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Abstract
The hippocampus (HPC) is a key structure of the brain’s capacity to learn and generalize.
One pervasive phenomenon in the brain, but missing in AI, is the presence of different
gross brain states. It is known that these different brain states give rise to diverse modes of
information processing that are imperative for hippocampus to learn and function, but the
mechanisms by which they do so remain unknown. To study this, we harnessed the power
of recently developed dimensionality reduction techniques to shed insight on how HPC
representations change across brain states. We compared the geometry of HPC neuronal
representations when rodents learn to generalize across different environments, and showed
that HPC representation could support both pattern separation and generalization. Next,
we compared HPC activity during different stages of sleep. Consistent with the literature,
we found a robust recapitulation of the previous awake experience during non rapid eye
movement sleep (NREM). But interestingly, such geometric correspondence to previous
awake experience was not observed during rapid eye movement sleep (REM), suggesting
a very different mode of information processing. This is the first known report of UMAP
analysis on hippocampal neuronal data during REM sleep. We propose that characterizing
and contrasting the geometry of hippocampal representations during different brain states
can help understand the brain’s mechanisms for learning, and in the future, can even help
design next generation of AI that learn and generalize better.
Keywords: UMAP, memory, hippocampus, REM sleep, learning, generalization

1. Introduction

Memory storage in the brain goes through a two-stage process (14; 3). First, behavioral
episodes are rapidly encoded by the key structure called the hippocampus during awake
behavior (29). The fast-learning mechanisms of the hippocampus ensures quick and efficient
encoding of memories, even down to single-trials (28). However, these representations are
vulnerable to interference by newly encoded information. Therefore, new information needs to
be gradually integrated to a different learning system during other brain states (for example,
REM and NREM sleep). However, the learning mechanisms themselves during those brain
states are unknown. In AI, incorporating a sleep-like offline learning stage has started to
demonstrate increasingly promising results to support robust learning and generalization
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(9; 6; 17; 10; 26), but truly harnessing mechanisms of learning through different states akin
to those seen in the brain is an area of research in its infancy.

In this paper, we study how hippocampal neuronal representations topologically change
across brain states (awake task learning, different stages of sleep, novel learning). Our key
contributions are as follows:

• HPC representations in awake state can support both pattern separation & generalization.

• HPC representation during REM sleep imply a different form of memory processing beyond
faithful reactivation of the recent episodic experience, unlike during NREM sleep.

2. Methods

To date, most efforts to characterize neuronal representation between brain states are
supervised methods, which are based on template-matching principles to compare patterns
between behavioral states (5; 20). Such supervised approaches are limited because they
use one of the brain states (usually during awake learning) to impose an a priori template
derived from the external world, in order to analyze another brain state (e.g. sleep), resulting
in the neglect of important features intrinsic to sleep. Here, we apply recently developed
unsupervised approaches (15; 2) to study hippocampal representations, uncovering their
intrinsic neuronal activity structure, without needing to match to a template imposed by
the external world. First, we applied multidimensional scaling (MDS) (2) to discover shared
features in the neuronal representations during generalization across sessions. Second, we
applied Uniform Manifold Approximation and Projection (UMAP) for dimension reduction
(15) to visualize the intrinsic representation of the brain during different brain states, and
compare manifold representations across brain states (Fig. A.1, Fig. B.1, Fig. C.1).

Figure 1: A). Figure-8 maze task, where mice alternated between left and right arms for
water reward (blue droplets). The animal’s trajectory along maze corridors is
color-coded by linearized position. Left, familiar maze where the animal were
trained for one week. Right, novel maze in a novel context where the mouse was
introduced for the first time (B). MDS plot showing the dimensionality-reduced
firing rates for familiar (red) and novel (green) mazes.
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3. The geometry of neural representation during novel maze learning

The ability to separate different experiences is a critical feature of episodic memory and
has long been hypothesized to require the hippocampus (31). But the capacity to pattern
separate between situations may impair the capacity to generalize across those situations,
and there is still no general consensus to what extent hippocampal pattern separation is not
at the expense of forming invariant and generalizable representation.

To explore this question, we used MDS to characterize the hippocampal representations
when rodents apply the rule learned in a familiar maze and generalized it to a novel
environment (Fig. 1A). Interestingly, here we show that the HPC representation can
simultaneously support both pattern separation as well as generalization through ‘analogy-
like’ representation (Fig. 1B) (2). In this form of representation, activity of different
experiences is pattern separated but are also organized such that the vectors of analogous
elements of the different experiences are parallel (for example, the vector connecting the
left and right reward in familiar maze is parallel to the left-right reward vector in the novel
maze). In a way, this hippocampal capacity to analogize between experiences, is somewhat
akin to the analogy-like word embeddings generated by word2vec from natural language
processing, as exemplified by the well-known "woman is to queen as man is to king" (16).

Figure 2: (A). Figure-8 maze task.
The animal’s trajectory is
color-coded by linearized
position. (B). UMAP em-
bedding of population ac-
tivity during maze run-
ning. Manifold is colored
by linearized position. (C).
UMAP manifold of NREM
sleep. (D) Projecting maze
data onto the manifold of
NREM sleep. (E) and (F)
are similar to (C) and (D)
but for REM sleep.

4. The geometry of neural representation during different sleep states

Sleep in mammals consists of two core stages: NREM and REM sleep, which alternate in a
cyclic manner (19; 23; 24). Reactivation of memory (replay) during NREM sleep and its role
in memory have been extensively studied (4; 1; 7; 8; 11; 21; 30). Much less is known about
the representations during REM sleep.

Using UMAP, we first visualized the neural representation when rodents learned in a
figure-8 maze (Fig. 2 A,B). Next, we visualized the geometric structure of representations
during NREM sleep. Interestingly, we uncovered a substructure that resembled the geometry
of the maze (red dash line) during NREM sleep. To test if this substructure was actually
related to activity during maze exploration, we projected the population activity during maze
learning to the space defined by the NREM sleep. We found that indeed, that sub-structure
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during NREM sleep covered the manifold of activity seen during the maze running with
high precision (Fig. 2 C,D). Consistent with known literature (4; 1; 7; 8; 11; 21), this
directly demonstrates that NREM sleep faithfully reactivated activity from previous behavior
and likely helped to consolidate the recent episodic memory. Surprisingly, we were able to
demonstrate this using an unsupervised technique where the maze-like substructure in the
NREM manifold naturally emerged without being forced to match with any pre-defined
template, and was therefore a much stronger result comparing to previous template-matching
methods.

Figure 3: (A) Distribution of distance to maze manifold for replay events across different
brain states. (B). Distribution of trajectory length. (C). Proportion of significant
replay events across different brain states.

In contrast, we did not observe a maze-like structure during REM sleep (Fig. 2 E,F),
suggesting a different role other than faithful reactivation of the recent episodic experience.
Compared to NREM sleep, REM sleep events have a longer distance to manifold and
trajectory length (Fig. 3 A,B). The two quantities was also used to determine if a candidate
sleep event is a significant replay event by comparing it to shuffle (Fig. A.1). The fraction of
significant REM replay events is not statistically different from that of shuffle events (Fig. 3
C, Fig. C.1). Our results suggest that the interleaving NREM and REM sleep epochs play
different roles during system consolidation. Our results for REM sleep suggest that we might
need to update our understanding for the role of REM sleep. In particular, previous studies
(32; 13) claimed that replay of maze events seem to present during REM sleep, suggesting
that REM sleep plays a similar role as NREM sleep for faithfully reconstructing/replaying
the recent episodic experience. However, both of those papers used supervised or template-
matching methods. In light of our new results, it is possible that the role of REM sleep
is to facilitate the abstraction of general rules from the combinations of many different
past experiences. (12), and might therefore not possess faithful reactivation of the most
recent experience during this brain state, at all. To our knowledge, this is the first reported
characterization of hippocampal population activity during REM sleep using UMAP analysis
(or unsupervised dimensionality reduction method in general).
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5. Discussion and future direction

Our result showing hippocampal representations during activate rodent behavior generalizing
to a new maze provide novel insight into how hippocampal representation can support both
pattern separation of episodic experience in different contexts as well as harbor generalizable
representation that can support rapid generalization. By harnessing a linear dimensionality
reduction (MDS) we are able to bridge divergent findings showing that HPC representations
support pattern separation (31; 27; 22) and other studies showing HPC representations
can also support generalization (25; 18). However, this is a preliminary result, and further
experiments (for example, in a diverse set of tasks) are needed.

Secondly, our results point to critical differences in information processing by the hip-
pocampus during REM vs NREM sleep. To our knowledge, ours is the first study to
characterize hippocampal neuronal activity during REM sleep by UMAP analysis, giving us
the capacity to see beyond previous studies on REM sleep that used single neuron analysis
or template-matching based decoding analysis. This preliminary result presents an insightful
snapshot into hippocampal activity during learning and memory. Future work should aim to
characterize hippocampal representational changes over the entire timecourse of learning.
This study is a first step to uncover the mysterious role of different brain states (especially
during sleep) for learning about the world.
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Appendix A. None-linear dimensionality reduction for decoding replay
events

Figure A.1: Flow diagram demonstrating procedures for detecting and decoding significant
sleep replays.

A. Step 1: Preprocessing data as follows. The animal performed a learning task in the
figure-8 maze while spikes from 422 pyramidal cells. Spike trains during maze learning were
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binned into 100ms bin and then smoothed, yielding a matrix of 422-dimensional population
activity vectors. Spike trains of candidate sleep replays were binned into 20ms bins. B.
Step 2: generating manifold embedding. The preprocessed data matrix is passed through
dimensionality reduction step by either UMAP or PCA, which generates a low dimensional
embedding, allowing the topological structure to be visualized. Notice that this step is
un-supervised. For further details related to step 1 and 2, see Fig. B.1. Step 3: Projecting
candidate ripple events to the manifold. The 7 pink-purple dots on the manifold represent
low-dimensional embeddings of an example candidate ripple event. Each dot is the low-
dimensional embedding of a 20ms bin. D. Step 4: measuring distance to manifold and
trajectory length. The event distance to manifold is defined as the mean Euclidian distance
to manifold across all time bins within the event. For example, grey bar in the zoomed-in
inset represents the distance between the first time bin and the maze manifold (d1). The
event trajectory length is defined as the mean trajectory length between all successive time
bins. For example, cyan dashed line denotes the trajectory length between the first and
second time bin of the event (t1). E. Step 5: Testing whether the candidate events are
significant by comparing them against shuffled distributions. A candidate event is classified
as a significant replay event only if it satisfies two criteria: (1) The mean distance to manifold
(as defined in D) of a candidate event is significantly smaller than shuffled data (shuffle cell
identity). (2) The second criterion is that the mean trajectory length is significantly smaller
than shuffled data (shuffle time). See Fig. C.1 for further explanation of how the shuffle
distributions were generated. F. Step 6: Only significant replays are included for further
analysis from this step onward. F(i). To decode the position relayed by the candidate event,
the population activity during slepp events was projected to the position manifold where
each point on the manifold is associated with a position bin label (positions were binned
into 5-cm bins). The low dimensional embedding along with the position label are used to
train a KNN decoder. Replay content of each time bin is decoded by taking the mean of the
position label of its K nearest neighbors on the position manifold.
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Appendix B. Metric learning and negative sampling

Figure B.1: Metric learning and negative sampling.

This figure is related to Step 5 of the decoding procedure described in Fig. A.1. Candidate
SPW-R events are classified as significant replay events only if the distance to manifold
and trajectory length are significantly small compared to null distributions. A. Shuffling
procedure for degrading the temporal information of candidate SPW-R events without
changing other properties of population activity pattern (preserving relationship across rows).
This is done by shuffle cell ID. Spiking activity of each cell is a row of the matrix, and each
column is a 20ms bin. This procedure is expected to generate shuffled events that have a
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long trajectory length compared to true replay events without affecting their distance to
the manifold. B. Temporal shuffle. This procedure degrades the population activity pattern
while preserving the temporal information of SPW-R events. This is done by shuffling the
rows of the spiking matrix (by preserving relationship across columns). This procedure is
expected to generate shuffled events that have large distance from manifold compared to
true replay events, without affecting their trajectory length. C. Middle, scatter plot of events
spreading in a 2-D metric defined by the z-scored distance to manifold and trajectory length.
Bottom, histogram for distance to manifold distribution comparing the shuffled data (grey,
shuffle cell as in B.) and all SPW-R events (red) in an example session. Left, histogram for
trajectory comparing the shuffled data (cyan, shuffle time as in A) and all SPW-R events
(red). D. Zoomed-in display significant replay events. Black dash line, significant distance
threshold. Red dash line, significant trajectory threshold. E. For better visualization of the
distribution of SPW-R events, density plot is shown, where the density value is the z-scored
count of events in each of 30x30 grid of the distance and trajectory metric. Black dash line,
significant distance threshold. Red dash line, significant trajectory threshold.
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Appendix C. Quantifying significant SPW-R replay events against shuffle
events

This figure is related to Step 5 of the decoding procedure described in Fig. A.1. Candidate
SPW-R events are classified as significant replay events only if the distance to manifold
and trajectory length are significantly small compared to null distributions. A. Shuffling
procedure for degrading the temporal information of candidate SPW-R events without
changing other properties of population activity pattern (preserving relationship across rows).
This is done by shuffle cell ID. Spiking activity of each cell is a row of the matrix, and each
column is a 20ms bin. This procedure is expected to generate shuffled events that have a
long trajectory length compared to true replay events without affecting their distance to
the manifold. B. Temporal shuffle. This procedure degrades the population activity pattern
while preserving the temporal information of SPW-R events. This is done by shuffling the
rows of the spiking matrix (by preserving relationship across columns). This procedure is
expected to generate shuffled events that have large distance from manifold compared to
true replay events, without affecting their trajectory length. C. Middle, scatter plot of events
spreading in a 2-D metric defined by the z-scored distance to manifold and trajectory length.
Bottom, histogram for distance to manifold distribution comparing the shuffled data (grey,
shuffle cell as in B.) and all SPW-R events (red) in an example session. Left, histogram for
trajectory comparing the shuffled data (cyan, shuffle time as in A) and all SPW-R events
(red). D. Zoomed-in display significant replay events. Black dash line, significant distance
threshold. Red dash line, significant trajectory threshold. E. For better visualization of the
distribution of SPW-R events, density plot is shown, where the density value is the z-scored
count of events in each of 30x30 grid of the distance and trajectory metric. Black dash line,
significant distance threshold. Red dash line, significant trajectory threshold.
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Figure C.1: Quantifying significant SPW-R replay events against shuffle events.
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