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Abstract

A key goal in mechanistic interpretability is
circuit analysis: finding sparse subgraphs of
models corresponding to specific behaviors or
capabilities. However, MLP sublayers make
fine-grained circuit analysis on transformer-
based language models difficult. In particular,
interpretable features—such as those found
by sparse autoencoders (SAEs)—are typically
linear combinations of extremely many neurons,
each with its own nonlinearity to account for.
Circuit analysis in this setting thus either yields
intractably large circuits or fails to disentangle
local and global behavior. To address this we
explore transcoders, which seek to faithfully
approximate a densely activating MLP layer
with a wider, sparsely-activating MLP layer.
We successfully train transcoders on language
models with 120M, 410M, and 1.4B parameters,
and find them to perform at least on par with
SAEs in terms of sparsity, faithfulness, and
human-interpretability. We then introduce a
novel method for using transcoders to perform
weights-based circuit analysis through MLP
sublayers. The resulting circuits neatly factorize
into input-dependent and input-invariant terms.
Finally, we apply transcoders to reverse-engineer
unknown circuits in the model, and we obtain
novel insights regarding the “greater-than
circuit” in GPT2-small. Our results suggest that
transcoders can prove effective in decomposing
model computations involving MLPs into inter-
pretable circuits. Code is available at https:
//github.com/jacobdunefsky/
transcoder_circuits/.
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1. Introduction
In recent years, transformer-based large language models
(LLMs) have displayed outstanding performance on a wide
variety of tasks (Brown et al., 2020; OpenAI et al., 2024;
Team et al., 2023). However, the mechanisms by which
LLMs perform these tasks are opaque by default (Chrupała
& Alishahi, 2019; Lipton, 2017). The field of mechanistic
interpretablity (Chris Olah, 2022) seeks to understand these
mechanisms, and doing so relies on decomposing a model
into circuits (Olah et al., 2020): interpretable subcomputa-
tions responsible for specific model behaviors (Wang et al.,
2022; Elhage et al., 2021; Lieberum et al., 2023; Olsson
et al., 2022).

A core problem in fine-grained circuit analysis is incorpo-
rating MLP sublayers (Nanda et al., 2023; Lieberum et al.,
2023). Attempting to analyze MLP neurons directly suffers
from “polysemanticity” (Olah et al., 2017; Elhage et al.,
2022a; Bills et al., 2023; Gurnee et al., 2023): the tendency
of neurons to activate on many unrelated concepts. To ad-
dress this, sparse autoencoders (SAEs) (Bricken et al.,
2023; Cunningham et al., 2023; Yun et al., 2023) have
been used to perform fine-grained circuit analysis by instead
looking at features—vectors in the model’s representation
space—instead of individual neurons (Marks et al., 2024;
Dunefsky et al., 2024). However, while SAE features are
often interpretable, these vectors tend to be dense linear
combinations of many neurons (Nanda, 2023). Thus, mech-
anistically understanding how an SAE feature before one
or more MLP layers affects a later SAE feature may re-
quire considering an infeasible number of neurons and their
nonlinearities. Prior attempts to circumvent this (Marks
et al., 2024; Dunefsky et al., 2024) use a mix of causal inter-
ventions and gradient-based approximations to MLP layers.
But these approaches fail to exhibit input-invariance: the
connections between features can only ever be described for
a given input, and not for the model as a whole. Attempts
to address this, e.g. by averaging results over many inputs,
conversely lose their ability to yield input-dependent infor-
mation that describes a connection’s importance on a single
input.

Motivated by this, in this work, we explore transcoders (an
idea proposed, but not explored, in Templeton et al. (2024a)
and Li et al. (2023)): wide, sparsely-activating approxi-
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Figure 1. A comparison between SAEs, MLP transcoders, and MLP sublayers for a transformer-based language model. SAEs learn to
reconstruct model activations, whereas transcoders imitate sublayers’ input-output behavior.

mations of a model’s original MLP sublayer. Specifically,
an MLP transcoder is a wide ReLU MLP sublayer (with
one hidden layer) that is trained to faithfully approximate
the original narrower MLP sublayer’s output, with an L1
regularization penalty on neuron activations to encourage
sparse activations. The main advantage of transcoders is
they replace a difficult-to-interpret model component—the
MLP sublayer—with an interpretable approximation that is
otherwise faithful to the original computations. This allows
us to interpret transcoder neurons rather than dense linear
combinations of original MLP neurons.

Our contributions. Our main contributions are (1) to
confirm that transcoders are a faithful and interpretable ap-
proximation to MLP sublayers, and (2) to demonstrate a
novel method for circuit analysis using transcoders.

In §3.2, we evaluate transcoders’ interpretability, sparsity,
and faithfulness to the original model. Because SAEs are the
standard method for finding sparse decompositions of model
activations, we compare transcoders to SAEs on models up
to 1.4 billion parameters and verify that transcoders are on
par with SAEs or better with respect to these properties.

Beyond this, however, transcoders additionally enable
circuit-finding techniques that are not possible using SAEs:
in §4.1 we introduce a novel method for performing circuit
analysis with transcoders and demonstrate that transcoders
cleanly factorize circuits into input-invariant and input-
dependent components. We apply transcoder circuit analysis
to a variety of tasks in §4.2 and §4.3, including “blind case
studies,” which demonstrate how this approach allows us to
understand features without looking at specific examples,
and an in-depth analysis of the GPT2-small “greater-than
circuit” previously studied by Hanna et al. (2024).

2. Transformers preliminaries
Following the approach of Elhage et al. (2021), the compu-
tation of a transformer model can be represented as follows.
First, the model maps input tokens (and their positions) to

embeddings x(0,t)
pre ∈ Rdmodel , where t is the token index and

dmodel is the model dimensionality. Then, the model applies
a series of “layers,” which map the hidden state at the end
of the previous block to the new hidden state. This can be
expressed as:

x
(l,t)
mid = x(l,t)

pre +
∑

head h

attn(l,h)
(
x(l,t)
pre ;x

(l,1:t)
pre

)
(1)

x(l+1,t)
pre = x

(l,t)
mid +MLP(l)

(
x
(l,t)
mid

)
(2)

where l is the layer index, t is the token index,
attn(l,h)(x

(l,t)
pre ;x

(l,1:t)
pre ) denotes the output of attention

head h at layer l given all preceding source tokens x(l,1:t)
pre

and destination token x
(l,t)
pre , and MLP(l)(x

(l,t)
mid) denotes the

output of the layer l MLP1.

Equation 1 shows how the attention sublayer updates the
hidden state at token t, and Equation 2 shows how the MLP
sublayer updates the hidden state. Importantly, each sub-
layer always adds its output to the current hidden state. As
such, the hidden state always can be additively decomposed
into the outputs of all previous sublayers. This motivates El-
hage et al. (2021) to refer to each token’s hidden state as its
residual stream, which is “read from” and “written to” by
each sublayer.

3. Transcoders
3.1. Architecture and training

Transcoders aim to learn a “sparsified” approximation of
an MLP sublayer: they approximate the output of an MLP
sublayer as a sparse linear combination of feature vectors.
Formally, the transcoder architecture can be expressed as

zTC(x) = ReLU (Wencx+ benc) (3)
TC(x) = WdeczTC(x) + bdec, (4)

1Note that the “Pythia” family of models computes MLP and
attention sublayer outputs in parallel. This means that equation 2
is thus given by x

(l+1,t)
pre = x

(l,t)
mid +MLP(l)

(
x
(l,t)
pre

)
.
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where x is the input to the MLP sublayer, Wenc ∈
Rdfeatures×dmodel , Wdec ∈ Rdmodel×dfeatures , benc ∈ Rdfeatures ,
bdec ∈ Rdmodel , dfeatures is the number of feature vectors
in the transcoder, and dmodel is the dimensionality of the
MLP input activations. Usually, dfeatures is far greater than
dmodel.

Each feature in a transcoder is associated with two vectors:
the i-th row of Wenc is the encoder feature vector of
feature i, and the i-th column of Wdec is the decoder
feature vector of feature i. The i-th component of zTC(x)
is called the activation of feature i. Intuitively, for each
feature, the encoder vector is used to determine how much
the feature should activate; the decoder vector is then scaled
by this amount, and the resulting weighted sum of decoder
vectors is the output of the transcoder. In this paper, the
notation f

(l,i)
enc and f

(l,i)
dec are used to denote the i-th encoder

feature vector and decoder feature vector, respectively, in
the layer l transcoder.

Because we want transcoders to learn to approximate an
MLP sublayer’s computation with a sparse linear combi-
nation of feature vectors, transcoders are trained with the
following loss, where λ1 is a hyperparameter mediating the
tradeoff between sparsity and faithfulness:

LTC(x) = ∥MLP(x)− TC(x)∥22︸ ︷︷ ︸
faithfulness loss

+λ1 ∥zTC(x)∥1︸ ︷︷ ︸
sparsity penalty

. (5)

3.1.1. EVALUATION METRICS

We evaulate transcoders qualitatively on their features’ in-
terpretability as judged by a human rater, and quantitatively
according to the sparsity of their activations and their fidelity
to the original MLP’s computation.

As a qualitative proxy measure for the interpretability of a
feature, we follow Bricken et al. (2023) in assuming that
interpretable features should demonstrate interpretable pat-
terns in the examples that cause them to activate. To this
end, one can run the transcoder on a large dataset of text, see
which dataset examples cause the feature to activate, and
see if there is an interpretable pattern among these tokens.
While this is an imperfect metric (Bolukbasi et al., 2021),
it is still a reasonable proxy for an inherently qualitative
concept.

To measure the sparsity of a transcoder, one can run the
transcoder on a dataset of inputs, and calculate the mean
number of features active on each token (the mean L0 norm
of the activations). To measure the fidelity of the transcoder,
one can perform the following procedure. First, run the
original model on a large dataset of inputs, and measure
the next-token-prediction cross entropy loss on the dataset.
Then, replace the model’s MLP sublayer corresponding to
the transcoder with the transcoder, and measure the modi-
fied model’s mean loss on the dataset. Now, the faithfulness

of the transcoder can be quantified as the difference between
the modified model’s loss and the original model’s loss.

3.2. Relationship to SAEs

Transcoders were originally conceived as a variant of SAEs,
and as such, there are many similarities between them. In
fact, SAEs have the exact same architecture as transcoders—
meaning that they also have encoder and decoder feature
vectors. The only difference between SAEs and transcoders
is in how SAEs are trained: because SAEs are autoencoders,
the faithfulness term in the SAE loss measures the recon-
struction error between the SAE’s output and its original
input. In contrast, the faithfulness term of the transcoder
loss measures the error between the transcoder’s output and
the original MLP sublayer’s output.

Because of the extensive similarities between SAEs and
transcoders, SAEs can be quantitatively evaluated (for spar-
sity and fidelity) and qualitatively evaluated (for feature
interpretability) in precisely the same way as transcoders.
In fact, the aforementioned transcoder evaluation methods
are also standard for evaluating SAEs (Kissane et al., 2024;
Bloom, 2024a). We now report the results of evaluations
comparing SAEs to transcoders on these metrics, and find
that transcoders are comparable to or better than SAEs.

3.2.1. BLIND INTERPRETABILITY COMPARISON OF
TRANSCODERS TO SAES

In order to evaluate the interpretability of transcoders, we
manually attempted to interpret 50 random features from a
Pythia-410M layer 15 transcoder and 50 random features
from a Pythia-410M layer 15 SAE trained on MLP inputs2.
For each feature, the examples in a subset of the OpenWeb-
Text corpus that caused the feature to activate the most were
computed ahead of time. Then, the features from both the
SAE and the transcoder were randomly shuffled. For each
feature, the maximum-activating examples were displayed,
but not whether the feature came from an SAE or transcoder.
We recorded for each feature whether or not there seemed to
be an interpretable pattern, and only after examining every
feature did we look at which features came from where. The
results, shown in Table 1, suggest transcoder features are
approximately as interpretable as SAE features. This further
suggests that transcoders incur no penalties compared to
SAEs.

2We used SAEs trained on MLP inputs here because the inter-
pretability case studies look at feature activations, which are solely
dependent on the encoder vectors of the SAEs and transcoders.
Because transcoders’ encoder vectors live in MLP input space, we
thought that the comparison would be most accurate if our SAEs’
encoder vectors also lived in MLP input space.
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Figure 2. The sparsity-accuracy tradeoff of transcoders versus SAEs on GPT2-small, Pythia-410M, and Pythia-1.4B. Each point
corresponds to a trained SAE or transcoder, and is labeled with the L1 regularization penalty λ1 used during training.

Table 1. The number of interpretable features, possibly-
interpretable features, and uninterpretable features for the
transcoder and MLP-in SAE. Of the interpretable features, we
additionally deemed 6 transcoder features, and 16 SAE features to
be “context-free”, meaning they appeared to fire on a single token
without any evident context-dependent patterns.

Transcoder MLP-in SAE
# interpretable 41 38
# maybe 8 8
# uninterpretable 1 4

3.2.2. QUANTITATIVE COMPARISON OF TRANSCODERS
TO SPARSE AUTOENCODERS

We now compare transcoders to SAEs according to the
sparsity and fidelity metrics discussed in §3.1.1. We trained
SAEs and transcoders on activations from GPT2-small (Rad-
ford et al., 2019), Pythia-410M, and Pythia-1.4B (Biderman
et al., 2023). For each model, we trained multiple SAEs and
transcoders on the same inputs, but with different values
of the λ1 hyperparameter controlling the fidelity-sparsity
tradeoff for each SAE and each transcoder. The transcoders
were trained on MLP-in and MLP-out activations, while
SAEs were trained on MLP-out activations (as these are the
activations that MLP SAEs are typically trained on). Due to
compute limitations, we used the same learning rate, which
was determined via a hyperparameter sweep on transcoders,
for both SAEs and transcoders. This means that the learn-
ing rate might not be optimal for SAEs. Nevertheless, we
did perform a separate hyperparameter sweep of λ1 for the
SAEs and transcoders.

We evaluated each SAE and transcoder on the same 3.2
million tokens of OpenWebText data (Gokaslan & Cohen,
2019). We also recorded the unmodified model’s loss and
the loss after mean-ablating the entire MLP sublayer (always
replacing its output with its mean output over the dataset)
as best- and worst-case bounds, respectively.

We summarize the Pareto frontiers of the sparsity-accuracy
tradeoff for all models in Figure 2. In all cases, transcoders
are equal to or better than SAEs. In fact, the gap between
transcoders and SAEs seems to widen on larger models.
Note, however, that compute limitations prevented us from
performing more exhaustive hyperparameter sweeps; as
such, it might be possible that a different set of hyperpa-
rameters could have allowed SAEs to surpass transcoders.
Nonetheless, these results make us optimistic that using
transcoders incurs no penalties versus SAEs trained on MLP
activations.

4. Circuit analysis with transcoders
4.1. Circuit analysis method

We now introduce a novel method for performing feature-
level circuit analysis with transcoders, which provides a
scalable and interpretable way to identify which transcoder
features in different layers connect to compute a given task.
Moreover, this method neatly factorizes the importance of
computational subgraphs into input-invariant terms, which
can be computed just from model and transcoder weights,
and input-dependent terms, which depend on the specific
model input.

4.1.1. ATTRIBUTION BETWEEN FEATURE PAIRS

The primary goal of circuit analysis is to identify a subgraph
of the model’s computational graph that is responsible for
(most of) the model’s behavior on a given task (Geiger et al.,
2021; Conmy et al., 2023; Gandelsman et al., 2024); this
requires a means of evaluating a computational subgraph’s
importance to the task in question. Unfortunately, as dis-
cussed in §1, MLP sublayers make this difficult. But with
more interpretable and sufficiently faithful transcoders, we
can replace the MLP sublayers to obtain a more interpretable
computational graph more amenable to circuit analysis.

In order to identify the relevant subgraph in this transcoder
computational graph, we begin with the following insight:
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Figure 3. A visualization of the circuit-finding algorithm.

every transcoder feature contributes some (possibly zero)
amount to the residual stream, which results in some con-
tribution to all subsequent transcoder features. This means
that we can quantify the attribution of an earlier-layer fea-
ture to a later-layer feature’s activation—which allows us to
identify important edges in the computational graph. This
attribution is given by the product of two terms: the ear-
lier feature’s activation (which depends on the input to the
model), and the dot product of the earlier feature’s decoder
vector with the later feature’s encoder vector (which is inde-
pendent of the model input).

The following is a more formal restatement. Let
z
(l,i)
TC

(
x
(l,t)
mid

)
denote the scalar activation of the i-th fea-

ture in the layer l transcoder on token t, as a function of the
MLP input x(l,t)

mid at token t in layer l. Then for layer l < l′,
the contribution of feature i in transcoder l to the activation
of feature i′ in transcoder l′ on token t is given by

z
(l,i)
TC

(
x
(l,t)
mid

)
︸ ︷︷ ︸

input-dependent

(
f
(l,i)
dec · f

(l′,i′)
enc

)
︸ ︷︷ ︸

input-invariant

(6)

This expression is derived in App. D.2. Note that(
f
(l,i)
dec · f

(l′,i′)
enc

)
is input-invariant: once the transcoders

have been trained, this term does not depend on the in-
put to the model. This term, analyzed in isolation, can
thus be viewed as providing information about the general
behavior of the model. The only input-dependent term
is z

(l,i)
TC

(
x
(l,t)
mid

)
, the activation of feature i in the layer l

transcoder on token t. As such, this expression cleanly
factorizes into a term reflecting the general input-invariant
connection between the pair of features and an interpretable
term reflecting the importance of the earlier feature on the
current input.

4.1.2. FINDING COMPUTATIONAL SUBGRAPHS

Using this observation, we present a method for finding
computational subgraphs. We now know how to determine,
on a given input and transcoder feature i′, which earlier-
layer transcoder features i are important for causing i′ to
activate. Once we have identified some earlier-layer features
i that are relevant to i′, then we can then recurse on i to
understand the most important features causing i to activate
by repeating this process.

Doing so iteratively (and greedily pruning all but the most
important features at each step) thus yields a set of com-
putational paths (a sequence of connected edges). These
computational paths can then be combined into a computa-
tional subgraph, in such a way that each node (transcoder
feature), edge, and path is assigned an attribution. This pro-
cess can be further extended to take into account the “OV
circuits” of attention heads (under the formalism presented
by Elhage et al. (2021)) as described in App. D.3. This
allows contributions from previous tokens in the input to the
current token to be accounted for. A full description of the
circuit-finding algorithm is presented in App. D.5. Figure 3
provides a visualization of this algorithm.

4.1.3. DE-EMBEDDINGS: A SPECIAL CASE OF
INPUT-INVARIANT INFORMATION

Earlier, we discussed how to compute the input-invariant
connection between a pair of transcoder features, provid-
ing insights on general behavior of the model. A related
technique is something that we call de-embeddings. A de-
embedding vector for a transcoder feature is a vector that
contains the direct effect of the embedding of each token
in the model’s vocabulary on the transcoder feature. The
de-embedding vector for feature i in the layer l transcoder
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Figure 4. An example of a computational graph produced using the method in §4.1.2 characterizing how our unknown feature is computed
on an unseen input. A single path is highlighted in red and annotated with component-by-component attributions.

is given by WE
T f

(l,i)
enc , where WE is the model’s token

embedding matrix. Importantly, this vector gives us input-
invariant information about how much each possible input
token would directly contribute to the feature’s activation.

Given a de-embedding vector, looking at which tokens in the
model’s vocabulary have the highest de-embedding scores
tells us about the feature’s general behavior. For exam-
ple, for a certain GPT2-small MLP0 transcoder feature that
we investigated, the tokens with the highest scores were
oglu, owsky, zyk, chenko, and kowski. Notice the in-
terpretable pattern: all of these tokens come from European
surnames, primarily Polish ones. This suggests that the
general behavior of the feature is to fire on Polish surnames.

4.2. Blind case study: reverse-engineering a feature

To understand the utility of transcoders for circuit analysis,
we carried out nine blind case studies, where we randomly
selected individual transcoder features in a ninth-layer (of
12) GPT2-small transcoder and used circuit analysis to form
a hypothesis about the semantics of the feature—without
looking at the text of examples that cause the feature to
activate. In blind case studies, we use a combination of
input-invariant and input-dependent information to allow
us to evaluate transcoders as a tool to infer model behavior
with minimal prompt information. This better reflects a key
goal of mechanistic interpretability, which is to be able to
understand model behavior on unknown, unforeseen tasks.

In contrast, reverse-engineering a feature where one already
has an idea of its behavior can introduce confirmation bias.
For instance, looking at activation patterns prior to circuit
analysis can predispose a researcher to seek out only cir-
cuits that corroborate their interpretation of these activation
patterns, potentially ignoring circuits that reveal other infor-
mation about the feature. Conversely, if the circuit analy-
sis method is faulty and yields some explanations that are
not reflected in the feature activations, then the researcher
might ignore those spurious explanations and thus obtain an
overly-positive assessment of the circuit analysis method.
The “rules of the game” for blind case studies are as follows:

1. The specific tokens contained in any prompt are not
allowed to be directly seen. As such, prompts and tokens
can only be referenced by their index in the dataset.

2. These prompts may be used to compute input-dependent
information (activations and circuits), as long as the to-
kens themselves remain hidden.

3. Any input-invariant information, including feature de-
embeddings, is allowed.

In this section, we summarise a specific blind case study,
how we used our circuits to reverse-engineer feature 355
in our layer 8 transcoder. Other studies, as well as a longer
description of the study summarized here, can be found in
App. H.

Note that we use the following compact notation for
transcoder features: tcA[B]@C refers to feature B in the
layer A transcoder at token C.

Building the first circuit. We started by getting a list
of indices of the top-activating prompts in the dataset for
tc8[355]. Importantly, we did not look at the actual
tokens in these prompts, as doing so would violate Rule
1. For our first input, we chose example 5701, token 37;
tc8[355] fires at strength 11.91 on this token in this input.
Our greedy algorithm for finding the most important compu-
tational paths for causing tc8[355]@37 to fire revealed
contributions from the current token (37) and earlier tokens
(like 35, 36, and 31).

Current-token features. From token 37, we found
strong contributions from tc0[16632]@37 and
tc0[9188]@37. Input-invariant de-embeddings of these
layer 0 features revealed that they primarily activate on
variants of ;, causing us to hypothesize that token 37
contributed to the feature by virtue of being a semicolon.
Another feature which contributed strongly through the
current token, tc6[11831], showed a similar pattern.
Among the top input-invariant connections from layer
0 transcoder features to tc6[11831], we once again
found the same semicolon features tc0[16632] and
tc0[9188].
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Figure 5. For the three MLP10 transcoder features with the highest activation variance over the “greater-than” dataset, and for every
possible YY token, we plot the direct logit attribution (the extent to which the feature boosts the output probability of YY) and the
de-embedding score (an input-invariant measurement of how much YY causes the feature to fire).

Previous-token features. Next we checked computational
paths from previous tokens through attention heads. Look-
ing at these contextual computational paths revealed a con-
tribution from tc0[13196]@36; the top de-embeddings
for this feature were years like 1973, 1971, 1967,
and 1966. Additionally, there was a contribution from
tc0[10109]@31, for which the top de-embedding was(.

Furthermore, there was a contribution from
tc6[21046]@35. The top input-invariant connec-
tions to this feature from layer 0 were tc0[16382] and
tc0[5468]. The top de-embeddings for the former were
tokens associated with Eastern European last names (e.g.
kowski,chenko,owicz) and the top de-embeddings for
the latter feature were English surnames (e.g. Burnett,
Hawkins, Johnston). This heavily suggested that
tc6[21046] was a surname feature.

Thus, the circuit revealed this pattern was important to our
feature: “( - [?] -[?] - [?] - [surname] - [year] -;”.

Analysis. We hypothesized that tc8[355] fires on semi-
colons in parenthetical citations like “(Vaswani et al. 2017;
Elhage et al. 2021)”. Further investigation on another input
yielded a similar pattern—along with a feature whose top de-
embedding tokens included Accessed, Retrieved,
Neuroscience, and Springer. This bolstered our

hypothesis even more.

Here, we decided to end the blind case study and check if
our hypothesis was correct. Sure enough, the top activating
examples included semicolons in citations such as “(Poeck,
1969; Rinn, 1984)” and “(Robinson et al., 1984; Starkstein
et al., 1988)”. We note that the first of these is the example
at index (5701, 37) we analyzed above.

“Restricted” blind case studies. Because MLP0 features
tend to be single-token, significant information about the
original prompt can be obtained by looking at which MLP0
transcoder features are active and then taking their de-

embeddings. In order to address this and more fully in-
vestigate the power of input-invariant circuit analysis, six
of the eight case studies that we carried out were restricted
blind case studies, in which all input-dependent MLP0 fea-
ture information is forbidden to use. For more details on
these case studies, see Appendix H.2.

4.3. Analyzing the GPT2-small “greater-than” circuit

We now turn to address the “greater-than” circuit in GPT2-
small previously considered by Hanna et al. (2023). They
considered the following question: given a prompt such
as “The war lasted from 1737 to 17”, how does the model
know that the predicted next year token has to be greater
than 1737? In their original work, they analyzed the cir-
cuit responsible for this behavior and demonstrated that
MLP10 plays an important role, looking into the operation
of MLP10 at a neuronal level. We now apply transcoders
and the circuit analysis tools accompanying them to this
same problem.

4.3.1. INITIAL INVESTIGATION

First, we used the methods from Sec. 4.1.2 to investigate a
single prompt and obtain the computational paths most rele-
vant to the task. This placed a high attribution on MLP10
features, which were in turn activated by earlier-layer fea-
tures mediated by attention head 1 in layer 9. This corrobo-
rates the analysis in the original work.

Next, we investigated which MLP10 transcoder features
were most important on a variety of prompts, and how their
activations are mediated by attention head 1 in layer 9. Fol-
lowing the original work, we generated all 100 prompts
of the form “The war lasted from 17YY to 17”, where YY
denotes a two-digit number. We found that the MLP10 fea-
tures with the highest variance in activations over this set
of prompts also had top input-dependent connections from
MLP0 features through attention head 1 in layer 9 whose
top de-embeddings were two-digit numbers. The top input-
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invariant connections from MLP0 features through attention
head 1 in layer 9 to MLP10 features also had two-digit num-
bers among their top de-embedding tokens. This positive
result was somewhat unexpected, given that there are only
100 two-digit number tokens in the model’s vocabulary of
over 50k tokens.

We then used direct logit attribution (DLA) (Elhage et al.,
2021) to look at the effect of each transcoder feature on the
predicted logits of each YY token in the model’s vocabulary.
These results, along with de-embedding scores for each YY
token, can be seen in Figure 5. The de-embeddings scores
are highest for YY tokens where years following them are
boosted and years preceding them are inhibited.

4.3.2. COMPARISON WITH NEURONAL APPROACH

Next, we compared the transcoder approach to the neuronal
approach to see whether transcoders give a sparser descrip-
tion of the circuit than MLP neurons do. To do this, we
computed the 100 highest-variance layer 10 transcoder fea-
tures and MLP10 neurons. Then, for 1 ≤ k ≤ 100, we zero-
ablated all but the top k features in the transcoder/neurons
in MLP10 and measured how this affected the model’s per-
formance according to the mean probability difference
metric presented in the original paper. We also evaluated
the original model with respect to this metric, along with
the model when MLP10 is replaced with the full transcoder.

The results are shown in Figure 6. For fewer than 24 fea-
tures, the transcoder approach outperforms the neuronal ap-
proach; its performance drops sharply, however, around this
point. Further investigation revealed that tc10[5315],
the 24th-highest-variance transcoder feature, was responsi-
ble for this drop in performance. The DLA for this feature
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Figure 6. Performance according to the probability difference met-
ric when all but the top k features or neurons in MLP10 are
zero-ablated.

is plotted in Figure 7. Notice how, in contrast with the
three highest-variance transcoder features, tc10[5315]
displays a flatter DLA, boosting all tokens equally. This
might explain why it contributes to poor performance. To
account for this, note that Figure 6 also demonstrates the
performance of the transcoder when this “bad feature” is
removed.

While the transcoder does not recover the full performance
of the original model, it needs only a handful of features
to recover most of the original model’s performance; many
more MLP neurons are needed to achieve the same level of
performance. This suggests that the transcoder is particu-
larly useful for obtaining a sparse, understandable approx-
imation of MLP10. Furthermore, the transcoder features
suggest a simple way that the MLP10 computation may (ap-
proximately) happen: by a small set of features that fire on
years in certain ranges and boost the logits for the following
years.

5. Related work
Circuit analysis is a common framework for exploring
model internals (Olah et al., 2020; Elhage et al., 2021;
Lieberum et al., 2023). A number of approaches exist
to find circuits and meaningful components in models, in-
cluding causal approaches (Geiger et al., 2021), automated
circuit discovery (Conmy et al., 2023), and sparse prob-
ing (Gurnee et al., 2023). Causal methods include activation
patching (Zhang & Nanda, 2024; Vig et al., 2020; Heimer-
sheim & Nanda, 2024), attribution patching (Neel Nanda,
2024; Kramár et al., 2024), and path patching (Goldowsky-
Dill et al., 2023; Wang et al., 2022). Much circuit analysis
work has focused on attention head circuits (Ferrando et al.,
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Figure 7. The direct logit attribution and de-embedding
score for tc10[5315], which contributed negatively to the
transcoder’s performance.
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2024), including copying heads (Elhage et al., 2021), in-
duction heads (Olsson et al., 2022), copy suppression (Mc-
Dougall et al., 2023), and successor heads (Gould et al.,
2023). Methods connecting circuit analysis to SAEs in-
clude He et al. (2024), Batson et al. (2024) and Marks et al.
(2024). Our recursive greedy circuit-finding approach was
largely based on that of Dunefsky & Cohan (2023).

Sparse autoencoders have been used to disentangle model
activations into interpretable features (Bricken et al., 2023;
Cunningham et al., 2023; Yun et al., 2023). The devel-
opment of SAEs was motivated by the theory of super-
position in neural representations (Elhage et al., 2022b).
Since then, much recent work has focused on exploring
and interpreting SAEs, and connecting them to preexisting
mechanistic interpretability techniques. Notable contribu-
tions include tools for exploring SAE features, such as SAE
lens (Bloom, 2024b); applications of SAEs to attention sub-
layers (Kissane et al., 2024); scaling up SAEs to Claude 3
Sonnet (Templeton et al., 2024b) and improved SAE archi-
tectures (Rajamanoharan et al., 2024). Transcoders have
been previously proposed as a variant of SAEs under the
names “predicting future activations” (Templeton et al.,
2024a) and “MLP stretchers” (Li et al., 2023), but not ex-
plored in detail.

6. Conclusion
Fine-grained circuit analysis requires an approach to han-
dling MLP sublayers. To our knowledge, the transcoder-
based circuit analysis method presented here is the only
such approach that cleanly disentangles input-invariant
information from input-dependent information. Impor-
tantly, transcoders bring these benefits without sacrificing
fidelity and interpretability: when compared to state-of-
the-art feature-level interpretability tools (SAEs), we find
that transcoders achieve equal or better performance. We
thus believe that transcoders are an improvement over other
forms of feature-level interpretability tools for MLPs, such
as SAEs on MLP outputs.

Future work on transcoders includes directions such as
comparing the features learned by transcoders to those
learned by SAEs, seeing if there are classes of features
that transcoders struggle to learn, finding interesting exam-
ples of novel circuits, and scaling circuit analysis to larger
models.

Overall, we believe that transcoders are an exciting new
development for circuit analysis and hope that they can
continue to yield deeper insights into model behaviors.

Limitations Transcoders, like SAEs, are approximations
to the underlying model, and the resulting error may lose
key information. We find transcoders to be approximately

as unfaithful to the model’s computations as SAEs are (as
measured by the cross-entropy loss), although we leave com-
paring the errors to future work. Our circuit analysis method
(App. D.5) does not engage with how attention patterns are
computed, and treats them as fixed. A promising direction of
future work would be trying to extend transcoders to under-
stand the computation of attention patterns, approximating
the attention softmax. We only present circuit analysis re-
sults for a few qualitative case studies, and our results would
be stronger with more systematic analysis.

Impact statement
This paper seeks to advance the field of mechanistic inter-
pretability by contributing a new tool for circuit analysis.
We see this as foundational research, and expect the impact
to come indirectly from future applications of circuit analy-
sis such as understanding and debugging unexpected model
behavior and controlling and steering models to be more
useful to users.
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A. Assets used

Table 2. Assets used in preparing this paper, along with licenses and links

Asset type Asset name Link License Citation
Code TransformerLens GitHub: TransformerLens MIT (Nanda & Bloom, 2022)
Code SAELens Github: SAELens MIT (Bloom, 2024b)
Data OpenWebText HuggingFace: OpenWebText CC0-1.0 (Gokaslan & Cohen, 2019)

Model GPT2-small HuggingFace: GPT2 MIT (Radford et al., 2019)
Model Pythia-410M HuggingFace: Pythia-410M Apache-2.0 (Biderman et al., 2023)
Model Pythia-1.4B HuggingFace: Pythia-1.4B Apache-2.0 (Biderman et al., 2023)

B. Compute details
The most compute-intensive parts of the research presented in this work were training the SAEs and transcoders used in
Section 3.2.2, along with the set of GPT2-small transcoders used in Sections 4.2 and 4.3. Training all of these SAEs and
transcoders involved GPUs. The SAEs and transcoders from Section 3.2.2 were trained on an internal cluster using an A100
GPU with 80 GB of VRAM. The VRAM used by each training run ranged from approximately 16 GB for the GPT2-small
runs to approximately 60 GB for the Pythia-1.4B runs. The time taken by each training run ranged from approximately 30
minutes for the GPT2-small transcoders/SAEs to approximately 3.5 hours for the Pythia-1.4B runs.

The transcoders that were trained on each layer of GPT2-small were trained using a cloud provider, with a similar amount
of time and VRAM used per training run. For these transcoders, a hyperparameter sweep was performed that involved
approximately 200 training runs, which did not produce results used in the final paper.

No significant amount of storage was used, as datasets were streamed during training.

In addition to these training runs, our case studies were carried out on internal cluster nodes with GPUs. These case studies
used no more than 6 GB of VRAM. The total amount of compute used during each case study is variable (depending on how
in-depth one wants to investigate a case study), but is de minimis in comparison to the training runs. The same goes for the
computation of top activating examples used in Section 3.2.1.

C. SAE details
Sparse autoencoders (SAEs) are autoencoders trained to decompose a model’s activations at a given point into a sparse
linear combination of feature vectors. As a hypothetical example, given the input “Sally threw the ball to me”, an SAE might
decompose the model’s activations on the token me into a linear combination of a “personal pronoun” feature vector, an
“indirect object” feature, and a “playing sports” feature—where all of these feature vectors are automatically learned by the
SAE. An SAE’s architecture can be expressed as

zSAE(x) = ReLU (Wencx+ benc) (7)
SAE(x) = WdeczSAE(x) + bdec, (8)

where Wenc ∈ Rdfeatures×dmodel , Wdec ∈ Rdmodel×dfeatures , benc ∈ Rdfeatures , bdec ∈ Rdmodel , dfeatures is the number of feature
vectors in the SAE, and dmodel is the dimensionality of the model activations. Usually, dfeatures is far greater than dmodel.

Intuitively, Equation 7 transforms the neuron activations x into a sparse vector of SAE feature activations zSAE(x). Each
feature in an SAE is associated with an “encoder” vector (the i-th row of Wenc) and a “decoder” vector (the i-th column of
Wdec). Equation 8 then reconstructs the original activations as a linear combination of decoder vectors, weighted by the
feature activations.

The basic loss function on which SAEs are trained is

LSAE(x) = ∥x− SAE(x)∥22︸ ︷︷ ︸
reconstruction loss

+λ1 ∥zSAE(x)∥1︸ ︷︷ ︸
sparsity penalty

, (9)

where λ1 is a hyperparameter and ∥ · ∥1 denotes the L1 norm. The first term in the loss is the reconstruction loss associated
with the SAE. The second term in the loss is a sparsity penalty, which approximately measures the number of features active
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on each input (the L1 norm is used as a differentiable approximation of the L0 “norm”). SAEs are thus pushed to reconstruct
inputs accurately with a sparse number of features, with λ1 controlling the accuracy-sparsity tradeoff. Empirically, the result
of this is that SAEs learn to decompose model activations into highly interpretable features (Bricken et al., 2023).

A standard method for quantitatively evaluating an SAE’s performance is as follows. To measure its sparsity, evaluate the
mean number of features active on any given input (the mean L0). To measure its accuracy, replace the original language
model’s activations with the SAE’s reconstructed activations and measure the change in the language model’s loss (in this
paper, this is the cross entropy loss for next token prediction).

D. Detailed description of circuit analysis
D.1. Notation

x
(l,t)
pre denotes the hidden state for token t at layer l before the attention sublayer.

x
(l,t)
mid denotes the hidden state for token t at layer l before the MLP sublayer.

When we want to refer to the hidden state of the model for all tokens, we will do by omitting the token index, writing x
(l,1:t)
pre

and x
(l,1:t)
mid . These are matrices of size Rdmodel×ntokens , where dmodel is the dimensionality of model activation vectors and

ntokens is the number of input tokens.

The MLP sublayer at layer l is denoted by MLP(l)(·). Similarly, the transcoder for the layer l MLP is denoted by TC(l)(·).

As for attention sublayers: following Elhage et al. (2021), each attention sublayer can be decomposed into the sum of nheads
independently-acting attention heads. Each attention head depends on the hidden states of all tokens in the input, but also
distinguishes the token whose hidden state is to be modified by the attention head. Thus, the output of the layer l attention
sublayer for token t is denoted

∑
head h attn

(l,h)
(
x
(l,t)
pre ;x

(l,1:t)
pre

)
.

Each attention head can further be decomposed as a sum over “source” tokens. In particular, the output of layer l attention
head h for token t can be written as

attn(l,h)
(
x(l,t)
pre ;x

(l,1:t)
pre

)
=

∑
source token s

score(l,h)
(
x(l,t)
pre ,x

(l,s)
pre

)
W

(l,h)
OV x(l,s)

pre (10)

Here, score(l,h) : Rdmodel×dmodel → R is a scalar “scoring” function that weights the importance of each source token to the
destination token. Additionally, W(l,h)

OV is a low-rank Rdmodel×dmodel matrix that transforms the hidden state of each source
token. score(l,h) is often referred to as the “QK circuit” of attention and W

(l,h)
OV is often referred to as the “OV circuit” of

attention.

D.2. Derivation of Equation 6

We want to understand what causes feature i′ in the transcoder at layer l′ to activate on token t. The activation of this feature
is given by

ReLU
(
f (l

′,i′)
enc · x(l′,t)

mid + b(l
′,i′)

enc

)
, (11)

where f
(l′,i′)
enc is the i′-th row of Wenc for the layer l′ transcoder and b

(l′,i′)
enc is the learned encoder bias for feature i′ in the

layer l′ transcoder. Therefore, if we ignore the constant bias term b
(l′,i′)
enc , then, assuming that this feature is active (which

allows us to ignore the ReLU), the activation of feature i′ depends solely on f
(l′,i′)
enc · x(l′,t)

mid . Because of residual connections
in the transformer, x(l′,t)

mid can be decomposed as the sum of the outputs of all previous components in the model. For
instance, in a two-layer model, if x(2,t)

mid is the hidden state of the model right before the second MLP sublayer, then

x
(2,t)
mid =

∑
h

attn(2,h)
(
x(2,t)
pre ;x(2,1:t)

pre

)
+MLP(1)

(
x
(1,t)
mid

)
+
∑
h

attn(1,h)
(
x(1,t)
pre ;x(1,1:t)

pre

)
. (12)

Because of linearity, this means that the amount that MLP(1)
(
x
(1,t)
mid

)
contributes to f

(2,i′)
enc · x(2,t)

mid is given by

f (2,i
′)

enc ·MLP(1)
(
x
(1,t)
mid

)
. (13)
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This is generally true for understanding the contribution of MLP l to the activation of feature i′ in transcoder l′, whenever
l < l′.

Now, if the layer l transcoder is a sufficiently good approximation to the layer l MLP, we can replace the latter with the
former: f

(l′,i′)
enc · MLP(l)

(
x
(l,t)
mid

)
≈ f

(l′,i′)
enc · TC(l)

(
x
(l,t)
mid

)
. We can further decompose this into individual transcoder

features: TC(l)
(
x
(l,t)
mid

)
=
∑

feature j z
(l,j)
TC (x

(l,t)
mid)f

(l,j)
dec . Thus, again taking advantage of linearity, we have

f (l
′,i′)

enc ·MLP(l)
(
x
(l,t)
mid

)
≈ f (l

′,i′)
enc ·

∑
feature j

z
(l,j)
TC (x

(l,t)
mid)f

(l,j)
dec (14)

=
∑

feature j

z
(l,j)
TC (x

(l,t)
mid)

(
f (l

′,i′)
enc · f (l,j)dec

)
(15)

Therefore, the attribution of feature i in transcoder l on token t is given by

z
(l,j)
TC (x

(l,t)
mid)

(
f (l

′,i′)
enc · f (l,j)dec

)
. (16)

D.3. Attribution through attention heads

So far, we have addressed how to find the attribution of a lower-layer transcoder feature directly on a higher-layer transcoder
feature at the same token. But transcoder features can also be mediated by attention heads. We will thus extend the above
analysis to account for finding the attribution of transcoder features through the OV circuit of an attention head.

As before, we want to understand what causes feature i′ in the layer l′ transcoder to activate on token t. Given attention
head h at layer l with l < l′, the same arguments as before imply that the contribution of this attention head to feature i′ is
given by f

(l′,i′)
enc · attn(l,h)

(
x
(l,t)
pre ;x

(l,1:t)
pre

)
. This can further be decomposed as

f (l
′,i′)

enc ·

( ∑
source token s

score(l,h)
(
x(l,t)
pre ,x

(l,s)
pre

)
W

(l,h)
OV x(l,s)

pre

)
(17)

=
∑

source token s

score(l,h)
(
x(l,t)
pre ,x

(l,s)
pre

)((
f (l

′,i′)
enc

)T
W

(l,h)
OV x(l,s)

pre

)
(18)

=
∑

source token s

score(l,h)
(
x(l,t)
pre ,x

(l,s)
pre

)(((
W

(l,h)
OV

)T
f (l

′,i′)
enc

)
· x(l,s)

pre

)
. (19)

From this, we now have that the contribution of token s at layer l through head h is given by

score(l,h)
(
x(l,t)
pre ,x

(l,s)
pre

)(((
W

(l,h)
OV

)T
f (l

′,i′)
enc

)
· x(l,s)

pre

)
. (20)

The next step is to note that x(l,s)
pre can, in turn, be decomposed into the output of MLP sublayers (or alternatively, transcoder

features), the output of attention heads, and the original token embedding. These previous-layer components affect the
contribution to the original feature through both the QK circuit of attention and the OV circuit. This means that these
previous-layer components can have very nonlinear effects on the contribution. We address this by following the standard
practice introduced by Elhage et al. (2021), which is to treat the QK circuit scores score(l,h)

(
x
(l,t)
pre ,x

(l,s)
pre

)
as fixed, and

only look at the contributions through the OV circuit. While this does prevent us from understanding the extent to which
transcoder features contribute to phenomena such as QK composition, nevertheless, the OV circuit alone is extremely
informative. After all, if the QK circuit determines which tokens information is taken from, then the OV circuit determines
what information is taken from each token—and this can prove immensely valuable in circuit analysis.

Thus, let us continue by treating the QK scores as fixed. Referring back to Equation 20, if y is the output of some previous
layer component, which exists in the residual stream x

(l,s)
pre , then the contribution of y to the original transcoder feature i′

through the OV circuit of layer l attention head h is given by y · p′, where

p′ = score(l,h)
(
x(l,t)
pre ,x

(l,s)
pre

)
p, and (21)

p =
(
W

(l,h)
OV

)T
f (l

′,i′)
enc . (22)
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One way to look at this is that p′ is a feature vector. Just like with transcoder features, the extent to which the feature vector
p′ is activated by a given vector y is given by the dot product of y and p′. Treating p′ as a feature vector like this means
that we can extend all of the techniques presented in Section 4.1 to analyze p′. For example, we can take the de-embedding
of p′ to determine which tokens in the model’s vocabulary when mediated by the OV circuit of layer l attention head h cause
layer l′ transcoder feature i′ to activate the most. We can also replace the f (l

′,i′)
enc term in Equation 6 with p′ in order to obtain

input-invariant and input-dependent information about which transcoder features when mediated by this OV circuit make
the greatest contribution to the activation of layer l′ transcoder feature i′. In this manner, we have extended our attribution
techniques to deal with attention.

D.4. Recursing on a single computational path

At this point, we understand how to obtain the attribution from an earlier-layer transcoder feature/attention head to a
later-layer feature vector. The next step is to understand in turn what contributes to these earlier-layer features or heads.
Doing so will allow us to iteratively compute attributions along an entire computational graph.

To do this, we will extend the intuition presented in Equation 21 and previously discussed by Dunefsky & Cohan (2023),
which is to propagate our feature vector backwards through the computational path.3 Starting at the end of the computational
path, for each node in the computational path, we compute the attribution of the node towards causing the current feature
vector to activate; we then compute a new feature vector, and repeat the process using the preceding node and this new
feature vector.

In particular, at every node, we want to compute the new feature vector f such that it satisfies the following property. Let c′

be a node (e.g. a transcoder feature or an attention head), x′ be the vector of input activations to the node c′ (i.e. the residual
stream activations before the node c′), y′ be the output of c′, a′ be the attribution of c′ to some later-layer feature, and f ′ be
the current feature vector to which we are computing the attribution of c′. Noting that a′ = f ′ · y′, then we want our new
feature vector f to satisfy

f · x′ = a′. (23)

This is because if f satisfies this property, then we can take advantage of the linearity of the residual stream to easily calculate
the attribution from an earlier-layer component c to the current node c′. In particular, if the output of c is the vector y, then
this attribution is just given by f · y. Another important consequence of Equation 23 and the linearity of the residual stream
is that the total attribution a′ of node c′ is given by

a′ =
∑
y

f · y (24)

where we sum over all the outputs y of all earlier nodes in the model’s computational graph (including transcoder features
and attention heads, but also token embeddings and learned constant bias vectors, which are leaf nodes in the computational
graph).

If c′ is attention head h in layer l and we are considering the contribution from the input activations x(l,s)
pre at source token

position s, then Equation 20 tells us that

f = score(l,h)
(
x(l,t)
pre ,x

(l,s)
pre

)((
W

(l,h)
OV

)T
f ′
)

(25)

where token position t is the token position corresponding to the later-layer feature f ′. And if c′ is transcoder feature i at
layer l, then Equation 16 implies that

f =
(
f ′ · f (l,i)dec

)
f (l,i)enc . (26)

There is one caveat, however, that must be noted. Before every sublayer in the transformer architectures considered in
this paper (that is, before every MLP sublayer and attention sublayer), there is a LayerNorm nonlinearity. Neel Nanda
(2024) provides intuition that LayerNorm nonlinearities can be approximated as a linear transformation that scales its input
by a constant; Dunefsky & Cohan (2023) provide further theoretical motivation and empirical results suggesting that this

3The similarity to backpropagation is not coincidental, as it can be shown that the method about to be described computes the
“input-times-gradient” attribution often used in the explanability literature.
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is reasonable. We follow this approach in our circuit analysis by multiplying each f feature vector by the appropriate
LayerNorm “scaling constant” (which is empirically estimated by taking the ratio of the norm of the pre-LayerNorm
activation vector to the post-LayerNorm activation vector).

D.5. Full circuit-finding algorithm

At this point, we are ready to present the full version of our circuit-finding algorithm. The greedy computational-path-finding
algorithm is presented as Algorithm 1. This algorithm incorporates the ideas presented in App. D.4 in order to evaluate the
attribution of nodes in computational paths; given a set of computational paths of length L, it obtains a set of important
computational paths of length L+ 1 by computing all possible extensions to the current length-L paths, and then keeping
only the N paths with the highest attributions. Note that for the purpose of clarity, the description presented here is less
efficient than our actual implementation; it also does not include the LayerNorm scaling constants discussed above.

Next, given a set of computational paths, Algorithm 2 converts this set into a single computational graph. The main
idea is to combine all of the paths into a single graph such that the attribution of a node in the graph is the sum of its
attributions in all distinct computational paths beginning at that node. Similarly, the attribution of an edge in the graph is
the sum of its attributions in all distinct computational paths beginning with that edge. This prevents double-counting of
attributions. Assuming zero transcoder error, Equation 24 implies that in a graph produced by Algorithm 2 from the full set
of computational paths in the model (including bias terms), the attribution of each node is the sum of the attributions of all
of the incoming edges to that node. To account for transcoder error, and to account for the fact that not all computational
paths are included in the graph, error nodes can be added to the graph, following the approach of Marks et al. (2024).

E. Details on Section 3.2.2 SAE/transcoder training
In this section, we provide details on the hyperparameters used to train the SAEs and transcoders evaluated in Section 3.2.2.

All SAEs and transcoders were trained with a learning rate of 2 · 10−5 using the Adam optimizer. Hyperparameters (learning
rate and λ1 sparsity coefficient) were chosen largely based on trial-and-error.

The loss functions used were the vanilla SAE and transcoder loss functions as specified in Section 3.1 and Appendix C. No
neuron resampling methods were used during training.

SAEs were trained on output activations of the MLP layer. Transcoders were trained on the post-LayerNorm input activations
to the MLP layer and the output activations of the MLP layer. We chose to train SAEs on the output activations because
when measuring cross-entropy loss with transcoders, the output activations of the MLP are replaced with the transcoder
output; it is thus most valid to compare transcoders to SAEs that replace the MLP output activations as well.

The number of features in the SAEs and transcoders was always 32× the dimensionality of the model on which they were
trained. For GPT2-small, the model dimensionality is 768. For Pythia-410M, the model dimensionality is 1024. For
Pythia-1.4B, the model dimensionality is 2048.

The SAEs and transcoders were trained on 60 million tokens of the OpenWebText dataset. The batch size was 4096 examples
per batch. Each example contains a context window of 128 tokens; when evaluating the SAEs and transcoders, we did so on
examples of length 128 tokens as well.

The same random seed (42) was used to initialize all SAEs and transcoders during the training process. In particular, this
meant that training data was received in the same order by all SAEs and transcoders.

F. Details on Section 3.2.1
The transcoder used in the interpretability comparison was the Pythia-410M layer 15 transcoder trained with λ1 sparsity
coefficient 5.5× 10−5 from Section 3.2.2. The SAE used in the comparison was a Pythia-410M layer 15 SAE trained on
MLP inputs with λ1 = 7.0× 10−5. We used an SAE trained on MLP inputs rather than one trained on MLP outputs (as in
§ 3.2.2) because the interpretability comparison involves looking at which examples cause features to activate. This, in turn,
is wholly determined by the encoder feature vectors. Because the transcoder’s encoder feature vectors live in the MLP input
space, it is thus most valid to compare the transcoder to an SAE whose encoder feature vectors also live in the MLP input
space.
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Algorithm 1 Greedy computational-path-finding

Input:
f ′ A feature vector
l′ The layer from which f ′ came.
t The token position associated with feature f ′.
a The activation of f ′

L The number of iterations to pathfind for
N The number of paths to retain after each iteration
The input prompt on which we will perform circuit analysis
Output:
A set of computational paths important for causing f ′ to activate
Initialize P ← {[(f ′, l′, t′, a′)]} {P will be our working set of computational paths. Each computational path is a list of
feature vectors paired with their attributions. }
Initialize Pout ← {} {This will contain our output}
Run the model on the input prompt, caching all of its activations.
while L > 0 do

Initialize Pnext ← {} {This will contain the next iteration of computational paths}
for each P ∈ P do

Set fcur, lcur, tcur, acur to the values in the last element of P
Initialize A ← {} {The set of attributions of all lower-layer features}
for each transcoder feature i in layer l where l < lcur do

Insert
((

fcur · f (l,i)dec

)
f
(l,i)
enc , l, t, zTC(x

(l,t′)
mid )

(
fcur · f (l,i)dec

))
into A

end for
for each attention head h in layer l at token t where l < lcur and t ≤ tcur do

Compute the attention score S ← score(l,h)
(
x
(lcur,tcur)
pre ,x

(l,t)
pre

)
Compute the feature vector fnew ← S

((
W

(l,h)
OV

)T
fcur

)
Compute the attribution anew ← fnew · x(l,t)

pre

Insert (fnew, l, t, anew) into A
end for
Compute the embedding attribution aembed ← fcur · x0,tcur

pre

Insert (0, 0, tcur, aembed) into A
for each (fnew, lnew, tnew, anew) ∈ A do

if anew is among the top N values of anew contained in A then
Append (fnew, lnew, tnew, anew) to path P and insert into Pnext

end if
end for

end for
Remove all paths in Pnext except for the paths where the attribution of the earliest-layer feature vector in the path is
among the top N in Pnext

Append all paths in Pnext to Pout

P ← Pnext

L← L− 1
end while
return Pout

This transcoder-SAE pair was chosen because the transcoder and SAE sit at very similar points on the L0-cross-entropy
Pareto frontier: the transcoder has an L0 of 44.04 and a cross-entropy of 3.35 nats, while the SAE has an L0 of 47.85 and a
cross-entropy of 3.36 nats. Pythia-410M was chosen as the model with the view that its features were likely to be more
interesting than those of GPT2-small, while requiring less computational power to determine top activating examples than
Pythia-1.4B would. Layer 15 was chosen largely heuristically, because we believed that this layer is late enough in the
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Algorithm 2 Paths-to-graph

Input:
P A set of computational paths
Output: G = (V, E) A computational graph formed from the paths of P .
Initialize S ← {} {A set of already-seen computational path prefixes, to prevent us from double-counting attributions}
Initialize V ← {} {A dictionary mapping nodes to their attributions}
Initialize E ← {} {A dictionary mapping edges (node pairs) to their attributions}
for Each P in P do

for i ∈ [1 . . . |P |] do
s← the prefix of P up to and including the i-th element
if s ∈ S then

Skip this iteration of the loop.
end if
Insert s into S .
if s has length 1 then

Let n be the only node in s.
Set V[n] to the attribution of n.

else
Set nparent ← P [i− 1], nchild ← P [i] {Earlier-layer nodes come later in the computational paths returned by
Algorithm 1}
Add the attribution of nchild to V[nchild]
Add the attribution of nchild to E [(nchild, nparent)]

end if
end for

end for
return V, E

model to contain complex features, while not so late in the model that features are primarily encapsulating information
about which tokens come next.

In Table 1, we refer to “context-free” features that interpretable features that seemed to fire on a single token (or two tokens)
regardless of the context in which they appeared. Examples of features in all four categories (“interpretable”, “maybe
interpretable”, “uninterpretable”, and “context-free”), along with the exact annotation used by the human rater, can be found
in Figure 8.

G. Details on Section 4.3
To obtain the de-embedding scores shown in Figures 5 and 7, the following method was used. First, we used the method
presented in Appendix D.3 to determine which MLP0 transcoder features had the highest input-invariant connections to the
given MLP10 transcoder feature through attention head 1 in layer 9. Specifically, for MLP0 transcoder feature i and MLP10

transcoder feature j, this attribution is given by
(
f
(0,i)
dec

)T (
W

(9,1)
OV

)T
f
(10,j)
enc . For each MLP10 transcoder feature, the top

ten MLP0 transcoder features were considered. Then, for each MLP0 transcoder feature, the de-embedding score of each
YY token for that MLP0 feature was computed. The total de-embedding score of each YY token for an MLP10 feature was
computed as the sum of the de-embedding scores of that token over the top ten MLP0 features, with each de-embedding
score weighted by the input-invariant attribution of the MLP0 feature. In Figures 5 and 7, the de-embedding scores were
scaled and recentered in order to fit on the graph.

The mean probability difference metric discussed in the original greater-than work is as follows. Given the logits for each YY
token, compute the softmax over these logits in order to obtain a probability distribution over the YY tokens; let py denote
the probability of the token corresponding to year y. Then, the probability difference for a given prompt containing a certain
input year y is given by

∑
y′>y py′ −

∑
y′≤y py′ . The mean probability difference is the mean of the probability differences

over all 100 prompts.
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H. Full case studies
H.1. Classic blind case studies

H.1.1. CITATION FEATURE: TC8[355]

First, we checked activations for the first 12,800 prompts in the training data. Using this, we identified the prompt indexed at
(5701, 37) as one of 11 prompts for which tc8[355] activated above a score of 11.

Path-based analysis on input index (5701, 37) revealed contributions from various tokens, notably attn7[7]@35 and
attn5[6]@36. However, we first decided to focus on the current token.

Current-token features. Top de-embeddings for both tc0[9188] and tc0[16632] were all variants of a semicolon:
;, ’;, %;, and .;. We also checked tc6[11831]@-1 and found that its top contributing features from layer 0 were
tc0[16632] and tc0[9188]: the same two semicolon features. On the basis of this, we concluded that the final token
is a semicolon.

Surname features. Next we focused on attn7[7]@35. Some interpretable features with high attri-
butions through this component included tc0[13196]@36 (years), tc0[10109]@31 (open parentheses),
mlp8tc[355]attn7[7]attn0[1]@35 (components of last names), tc0[12584]@32: P, and tc0[7659]@34:
ck.

Input-independent investigation of tc6[21046]@35 revealed high contributions from tc0[16382] and tc0[5468].
feat016382 corresponded to tokens such as oglu, owski, and zyk; tc0[5468] corresponded to tokens such as
Burnett, Hawkins, and MacDonald. Observing that all of these are (components of) surnames, we decided

that token 35 was likely (part of) a surname.

Repeating analysis with prompt (6063, 47). Top attributions for this prompt once again identified tc0[9188], the
semicolon feature from earlier. We filtered our computational paths to exclude this transcoder feature, since we already
had a hypothesis about what it was doing. This identified tc0[10109]@39 and tc0[21019]@46 as top-contributing
features.

The top de-embedding tokens for tc0[10109]@39 were (, (=, and ( .̃ On the basis of this, we determined that token
39 was likely an open parenthesis. Meanwhile, the top de-embedding tokens for tc0[21019]@46 were 1983, 1982,
and 1981. This caused us to conclude that token 46 was likely a year.

We noted that, in the previous prompt, the attribution for the year features went through attn5[6], whereas on this prompt
it went through attn2[9]. We decided to investigate the behavior of attn5[6] on this prompt, and found that it was
attributing to features tc0[16542]@11, tc0[4205]@11, and tc0[19728]@11. The de-embedding results for these
were mixed: tc0[16542] were both close-parenthesis features, whereas tc0[4205] included citation-related tokens
like Accessed, Neuroscience, and Springer.

Final result. We decided that tc8[355] was likely a semicolon-in-citations feature and looked at activating prompts.
Top-activating prompts included “Res. 15, 241–247; 1978). In their paper, ”, “aythamah , 2382; Tahdhı̄b al-”, and “lesions
(Poeck, 1969; Rinn, 1984). It”. Note that the last of these was prompt (5701, 37), i.e. the first case study we considered.

In general, the top-activating features corroborated our hypothesis, and we did not find any unrelated prompts. We noticed
that many of the top activating prompts had a comma before the year in citations, but our circuit analysis never identified a
comma feature.

We compared transcoder activations on the prompts “(Leisman, 1976;” and “(Leisman 1976;” and found tc8[355] to
activate almost identically for both when all preceding MLPs were replaced by transcoders (4.855 and 4.906, respectively)
and on the original model (12.484 and 12.13, respectively).

H.1.2. “CAUGHT” FEATURE: TC8[235].

First, we checked activations for the first 12,800 prompts in the training data. Using this, we identified prompt (8531, 111)
as one of 13 prompts for which tc8[235] activated above a score of 11.
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Input (8531, 111). Path analysis revealed that this feature almost exclusively depends on the final token in the input. Input-
independent connections to the top-contributing transcoder feature, tc7[14382], revealed the layer-0 transcoder features
tc0[1636] (de-embeddings: caught,aught) tc0[5637] (de-embeddings: captured, caught), tc0[3981]
(catch, catch) as top contributors.

Inputs (6299, 39) and (817, 63). For input (6299, 39), we again saw top computational paths depended mostly on the
final token. This time, we identified tc7[14382] and tc0[1636]—both of which were already identified for the
previous prompt—as top contributors.

For input (6299, 39) we also observed the same pattern. This caused us to hypothesize that this feature fires on past-tense
synonyms of “to catch.”

Final result. Top activating prompts for this feature were all forms of “caught,” but the various synonyms, such as
“uncovered,” were nowhere to be found.

“Caught” as participle. Additionally, we noticed that “caught” was used as a participle rather than a finite verb in all
top-activating examples. To explore this, we investigated the difference in activations between the prompts “He was caught”
and “He caught the ball”, and found that the former caused tc8[235] to activate strongly (19.97) whereas the latter
activated very weakly (0.8145).

When we tested the same prompts while replacing all preceding MLPs with transcoders, we found the difference much
less stark: 16.45 for “He was caught” and 9.00 for “He caught the ball”. This suggests that transcoders were not accurately
modeling this particular nuance of the feature behavior.

Finally, we checked top paths for contributions through the was token on the prompt “He was caught” to see whether we
could find anything related to this nuance in our circuits. This analysis revealed attn1[0]@2 as important, and were able
to discover mild attributions to transcoder features whose top de-embeddings were was and related tokens.

H.2. Restricted blind case studies

Beyond a simple blind case study, we carried out a number of “restricted blind case studies.” In these, all of the rules of
a regular blind case study apply, and additionally it is prohibited to look at input-dependent information about layer-0
transcoder features.

Since layer 0 features are more commonly single-token features, and in general there is almost no contextual information
available for the MLP yet, layer 0 features tend to be substantially more informative about the tokens in the prompt than
features in other layers are. Thus, it is often possible to reconstruct large portions of the prompt just from the de-embeddings
of which layer 0 transcoder features are active—and, although we never look at these activations directly, they are frequently
revealed and analyzed as part of active computational graphs leading to some downstream feature.

By omitting input-dependent information about layer 0 features from our analysis, we must rely more on circuit-level
information, and remain substantially more ignorant of the prompts for activating examples. Note that input-independent
information about layer 0 features can still be used: for instance, we can look at top input-independent connections to layer
0 features, and the de-embeddings for those as well—at the expense of not knowing whether those features are active or not.

H.2.1. LOCAL CONTEXT FEATURE: TC8[479].

Our first example of a blind case study follows tc8[479], which we fail to correctly annotate through circuit analysis. We
include this case study for transparency, and as an instructive example of how things can go awry during blind case studies.
First, we measured feature activations over 12,800 prompts and identified 6 prompts that activated above a threshold of 10.

Input (3511, 64). For this prompt, path analysis revealed a lot of attention head involvement from many previous tokens.
For our first analysis, we chose the path mlp8tc[479]@-1 <- attn8[5]@62: 8.1 <- mlp7tc[10719]@62,
since we could look at de-embeddings for tc7[10719]@62. Top input-independent connections from tc7[10719]@62
to layer 0 were tc0[22324] and tc0[2523], which had estimated and estimate as their top de-embeddings,
respectively. Thus, we hypothesized that token 62 is “estimate(d)”.

Next, we looked at the pullback of tc8[479] through attn8[5] through attn7[5]@57. This revealed top input-
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independnet connections to tc0[23855] (top de-embedding tokens: spree, havoc, frenzy), tc0[8917] (took
de-embedding tokens: amounts, quantities, amount), and tc0[327] (massive, massive, huge). We
found this aspect of the analysis to be inconclusive.

The pullback of tc8[479] through attn8[5] through attn6[11]@57 revealed connections to tc0[13184]
(total), tc0[12266] ( comparable), and tc0[12610] ( averaging). This led us to believe that token 57
relates to quantities.

We found that tc3[18655] was a top transcoder feature active on the current token. This showed top input-independent
connections to tc0[11334] and tc0[5270], both of which de-embedded as be. This led us to hypothesize that
tc8[479] features on phrases like “the amount/total/average is estimated to be. . . ”.

Input (668, 122). For this prompt, most contributions once again came from previous tokens. The top contributor
was attn8[5]@121, which had input-independet connections to tc0[12151] ( airport), tc0[8192] (pired),
tc0[13184] (total), and tc0[1300] ( resulted). This was inconclusive, but this is the second time that
tc0[13184] has appeared in de-embeddings.

Next, we investigated attn8[7]@121: it connected to tc0[16933] ( population), tc0[14006] (kinson,
rahim,LU, . . . ), tc0[19887] ( blacks), and tc0[6821] ( crowds). These seemed related to groups of people, but
this analysis was also inconclusive.

When we investigated tc4[18899]@121, top input-idependent connections to layer-0 features included tc0[22324],
which de-embedded to estimated again. This was more consistent with the behavior on the previous prompt.

To understand the current-token behavior, we looked at tc7[13166]@-1. Top input-indendent connections were
tc0[18204] ( discrepancy) and tc0[14717] ( velocity). tc1[19616]@-1 and tc3[22544]-1, both of
which also contributed, each had top connections to tc0[19815] ( length). This led us to guess that this prompt relates
to estimated length.

Next, we looked at previous tokens. One feature, tc5[10350]@119, was connected to tc0[23607] and tc0[4252],
both of which de-embedded to variants of With. For the next token, tc6[15690]@120 was connected to tc0[22463]
and tc0[18052] (both a). This updated our hypothesis to something like “with an estimated length.”

Further back in the prompt, we saw tc4[23257]@29 (connected to tc0[12475]: remaining, tc0[16996]:
entirety).

Input (7589, 89). One feature, tc7[6]@87, pulled back to tc0[22324], which de-embedded to estimated. A
following-token feature, tc1[14473], pulled back to tc0[4746] ( annual, yearly), and the next-token feature
tc1[12852]@89, pulled back to tc0[923] ( revenue). Thus, this prompt seemed to end in “estimated yearly
revenue.”

Estimates for earlier tokens included tc4[23699]@85 (tc0[10924]: with), tc5[6568]@86 (tc0[1595]: a).
This matched the pattern from earlier, where we expected a prompt like “with an estimated length”—but now we expect
“with an estimated annual revenue.”

Looking at the pulled-back feature mlp8tc[479]attn3[2]@86, none of the connections we found to be very informa-
tive. This is consistent with patterns observed in other case studies, where pullbacks through attention tended to be harder to
interpret.

Final guess. On the basis of the above examples, we guessed that this feature fires on prompts like “with a total
estimated. . . ”. When we viewed top activating examples, we found a number of examples that matched this pattern,
especially among the highest total activations. However, for many of the lowest-activation prompts we saw quite different
behaviors. Activating prompts revealed that this is a local context feature, which in retrospect may have been apparent
through the very high levels of attention head involvement in all circuits we analyzed.

H.2.2. SINGLE-TOKEN ALL FEATURE: TC8[1447]

An analysis of the first 12,800 prompts revealed 21 features activating above a threshold of 11. One of these was input
(3067, 79). The computational paths for this prompt revealed all contributions came from the final token.
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The top attribution was due to tc7[10932], with a top input-independent connection to tc0[4012], which de-embedded
to All. The next-highest was tc6[8713], which connected to tc0[6533], which de-embedded to All (note the
leading space). These observations led us to hypothesize this is probably a simple, single-token feature for “All.”

We also looked at context-based contributions by filtering out current-token features, and found the top attributions to max out
at 0.23 (compared to 3.5 from tc7[10932]@79). This was quite low, indicating context was probably not very important.
Nevertheless, we explored the pullback of tc8[1447] through the OV circuit of attn4[11]@78 and discovered several
seemingly-unrelated connections with low attributions. When we pulled back through the OV circuit of attn1[1]@78 and
attn2[0]@78, both showed input-independnt connections to features that de-embedded as punctuation tokens. Overall,
the context seemed to contribute little, except to suggest that there may be punctuation preceding this instance of All.

We repeated this analysis with another input, (8053, 72), and found the same features contributing: tc7[10932], followed
by tc6[8713]. This led us to conclude this is a single-token “All” feature. Top activating examples confirmed this:
the feature activated most highly for All, then All, and finally all. Overall, this feature turned out to be quite
straightforward, and it was easy to understand its function purely from transcoder circuits.

H.2.3. INTERVIEW FEATURE: TC8[6569]

For this feature, we found 15 out of 12,800 prompts to activate above a threshold of 16.

Input (755, 122). We started by exploring input (755, 122), which revealed several contributions from other tokens.

We began by looking at components that contributed to the final token. The top feature was tc7[17738], which connected
to tc0[15432] (variants of interview), tc0[12425] (variants of interviewed), and tc0[12209] (tokens
like Transcript,Interview, andrawdownloadcloneembedreportprint). The next feature, tc3[11401],
was connected to tc0[15432] and tc0[12425] (same as the previous), as well as tc0[21414], which de-embedded
to variants of spoke. This raised the possibility that “interview” is being used as a verb in this part of the prompt.

Next, we turned our attention to previous tokens in the context, in hopes that this would clarify the sense in which “interview”
was being used. The top attribution for the previous token (121) was through attn4[11]. The de-embeddings for top
input-independent features were uninformative: tc0[22216] seemed to cover variants of gest), while tc0[7791]
covered variants of sector. For token 120, pullbacks through attn2[2] showed connections to tc0[10564] and
tc0[9519], both of which de-embedded to variants ofIn. This led us to believe “interview” was in fact being used as a
noun, e.g. “in an interview. . . ”

The top attribution for token 119 came through attn4[9], and showed connections to:

• tc0[625]: allegations, accusations, allegation, . . . ,

• tc0[10661]: allegedly, purportedly, supposedly, . . . , and

• tc0[22588]: reportedly, rumored, stockp, . . . .

The next-highest attribution came through attn8[5], and showed connections to:

• tc0[4771]: Casey, Chase, depot, . . . , and

• tc0[5436]: didn,didn, wasn . . .

The next-highest was tc2[5264]@119, which showed connections to:

• tc0[5870]: unlocks, upstairs, downstairs, . . . ,

• tc0[14674]: said and variants, and

• tc0[12915]: said and variants

This led us to believe that this feature fires on “said in an interview”-type prompts.
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Input (1777, 53). Next we tried another prompt, (1777, 53). The top features for the current token were identical to the
previous example: tc7[17738], tc3[11401], tc6[24442], and so on.

For the context, we first looked at the pullback of our feature through the OV circuit of attn2[2]@51. This showed input-
independent connections to tc0[10564], which once again de-embedded toIn. Next up, attn4[9]@50. This feature
connected to tc0[625], tc0[10661], and tc0[22588], exactly like before. Recall that these features de-embed to
“said” and “allegedly”-type tokens.

Finally, we saw a high attribution from a much earlier token via attn8[9]@16. The pullback of our feature through this
head showed high input-independent connections to tc0[14048], whose de-embeddings were all variants of election.

Input (10179, 90). For our last input, we once again found the same transcoder features contributing through the current
token. For earlier tokens, we tried:

• attn2[2]@88, finding tc0[10564] (In) again;

• attn8[9]@86, finding tc0[16885], which also de-embedded to elections despite being a new feature;

• attn6[20291]@86, finding tc0[372] ( told); and

• tc6[20291]@86, finding tc0[372] again.

Final guess. In sum, we decided this feature fires for prompts conveying “told/said in an interview.” Top activating
examples corroborated this, without any notable deviations from this pattern.

H.2.4. FOUR MORE RESTRICTED BLIND CASE STUDIES

We present the results of four more restricted blind case studies in Table 3. In the interest of conserving space, only the
results of these case studies are presented. However, in the supplemental material attached to this submission, the original
Jupyter Notebooks in which the case studies were carried out are provided.

Table 3. The results of four more restricted blind case studies.
Feature Final hypothesis Actual interpretation Outcome

tc8[9030] Fires on biologywhen in
the context of being a subject
of study

Fires on scientific subjects
of study like chemistry,
psychology,
biology, economics

Failure

tc8[4911] Fires on though or
although in the begin-

ning of a clause

Fires on though or
although in the begin-

ning of a clause

Success

tc8[6414] Largely uninterpretable fea-
ture that sometimes fires on
Cyrillic text

Largely uninterpretable fea-
ture that sometimes fires on
Cyrillic text

Success

tc8[2725] Fires on phrases about not of-
fering things or not providing
things. (As a stretch: particu-
larly in legalese context?)

Fires on phrases about not of-
fering things or not providing
things, in general

Mostly a success
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Transcoders Find Interpretable LLM Feature Circuits

(a) Top-activating examples for a feature annotated as “inter-
pretable”. The specific annotation was local context
feature, fires on phrases describing
short amounts of time.

(b) Top-activating examples for a feature annotated as
“maybe interpretable”. The specific annotation was local
context feature for boredom? MAYBE.

(c) Top-activating examples for a feature annotated as
“uninterpretable”. The specific annotation was " Whats"
> "ADVERTISEMENT Thanks" > "olog" NOT
INTERPRETABLE.

(d) Top-activating examples for a feature annotated as “context-
free”. The specific annotation was "oc" in middle of
words single-token feature.

Figure 8. Examples of “feature-dashboards” used in the feature interpretation experiments.
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