 0.0117 1310

SID-SASRecy.ces  0.0695 0.0234 0.0140 0.0324  0.0598 0.0398 1340

Fine-tuned LLMs

P5-BERTy45e 0.0430 0.1867 0.0557 0.1198  0.1075 0.1025  41.54
unique identifier P5-QWen-2s5p 0.0549 0.0201 0.0322 0.0128  0.0234 0.0287  556.95

! P5-QWen-2, sp 0.0506 0.0254 0.0316 0.0015  0.0217 0.0262 1120
P5-Llama-375 0.0550 0.0178 0.0134 0.0072  0.0353 0.0257 28060

SID-BERT e 0.0654 0.0022 0.0025 0.3539  0.0467 0.0941 1830

semantic identifier SID-BERT yse-cBS 0.1682 0.1195 0.0059 04616  0.1834 0.1877 1900

' SID-Llama-375 0.0456 0.0255 0.0221 0.2443  0.0337 0.0742 167250
SID-Llama-375.cgs ~ 0.1677 0.0827 0.0508 0.3898  0.1125 0.1607 177540

5.2 Performance Comparison: LLMs vs. Conventional Deep CTR Models

Large-scale LLMs (e.g., Llama, Mistral) achieve over a 5% improvement in recommendation
accuracy compared to the best conventional recommender (DNNeyp,) using

. However, these gains come with significant latency; the best conventional recommender
retains 95% of the performance while operating thousands of times faster.

Table 2 compares recommendation performance using various item representation forms for both
conventional recommenders (i.e., DLRM) and LLM-based approaches. The key findings are:

Firstly, even without textual modalities, conventional unique identifier-based CTR models outperform
the zero-shot LLM-based recommenders, highlighting the importance of interaction data. Moreover,
fine-tuned unique identifier-based LLMs still lag behind, likely because they struggle to capture
explicit feature interactions. Secondly, incorporating textual data into CTR models yields significant
gains. We did not use pretrained word embeddings, as the item-side text itself effectively learns robust
item relationships. Thirdly, initializing item representations with embeddings from Llama-1 for

-based CTR models introduces high-quality semantic information, outperforming
both prior methods and small 7ex7-based LLMs (e.g., BERT, OPT) due to Llama’s superior semantic
quality and deeper network architecture. Fourthly, 7exr-based LLMs using large models like Llama-3
and Mistral-2 outperform all baselines, demonstrating their disruptive potential in recommendation
tasks. Fifthly, conversely, fine-tuning semantic identifier-based LLMs yields poor performance in
CTR scenarios, likely due to smaller models’ limited ability to learn discrete semantic information.
Sixthly, in terms of efficiency, -based CTR models within the LLM-FOR-RS
paradigm offer the best cost-effectiveness with minimal modifications to traditional architectures,
making this approach one of the most practical in industry.

6 List-wise Recommendation: Results and Findings

This section presents results from list-wise recommendation. Sequential recommenders [43, 32]
usually rely on next-item prediction, which doesn’t align with using as item representation. Thus,
we evaluate two forms: unique identifier and semantic identifier. Since LLMs are unable to recognize
unseen tokens, they lack zero-shot recommendation abilities and require fine-tuning.



6.1 Unique ID vs. Semantic ID

Overall, semantic identifier has shown to be a more effective representation than unique
identifier, whether integrated with LLMs or traditional recommenders, highlighting the value
of incorporating item content knowledge into sequential recommenders.

Table 3 evaluates the recommendation abilities of LLMs and conventional DLRMs in the list-wise
recommendation scenario, leading to the following observations: Firstly, within the SASRec series,
performance generally improves with more transformer layers, reflecting the scaling behavior of
conventional sequential recommenders. Notably, SID-SASRec outperforms standard SASRec with
fewer layers, suggesting that semantic identifier, by decomposing item representations into logically
and hierarchically structured tokens, allows shallower networks to better capture user interests.
However, as layers increases, semantic identifier’s advantage diminishes, likely because deeper
SASRec architectures can more effectively learn user sequence patterns, even without pretrained
semantic information. Secondly, comparing pairs like (P5-BERT}u5e, SID-BERT,5¢ cs) and (P5-
Llama-3gg, SID-Llama-375_cps), LLMs with semantic identifier consistently outperform their unigue
identifier counterparts, with improvements up to 83%. This highlights the efficiency and potential of
semantic identifier representation in enhancing recommendation performance.

6.2 Performance Comparison: LLMs vs. Conventional Sequential Recommenders

LLMs outperform traditional sequential recommenders in accuracy using either unigue
identifier or semantic identifier representations, but their inference efficiency remains a
critical issue requiring urgent improvement.

Based on unique identifier representations, the BERTy,s. model outperforms both SASRec, —which
shares the same network architecture as BERT,s.—and the deeper SASRec,4.. Despite the absence
of textual features in item representations, this observation suggests that language patterns acquired
during pretraining bear an abstract similarity to user interest patterns in recommender systems,
thereby facilitating effective knowledge transfer. Furthermore, LLM recommenders employing
semantic identifier representations exhibit markedly superior performance compared to the SID-
SASRec series. By incorporating semantic item knowledge, semantic identifier enables LLMs
to more effectively interpret user sequences and capture high-quality user interests. Additionally,
models utilizing conditional beam search constraints (the _cgg series) achieve further improvements
in recommendation performance. However, these gains come at a substantial cost in inference
efficiency; overall, LLM recommenders require nearly 1,000 times more inference time than SASRec.
This significant efficiency gap represents a critical challenge that should be addressed to ensure the
practical deployment of LLM recommenders.

7 Conclusion

We introduced RECBENCH, a comprehensive benchmark for comparing LLM-AS-RS and DLRMs.
Our study systematically explores various item representation forms and covers both click-through
rate prediction and sequential recommendation tasks across diverse datasets and models. While LLM-
based recommenders, particularly those using large-scale models, achieve significant performance
gains, they face substantial efficiency challenges compared to conventional DLRMs. This trade-
off highlights the need for research into inference acceleration techniques, crucial for deploying
LLM-based recommenders in high-throughput industrial settings.
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A Limitations

This study evaluates the recommendation capabilities of large language models and traditional
recommender systems across two distinct scenarios: pair-wise, similar to click-through rate (CTR)
models, and list-wise, akin to sequential recommenders. Our current analysis does not address
fairness and privacy considerations, which are essential areas for future improvements of RECBENCH.
Due to space limits, we present only the AUC metric in the main text. However, additional metrics,
including MRR and nDCG, which demonstrate high consistency with the AUC results, are included
in the supplementary materials.

B Broader Impacts

Our benchmark offers a comprehensive, scalable framework for evaluating foundation models in
recommendation scenarios, fostering systematic and reproducible research. By encompassing diverse
domains and datasets, it assesses the generalization capabilities of large models. Moreover, its
openness and reusability reduce experimental costs, lowering the entry barrier for both academic
and industrial practitioners. However, since foundation models can amplify data biases or user
stereotypes, we advise users to exercise caution and conduct ethical audits when applying these
models in real-world systems.
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Table 4: Datasets statistics.

Dataset H&M MIND MicroLens Goodreads CDs
Type Fashion News Video Book Music
Text Attribute desc title title name name
Pair-wi #Sample 20,000 20,006 20,000 20,009 20,003
T:;:‘-szse #Item 26270 3,088 15,166 26,664 36,765

#User 5,000 1,514 5,000 1,736 4,930
Pair-wi #Sample 100,000 100,000 100,000 100,005 100,003
Ff‘“r'w‘se #Item 60,589 17,356 19,111 74,112 113,671

inetune set

#User 25,000 8,706 25,000 8,604 24,618

List-wise #Seq 5,000 5,000 5,000 5,000 5,000

Test set #Item 15,889 10,634 12,273 38,868 19,684

List-wise #Seq 40,000 40,000 40,000 40,000 40,000
Finetune set #Item 35,344 24,451 18,841 136,296 95,409

Table 5: Additional evaluation metrics for the pair-wise recommendation scenario.

\ \ MIND \ H&M
Item Representation | Recommender | AUC  nDCG@1 nDCG@5 | AUC  nDCG@1 nDCG@S
Conventional DLRMs

DNN 0.6867 05324 05831 0.8475 0.8560 09337
DCNv2 0.6802 0.5357 0.5820 0.8560 0.8662  0.9376
Autolnt 0.6701  0.5277 0.5730 0.8490 0.8622 09350
GDCN 0.6783  0.5257 05751 0.8555  0.8658 0.9374
DNN 07154 0.5618 0.6226 08717 08972  0.9472
DCNv2 0.7167  0.5627 0.6272 0.8626  0.8848 0.9427
Autolnt 0.7081  0.5561 0.6123 0.8594 0.8792  0.9408
GDCN 07093 0.5677 0.6176 0.8565 0.8782  0.9399

Zero-shot LLMs

BERT ¢ 0.4963  0.2655 0.3729 0.5204 0.4934 0.7899
OPT s 0.5338 0.2981 0.4077 0.5650 0.5302 0.8060
Llama-1-g 0.4583 0.2100 0.3301 0.4035 0.3706 0.7391

Llama-3.1gg 0.5002 0.3007 0.3907 0.5462 0.5362 0.8028
Fine-tune LLMs

BERT}ase 0.7175  0.5862 0.6274 0.8635 0.8812 0.9423
OPT g 0.7346  0.6042 0.6488 0.5121 0.5129 0.7904
Llama-3.1gp 0.7345  0.6040 0.6490 0.8771  0.8917 0.9476
Mistralsg 0.7353  0.6057 0.6464 0.8810 0.9021 0.9504

C Technical Appendices

C.1 Additional Evaluation Metrics

Due to space constraints, Table 2 and Table 3 report only AUC and nDCG@ 10, respectively. For a
more comprehensive comparison, we present results in additional evaluation metrics.

As shown in Table 5, the nDCG results are generally consistent with the AUC scores. Similarly,
Table 6 shows that MRR and Recall align well with nDCG@10. These findings underscore the
robustness of our conclusions. Full experimental results will be made available on our website.
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Table 6: Additional evaluation metrics for the list-wise recommendation scenario. Experiments are
conducted on the MIND dataset.

Item Representation ‘ Recommender ‘ nDCG@1 nDCG@5 nDCG@10 MRR Recall@5 Recall@10
Conventional DLRMs

. . . SASRecs3. 0.0066 0.0086 0.0090 0.0083  0.0102 0.0114
unique identifier

SASRecq, 0.0074 0.0091 0.0097 0.0090 0.0108 0.0126

SASRecs;, 0.0124 0.0215 0.0266 0.0220  0.0298 0.0464

. . SASRecs;-cBs 0.0792 0.0847 0.0849 0.0836  0.0882 0.0888
semantic identifier

SASRecq, 0.0108 0.0209 0.0225 0.0194  0.0294 0.0342

SASRecq,-CBS 0.0608 0.0644 0.0647 0.0636 0.0670 0.0680

Fine-tuned LLMs

P5-BERThyse 0.0138 0.0290 0.0430 0.0302 0.0532 0.0985

. . . P5-Qwen-2 s 0.0152 0.0394 0.0549 0.0409 0.0646 0.1132
unique identifier

P5-Qwen-2, 55 0.0148 0.0353 0.0506 0.0387 0.0574 0.1052

P5-Llama-3gp 0.0156 0.0393 0.0550 0.0421 0.0638 0.1126

SID-BERT}44¢ 0.0412 0.0641 0.0654 0.0581 0.0842 0.0884

semantic identifier SID-BERT}ee-cBs | 0.1384 0.1604 0.1682 0.1577 0.1806 0.2048

R SID-Llama-3gp 0.0152 0.0356 0.0456 0.0364 0.0552 0.0862

SID-Llama-3gg.cgs | 0.1670 0.1676 0.1677 0.1675 0.1680 0.1682

Table 7: Extended results of conventional DLRMs for the list-wise recommendation scenario:
Supplementary to Table 3.

Item Representation ‘ Recommender = § MIND - MicroLens [EE] Goodreads 9 CDs l H&M

GRU4Rec 0.0040 0.0000 0.0073 0.0015  0.0237

unique identifier Caser 0.0078 0.0000 0.0112 0.0014  0.0188
: Bert4Rec 0.0032 0.0000 0.0067 0.0014  0.0174

SASRec 0.0090 0.0000 0.0165 0.0016  0.0209

C.2 Results of Additional Conventional Sequential Recommenders

Due to space constraints, Table 3 includes only SASRec as a representative sequential recommender.
In Table 7, we extend the comparison to additional conventional models, including GRU4Rec [73],
Caser [74], and BERT4Rec [44], with the number of layers uniformly set to 3. SASRec consistently
outperforms the other baselines, justifying its selection for more detailed comparisons with LLM-
based recommenders (e.g., variations with unique identifier, semantic identifier, and different layer
depths in Table 3).

C.3 Prompt Analysis

We have provided the used prompt in our code repository. To further address your concern regarding
the prompt templates, we conducted experiments using the prompts depicted in Table 8.

Specifically, P1 is a concise prompt; P2 is more detailed; and P2 (1-shot) follows the in-context
learning paradigm by including a demonstration example. The average GAUC scores across five
datasets (MIND, MicroLens, Goodreads, CDs, and H&M) using the Qwen-3gg model under these
prompts are summarized in Table 9, from which we can observe that:

First, overall, for zero-shot performance, P2 offers only minor improvements over P1. Therefore, in
our experiments, we used P1 for smaller models (size < 7B) with shorter input windows to conserve
input tokens and allow for longer user sequences. For larger models with longer input windows, we
used P2.

Second, the few-shot experiments were conducted three times, with each run using different examples
randomly selected for in-context demonstrations. Compared to zero-shot performance, we observed
that few-shot prompting does not always lead to improved results and can, in some cases, cause a
significant drop in performance, as seen on the H&M dataset.
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Table 8: List of prompts used in our benchmark.

Version Prompt

P1 (zero-shot)  You are a recommender. Please respond “YES” or “NO” to represent whether this
user is interested in this item.

User history sequence: [object Object].
Candidate item: [object Object].
Answer (Yes/No):

P2 (zero-shot)  You are a recommender. I will provide user behavior sequence and a candidate item.
Please respond “YES” or “NO” only. You are not allowed to give any explanation or
note. Now, your role formally begins. Any other information should not disturb you.
User history sequence: [object Object].

Candidate item: [object Object].
Answer (Yes/No):

P2 (1-shot) You are a recommender ... (example omitted) . ..
User history sequence: [object Object].
Candidate item: [object Object].

Answer (Yes/No):
P2 (2-shot) Omitted due to space constraints.
P2 (5-shot) Omitted due to space constraints.

Table 9: Impact of prompts. Experiments are conducted on the Qwen-3gg model.

Setting ““I MIND B¥ MicroLens Goodreads (% CDs R &M
P1 (zero-shot)  0.5847 0.6543 0.5439 0.5180 0.6499
P2 (zero-shot)  0.6036 0.6618 0.5371 0.5175 0.6678

P2 (1-shot) 0.6097 (48)  0.6254 (43) 0.5356(56)  0.5056(38) 0.6178 (16)
P2 (2-shot) 0.6354 (50)  0.6536 (56) 0.5360 (60)  0.5150(69) 0.6105 (146)
P2 (5-shot) 0.6208 (52)  0.6565 (71) 0.5429 (28)  0.5188(49) 0.6176(124)

C.4 Evaluation of More Recent Models

Here, we provide zero-shot and fine-tuning results (fine-tuned on CDs) using the Qwen3 series
models.

The results in Table 10 demonstrate a clear trend consistent with scaling laws: model performance
improves as model size increases, and fine-tuning yields significant performance gains. Overall,
Qwen3-8B achieves zero-shot performance comparable to that of Qwen2-7B reported in the main
paper.

Additionally, we intentionally omit models larger than 8B parameters. This decision is primarily
motivated by the real-time constraints of recommendation systems, where low-latency inference is

Table 10: Evaluation on the Qwen-3 series.

Dataset MIND MicroLens Goodreads H&M CDs CDs
Setting | Zero-shot Zero-shot  Zero-shot Zero-shot Zero-shot Fine-tune
0.6B 0.4927 0.5165 0.5140 0.5993 0.5055 0.5098
1.7B 0.5117 0.5704 0.5027 0.6571 0.4972 0.5775
4B 0.5448 0.6394 0.5054 0.6487 0.5101 0.5879
8B 0.6036 0.6618 0.5371 0.6678 0.5175 0.5919
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Table 11: Impact of Dataset Size.

Dataset Train  Test |#Item  #User Sparsity Llama3-8B DCNv2 QWen3-8B

CDs-small | 50,000 20,000 |72,796 12,355 99.99444% | 0.6071  0.5463  0.5707
CDs 100,000 20,000 | 113,671 24,602 99.99642% | 0.6268  0.5664  0.5919
CDs-large | 150,000 20,000 | 146,604 36,916 99.99723% | 0.6300  0.5714  0.6001

essential. In industrial settings, 8B already represents the practical upper limit for deployment in
production environments, and model compression or distillation techniques are typically required to
ensure efficiency. We will incorporate experiments on the Qwen3 series in the revised version.

C.5 Impact of Dataset Characteristics

Here, we conducted an experiment where we varied the sparsity level through downsampling. We
use a standard definition of sparsity, defined as:

train. [
sparsity = 1 — density = 1 — #train_sample

&)

#items x #users’

From Table 11, we can make the following observations:

As the number of training samples increases, data sparsity (as defined above) also increases. Despite
this, the performance of Llama3-8B, Qwen3-8B, and DCNv2 consistently improves. This is because
each user is represented by a sequence of item interactions, and with more item occurrences (i.e.,
more training samples), the item embeddings are trained more thoroughly and become more robust.
Furthermore, the LLM-based models consistently outperform the DLRM (DCNv2) across all sparsity
levels, demonstrating their effectiveness.

C.6 Case Studies

Here, we present two case studies on the MIND dataset (for news recommendation) to illustrate how
LLMs leverage semantic information in recommendation tasks. Each news article is represented by
an ID beginning with “N” (e.g., “N50059”) along with its article title.

Case 1. User click history: (1) N50059: This Ford GT40 Movie Rig From “Ford V Ferrari” Looks
Absurd (2) N53017: Kendall Jenner Wore the Tiniest Dress to Go Jewelry Shopping

The positive candidate item, N35729: Porsche launches into second story of New Jersey building,
killing 2, receives a high relevance score from LLMs but not from DLRMs. This demonstrates that
LLM:s can capture deeper semantic connections—such as the shared theme of luxury cars (Ferrari in
N50059 and Porsche in N35729) — which are often overlooked by traditional ID-based CTR models.

Case 2. User click history: (1) N35: I Tried an Intense Metabolic Reset Program for a Month — and It
Worked (2) N35452: Potentially historic wind event’ over weekend could inflame California wildfires

The positive candidate item, N42634: The Latest Weight Loss Pills That Work And the Ones That
Don’t, does not share any overlapping words with N35. Despite this, LLMs assign it a high relevance
score by recognizing its relevance to the user’s interest in health and weight loss. This highlights the
models’ ability to understand and generalize semantic relationships, rather than relying only on direct
word matches.

C.7 Complexity Analysis on Conditional Beam Search

Based on the results in Table 3 of the main paper, we observe that CBS decoding is only marginally
slower (approximately 3—5%) than standard beam search (BS) for large-size models. We provide the
time complexity below:

In standard BS, the model maintains a set of B partial hypotheses (beams), expanding each with all
V' vocabulary tokens at each decoding step. At step ¢, for each beam, the model outputs a logit vector
of size V, from which the top-k candidates are selected based on cumulative scores. This process
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Table 12: Fairness Comparison.

Model Inactive Active Overall Diff.
Zero-shot
OPT-1B 0.4996 0.5350 0.5011 0.0354
Llama3-8B 0.5206 0.5232  0.5207 0.0026
Qwen3-4B 0.5011 0.5273 0.5022 0.0262
Qwen3-8B 0.5153 0.5447 0.5163 0.0294
Fine-tune
OPT-1B 0.5790 0.6002 0.5799 0.0212
Llama3-8B 0.6184 0.6327 0.6190 0.0143
Qwen3-4B 0.5842 0.6042 0.5850 0.0200
Qwen3-8B 0.5994 0.6058 0.5997 0.0064
DCNv2 0.5677 0.6071 0.5693 0.0394
DCNv2-emb (w/ Llama3 embedding) | 0.5829 0.5886 0.5831 0.0057

is repeated for 7' decoding steps. Therefore, the total time complexity of standard beam search is:
OB-V-T).

Under the same setup, CBS maintains full vocabulary logits but applies a dynamic mask over invalid
tokens O (B - V - T'), which matches the complexity of vanilla BS in asymptotic terms. Ideally, a
more efficient implementation could reduce the complexity to O (B - F - T'), where F is the average
number of valid next tokens per Trie node (typically /' < V). But in practice, we retain full-
vocabulary logits to enable batched decoding, and thus the time complexity remains O (B -V - T).

Although CBS and standard beam search share the same theoretical time complexity, CBS is typically
somewhat slower in practice. This slowdown is primarily due to additional operations such as
dynamic logits masking and the overhead associated with Trie lookups. Nevertheless, given the
performance gains relative to the modest increase in computational cost, the use of CBS remains well
justified.

C.8 Fairness and Privacy Issue

Fairness and privacy are critical considerations in real-world recommender systems, and we have
proactively incorporated these principles into the design of RecBench:

» User Split Strategy for Fairness: To prevent unfair exposure bias toward highly active
users, we ensure that each user appears exclusively in either the training or test set, but not
both. This approach guarantees that all test users are unseen during training, reducing the
risk of overfitting to popular users and promoting fairness in user representation.

* Privacy-Preserving Design: To protect user privacy, we do not use sensitive attributes such
as user ID, location, or age during training. Instead, models are trained solely on behavioral
history sequences, requiring them to learn and generalize user interest patterns without
relying on private information. This approach not only safeguards privacy but also enhances
model robustness.

we conducted additional experiments to evaluate model performance across user groups with varying
activity levels. In our experimental setting, all test users are unseen during training; therefore, we
define user activity according to the length of each user’s historical sequence in the test set. Based
on this definition, we establish a threshold as follows:

mazx_length + min_length
2

threshold = (10)
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Table 13: Impact of Model Precision.

Zero-shot  Fine-tune

BERT (float32) 0.5204  0.8701
BERT (bf16) 05210  0.8688
Llama3-8B (float32) 0.5444  0.8598
Llama3-8B (bf16)  0.5454  0.8606

Users with sequence lengths below the threshold are labeled as inactive, while those above the
threshold are labeled as active. All experiments are conducted on the Amazon CDs dataset. We
compute GAUC for each group separately and report the difference as Dif f. = GAUC _active —
GAUC _inactive.

C.9 Model Precision Analysis

We conducted experiments comparing 32- and 16-bit precision on the H&M dataset. The results
(Table 13), reported using the GAUC metric, indicate that there are only minor differences in
performance between the two precisions.

Therefore, to accelerate both training and inference in our benchmark, models larger than 7 billion
parameters are fine-tuned using 16-bit precision, in line with common practice (e.g., LC-Rec [36]
and GenRec [75], based on their official GitHub implementation).
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Please refer to the abstract and introduction.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please refer to Appendix Section A.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

» The authors are encouraged to create a separate “Limitations” section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: No assumptions or proofs provided.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have released the code and data for reproducibility.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

24



Answer: [Yes]
Justification: We have released the code and data for reproducibility.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We discuss the experimental settings and implementation details in Section ??.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Except for the zero-shot setting, all results are averaged over five runs, with
statistically significant differences observed (p j 0.05).

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer ”Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

25



8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The information is provided in the implementation details.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in this paper fully complies with the NeurIPS Code of
Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss the broader impacts in the Appendix.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Not related.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite the assets properly.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: New assets are provided in our Github page.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
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Answer: [Yes]

Justification: The LLM is the subject of evaluation in this paper, and its usage has been
explicitly described in the manuscript.

Guidelines:
* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2,025/LLM)
for what should or should not be described.
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