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ABSTRACT

Reinforcement learning with verifiable rewards (RLVR) has improved the reasoning
ability of large language models, yet training remains costly because many rollouts
contribute little to optimization relative to their heavy computational demands.
This study investigates how simply leveraging interpretable and intrinsic data prop-
erties, which come at almost no additional computational cost during training, can
markedly improve data efficiency for RLVR. We propose PREPO, an RLVR model
with two complementary components. First, we use prompt perplexity as a proxy
for model adaptability in learning, and adopt a schedule to guide the model from
well-understood prompts to progressively challenging ones. Second, we amplify
the diversity among rollouts by differentiating their relative entropy and prioritizing
sequences with greater exploratory behavior. Together, these mechanisms reduce
rollout demand while preserving competitive performance. On Qwen and Llama
models, PREPO achieves effective results on mathematical reasoning benchmarks
with up to 3x fewer rollouts than baselines. Beyond empirical gains, we provide
theoretical and in-depth analyses that explain how our method improves the data
efficiency of RLVR.

1 INTRODUCTION

Reinforcement learning (RL) has become central in improving the reasoning capabilities of large
language models (LLMs) by optimizing self-generated rollouts (Guo et al.| 2025} Team et al., 2025
Chen et al., 2025a). Recent advances in reinforcement learning with verifiable reward (RLVR)
demonstrate that it is a simple yet effective method for scaling reasoning performance (Shao et al.|
2024;|Yu et al.| 2025). However, applying RLVR to models that generate long reasoning traces will
incur substantial computational overhead in the rollout stage, significantly hampering RL training
efficiency and becoming the primary training bottleneck (Zhong et al., 2024).

The exploration of effective strategies for leveraging data in RL training remains relatively under-
developed. Prior study (Zhang et al., [2025]; |Albalak et al., 2025) has suggested using the pass
rate as an indicator of data difficulty to strengthen the training signal. Nonetheless, this approach
often requires multiple rounds of sampling to attain a sufficiently stable measurement. In fact, it
converts online rollouts to an offline context, which ultimately does not contribute to reducing the
overall computational burden. Other metrics, such as human-defined criteria (Chen et al.,|2025b;
Parashar et al., 2025)), e.g., specific domains or topics, have the disadvantage of being influenced
by the tagging process, as well as the biases from human perceptions and experiences. In addition,
alternative approaches often depend on auxiliary trained models or embedding techniques to reflect
data semantics. We assert that these techniques not only pose significant demands on computational
and memory cost, but also present mismatch issues and limited applicability for diverse types of
policy models and training tasks. Furthermore, they overlook the inherent dynamism present in the
RL training process, greatly lagging behind the pace of training updates. As a remedy, other methods
incorporate historical information from training to reflect the dynamic nature of data. Nevertheless, it
increases memory demands on the RL framework and includes extraneous noise during the training.

A natural way to improve training efficiency is through data selection, i.e., pruning uninformative
prompts or rollouts while preserving those that drive learning. There are emerging approaches based
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Figure 1: Overview of PREPO. The PREPO objective integrates perplexity-based schedule learning
and sequence-level entropy weighting into a unified optimization scheme. On Qwen2.5-Math-7B,
PREPO achieves higher performance while requiring only 41.2% of the rollouts used by random
selection, showing improved efficiency. Specifically, PREPO has two complementary components:
(a) PPL-schedule, which actively selects prompts according to model-based perplexity, starting
with lower-PPL prompts ( “adapted” to the model) and progressively introducing higher-PPL ones
(“obscured” to the model) as training progresses. (b) Relative-Entropy Weighting, which adjusts
rollout contributions by comparing each sequence’s entropy against the batch average, amplifying the
high-entropy rollouts ( “novel attempts”) and downweighting the low-entropy ( “regular response”).

on parameterized modeling (Qu et al.| [2025)), replay buffers (Liu et al.,|2025), or selective rollout
execution (Zheng et al.l2025). Instead of aiding by inductive biases from both humans and external
models, we address this long-standing research question from a new perspective:

Can the intrinsic data properties deriving from the training process improve the efficiency of RLVR?

In this study, we propose a simple method with almost negligible computation cost, Perplexity-
schedule with Relative-Entropy Policy Optimization (PREPO), a method that combines a perplexity-
based schedule with sequence-level entropy weighting to realize intrinsic exploration. Specifically,
PREPO traces perplexity before rollout generation to prune the prompts, and applies entropy weighting
after rollout generation to emphasize uncertain responses. It is worth noting that metrics collected
during standard RL training process can be reused to compute our two components, ensuring the
computational efficiency of our method. Moreover, our method is coherently integrated with the
policy model and training process, offering a favorable trade-off between suitability and flexibility.
Beyond that, our approach uncovers the intrinsic nature of data during RL training, providing fine-
grained interpretability of training dynamics. Across Qwen and Llama models, PREPO surpasses
existing data-pruning baselines and remains competitive with the baseline, while reducing rollout
usage by more than 40% (see Fig. [I]for Qwen2.5-Math-7B). These results show that RLVR can be
made substantially more efficient by leveraging the intrinsic properties of prompt and rollout data.

2 RELATED WORK

Data efficiency in RLVR. A growing body of work has explored data efficiency for RLVR, with
particular attention to online data selection. Unlike offline methods that require pre-training or
costly rollouts to estimate sample quality (Qu et al.| 2025 Zhang et al., |2025} |Chen et al.| 2025bj
Kamalloo et al., 2025)), online approaches aim to reduce overhead by filtering or prioritizing samples
dynamically during training. Online difficulty filtering (Bae et al [2025) removes prompts that
contribute little to reasoning improvement, while predictive prompt allocation (Qu et al.| 2025) directs
rollouts toward more promising inputs. Curriculum-based strategies further adapt training to the
evolving competence of the model (Zhang et al.l 2025} |Chen et al.,|2025b)). Other online selection
approaches prioritize samples using gradient-informed signals (Kamalloo et al.||2025}; |Chen et al.,
2025¢) or policy-advantage estimates (Wang and Guofeng, 2025). Parallel efforts focus on reducing



rollout redundancy during training. Down-sampling strategies (Li et al.,[2025)) and efficient replay
buffer designs (Liu et al.,|2025) lessen the burden of repeatedly training on uninformative samples.
Collectively, these online methods emphasize the importance of allocating computational resources
to samples that drive reasoning progress, a goal which aligns with the direction of our work.

Entropy Mechanism in RLVR. Entropy has long been studied in reinforcement learning through
entropy-regularized objectives that promote exploration in control settings. Recent studies extend
this idea to RLVR for reasoning LLMs. |Cui et al.|(2025)) identify rapid entropy collapse as a major
failure mode and propose covariance-based updates to slow its decay. [Wang et al.| (2025) show that
high-entropy “forking tokens,” though rare, account for most reasoning gains, highlighting entropy as
a token-level signal of informativeness. |Cheng et al.|(2025) incorporates a clipped, gradient-detached
entropy term into the advantage function, encouraging more exploratory responses but introducing
additional hyperparameters. Building on these insights, we propose a parameter-free approach to
reinforce entropy-driven exploration in RLVR. A related line of work explores weighting in policy-
gradient updates through truncated importance sampling, such as CISPO (Chen et al.,|2025a)). These
methods address a different dimension of RLVR optimization, and can be viewed as complementary
to our focus on online data selection and entropy-based weighting.

3 PRELIMINARY ANALYSIS

3.1 Low-PPL PROMPTS TEND TO YIELD HIGHER PASS RATE

‘We begin by examining the relationship between prompt perplexity
(PPL) and task difficulty using the DAPO-Math-17K dataset (Yu| 3,
et al., 2025). For both Qwen and Llama models, Figure [Z] shows
a clear negative correlation between PPL and passrate @16, where ~ **
passrate @ 16 measures the fraction of prompts solved by at least
one of 16 generations. Lower-PPL prompts generally yield higher
success rates. Table [I]correlation is statistically significant across
models, suggesting that PPL can serve as a lightweight signal to Figure 2: Prompt PPL versus
identify more informative prompts for training. average passrate@16.
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Table 1: Correlation between prompt PPL and passrate@16. (*** p < 0.001, ** p < 0.05)

| Qwen2.5-7B | Qwen2.5-7B | Qwen2.5-1.5B | Qwen3-4B | LLama3.1-8B
Spearman | —0.233"** | —0.183" | —0.186** | —0.169"* | —0.199"*

3.2 TRAINING DYNAMICS OF Low-PPL AND HiIGH-PPL PROMPTS

To better understand the role of PPL during training, we compare prompts from the lowest 20% (LOW-
PPL) and highest 20% (HIGH-PPL) of the distribution (see Appendix [E|for examples of the two
groups). Figure [3]illustrates their training dynamics on Qwen2.5-Math-7B. The two groups exhibit
complementary behavior: LOW-PPL prompts drive rapid improvements in reward and validation
accuracy during early training, though at the cost of faster entropy collapse, whereas HIGH-PPL
prompts preserve entropy and lower zero-advantage ratio, yielding stronger performance in later
stages.

These trends are consistent across other Qwen models (Appendix [C). Specifically, (a) HIGH-PPL
prompts are associated with higher entropy, (b) LOW-PPL prompts yield higher rewards and valida-
tion accuracy early on, and (c) HIGH-PPL prompts maintain exploration and ultimately close the
performance gap. For Llama3.1-8B (Figure[TT)), a similar pattern appears, though overall performance
remains limited as the validation dataset is too challenging for Llama models.

3.3 COMPARISON WITH RANDOM SAMPLING

To test whether PPL-based grouping offers value beyond chance, we also compare with a random
20% subset. As shown in Figured} the random group consistently falls between the Low-PPL and
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Figure 3: Training dynamics of LOW-PPL vs. HIGH-PPL prompts on Qwen2.5-Math-7B. (a) HIGH-
PPL prompts have higher entropy. (b) LOW-PPL prompts have more reward gains. (c) LOW-PPL
prompts reach higher all-correct ratios faster. (d) LOW-PPL prompts show higher zero-advantage
ratios in the later stage. (¢) HIGH-PPL prompts eventually outperform LOW-PPL prompts.

HI1GH-PPL groups. This indicates that PPL is a non-trivial, policy-intrinsic signal that separates easy
prompts with high-pass rates from more challenging ones, providing a useful basis for online batch
selection design.
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Figure 4: Comparison among LOwW-PPL, HIGH-PPL, and Random Subsets. Random lies between
the two, showing that PPL-based grouping provides a meaningful pruning signal.

4 PREPO: PPL-SCHEDULE RELATIVE-ENTROPY POLICY OPTIMIZATION

Building on the preliminary results, PREPO integrates a perplexity-driven schedule with entropy-
based rollout weighting, forming a unified framework to improve efficiency in RLVR.

4.1 GENERAL ONLINE BATCH SELECTION

Let B = {x;}; denote the candidate batch at a training step. The goal of online batch selection is
to design a mapping

:00,1] =25 p—1I, )

where p € [0, 1] denotes the normalized training progress, and Z, C B. The mapping ® is required
to (i) explicitly depend on p, so that the distribution of selected samples evolves with training; (ii) the
sub-batch size is fixed during training, i.e., Vp, |Z,| = K.

4.2 PPL-SCHEDULE ONLINE BATCH SELECTION

For a prompt z; = (1, ... ), we measure its perplexity under the policy 7, at training progress p as
| |

Pi(p) = exp e Zlog To(Tit | Ti<t) | (2)
"t=1

where 7, is the model distribution at progress p. As 7, is parameterized by ¢ and evolves throughout
training, P;(p) provides a model-based measure for active data selection. We then define the PPL-
schedule sub-batch as

Z,={0(j) : l(p) <j<llp)+ K -1}, ()

where o is the permutation that sorts B by ascending P;(p). The starting index I(p) is given by a
linear schedule

lp)=[p- (N -K)|, )



so that Z,, shifts smoothly from LOW-PPL to HIGH-PPL prompts. While linear scheduling is the
simplest case, a nonlinealﬂ one (e.g., quadratic or exponential) can also be used. In general, the
PPL-schedule serves as an online data selection procedure that moves from more in-domain prompts
to less in-domain prompts as training progresses.

4.3 RELATIVE ENTROPY WEIGHTING

As shown in Section[3.2] we empirically find that training on LOW-PPL prompts accelerates reward
improvement but also leads to a rapid collapse of entropy, thereby reducing exploration. To mitigate
this effect during the PPL schedule, we introduce a sequence-level relative-entropy weighting scheme
that adaptively emphasizes uncertain rollouts.

The token-level entropy of a rollout is defined as Hy = — 3 .\, mg(v | 0«4, ) log 7o (v | 0«4, ),
where V is the vocabulary. For rollout 7, the sequence-level entropy is the average across its tokens

[o;]

L 1
Hy=H(o; |z) = — > H,. )
t=1
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The batch-average entropy over B rollouts is
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The relative weight assigned to rollout 7 is then given by

,
w; = ﬁ
This formulation is scale-invariant, as a rollout’s contribution depends only on its entropy relative to
the batch mean. Intuitively, this design enables the model to seek uncertainty within certainty during
the PPL schedule. While Low-PPL prompts early in training often yield confident (low-entropy)
responses, relative weighting amplifies the impact of less confident (higher-entropy) rollouts, thereby
preserving exploration throughout training.

)

4.4 OBJECTIVE FUNCTION

The PREPO objective integrates PPL-schedule filtering with relative-entropy weighting as below.

G |oi|
1 1 . - . N
JPREPO(G) = EINIW {DL}LGZINWOM(.‘Z) E Zwl . m me(si)t(@) Ai,t7 chp(si,t(e), 1-— €lowy 1+ Ehigh) Ai,t)
i=1 =1
(®)

where Z,, is the PPL-schedule-filtered batch of prompts at training progress p, w; encodes the relative
entropy of rollout 7 at the current micro-batch, s; ;(6) is the token-level importance ratio,s; ;(0) =
79 (0i,¢|%,0i,<t) r,;—mcan({rj}le)

7old (04,412,041, <) TS 1) We set the

clipping thresholds with €j,, = 0.2 by default and a larger epigp = 0.28 for the upper bound.

,and flw is the group-based advantage estimate, Ai,t =

4.5 PSEUDO-CODE OF PREPO ALGORITHM

Algorithm [T] summarizes the PREPO training loop. At each step, a candidate batch of prompts is
sampled and filtered by the perplexity-based schedule to form the training subset. Rollouts from
these prompts are then grouped into mini-batches, where relative-entropy weights are computed by
normalizing each sequence entropy against the batch average. These weights amplify the contribution
of high-entropy sequences when scaling the clipped objective. In this way, PREPO integrates schedule
filtering with entropy-based weighting to implement the proposed objective.

'We define a general family of nonlinear schedules as I(p) = |p™ - (N — K)|, where a € R*. For example,
choosing o = % g yields a square-root schedule that transitions more quickly toward higher-PPL prompts.



Algorithm 1: PPL-schedule Relative-Entropy Policy Optimization (PREPO)

Input :Dataset D, actor 7y, candidate prompt size IV, selected prompts K, rollouts per prompt
G, mini-batch size B, total steps T', clipping €low, €nigh-

Output : Updated parameters 6

fort=1,...,T do

p = A

By < Sample(D, N);

Pi < PPL(Q?,;;WQ), x; € Bt ; // Prompt PPL Eq. )
Ip < {0’(]) : l(p) S] < l(p) + K} // PPL-schedule Eqg. )
U+ 0

for x € I, do

fori=1,...,Gdo
L 0 ~ Told(*|z); 7 < Reward(z, 0) ;

A £ u, o over G rollouts; Append (z, o, AtoU
M < |U|/B; Partition U into {B; }}L, with |B;| = B : // Mini-batch split
L+ 0;
forj=1,...,M do
foreach (z,0, A) € B; do
L H — |17‘ Zt (721)612 7T9(U|O<t,l‘) 10g7r9(11|0<t,x)) ; // Sequence entropy Egq. )

H(J) — %Z(m,o,H,A)EBj H . // Batch entropy Eq. (H)
foreach (z,0, H, A) € B; do
L w — % ; // Relative entropy weight Eqg. )

J9 () \Biljlz(x,o,fi,w)ij w - ‘—:‘let min(stA, clip(sg, 1 — €10w, 1 + ehigh)A)
| L+ L+ 5J90)
| 0+ 0+nVeL
return 6

5 EXPERIMENTS

5.1 SETUPS

We benchmark PREPO against three baselines: Random selection, Dynamic Sampling (DS) (Yu et al.|
2025)), and GRESO (Zheng et al.| [2025)) (detailed in Appendix [F). Our evaluation covers multiple
models: Qwen2.5-7B (Team) 2024), Qwen2.5-Math-1.5B and Qwen2.5-Math-7B (Yang et al.| [2024),
Qwen3-4B (non-thinking) (Yang et al.| 2025)), and Llama3.1-8B (Dubey et al.,|2024). For training
data, we use DAPO-Math-17K (Yu et al., [2025)) and MATHS00 (Lightman et al., 2023a).

Training and Evaluation. All models are trained using the ver1 (Sheng et al., 2025), with vLLM
(Kwon et al., 2023) employed for rollout generation to ensure efficient inference. For the Qwen
models, we evaluate them on four benchmarks, including AIME25 (Art of Problem Solving, 2025)),
AIME24 (Art of Problem Solving, [2024), MATH500 (Lightman et al.,|2023b), and OlympiadBench
(He et al., [2024), which cover a diverse range of mathematical reasoning challenges. The Llama
model is evaluated on MATHS500 (Lightman et al., [2023b) and GSM8K (Cobbe et al.| [2021). We
evaluate all models using pass@1 (avgl6), i.e., the accuracy of the top-1 response averaged over
16 generations, with temperature 1. We evaluate models every 50 training steps and report the best
average performance on all benchmarks.

Experiment Configuration. For the Qwen2.5-Math models, we use a maximum context length of
4096 tokens, matching their supported limit. For Qwen3-4B and Llama3.1-8B, we set the context
length to 32,768 tokens. Rollouts are generated with temperature as 1 using vLLM, producing 8
responses per prompt. For PREPO, Random, and GRESO, we adopt an online selection ratio of
K/N = 20% at each training step, where the candidate batch size (V') is 1280, with the actual batch
size (K) fixed at 256. For GRESO, we set the targeted zero-variance percentage as 50%. For DS, the



candidate batch size is 384. The mini-batch size (B) is 64 for all experiments. The actor model is
optimized with AdamW using a constant learning rate of 1 x 10—, momentum parameters 3; = 0.9
and B2 = 0.999, and a weight decay of 0.01. Following|Yu et al.|(2025), we omit the KL-divergence
regularization term. Training is applied only to the actor parameters and parallelized with Fully
Sharded Data Parallel. All experiments are conducted on 32 GPUs.

Table 2: Performance comparison (%) on Qwen models. For each model, the top row reports the base
model’s performance. Best results are highlighted in bold or underlined. K = thousand, M = million.

Method | AIME25 AIME24 MATH Olympiad | Avg1 | #Rollouts |
Owen2.5-7B 1.25 4.17 72.26 33.09 27.69 -

+ DS 7.92 17.55 75.50 38.91 34.97 1040K
+ Random 6.98 16.41 75.70 38.47 34.39 716K
+ GRESO 9.22 10.83 76.65 42.07 34.59 680K
+ PREPO (Ours) 10.21 16.09 76.30 39.85 35.61 304K
Qwen2.5-Math-1.5B 3.54 10.21 55.76 27.41 24.23 -

+ DS 10.83 25.83 76.40 23.33 34.10 3.6M
+ Random 20.00 16.67 76.25 30.50 35.86 3.0M
+ GRESO 15.38 20.00 76.65 24.17 34.16 2.5M
+ PREPO (Ours) 20.00 16.67 76.25 32.00 36.23 1.1IM
QOwen2.5-Math-7B 9.17 20.80 72.26 39.56 35.45 -

+ DS 13.33 33.33 81.35 30.17 39.55 1664K
+ Random 10.00 26.67 77.80 43.26 39.45 905K
+ GRESO 18.33 25.83 77.80 26.83 37.46 654K
+ PREPO (Ours) 12.81 26.15 77.85 41.58 39.59 540K
QOwen3-4B 30.00 53.33 94.10 52.67 57.53 -

+ DS 63.33 66.67 95.10 58.00 70.78 688K
+ Random 60.00 70.00 96.00 59.33 71.33 553K
+ GRESO 56.67 69.17 96.40 57.33 69.89 472K
+ PREPO (Ours) 66.67 80.00 96.60 60.67 75.99 348K

5.2 RESULTS

PREPO achieves consistent two- to three-fold rollout reduction. As shown in Table[/, PREPO
substantially lowers rollout usage relative to all baselines while maintaining or surpassing accuracy.
On Qwen2.5-7B, PREPO reduces rollouts from over 1M (DS: 1,040K; Random: 716K; GRESO:
680K) to 304K. On Qwen2.5-Math-1.5B, it cuts the budget from several million (DS: 3.6M; Random:
3.0M; GRESO: 2.5M) down to 1.1M. Similarly, PREPO reduces rollouts to 540K on Qwen2.5-Math-
7B (vs. 1.66M for DS, 905K for Random, 654K for GRESO) and to 348K on Qwen3-4B (vs. 688K,
553K, and 472K, respectively).

Dynamic sampling and random selection are inefficient. Although DS sometimes yields accuracy
gains, it consistently demands the largest rollout budget. For instance, on Qwen2.5-Math-1.5B, DS
requires 3.6M rollouts to reach an average score of 34.10, whereas PREPO attains a higher 36.23
with only 1.1M rollouts. This confirms that DS wastes computation by discarding uninformative
prompts only after rollouts are generated. Random selection occasionally performs comparably to or
even better than DS, yet its rollout cost remains high. On Qwen2.5-Math-7B, for example, random
selection consumes 905K rollouts to achieve 39.45, while PREPO surpasses it with 39.59 using just
540K rollouts. Overall, PREPO delivers both higher accuracy and lower cost, while also producing a
more diverse set of problems than online random selection (see Appendix [H.6).

GRESO improves efficiency but lags behind PREPO. GRESO reduces rollout demand by pre-
filtering uninformative prompts, making it more efficient than DS and Random. However, its accuracy
often falls short of PREPO. For instance, on Qwen3-4B, GRESO achieves 69.89 accuracy with 472K
rollouts, while PREPO reaches 75.99 with only 348K rollouts. This suggests that PREPO’s intrinsic
exploration signals provide a more reliable and lightweight alternative to heuristic rollout filtering.



PREPO generalizes across model architectures. On Llama3.1-8B (Table , PREPO once again
achieves the strongest results, reaching an average of 36.55 with just 115K rollouts. In contrast, DS
requires nearly five times more rollouts with substantially lower accuracy. This confirms that PREPO
generalizes effectively across model families and scales, providing a consistent advantage in both
performance and efficiency.

Table 3: Performance comparison (%) on Llama. For each model, the top row reports the base
model’s performance. Best results are highlighted in bold or underlined. K = thousand.

Method | GSMS8K MATH | Avg 1 | # Rollouts |
Llama3.1-8B 9.53 6.05 7.79 -

+ DS 39.50 17.00 | 28.25 553K

+ Random 46.63 14.60 30.61 266K

+ GRESO 41.77 16.80 29.29 273K

+ PREPO (Ours) 51.10 21.81 | 36.55 115K

PREPO could be more effective when perplexity distributions are concentrated. We found that
PREPO achieves large improvement when perplexity values are relatively compact across Qwen3-4B,
and LLaMA3.1-8B. As shown in Table ] the normalized standard deviation of those models remains
below one, indicating less dispersed distributions that make perplexity-based filtering more reliable.
In these cases, PREPO can better exploit the PPL-schedule to reduce rollouts.

Table 4: Normalized standard deviation of prompt perplexity (std/mean) across models. Values above
one indicate more dispersed distributions.

Model \Qwen2.5-7B Qwen3-4B LLaMA3.1-8B Qwen2.5-Math-7B  Qwen2.5-Math-1.5B
std/mean | 0.73 0.65 0.75 1.23 1.02

Training Dynamics of PREPO versus the Random Baseline Figures [5]and [I4] present a compari-
son of training dynamics between PREPO and random selection. PREPO shows a higher entropy
loss, indicating stronger exploratory behavior throughout training. It also sustains a higher gradient
norm while avoiding instability, suggesting more active yet controlled parameter updates. In terms of
learning efficiency, PREPO reduces the proportion of rollouts with zero advantage, thereby providing
more informative gradients for optimization. Furthermore, the average prompt length under PREPO
decreases steadily, implying an adaptive shift from longer to shorter prompts over time. A similar
trend is observed in the average response length, where PREPO generates longer outputs than the
baseline across most steps on average, reflecting a longer thinking behavior.

Entropy Loss Gradient Norm Zero Advantage Ratio Average Prompt Length Average Response Length
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Figure 5: Full Comparison between PREPO and Random Selection on Qwen2.5-Math-7B.

5.3 ALTERNATIVE SELECTION RATIO

Figure [6] and Table 8] (see Appendix [G) show the effect of varying
the online batch selection ratio (X/N) with N fixed for PREPO.
The 20% ratio achieves the best average performance while also
requiring the fewest rollouts. A 30% ratio is competitive on some
benchmarks but less efficient, while 25% does not improve overall

N/
accuracy. Smaller ratios (15%, 10%, 5%) degrade performance e \2-0' B
and consume more rollouts. Overall, 20% strikes the best balance Selection Ratio (%) (K/N)
between accuracy and efficiency, and is adopted as the default in our ) )
experiments. Figure 6: Different K/N



5.4 ABLATION STUDY

In this section, we conduct the ablation analysis to isolate the contribution of each component in
PREPO. In addition to the linear PPL-schedule, we evaluate four variants: (1) linear PPL-schedule,
(2) random filtering with relative-entropy weighting, (3) linear PPL-schedule combined with an
entropy-regularization loss, and (4) a nonlinear PPL-schedule. The nonlinear variant follows the
general form I(p) = | p®(N — K)| with o = 0.5, which produces a schedule that shifts more quickly
toward higher-PPL prompts.

As shown in Tables [5]and [} the full PREPO method achieves the highest average performance across
all model scales. Variants that remove or modify either component show consistent performance
drops, indicating that both the perplexity-based schedule and the relative-entropy weighting contribute
to PREPO’s effectiveness. The nonlinear schedule performs competitively but remains slightly below
the linear schedule, suggesting that the linear form is already a stable and effective design choice.

Table 5: Ablation study on Qwen. Performance comparison (%) between PREPO and (1) linear
PPL-schedule, (2) random filtering with relative-entropy, (3) linear PPL-schedule with entropy loss,
(4) non-linear PPL-schedule with relative-entropy. Best results are highlighted in bold or underlined.

Model | Method | AIME25 AIME24 MATH Olympiad Bench | Avg 1
PREPO 12.81 26.15 77.80 41.58 39.59

w/o relative entropy 10.00 23.33 74.60 39.21 36.79

Qwen2.5-Math-7B w/o PPL-schedule 11.87 25.73 76.48 34.43 37.13
w/ entropy loss 10.73 23.54 75.25 38.81 37.08

w/ non-linear schedule 12.71 26.15 76.40 40.12 38.85

PREPO 10.20 16.09 76.30 39.85 35.61

w/o relative entropy 6.98 16.41 75.70 38.47 34.39

Qwen2.5-7B w/o PPL-schedule 8.89 16.04 79.41 22.54 31.72
w/ entropy loss 6.25 16.35 77.36 21.04 30.25

w/ non-linear schedule 9.58 16.25 76.31 39.60 35.44

PREPO 20.00 16.67 76.25 32.00 36.23

w/o relative entropy 10.21 15.68 72.10 30.50 32.12

Qwen2.5-Math-1.5B w/o PPL-schedule 11.81 13.12 70.21 30.02 31.29
w/ entropy loss 6.46 16.56 73.77 30.99 31.95

w/ non-linear schedule 9.15 15.83 75.85 30.26 32.77

PREPO 66.67 80.00 96.60 60.67 75.99

w/o relative entropy 64.77 72.70 90.54 59.06 71.77

Qwen3-4B w/o PPL-schedule 64.99 77.73 95.03 57.86 73.90
w/ entropy loss 61.10 75.17 88.39 60.54 71.28

w/ non-linear schedule 61.45 74.47 92.37 60.67 72.24

Table 6: Ablation study on Llama. Performance comparison (%) between PREPO and (1) linear
PPL-schedule, (2) random filtering with relative-entropy, (3) linear PPL-schedule with entropy loss,
(4) non-linear PPL-schedule with relative-entropy. Best results are highlighted in bold or underlined.

Model \ Method | GSMSK MATH | Avg 1
PREPO 51.10 21.81 | 36.55

w/o relative entropy 46.85 18.25 | 32.55

Llama3.1-8B w/o PPL-schedule 34.55 16.29 | 2542
w/ entropy loss 4.45 8.30 6.33

w/ non-linear schedule 46.85 20.56 33.71

5.5 ANALYSIS OF RELATIVE-ENTROPY WEIGHTS

Effective Batch Sizes Relative-entropy weighting does not increase the effective batch size (i.e.,
% >, w;); it merely redistributes gradient contributions across sequences. Since the weights are



normalized by H, we obtain

1 E T ) [ B ol Zil\oﬂ
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Remark: The token-weighted average weight equals the average se-
quence length. If all sequences have equal length, then % >ow =1
As shown in Figure [7} the effective batch size for PREPO on
Qwen2.5-Math-1.5B stays close to B throughout training. Atthe .=
early steps, LOW-PPL prompts yield low-entropy responses, so  &*"
higher-entropy rollouts receive more weight, pushing the average
above B. As training advances and higher-PPL prompts are intro- o
duced, the overall entropy rises, and normalization shifts the average
slightly below B.

—e— PREPO
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Step

Figure 7: Trend of Effective

o Batch Size
Sensitivity of Large Entropy Since w; = H;/H is normalized by

the batch mean, a rollout with H 7 > H has alarge weight w; > 1,
while simultaneously reducing the weights of the others (w;! <!1 for ¢ # j). The derivative

1 _H ol i=j
ow, | H H?Y, |ox|’ ’
OH,; H;, lo; L

! ~ T2 | j| 9 7’7&]’
H2 ) |ok]

clarifies this behavior: (1) for 7 = j, the two terms partially cancel,

so although wj is already large, its growth rate is moderated as H; -

increases further; (2) for ¢ # j, the derivative is negative, confirming ~"

that a large H; suppresses the weights of all other rollouts. Em- .

pirically, such outliers are rare: in PREPO on Qwen2.5-Math-1.5B weight

at step 50, the weight distribution (Figure [8) shows most rollouts

clustered near one, with negligible mass on extreme values. Further Figpre 8:  Frequency of
discussion is provided in Appendix [H] Weights

6 CONCLUSION AND FUTURE WORK

This study investigated how intrinsic data properties can improve the efficiency of RLVR training.
Prompt perplexity enables a natural schedule from easier to harder prompts, while sequence-level
relative entropy amplifies exploratory rollouts. Integrated in PREPO, these components reduce rollout
cost while maintaining or improving benchmark performance.

Beyond empirical gains, PREPO shows that RLVR can be guided by interpretable, policy-intrinsic
cues rather than human heuristic or auxiliary models. This makes PREPO a practical and transparent
recipe for compute-efficient RLVR, accessible even to researchers with limited resources. Future work
may explore additional intrinsic signals (e.g., input token size) and combine data-driven exploration
with system-level optimizations. Limitations of this study are discussed in Appendix [A]
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A LIMITATIONS

This study has several limitations that should be acknowledged. (1) response lengths were restricted
to 32K tokens, leaving the applicability of PREPO to models generating substantially longer outputs
an open question; and (2) the evaluation was limited to mathematical reasoning tasks, while its
effectiveness in other domains remains to be explored.

B DISCLAIMER ON LLM USAGE

The use of LLMs is permitted as a general-purpose assistance tool. In this work, LLMs were employed
solely for grammar correction and sentence rephrasing. They had no involvement in research ideation,
experimental design, data analysis, or substantive writing. Their role was restricted to improving
clarity and style; therefore, they are not considered contributors to the research.

C MORE TRAINING DYNAMICS OF LOW-PPL AND HIGH-PPL PROMPTS
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Figure 9: Training Dynamics of LOw-PPL vs. HIGH-PPL Prompts on Qwen2.5-7B.
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Figure 10: Training Dynamics of LOW-PPL vs. HIGH-PPL Prompts on Qwen2.5-Math-1.5B.
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Figure 11: Training Dynamics of LOow-PPL vs. HIGH-PPL Prompts on Llama3.1-8B.

D ENTROPY AS A RESPONSE CONFIDENCE IN ROLLOUTS

Standard RLVR methods rely solely on reward feedback and lack an explicit mechanism for assess-
ing the confidence of generated responses. Token-level entropy serves as a common measure of
confidence, as it quantifies the sharpness of the predictive distribution along a rollout.

Specifically, the token-level entropy of a rollout is defined as Hy = — >~ ), mg(v | 0<¢, ) log mp(v |
0<t, ), where V is the vocabulary. The sequence-level entropy is then the average

lol

_ 1
H(o|x)= ?ZHt. (10)

ol =
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Rollouts with low entropy correspond to highly concentrated predictive distributions, reflecting strong
model confidence in a single continuation. In contrast, rollouts with high entropy correspond to more
diffuse distributions, where multiple continuations remain plausible.

Thus, entropy complements prompt filtering by providing an intrinsic measure of response confidence
that can be directly incorporated into the training process.

E HiIGH-PPL AND Low-PPL PROMPTS

As illustrated in Figure[T3] HIGH-PPL prompts exhibit a greater prevalence of non-English characters

relative to LOW-PPL prompts. This pattern is consistently observed across both the Qwen2.5-series
and Llama model families.
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Example of LOW-PPL Problems

* Cube ABCDEFGH, labeled as shown below, has edge length 1 and is cut by a plane
passing through vertex D and the midpoints M and N of AB and C'G respectively. The
plane divides the cube into two solids. Find the volume of the larger of the two solids. [asy]
import cseS; unitsize(8mm); pathpen=black; pair A = (0,0), B = (3.8,0), C = (5.876,1.564),
D =(2.076,1.564), E = (0,3.8), F = (3.8,3.8), G = (5.876,5.364), H = (2.076,5.364), M =
(1.9,0), N = (5.876,3.465); pair[] dotted = A,B,C,D,E.,F,G,H,M,N; D(A-B-C-G-H-E-A);
D(E-F-B); D(F-G); pathpen=dashed; D(A-D-H); D(D-C); dot(dotted); label("A",A,SW);
label("B",B,S); label("C",C,SE); label("D",D,NW); label("E",E,W); label("F",F,SE);
label("G",G,NE); label(" H",H,NW); label(" M ",M,S); label(" N ",N,NE); [/asy]The answer
is in the form
x0Ocracmn, where gcd(m, n) = 1. Please provide the value of m + n.

* The number a = g, where p and q are relatively prime positive integers, has the property
that the sum of all real numbers x satisfying

o) - {o} =a-a®

is 420, where | x| denotes the greatest integer less than or equal to z and {2} = = — |z|
denotes the fractional part of z. What is p + ¢?

* Let a, b be positive integers satisfying

ab a+2b

202 —a 4b
. Find |10(a — 5)(b — 15)| + 8.
» What is the greatest common divisor of 1212 4 2332 + 3452 and 1202 + 2322 + 3462?

» At the Lexington High School, each student is given a unique five-character ID consisting
of uppercase letters. Compute the number of possible IDs that contain the string "LMT".

o W3 B SEXREEREA I = MFIEE S BN -1, —1,2, HQ,1, -1)T 2FHEE2 Frxt
RIHVRHE M &. 10 A EPFJV%TE%E’FF)%H#}I, mir=__ (English: Let
the eigenvalues of A real symmetric matrix of order 3 be —1, —1, 2, respectively, and
(1,1,—1)Tbe the eigenvector corresponding to eigenvalue 2. For the sum of squares of all
elements inthe Al is[I]=

o KN E?E’]ﬁ?ﬁ%ﬁ&; 6 B TE:%EEI’J/\@ (English: Find the number of elements of
order 6 in the permutation group Sg of six elements.)

* Three bells begln to ring 51multaneously The intervals between strikes for these bells
are, respectlvely, 4 seconds, 2 3 seconds, and 2 seconds. Impacts that coincide in time are
perceived as one. How many beats will be heard in 1 minute? (Include first and last.)

F DESCRIPTION OF BASELINE METHODS

We compare PREPO against the following three baseline strategies.

¢ Dynamic Sampling (DS). Dynamic Sampling, as introduced in DAPO 2025), dy-
namically filters out prompt groups whose generated responses all produce identical rewards (i.e.
zero variance). In each training batch, DS resamples such uninformative prompt groups, thereby
ensuring that the batch maintains a sufficient proportion of prompts that give meaningful gradient
signals. However, it can still incur high rollout costs because many sampled prompts may remain
uninformative until they are filtered.

* Random. The Random baseline uniformly selects prompts and associated rollouts without regard to
historical feedback or variance in reward. All prompts are treated equally, so there is no mechanism
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to avoid rollouts on uninformative or zero-variance prompts. This method serves as a lower bound
in terms of data selection sophistication.

¢ GRESO. GRESO (GRPO with Efficient Selective Rollout) (Zheng et al., [2023) is a lightweight,
online, pre-rollout filtering approach. It uses statistics of reward dynamics over previous epochs to
predict which prompts are likely to be uninformative (e.g. zero variance among responses) and
skips them before performing rollouts.

G ADDITIONAL EXPERIMENTAL RESULTS

Table 7: Details of performance comparison (%) on Qwen models. Avg (avg @ 16/32/64) means the
average of AIME25 (avg@16/32/64), AIME24 (avg16/32/64), MATH, and Olympiad. Best results are
highlighted in bold or underlined.

AIME25 AIME25 AIME25 | AIME24 AIME24 AIME24 Avg T Avg T Avg T

Method (avg@16) (avg@32) (avg@64) | (ave@16) (ave@32) (ave@64) | (ave@16) (ave@32) (ave@64)
Qwen2.5-7B 125 2.60 1.17 417 490 495 27.69 2821 27.87
+DS 7.92 7.08 7.19 17.55 15.00 14.90 34.97 3476 34.13

+ Random 6.98 6.35 6.51 16.41 15.63 15.89 34.39 34.04 34.14
+ GRESO 9.22 7.29 7.50 10.83 13.65 1339 34.39 34.92 34.90
+PREPO (Ours) 1021 10.62 10.00 16.09 15.52 1635 35.61 3572 35.63
Owen2.5-Math-1.58 | 3.54 3.75 4.48 1021 8.33 8.96 2423 2381 2415
+DS 10.83 13.76 14.54 25.83 2072 23.04 34.10 33.80 3433

+ Random 20.00 17.45 18.81 16.67 15.42 16.50 35.86 3491 3552
+GRESO 15.38 11.40 15.39 20.00 19.20 17.97 34.16 32.86 33.56
+ PREPO (Ours) 20.00 19.69 19.38 16.67 16.98 17.03 36.23 36.23 36.17
Qwen2.5-Math-7B 8.95 9.17 8.80 17.50 20.80 19.22 35.45 35.45 3496
+DS 13.33 14.27 14.84 33.33 35.63 34.69 34.10 4036 4026
+ Random 10.00 12.50 12.50 26.67 2934 20.87 35.86 40.73 40.86
+ GRESO 1833 18.58 18.58 25.83 2438 25.00 37.46 36.90 37.05

+ PREPO (Ours) 12.81 1441 15.93 26.15 2917 295 39.59 4075 4115
Owen3-4B 30.00 47.30 44.89 5333 61.60 2870 5753 63.92 55.09
+DS 63.33 53.90 54.80 66.67 63.50 6530 7078 67.63 6830
+ Random 60.00 58.85 60.16 70.00 65.73 64.69 7133 69.98 70.05
+GRESO 56.67 5833 5724 69.17 7177 69.79 69.89 70.96 70.19
+ PREPO (Ours) 66.67 62.19 6339 80.00 7428 7745 75.99 73.44 74.53

Entropy Loss Gradient Norm s Zero Advantage Ratio Average Prompt Length Average Length
ois = ll:;r];it:)m Baseline ‘“T‘ :‘n 240) 120:

e T B

Figure 14: Full Comparison between PREPO and Random Selection on Qwen2.5-Math-1.5B.

Table 8: Performance Comparison (%) of PREPO with Different Selction Ratio (K /B, B fixed) on
Qwen2.5-Math-1.5B. Best results are highlighted in bold or underlined.

Selection Ratio | AIME25 AIME24 MATH Olympiad | Avg 1 | # Rollouts |

30% 20.00 20.83 75.85 25.00 3542 1.4M
25% 13.33 20.00 73.55 24.00 32.72 1.5M
20% 20.00 16.67 76.25 32.00 36.23 1.1IM
15% 13.33 20.00 75.75 22.17 32.81 1.4M
10% 15.83 19.17 70.25 21.33 31.65 1.7M
5% 19.17 16.67 69.85 20.17 31.46 1.8M
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H DISCUSSION

H.1 RESULTS ON OTHER TRAINING DATASET

As DAPO-Math-17K contains both English and Chinese questions, prompt perplexity could correlate
with language. To exclude the cofounder of language effects, we trained Qwen2.5-Math-7B on
a purely English dataset selected from Opean-Math—ZZOkEL and compared PREPO with several
baselines under the same training budget. The results are shown in Table A below. PREPO again
achieves lower rollout usage while achieve a higher average performance. This indicates that the
gains of PREPO are not driven by language imbalance.

Table 9: Comparison of PREPO and baselines trained on all-English data (Model: Qwen2.5-Math-7B)

Method | AIME’25 AIME’24 MATH500 Olympiad | Avg 1 | #Rollout |

DS 11.98 30.00 72.80 42.02 39.20 3256K
Random 10.79 28.25 80.21 36.72 38.99 2457K
GRESO 6.67 30.00 79.20 45.63 40.38 1331K
PREPO 12.92 33.33 78.05 44.10 42.10 860K
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Figure 15: Comparison of performances across PREPO, GRESO, and Random (x-axis: training step,
y-axis: validation score, model: Qwen2.5-Math-7B, training data: OpenR1-Math)

H.2 WHAT DOES THE PPL-SCHEDULE CONTRIBUTE TO TRAINING?

We compared three configurations on Qwen2.5-Math-7B training exclusively with HIGH-PPL
prompts, exclusively with LOW-PPL prompts, and the PPL-schedule, which gradually transitions
from Low- to HIGH-PPL prompts. The training dynamics are shown in Figure [I6]

In terms of entropy loss, the PPL-schedule achieves a balance between the two extremes: entropy
decreases steadily but not excessively, thereby mitigating the risk of collapse. With respect to the
zero-advantage ratio, the PPL-schedule consistently maintains a lower value, ensuring that a greater
proportion of rollouts remain informative throughout training.

H.3 WHAT DOES RELATIVE ENTROPY BRING TO TRAINING?

As shown in Figure we found that PREPO with relative entropy could further reduce the zero-
advantage ratio and thus improve sample efficiency.

Case Analysis. In Figure[T8] we display examples of responses with their token-level entropy from
the same mini-batch, where darker colors mean higher entropy, and each sequence is weighted by its
relative entropy.

Zhttps://huggingface.co/datasets/open-r1/OpenR 1-Math-220k
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Figure 16: Comparison of Training Dynamics between PPL-schedule and Static PPL Selection (Low-
and HIGH-PPL groups)
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Figure 17: Comparison of zero advantage ratio between PPL-schedule and PREPO.
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Figure 18: Token-Level Entropy of Sequences within A Mini-batch (with Relative-Entropy in Red).

H.4 DOES THE PROMPT PPL VARY DURING TRAINING?
As shown in Figure[T9] we computed the range of PPL across at each training epoch and observed

that it remained relatively stable throughout training. In addition, the PPL of the prompts used for
training exhibited minimal variation.
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Figure 19: Range of prompt PPL during training.

H.5 TIME CONSUMPTION OF PREPO

As shown in Figure 20] the time consumption of calculating prompt PPL is barely minimal compared
to the rollout generation duration.

140

120

=== Prompt PPL Calculation
=== Rollout Generation

Time (in Seconds)

0 200 400 600 800 1000

Gradient Step

Figure 20: Comparison of calculating prompt PPL and rollout generation

H.6 PROBLEM DIVERSITY IN PREPO

Analysis indicates that PREPO selects a more diverse set of problems compared to random sampling.
Specifically, PREPO achieves broader coverage across Mathematics Subject Classiﬁcatiorﬂ MSC)
categories during training, as illustrated in Figure 21]

H.7 DOES THE PREPO MODEL MEMORIZE THE TRAINING DATA?

Following , we trimmed 40% of each prompt to construct partial problems. We then
evaluate models on these partial prompts and compute the average pass rate of 16 generations. As
shown in Figure 22] the vast majority of partial problems have near-zero pass rate, with only a small
fraction achieving non-trivial success. These distributions suggest that the model does not simply
memorize training data, but instead requires the full problem context to solve tasks.

H.8 SENSITIVITY TO EXTREME ENTROPIES

As shown in Figure [23] the distribution of relative entropy weights remains largely stable across
training steps 100, 200, 300, and 400.

*MSC : https://zbmath.org/classification/
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Figure 21: Comparison of problem diversity between PREPO and baseline on Qwen2.5-Math-7B.
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Figure 22: Distribution of passrate@ 16 over all partial prompts

H.9 COMPARISON WITH NO-FILTERING

For Qwen2.5-Math-7B, we observe that PREPO attains performance comparable to training on the
full dataset without any filtering, i.e., using 5 times rollouts per step, as shown in Figure 24] The
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Figure 23: Weight Distribution During Training (Qwen2.5-Math-1.5B).

“Less is More” pattern implies that efficient selection can reduce the amount of data needed for RLVR

training.
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Figure 24: Comparison of PREPO and baselines (a) training w/o filtering (b) random selection.
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