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ABSTRACT

Compressible multiphase flow is central to numerous engineering applications,
characterized by complex wave dynamics and challenging shock-interface inter-
actions. Despite their importance, they remain significantly missing from exist-
ing benchmarks in the Scientific Machine Learning (SciML) community, limiting
progress on generalization to impactful real-world scenarios. To address this issue,
we introduce two exemplary datasets from this class, Laser-Induced Droplet Ex-
plosion (LIDE) and Shock-Induced Droplet Aero-breakup (SIDA), providing re-
searchers with valuable references to establish reliable baselines and push bound-
aries of SciML. Due to the high computational cost of simulating these pro-
cesses with full fidelity, we explore data-driven surrogate models designed to effi-
ciently approximate the underlying physics at reduced cost. We benchmark these
datasets on diverse architectures–UNet, Fourier Neural Operator (FNO), Vision
Transformer (ViT), Scalable Operator Transformer (ScOT), and Residual Network
(ResNet)–trained autoregressively and compared across varying parameter counts.
A comprehensive set of ablations is carried out to analyze the performance of the
models. We identify key scenarios, such as incorporating temporal sequence in-
formation and conditioning, that enable the models to accurately capture the rich
and nonlinear physics embedded in the datasets. Code and datasets will be made
available upon request.

1 INTRODUCTION

Modern technical applications of fluid dynamics exhibit a plethora of flow scenarios involving com-
pressible and multiphase flows, which are characterized by discontinuities across shockwaves and
phase boundaries. Gaining insights into the underlying physics of compressible flows is a cor-
nerstone in many real-world systems. These include a wide range of scientific fields, spanning
from astrophysics to engineering applications such as coating, fuel injection, biomedical treatment
(Chaussy & Schmiedt, 1984), analysis of cavitation phenomena (Maeda et al., 2015), and nanopar-
ticle synthesis (Riahi et al., 2023). Traditionally, domain experts have analyzed these phenomena
through simulations and experiments. The downside of these methods is that they demand highly
specialized facilities and substantial computational power.

Recent advancements in deep learning algorithms and data-driven modeling (Cai et al., 2021), (Ho
et al., 2020), (Lipman et al., 2022), (Kovachki et al., 2023), (Vaswani et al., 2017)), coupled with the
rapid growth of modern high-performance computing infrastructures, have accelerated discoveries
in Scientific Machine Learning (SciML), enabling robust and reliable surrogate models. However,
training these models requires large, multifaceted datasets that capture and correlate spatiotemporal
information.

To the best of our knowledge, while datasets exist for either compressible single-phase flows
(Takamoto et al., 2022), (Herde et al., 2024) or incompressible multiphase flows (Shadkhah et al.,
2025), (Hassan et al., 2023), there is an absence of labeled datasets that capture the complexity of
both simultaneously. We address this scarcity by providing two high-fidelity datasets pertaining
to liquid droplet dynamics, called Laser-Induced Droplet Explosion (LIDE) and Shock-Induced
Droplet Aero-breakup (SIDA). This novel set of datasets involves intricate interactions of shocks
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Density

Schlieren

DensitySchlieren

(a) (b)

Figure 1: Two time snapshots at t1 = 30[s] and t2 = 50[s] of the Density and Schlieren field of the
(a) LIDE and (b) SIDA dataset.

with interfaces-Richtmyer-Meshkov, Rayleigh-Taylor, and Kelvin-Helmholtz instabilities. It further
captures the evolution of multiscale vortical structures and wave dynamics. Therefore, it requires
profound domain expertise and computational resources, and our contribution lies in introducing
this valuable dataset, which paves the way for advancing research in the community. An illustration
of two field variables of each dataset is depicted in Figure 1. In LIDE (Paula et al., 2019), an initial
high-pressure laser cavity is generated in a micro-droplet. Initiated shock-interface interactions lead
to droplet breakup and cavitation events. In SIDA (Kaiser et al., 2020), a shock wave hits a droplet
and initiates aero-breakup, where triggered interfacial instabilities generate small liquid fragments
through different scenarios.

We propose a many-to-many training strategy (Shadkhah et al., 2025) to benchmark our datasets on
a variety of neural architectures, ranging from convolution and spectral models to attention-based
approaches. Specifically, we consider UNet, Residual Network (ResNet), Fourier Neural Operator
(FNO), Vision Transformer (ViT), alongside Scalable Operator Transformer (ScOT). Furthermore,
we identify key parameters and fields with the goal of designing an extensive set of ablations to
experiment with the generalization capabilities of the models. Although training these models is
computationally intensive, once trained, these models are substantially faster when used as a forward
simulator. The key contributions of this work are:

• Datasets for Complex Flow Physics. A new high-fidelity dataset for complex flow physics
involving droplet dynamics and shock-interface interactions is generated and presented.

• Dataset Validation. Dataset fidelity is assessed and confirmed by high-resolution simula-
tions and independent experiments.

• Benchmarking. A comprehensive set of experiments is performed through side-by-side
comparison with different models to gain insights into generalization capabilities.

2 RELATED WORK

Existing benchmarks differ in scope and physical coverage. Among them, PDEBench (Takamoto
et al., 2022) offers a wide variety of datasets, including single-phase compressible Navier–Stokes
problems, BubbleML (Hassan et al., 2023) and MPF-Bench (Shadkhah et al., 2025) extend to mul-
tiphase problems and contribute an impressive collection of bubble and droplet datasets; however,
both are limited to incompressible physics. It is noteworthy that Poseidon (Herde et al., 2024) pro-
vides an extensive set of datasets to train foundation models, although it considers only single-phase
problems. However, there is no benchmark combining both compressible and multiphase physics
in the same setting. Our work addresses this gap by integrating these two characteristics and fur-
ther incorporates Symmetry, Dirichlet, and Neumann boundary conditions, thereby broadening the
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diversity of physical scenarios available for SciML research. A summary of the aforementioned
references is presented in Table 1.

Table 1: Summary of related datasets.
Name Dimensions Compressible Multiphase

PDE Bench (Takamoto et al., 2022) 2 ✓ ✗

Poseidon (Herde et al., 2024) 2 ✓ ✗

BubbleML (Hassan et al., 2023) 2, 3 ✗ ✓

MPF-Bench (Shadkhah et al., 2025) 2, 3 ✗ ✓

Current study 2 ✓ ✓

3 DATASETS

We focus on the class of compressible multiphase problems in this paper. Breakup of liquid droplets
is a significant example in this class, which can be induced by laser irradiation (LIDE) or a shock
(SIDA). These two transient problems are investigated intensely through experiments and numerical
simulations. The Robust Discrete Equation Method for Interface Capturing (RDEMIC) (Paula et al.,
2023) is used to generate targets through solving the two-dimensional (2D) axisymmetric compress-
ible Euler equations. Adopting an axisymmetric setup reduces computational cost compared to the
full three-dimensional treatment. The set of equations, without dissipative terms in vector notation,
reads

∂tUl +∇ · Fl = Bl · ∇αl + Sl, (1)

where subscript l denotes the index of the phase, Ul is the vector of conserved quantities, Fl is the
flux tensor, Bl is the interaction tensor, and Sl is a source term to account for cylindrical symmetry,

Ul =


αl

αlρl
αlρlul

αlEl

 , Fl =


0

αlρlu
T
l

αlρlul ⊗ ul + αlplI

αl(El + pl)u
T
l

 , Bl =


−uTint
0

pint,lI

pint,lu
T
int

 , Sl = −αlur,l

r


0

ρl
ρlul

El + pl

 .

Above, αl, ρl, ul, pl, ur,l, and El imply the volume fraction, mass density, velocity vector, pres-
sure, velocity component in the radial direction, and total energy of phase l, respectively. Interface
velocity vector and pressure are indicated by uint and pint,l, respectively; without considering the
surface tension, pint,l is the same for all phases; r denotes the distance from the symmetry axis and
I is the identity tensor. This method is implemented and validated extensively through the Finite
Volume solver, ALPACA (Hoppe et al., 2022). In cylindrical coordinate configuration, the domain
revolves around the z-axis (south, as shown in Figure 2), resulting in an axisymmetric problem. In
the following sections, a brief overview of each dataset is given. For more details, refer to Appendix
A.

3.1 LASER-INDUCED DROPLET EXPLOSION (LIDE)

Experimental investigations of LIDE provide a valuable insight into pure liquid states and pressure-
sensitive molecular dynamics in solutions (Stan et al., 2016a). When a laser pulse hits the transparent
liquid droplet, energy is deposited within nanoseconds, forming a high-pressure filament along the
laser trajectory. This induces shock and expansion waves, which are reflected and subsequently gen-
erate negative pressure waves inside the droplet. Consequently, the droplet undergoes deformation
and eventually ruptures if the tension is strong enough. Notably, the negative pressure at rupture is
related to the tensile strength that the liquid can sustain during decompression (Stan et al., 2016b).
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This problem is also numerically addressed in literature (Paula et al., 2019). Taking advantage of
the symmetries, a droplet with radius R0 is located in the bottom left corner of a square domain with
length 3R0, as shown in Figure 2a. The filament, heated by the laser beam along the centerline, is
also illustrated. The boundary conditions (BC) are Symmetry (west) and Zero-gradient (east and
north). The latter refers to a special case of Neumann BC, where the normal derivative of the field
variable at the boundary is set to zero. To explore the dynamics of the explosion, we vary the values
for filament pressure, ambient pressure, laser half-width, and the droplet radii along perpendicular
axes, which distinguishes spherical from ellipsoidal geometries. The aforementioned parameters are
subsequently used as conditioning parameters during training. More details on the initial condition
values and the validation of the dataset are described in Appendix A.1.

(b)

r

z

(a)

laser
 half-width

3R0R0

0

R0

3R0

ambient

Symmetry axis

Zero-gradient BCSymmetry BC

0
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Planar shock

R0

48R0

12R0

Symmetry axis
z

r

Zero-gradient BC

Dirichlet BC

droplet

ambient

18R016.5R00

0

Figure 2: Initial setup for (a)LIDE and (b)SIDA.

3.2 SHOCK-INDUCED DROPLET AERO-BREAKUP (SIDA)

The droplet aero-breakup, which is caused by the sudden exposure of liquid droplets to external flow,
is relevant in practical applications of fuel injection and shock-tube flow (Liang et al., 2020). The
resulting shock–droplet interaction involves the evolution of reflected, transmitted, and diffracted
waves, along with droplet displacement, deformation, and the development of surface instabilities.
This high-speed phenomenon requires high spatiotemporal resolution to be accurately captured.
Surface tension has a strong impact on the droplet breakup mode, which is characterized by the
Weber number (Hinze, 1955). This non-dimensional parameter accounts for the relative dominance
of aerodynamic force over surface tension. Furthermore, the external flow regime, from subsonic to
supersonic, is governed by the Mach number (Kaiser et al., 2020).

Initially, we simulate the SIDA dataset in a domain of size [48R0, 12R0], which is shown in Figure
2b. This large domain is essential to avoid undesirable boundary effects regarding wave dynamics.
However, a fixed subdomain with size [6R0, 3R0] around the droplet is saved and later used in
training. This subdomain is chosen such that in the initial timestep, the shock wave is located at the
west end.

Boundary conditions include Dirichlet (west) and Zero-gradient (east and north). This dataset is
generated with various combinations of Mach and Weber numbers, which are later utilized as condi-
tioning parameters in model training (Meng & Colonius, 2018), (Winter et al., 2019). More details
on the initial condition values and the validation of the dataset are described in Appendix A.2.

3.3 METADATA

Each dataset1 includes 128 trajectories, and the splitting for training/validation/inference is
86/10/32. In total, 6 fields are made available for each dataset, where density, pressure, X-
velocity, Y-velocity, and schlieren are common in both datasets. The remaining channel is

1The uploaded supplementary material as a .zip file includes metadata.json files for each LIDE and SIDA
dataset. Also, sample video files are provided for visualization.
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the total energy for LIDE, and vorticity for SIDA. The spatiotemporal parameters used in
the numerical solver are presented in Table 2. The datasets are stored as HDF5 files, with
sizes of 75 GB and 12 GB for LIDE and SIDA, respectively, and the shapes for both are
[num of trajectories][num of timesteps][fields][X-resolution][Y-resolution]. Each trajectory in
the dataset file is assigned a unique group name based on its corresponding conditioning parameters.

Table 2: Metadata for LIDE and SIDA datasets

Dataset Resolution
[X, Y]

End time [s] CFL2 ∆tsave [s] ∆tsolver [s]3 ∆x [m]

LIDE [256, 256] 20× 10−9 0.35 1.00× 10−10 6.80× 10−12 1.25× 10−7

SIDA [256, 128] 15× 10−6 0.50 0.25× 10−6 1.95× 10−9 1.17× 10−5

4 EXPERIMENTS

4.1 DESIGN OF EXPERIMENTS

This section outlines the Design of Experiments (DOE). Each experiment is assigned a unique tag
for easier identification and comparison. We use ’P’ for Pressure, ’D’ for Density, ’U’ for X-
Velocity, ’V’ for Y-Velocity, ’E’ for Energy, ’S’ for Schlieren, and ’Vo’ for Vorticity. For example,
an experiment with a tag ’PDUV[ES] T (3,2)’ implies the input channels are Pressure (P), Density
(D), X-Velocity (U), Y-Velocity (V), Energy (E), and Schlieren (S). ’[ES]’ shows that Energy and
Schlieren are counted as conditioning fields and are not predicted in the output. Furthermore, ’T’ in-
dicates that the conditioning parameters are included in the experiment. Finally, ’(3,2)’ corresponds
to 3 consecutive inputs and 2 consecutive predicted frames. The complete DOE table is provided in
the Appendix B.1.

4.2 BASELINE MODELS

We investigate the performance of the datasets on a variety of neural architecture baselines, The
models under consideration are: UNet (Ronneberger et al., 2015), ResNet (He et al., 2016), FNO (Li
et al., 2020), ViT (Dosovitskiy et al., 2020), and ScOT (Herde et al., 2024). Each model was trained
from scratch on two parameter categories, i.e., 1M and 50M. However, ResNet is trained only with
1M model parameter count. For more details on model hyperparameters, refer to Appendix B.2.

4.3 INVESTIGATION SCENARIOS

We analyze our results by categorizing the experiments into three distinct scenarios. Each scenario
addresses a certain learning problem, and experiments are grouped by altering only the learning
parameter while holding all other parameters fixed. We denote the grouped experiments by ’G’ in
all plots in section 5 (Results). The following subsections give a brief overview of these learning
problems.

4.3.1 TEMPORAL CONTEXT

Historic information, provided through additional temporal inputs (frames), has proved its efficacy
(Hassan et al., 2023), (Shadkhah et al., 2025). In some experiments, to facilitate the understanding
of the patterns, we incorporate multiple frames into the model. This provision is effective in learning
transient trajectories. For both datasets, we experiment with either 1 input or including a sequence
of 3 historic inputs. We also define a stride parameter during dataloading, which skips a fixed
number of timesteps. In the LIDE and SIDA datasets, strides of 10 and 5 timesteps are employed,
respectively.

2CFL refers to Courant-Friedrichs-Lewy criterion.
3This is the average solver timestep among all trajectories.
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4.3.2 CONDITIONING PARAMETERS

In many fluid dynamic problems, the physics are fundamentally characterized by non-dimensional
and domain parameters, which influence the system’s evolution. These provide crucial information
as they dictate the governing dynamics, leading to distinct flow regimes. Conditioning the model
with such parameters improves generalization (Kohl et al., 2023), (Peebles & Xie, 2023). The
conditioning parameters for the LIDE and SIDA datasets are mentioned in section 3 (Datasets).
These are injected into the models through the normalization layers (Herde et al., 2024). More
details on the implementation are provided in Appendix B.3.

4.3.3 CONDITIONING FIELDS

In this experimental scenario, additional channels are appended to the inputs before passing them
to the model. These extra channels are called conditioning fields, which are derived quantities from
existing inputs. For the LIDE dataset, we incorporate energy and schlieren as the conditioning fields,
whereas for the SIDA dataset, vorticity and schlieren are used. We aim to test the hypothesis that
this type of conditioning guides the model towards generalization.

4.4 TRAINING AUTOREGRESSIVE MODELS

In this work, we use a many-to-many training style to train each of our baselines, Mθ. The dataset
is a discrete spatiotemporal system, containing c channels. For a particular trajectory, the mapping
is given by Xt : Ω× [0, T ] → Rc, where Ω ⊂ R2 and T represents the last timestep of the trajectory.

During training, we split each of the training trajectories into M windows. The length of each win-
dow is determined by the number of input and output sequences, denoted by l1 and l2, respectively,
and s denotes the stride, which are all hyperparameters of the temporal context study as mentioned
in section 4.3.1.

The input sequence of the mth window is given by Xm = [Xm, . . .Xm+(l1×s)] ∈ Rl1×c and the
corresponding target is Ym = [Xm+((l1+1)×s)] . . .Xm+((l1+l2)×s)] ∈ Rl2×c. The training loss
reads:

MSE :=
1

M

M∑
m=1

∥Mθ (Xm)− Ym∥2 , (2)

After each training epoch, the validation loss is computed by rolling out the model autoregressively
for 5 steps and then computing the Root Mean Square Error (RMSE).

4.5 INFERENCE METRICS

During inference, we start from the initial condition of each trajectory and rollout the model in an
autoregressive fashion to reach the final frame. The predictions across trajectories are accumulated
into a tensor, and the Mean Average Error (MAE) and Root Mean Square Error (RMSE) metrics
(Refer to Appendix B.5) are obtained by comparing the predictions against the target. These metrics,
henceforth, are referred to as error-type 1.

We define an error-type 2 by starting again from the initial frame and performing rollout until the
end of the sequence. We compute the per-frame RMSE error, yielding a tensor of shape (N, R, T,
C, spatial-dims), where N is the number of trajectories, R is the number of rollout steps, T is the
number of output timesteps, C is the number of output channels, and spatial-dims is the resolution
of the dataset. The error aggregation is performed in four stages:

1. In each trajectory, we first average the error over the temporal, channel, and spatial dimen-
sions, resulting in an overall tensor with shape (N, R).

2. We compute the cumulative summation along the rollout dimension, retaining the shape
(N, R).

3. We compute mean and standard deviation across trajectories (N), which results in a tensor
of shape (R).
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4. Finally, we reduce across the rollout dimension to obtain the overall mean and standard
deviation. We denote this metric as error-type 2. The reported metrics in the plots of
section 5 (Results) are error-type 2.

5 RESULTS

5.1 EFFECT OF SEQUENCE INFORMATION

Within the many-to-many autoregressive training framework, we evaluate three configurations of
sequence information: (1,1), (3,1), and (3,2), corresponding to one input–one prediction, three in-
puts–one prediction, and three inputs–two predictions, respectively. For both the LIDE and the
SIDA datasets, we observe a consistent performance improvement across all models trained with
three historic timesteps, with the single prediction models having a slight metric advantage over the
two consecutive predictions. A further gain in accuracy is obtained upon increasing the parameter
count, with UNet performing the best. These results for the SIDA are depicted in Figure 3. The
results for the LIDE are shown in Figure 12 in the Appendix C.

G1

10 1

100

FNO-1M

G1

UNet-1M

G1

ScOT-1M

G1

ViT-1M

G1

ResNet-1M

G1

10 1

100

FNO-50M

G1

UNet-50M

G1

ScOT-50M

G1

ViT-50M

PDUV_F_(1,1) PDUV_F_(3,1) PDUV_F_(3,2)

Figure 3: Effect of sequence information for SIDA dataset. Error-type 2 is presented.

5.2 EFFECT OF CONDITIONING PARAMETERS

We conduct several studies to assess if including conditioning parameters has a pronounced influ-
ence on the inference metrics. For the LIDE dataset, we observe that the effect of embedding these
parameters into the baselines is evident, whereas metrics deteriorate for the SIDA dataset, as illus-
trated in Figure 4 and 5, respectively. It is worth noting that the characteristics of the conditioning
parameters in the SIDA dataset are different from those of the LIDE dataset. In the former, the
parameters are geometry-based, and for the latter, these are flow properties.

5.3 EFFECT OF CONDITIONING FIELDS

Considering the selected conditioning fields for each dataset according to the section 4.3.3, we con-
clude from Figure 6 that across all models and parameter counts, incorporating these fields degrades
the predictions, resulting in increased errors during inference. The same results are illustrated by
Figure 13 in Appendix C for the LIDE dataset.

5.4 BASELINE MODEL PERFORMANCE STUDY

We investigate the MAE and RMSE of type 1 (section 4.5) in baseline models on an identical ex-
periment for each dataset. As a sample experiment, we present Table 3, which shows that a higher
parameter count improved the prediction accuracy across all models. UNet consistently achieves
superior performance compared to all the other baselines in both the 1M and 50M categories. Re-
maining tables are available in Appendix E.
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Figure 4: Effect of conditioning parameters for LIDE dataset. Error-type 2 is presented.
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Figure 5: Effect of conditioning parameters for SIDA dataset. Error-type 2 is presented.
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Figure 6: Effect of conditioning fields for SIDA dataset. Error-type 2 is presented.

5.5 COMPARISON BETWEEN ERROR TYPES

We compare the two error types, defined in section 4.5, to correlate the metrics with the predicted
rollout. It is worth emphasizing that from our ablations, error-type 2 demonstrates better coherence
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Table 3: Error-type 1 for experiment PDUV F (3,1) for the LIDE dataset across all models.

MODEL 1M 50M
MAE RMSE MAE RMSE

UNet 0.058351 0.201772 0.029650 0.130409
FNO 0.114536 0.359660 0.065122 0.239348
ViT 0.184868 0.493885 0.047491 0.169020
ScOT 0.068976 0.210712 0.039000 0.147999
ResNet 0.314502 0.683159

with predicted rollouts in some cases. For example, as shown in Table 4, UNet-50M achieves
higher accuracy according to error-type 2 compared to ViT-50M; UNet captures the droplet interface
more precisely, indicating better performance as a surrogate relative to ViT. The corresponding
plot is available in Figure 24 in Appendix D. In contrast, error-type 1 suggests that ViT predicts
better. This discrepancy highlights the importance of selecting an error metric that aligns with the
qualitative behavior observed in rollout plots (Luo et al., 2023). Example rollout prediction plots,
during inference, for the LIDE and the SIDA datasets are shown in Appendix D.

Table 4: Error-type 1 and 2 for the experiment PDUV T (3,1) for the LIDE dataset across models
with 50M parameters.

MODEL Error type 1 Error type 2

UNet 0.132766 0.938997
FNO 0.185669 1.411901
ViT 0.121964 0.997704
ScOT 0.104845 0.818168

6 CONCLUSION

This study presents two novel datasets in the domain of compressible multiphase fluid dynamics.
We benchmarked five baseline models on these datasets with varying parameter count. Our study
scenarios explore the influence of historic information, conditioning parameters and fields. Infer-
ence results of trained baseline models on both the LIDE and the SIDA datasets showed superior
prediction accuracy upon incorporating additional temporal context. Subsequently, introducing
additional channels as conditioning fields to the input degraded the prediction accuracy during
inference on both datasets. Furthermore, injecting conditional parameters into the baselines yielded
bifurcating results for the datasets. Despite poor performance on the SIDA dataset, models show
better accuracy on the LIDE dataset. Finally, we examined the interpretation of two error types
and their correlation with the rollout plots, which illustrates the importance of selecting a suitable
error metric in choosing an appropriate surrogate. In conclusion, it is essential to highlight that
representing the complex physics and patterns through the current datasets by surrogates still poses
a challenge. This observation motivates the integration of such datasets in the SciML community to
further the development of data-driven surrogates.

Limitations and Future works. Inclusion of a broader range of models, additional error types,
and analyzing different combinations of conditioning fields and parameters are future directions.
Advancing toward more effective conditioning algorithms is also an important investigation. Ul-
timately, these developments will enable rapid and efficient exploration of parameter spaces that
govern complex multiphase flow phenomena.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 REPRODUCIBILITY STATEMENT

We introduced two datasets in this paper, which are reproducible based on our description in the main
text (section 3) and supplements in the Appendix (A). These explanations include the referenced
Finite Volume solver, numerical setup, and initial conditions. In addition, for reproducing model
evaluations, we provide trained model weights and the code that has the complete set of instructions
upon request.
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de Bézenac, and Siddhartha Mishra. Poseidon: Efficient foundation models for pdes. Advances
in Neural Information Processing Systems, 37:72525–72624, 2024.

Julius O Hinze. Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes.
AIChE journal, 1(3):289–295, 1955.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Nils Hoppe, Josef M Winter, Stefan Adami, and Nikolaus A Adams. Alpaca-a level-set based sharp-
interface multiresolution solver for conservation laws. Computer Physics Communications, 272:
108246, 2022.

Guang-Shan Jiang and Chi-Wang Shu. Efficient implementation of weighted eno schemes. Journal
of computational physics, 126(1):202–228, 1996.

10

https://github.com/NVIDIA/physicsnemo
https://github.com/NVIDIA/physicsnemo


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

JWJ Kaiser, JM Winter, S Adami, and NA Adams. Investigation of interface deformation dynamics
during high-weber number cylindrical droplet breakup. International Journal of Multiphase Flow,
132:103409, 2020.

Georg Kohl, Li-Wei Chen, and Nils Thuerey. Benchmarking autoregressive conditional diffusion
models for turbulent flow simulation. arXiv preprint arXiv:2309.01745, 2023.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces
with applications to pdes. Journal of Machine Learning Research, 24(89):1–97, 2023.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations. arXiv preprint arXiv:2010.08895, 2020.

Yu Liang, Yazhong Jiang, Chih-Yung Wen, and Yao Liu. Interaction of a planar shock wave and a
water droplet embedded with a vapour cavity. Journal of Fluid Mechanics, 885:R6, 2020.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng
Zhang, Li Dong, et al. Swin transformer v2: Scaling up capacity and resolution. 2022 ieee. In
CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11999–12009, 2021.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 11976–11986, 2022.

Yining Luo, Yingfa Chen, and Zhen Zhang. Cfdbench: A large-scale benchmark for machine learn-
ing methods in fluid dynamics. arXiv preprint arXiv:2310.05963, 2023.

Kazuki Maeda, Wayne Kreider, Adam Maxwell, Bryan Cunitz, Tim Colonius, and Michael Bailey.
Modeling and experimental analysis of acoustic cavitation bubbles for burst wave lithotripsy. In
Journal of Physics: Conference Series, volume 656, pp. 012027. IOP Publishing, 2015.

Jomela C Meng and Tim Colonius. Numerical simulation of the aerobreakup of a water droplet.
Journal of Fluid Mechanics, 835:1108–1135, 2018.

Thomas Paula, Stefan Adami, and Nikolaus A Adams. Analysis of the early stages of liquid-water-
drop explosion by numerical simulation. Physical Review Fluids, 4(4):044003, 2019.

Thomas Paula, Stefan Adami, and Nikolaus A Adams. A robust high-resolution discrete-equations
method for compressible multi-phase flow with accurate interface capturing. Journal of Compu-
tational Physics, 491:112371, 2023.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 4195–4205, 2023.
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A DATASETS

As mentioned in the main text, we solve the compressible multiphase Euler equations (Equation 1)
with the RDEMIC, which captures the interface as a diffuse zone on a Cartesian grid. This method
combines the solutions of pairwise Riemann problems to obtain the finite-volume flux. By a modi-
fied partitioning of the Riemann solutions and a specific combination of fluxes and non-conservative
terms, the method is made practically applicable for high-resolution shock-interface problems (Paula
et al., 2023). We use this method in ALPACA (Hoppe et al., 2022), which is a well-suited environ-
ment for compressible single-phase simulations and other multi-phase methods, although originally
developed as a level-set-based sharp-interface solver. Its standout features include a wide variety
of Riemann solvers, high-resolution reconstruction schemes, and a state-of-the-art multiresolution
algorithm for high computational efficiency. In both datasets in this study, the cell face fluxes are
reconstructed with the fifth-order WENO scheme (Jiang & Shu, 1996). Furthermore, a third-order
Runge-Kutta Total Variation Diminishing scheme is applied for time discretization (Gottlieb & Shu,
1998).

To close the governing equation (Equation 1), an Equation of State (EOS) is used, which relates
pressure to density and internal energy. We adopt the stiffened-gas EOS to generate both datasets,
which reads

p(ρ, e) = (γ − 1)ρe− γpstiff ⇐⇒ e(ρ, p) =
p+ γpstiff

(γ − 1)ρ
, (3)

with p being the pressure of the fluid, ρ the mass density, e the internal energy, γ the model constant.
In addition, pstiff accounts for a pre-compression of the fluid. To degenerate the aforementioned
equation to an ideal-gas EOS for air, we adopt γ = 1.4 and pstiff = 0. The total energy density,
E[ J

kg ], is obtained by considering internal energy from Equation 3 and kinetic energy, as shown in
Equation 4:

E = ρe+ 1/2ρ(u2
r + u2

z) (4)

Here, ur and uz are the velocity components in the r and z directions, respectively. Schlieren [ kgm4 ]
is computed in the solver by Equation 5:

schlieren = ∇ρ (5)

Additionally, vorticity [s−1] is defined in Equation 6:

vorticity = ∇× u (6)

A.1 THE LIDE DATASET

To simulate this problem, careful considerations must be taken into account. The filament along the
centerline, which is heated by a laser in a very short time, is pre-initialized with vapor instead of
liquid water. However, it is important to note that the density of the vapor in this zone remains equal
to that of liquid water, since the laser energy heats the liquid rapidly. Considering that different laser
pulse energies result in different pressures in the filament (pfilament), we cover a range from 108 to
1010 [Pa] in our dataset. Alongside the high-pressure, the ambient pressure (pambient) varies between
105 and 106 [Pa]. In addition, the laser half-width changes in the range of 2 × 10−7 to 1.5 × 10−6

[m]. The droplet radius along the r and z axes varies from 1× 10−5 to 1.6× 10−5 [m]. A summary
of initial condition values is presented in Table 5.

Validation. We compare the evolution of the droplet diameter in the radial direction to validate
our dataset against experiments (Stan et al., 2016b). According to experimental observations, the
droplet starts to expand upon the arrival of the radial shock wave, which is induced by high pressure
in the filament. Due to the wave interactions, a decrease in the expansion rate is observed, which
is again followed by an increase. This trend is depicted in Figure 7 and is in good agreement with
experiments.
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Table 5: Initial conditions for the LIDE dataset
Phase-l ρl [kgm−3] {ur,l, uz,l} [ms−1] pl [Pa]

1 (Ambient air) 0.74 0.0, 0.0 pambient

2 (Liquid droplet)
998.2 0.0, 0.0 pambient z > laser half-width
998.2 0.0, 0.0 pfilament z < laser half-width

In this problem, it is crucial to analyze and understand the wave interactions inside the droplet.
After rapid energy deposition along the centerline, the main shock spreads radially, approaching
the droplet surface. The corresponding reflection results in a curved negative-pressure wave, which
increases the tension. Shortly after, this wave collapses toward the z-axis and impacts the motion of
the droplet’s surface (Paula et al., 2019). These phenomena are depicted step-by-step in Figure 8.
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Figure 7: Validation of the LIDE data compared to the expected trend (Stan et al., 2016b).
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Figure 8: Visualization of droplet’s motion and deformation in the LIDE dataset.
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A.2 THE SIDA DATASET

To get a better understanding of this problem, both wave dynamics and droplet breakup modes are
studied extensively in the literature (Sharma et al., 2021), (Theofanous & Li, 2008). Breakup modes
are characterized by the Weber number (Hinze, 1955), which is defined as follows:

We =
ρ2u

2
2d

σ
(7)

In this definition, ρ2 and u2 refer to post-shock density and velocity of the external flow, respectively.
Additionally, d is the droplet diameter and σ denotes the surface tension coefficient. For droplet
aero-breakup, two major breakup modes are introduced: Rayleigh-Taylor Piercing (RTP) and shear-
induced entrainment (SIE). RTP is the main instability mode for small Weber numbers (starting at
We ≈ 28), and SIE is the terminal instability mode for increasing Weber numbers (We > 103)
(Theofanous & Li, 2008). For this study, we cover the Weber number in the range [530, 40000],
which corresponds to the transition regions from RTP to SIE and also the SIE region itself.

After the shock impact, the post-shock flow plays a significant role in droplet deformation and
breakup. The post-shock flow regime is identified by the Mach number, which is a non-dimensional
parameter that relates flow velocity to the speed of sound. We compute the post-shock flow proper-
ties using the normal shock relation. These relations are given by (Anderson, 1990):

us = Ms · c1 (8)

u1,rel = −us (9)

u1 = u1,rel + us (10)

T2 = T1

(
1 +

2γ
(
M2

s − 1
)

γ + 1

)(
2 + (γ − 1)M2

s

(γ + 1)M2
s

)
(11)

c2 =
√

γ ·R1 · T2 (12)

Mf2,rel =

√
1 + γ−1

2 M2
s

γM2
s − γ−1

2

(13)

u2,rel = Mf2,rel · c2 (14)

u2 = us − u2,rel (15)

ρ2 = ρ1 ·
(γ + 1)M2

s

2 + (γ − 1)M2
s

(16)

p2 = p1

(
1 +

2γ
(
M2

s − 1
)

γ + 1

)
(17)

We use Ms for the shock and Mf for the post-shock flow Mach number. The flow states before
and after the shock wave are referred to with subscripts 1 and 2, respectively. Furthermore, T is the
temperature, c is the speed of sound, γ =

cp
cv

is the ratio of specific heat, and R is the specific gas
constant. We consider shock Mach numbers spanning from 1.2 to 3.5. Then, based on the selected
shock Mach number, we calculate ρ2, u2, and p2 for the west Dirichlet boundary condition. Next,
the surface tension coefficient is computed from the Weber number. A summary of initial condition
values is presented in Table 6. It should be noted that the value 16.5R0 in the table, shows the
location of the shock wave in the initial setup (refer to Figure 2).

Validation. We compare the SIDA dataset against numerical studies. Since we employ an axisym-
metric setup in our simulation, a full three-dimensional study is referenced for validation (Winter
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Table 6: Initial conditions for the SIDA dataset
l ρl [kgm−3] {ur,l, uz,l} [ms−1] pl [Pa] pl [Pa]

1 (Ambient air)
ρ2 0.0, u2 p2 z < 16.5R0

1.2 0.0, 0.0 101325.0 z > 16.5R0

2 (Liquid droplet) 998.2 0.0, 0.0 101325.0

et al., 2019), (Meng & Colonius, 2018). For this purpose, the non-dimensional time (t∗) and dis-
placement of the center of mass (COM) in the droplet (∆z∗) are defined as

t∗ = t
u2

d

√
ρ2

ρdrop
, (18)

and

∆z∗ =
z

d
, (19)

where t is the saved timestep, and ρdrop is density of the liquid droplet. Upon shock and post-shock
flow impact, the droplet COM accelerates. This trend is clearly observable in our dataset, which
aligns with results from the literature. In Figure 10, the flattening of the droplet surface and the
hat-shaped deformation are shown. Noteworthy, the perturbations on the surface of the droplet are
related to shear-induced instabilities (Sharma et al., 2021).
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Figure 9: Validation of SIDA data against numerical studies (Winter et al., 2019),(Meng & Colonius,
2018).

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

t=
5

Density (kg/m3) Vorticity (s 1)

t=
20

t=
40

t=
60

250

500

750

1000

0

1

2

3

1e7

250

500

750

1000

0

1

2

3

1e7

250

500

750

1000

0

1

2

3

1e7

250

500

750

1000

0

1

2

3

4
1e7

Figure 10: Visualization of droplet’s motion and deformation in the SIDA dataset.
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B EXPERIMENT DETAILS

B.1 DESIGN OF EXPERIMENTS

The complete set of experiments for the SIDA and the LIDE datasets is shown in Tables 7 and 8,
respectively. We experiment with a variety of input, conditioning, and output channels, along with
the combinations of sequence info and conditioning parameters.

Table 7: SIDA (PDUVVoS) experiments with Tag identifiers.

# Expt Tag Input Channels Output Channels Cond4 Seq Info 5

1 PDUV F (1,1)
Pressure, Density Pressure, Density

F 1, 1, 5
X-velocity, Y-Velocity X-Velocity, Y-Velocity

2 PDUV F (3,1)
Pressure, Density Pressure, Density

F 3, 1, 5
X-velocity, Y-velocity Velocity x, Velocity y

3 PDUV T (3,1)
Pressure, Density Pressure, Density

T 3, 1, 5
X-velocity, Y-velocity X-velocity, Y-velocity

4 PDUV[VoS] F (1,1)
Pressure, Density Pressure, Density

F 1, 1, 5X-velocity, Y-velocity X-velocity, Y-velocity
[Vorticity, Schlieren]

5 PDUV[VoS] F (3,1)
Pressure, Density Pressure, Density

F 3, 1, 5X-velocity, Y-velocity X-velocity, Y-velocity
[Vorticity, Schlieren]

6 PDUV[VoS] T (3,1)
Pressure, Density Pressure, Density

T 3, 1, 5X-velocity, Y-velocity X-velocity, Y-velocity
[Vorticity, Schlieren]

7 PDUV F (3,2)
Pressure, Density Pressure, Density

F 3, 2, 5
X-velocity, Y-velocity X-velocity, Y-velocity

8 PDUV[VoS] F (3,2)
Pressure, Density Pressure, Density

F 3, 2, 5X-velocity, Y-velocity X-velocity, Y-velocity
[Vorticity, Schlieren]

4refers to the boolean flag indicating whether conditioning parameters are injected into the normalization
layer.

5refers to the sequence information: [number of historic inputs, number of bundled predictions, stride be-
tween timesteps].
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Table 8: LIDE (PDUVES) experiments with Tag identifiers.

# Expt Tag Input Channels Output Channels Cond Seq Info

1 P F (1,1) Pressure Pressure F 1, 1, 10

2 P F (3,1) Pressure Pressure F 3, 1, 10

3 P T (1,1) Pressure Pressure T 1, 1, 10

4 P T (3,1) Pressure Pressure T 3, 1, 10

5 PDUV F (1,1)
Pressure, Density Pressure, Density

F 1, 1, 10
X-velocity, Y-velocity X-velocity, Y-velocity

6 PDUV F (3,1)
Pressure, Density Pressure, Density

F 3, 1, 10
X-velocity, Y-velocity X-velocity, Y-velocity

7 P[ES] F (1,1)
Pressure,

Pressure F 1, 1, 10
[Energy, Schlieren]

8 P[ES] F (3,1)
Pressure

Pressure F 3, 1, 10
[Energy, Schlieren]

9 PDUV[ES] F (1,1)
Pressure, Density Pressure, Density

F 1, 1, 10X-velocity, Y-velocity X-velocity, Y-velocity
[Energy, Schlieren]

10 PDUV[ES] F (3,1)
Pressure, Density Pressure, Density

F 3, 1, 10X-velocity, Y-velocity X-velocity, Y-velocity
[Energy, Schlieren]

11 P F (3,2) Pressure Pressure F 3, 2, 10

12 PDUV F (3,2)
Pressure, Density Pressure, Density

F 3, 2, 10
X-velocity, Y-velocity X-velocity, Y-velocity

13 PDUV T (1,1)
Pressure, Density Pressure, Density

T 1, 1, 10
X-velocity, Y-velocity X-velocity, Y-velocity

14 PDUV T (3,1)
Pressure, Density Pressure, Density

T 3, 1, 10
X-velocity, Y-velocity X-velocity, Y-velocity
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B.2 BASELINE MODEL DETAILS

In this section, we provide a brief overview of all the models used as baselines. In all the models
described in this section, the LayerNorm (Ba et al., 2016) is used as the default choice of normaliza-
tion layer, and the normalized grid X- and Y-coordinates are appended as additional channels with
the input channels.

1. UNet: We implement the UNet variant as described in Gupta & Brandstetter (2022). UNets
follow a structure that first performs spatial downsampling and then spatial upsampling,
with each block composed of multiple convolutional layers. A distinctive feature of UNet
is the inclusion of skip connections that link activations from the downsampling path to
their corresponding upsampling layers. Table 9 shows the hyperparameters chosen for the
two model parameter categories. The number of latent channels corresponds to the feature
dimension produced after the first convolutional layer. Along the downsampling path, the
base latent channel dimension is adjusted according to a channel multiplier list, with each
element specifying the factor used to increase the number of channels at successive levels
of the model.

Table 9: UNet hyperparameters.

Hyperparameters 1M 50M

Latent channels 28 48
Channel Multiplier [1,4] [1,2,2,4]
Activation GELU GELU

2. Residual Network (ResNet): The baseline ResNet is implemented as described in Gupta
& Brandstetter (2022), where no up- or down-projection techniques have been used. The
input channels are projected to the latent channels by a convolutional layer and subse-
quently passed through four ResNet blocks. Each block consists of two 3x3 convolutional
layers, each followed by an activation function and a norm layer. The convolutional layers
employ a stride and padding of 1, preserving the spatial resolution of the feature maps. The
final output is then obtained by adding the original input to the convolutional output. Refer
to Table 10 for the hyperparameters.

Table 10: ResNet hyperparameters.

Hyperparameters 1M

Latent channels 112
# residual blocks [1, 1, 1, 1]
Activation GELU

3. Fourier Neural Operator (FNO): The FNO is designed to approximate mappings be-
tween function spaces by performing computations directly in the Fourier domain. Its
architecture can be divided into three main components: a lifting network, a sequence of
Fourier layers, and a decoder network. We adopt the implementation described in Contrib-
utors (2023) and use the hyperparameters as shown in Table 11 for our experiments.
The lifting network first maps the input channels into a higher-dimensional latent space
using pointwise convolutions. The dimension of this latent space is described by the latent
channels. The core of the model is composed of Fourier layers that have spectral convolu-
tion with a point-wise linear convolution layer acting as a skip connection. The activation
is applied to the summation of the spectral convolutions and this convolutional skip layer.
In each spectral convolution, the input is transformed into the Fourier domain using Fast
Fourier Transform (FFT), where a specified number of modes are retained and updated with
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learned complex weights, and the result is projected back to the spatial domain through the
decoder network.

Table 11: FNO hyperparameters.

Hyperparameters 1M 50M

Latent channels 16 32
FNO Layers 4 6
Modes 16 45
Padding 8 8
Padding Type constant constant
Activation in Fourier Layers GELU GELU
Decoder layers 2 2
Decoder layers size 128 256
Decoder activation SiLU SiLU

4. Vision Transformer (ViT): A modified ViT (Dosovitskiy et al., 2020) architecture was
adopted. The implementation follows the general ViT paradigm, splitting the image into
square patches of size 8, embedding and passing them through a transformer encoder, and
reconstructing the spatial output from the resulting latent representations with the addi-
tional capability to handle non-square inputs. The ViT model consists of a patch-based
embedding, an encoder, and a decoder. Passing the input through the embedding-encoder-
decoder pipeline results in a reconstruction of the original input shape. The Embedding
divides the image into non-overlapping patches, embeds them via a linear projection, and
adds positional encodings. For each patch, this results in a sequence of token vectors, each
with dimensions specified by the latent channels. The transformer encoder processes this
sequence using standard Multi-Head Self-Attention (MHSA) and feedforward layers, with
the hidden size denoted by the intermediate size variable. The number of the hidden lay-
ers determines the number of the encoder layers. The number of MHSA in each layer is
specified by the number of attention heads. This attention stage allows global spatial inter-
actions across the patch grid, enabling the model to learn long-range dependencies. Table
12 shows the hyperparameters for the two learnable parameter categories.

Table 12: ViT hyperparameters.

Hyperparameters 1M 50M

Latent channels 128 504
Patch size 8 8
# hidden layers 2 12
# attention heads 4 14
intermediate size 512 1024
Activation GELU GELU

5. Scalable Operator Transformer (ScOT): The ScOT model is based on the Poseidon
framework (Herde et al., 2024). At its core, ScOT adopts a hierarchical transformer ar-
chitecture inspired by vision transformers with a window-based approach. The input is
partitioned into a uniform grid of non-overlapping patches. We implement an additional
capability to process non-square inputs. Each patch undergoes an averaging operation us-
ing a shared spatial weight matrix, followed by a linear projection into a latent embedding
space, whose size is described by the latent channels. This procedure produces a piecewise-
constant latent function representation over the domain, which serves as the input to the
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transformer backbone. The motivation for this patch-based embedding is to reduce the
computational complexity associated with global attention while preserving essential local
information about the input field.
Once embedded, the representation is processed through a series of hierarchical SwinV2
Transformer blocks (Liu et al., 2021), arranged in multiple stages that progressively down-
sample and subsequently upsample the latent feature maps, forming a UNet-like archi-
tecture. The number of blocks per stage is defined by the variable ’depths’ in Table 13.
Each stage applies windowed MHSA, where attention computations are restricted to local
windows rather than the entire spatial domain, significantly reducing the quadratic cost of
global attention. The number of parallel MHSA per stage is determined by the number of
attention heads. To ensure information exchange across windows and avoid locality bias,
the attention windows are shifted between consecutive layers, enabling effective global
context modeling over multiple layers.
The hierarchical design incorporates patch merging operations during the encoder phase to
reduce spatial resolution and increase the feature dimension, thereby allowing deeper layers
to capture global structures. Conversely, the decoder phase employs patch expansion to
restore resolution, and skip connections in the form of ConvNext blocks (Liu et al., 2022),
bridging the corresponding encoder and decoder stages. The number of blocks per stage in
the ConvNext blocks is specified by the hyperparameter ’skip-connections’.

Table 13: ScOT hyperparameters.

Hyperparameters 1M 50M

Latent channels 27 150
Patch size 4 4
Depths [3,3,3] [4,4,4]
# attention heads [3,6,12] [6,12,24]
Skip connections [2,2,0] [3,3,0]
Window size 16 16
MLP ratio 2.0 4.0
Activation GELU GELU

B.3 CONDITIONING

In this section, we describe the formulation of the strategy used to integrate conditioning parameters
into the model (Herde et al., 2024). For an input x ∈ Rd, and k being the conditioning parameters,
the conditional layer norm formulation is given by Equation 20. Figure 11 illustrates this injection
of conditioning parameters into the layer norm. Here γ and β are simple Multilayer Perceptrons
(MLPs).

LayerNormγ(k),β(k)(x) = γ(k)⊙ x− µx(x)√
σ2
x(x) + ϵ

+ β(k),

µx(x) =
1

d

d∑
j=1

xj , σ2
x(x) =

1

d

d∑
j=1

(
xj − µx(x)

)2
.

(20)

B.4 TRAINING HYPERPARAMETERS

Table 14 shows the training hyperparameters that are common for all the models. Each model has
its own specific hyperparameters, which are described in Appendix B.2. All models were trained
on NVIDIA RTX A6000 48GB GPU with bf16 mixed-precision, except for the FNO, which was
trained on fp32.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Conditioning Layer

MLP

Input (x)

MLP

LayerNorm

Figure 11: Conditional LayerNorm.

Table 14: Training hyperparameters.

Hyperparameter Value

Number of Epochs 128
Batch Size 32
Optimizer AdamW
Weight Decay 0.000001
Learning Rate(LR) 0.00005
LR Scheduler Cosine
Warmup Ratio 0.0
Mix-precision bf16 (except FNO: fp32)

B.5 ERROR METRICS

In this study, we employ two commonly used error measures: the Root Mean Square Error (RMSE)
and the Mean Absolute Error (MAE).

The RMSE (Equation 21) measures the square root of the mean squared difference between predic-
tions and ground-truth values, penalizing larger errors more strongly.

RMSE =

√√√√ 1

n

n∑
i=1

(
Yi − Ŷi

)2
(21)

The MAE (Equation 22) measures the average magnitude of the absolute prediction errors.

MAE =
1

n

n∑
i=1

∣∣∣Yi − Ŷi

∣∣∣ (22)

where Yi denotes the ground-truth values, Ŷi the corresponding model predictions, and n the total
number of samples.
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C RESULTS

The remaining plots for the dataset LIDE are depicted in this section. The corresponding result for
the analysis of including more historic inputs is given by Figure 12.
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Figure 12: Effect of sequence information for the LIDE dataset. Error-type 2 is presented.

Moreover, the effect of the implementation of conditioning fields is shown in Figure 13.
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Figure 13: Effect of conditioning fields for the SIDA dataset. Error-type 2 is presented.
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D INFERNCE ROLLOUT PLOTS

D.1 ROLLOUT PREDICTIONS FROM INITIAL CONDITIONS FOR THE LIDE DATASET

In the following, we present rollout predictions for various models—each with 50M parameters,
except for ResNet, which has only 1M parameter count. The trajectory shown in the Figures 14, 15,
16, 17, and 18. The trajectory corresponds to the following simulation parameters: filament pressure
9.3886 × 109 [Pa], ambient pressure 1.0382 × 105 [Pa], laser half-width 1.1727 × 10−6 [m], and
droplet radii 1.5966× 10−5 [m] and 1.2139× 10−5 [m] along z- and r-axis, respectively.
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Figure 14: Rollout predictions for the LIDE-Experiment PDUV F (3,1) with UNet-50M.
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Figure 15: Rollout predictions for the LIDE-Experiment PDUV F (3,1) with FNO-50M.
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Figure 16: Rollout predictions for the LIDE-Experiment PDUV F (3,1) with ViT-50M.
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Figure 17: Rollout predictions for the LIDE-Experiment PDUV F (3,1) with ScOT-50M.
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Figure 18: Rollout predictions for the LIDE-Experiment PDUV F (3,1) with ResNet-1M.
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D.2 ROLLOUT PREDICTIONS FROM INITIAL CONDITIONS FOR THE SIDA DATASET

Here, we present rollout predictions for various models—each with 50M parameters, except for
ResNet, which has only 1M parameter count. The trajectory shown in the Figures 19, 20, 21, 22,
and 23 corresponds to the following simulation parameters: The shock Mach number 3.26, the flow
Mach number 1.42, and the Weber number 13820.

Figure 19: Rollout predictions for the SIDA-Experiment PDUV F (3,1) with UNet-50M.
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Figure 20: Rollout predictions for the SIDA-Experiment PDUV F (3,1) with FNO-50M.

Figure 21: Rollout predictions for the SIDA-Experiment PDUV F (3,1) with ViT-50M.

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Figure 22: Rollout predictions for the SIDA-Experiment PDUV F (3,1) with ScOT-50M.

Figure 23: Rollout predictions for the SIDA-Experiment PDUV F (3,1) with ResNet-1M.
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Figure 24: Comparison between UNet 50-M (a) and ViT 50-M (b) with target (for both at right) at
the last rollout step for experiment PDUV T (3,1).
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E TABLES

E.1 ERROR-TYPE 1 METRICS FOR THE LIDE DATASET

In this section, we showcase the MAE and RMSE of type 1 for all of the experiments for the LIDE
dataset.

Table 15: Error-type 1 for experiment P F (1,1) for the LIDE dataset across all models.

MODEL 1M 50M
MAE RMSE MAE RMSE

UNet 0.050158 0.320097 0.029947 0.263856
FNO 0.038743 0.236019 0.034457 0.228853
ViT 0.064188 0.330116 0.035981 0.265581
ScOT 0.054083 0.350523 0.030053 0.252165
ResNet 0.094531 0.440517

Table 16: Error-type 1 for experiment P F (3,1) for the LIDE dataset across all models.

MODEL 1M 50M
MAE RMSE MAE RMSE

UNet 0.018395 0.127369 0.010270 0.103838
FNO 0.026565 0.197309 0.018784 0.158807
ViT 0.051780 0.277934 0.022290 0.173438
ScOT 0.029390 0.209213 0.018250 0.159712
ResNet 0.058485 0.285421

Table 17: Error-type 1 for experiment P T (1,1) for the LIDE dataset across all models.

MODEL 1M 50M
MAE RMSE MAE RMSE

UNet 0.037299 0.207032 0.014883 0.088464
FNO 0.037581 0.219160 0.027419 0.175971
ViT 0.044926 0.251087 0.010941 0.072258
ScOT 0.074582 0.283233 0.018686 0.094912
ResNet 0.053545 0.272432
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Table 18: Error-type 1 for experiment P T (3,1) for the LIDE dataset across all models.

MODEL 1M 50M
MAE RMSE MAE RMSE

UNet 0.034113 0.156079 0.009274 0.063560
FNO 0.023229 0.142621 0.016207 0.103424
ViT 0.032176 0.172894 0.009436 0.061425
ScOT 0.052968 0.165612 0.011976 0.072571
ResNet 0.040644 0.231908

Table 19: Error-type 1 for experiment PDUV F (1,1) for the LIDE dataset across all models.

MODEL 1M 50M
MAE RMSE MAE RMSE

UNet 0.109131 0.368182 0.063505 0.257702
FNO 0.170194 0.476427 0.095593 0.334874
ViT 0.276362 0.732310 0.069991 0.253188
ScOT 0.097253 0.320186 0.070541 0.270568
ResNet 0.423214 0.826303

Table 20: Error-type 1 for experiment PDUV F (3,1) for the LIDE dataset across all models.

MODEL 1M 50M
MAE RMSE MAE RMSE

UNet 0.058351 0.201772 0.029650 0.130409
FNO 0.114536 0.359660 0.065122 0.239348
ViT 0.184868 0.493885 0.047491 0.169020
ScOT 0.068976 0.210712 0.039000 0.147999
ResNet 0.314502 0.683159

Table 21: Error-type 1 for experiment P[ES] F (1,1) for the LIDE dataset across all models.

MODEL 1M 50M
MAE RMSE MAE RMSE

UNet 0.183736 0.668131 0.247058 0.972196
FNO 0.271891 0.866009 0.271549 0.986093
ViT 0.193752 0.710904 0.094765 0.480033
ScOT 0.167247 0.723314 0.110193 0.490153
ResNet 0.221558 0.687037
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Table 22: Error-type 1 for experiment P[ES] F (3,1) for the LIDE dataset across all models.

MODEL 1M 50M
MAE RMSE MAE RMSE

UNet 0.112294 0.538067 0.094715 0.430769
FNO 0.098235 0.360389 0.122125 0.469131
ViT 0.077738 0.335093 0.061788 0.263886
ScOT 0.052584 0.238377 0.057491 0.223806
ResNet 0.078854 0.327747

Table 23: Error-type 1 for experiment PDUV[ES] F (1,1) for the LIDE dataset across all models.

MODEL 1M 50M
MAE RMSE MAE RMSE

UNet 0.428511 0.925083 0.520709 1.213596
FNO 0.445202 1.025386 0.415432 1.062686
ViT 0.650342 1.550977 0.178182 0.510104
ScOT 0.491391 1.162120 0.362049 1.046217
ResNet 0.345443 0.711238

Table 24: Error-type 1 for experiment PDUV[ES] F (3,1) for the LIDE dataset across all models.

MODEL 1M 50M
MAE RMSE MAE RMSE

UNet 0.326256 0.784144 0.210111 0.636456
FNO 0.352289 0.878331 0.271577 0.699626
ViT 0.261794 0.678912 0.189450 0.541396
ScOT 0.258918 0.740610 0.238986 0.754031
ResNet 0.374393 0.763712

Table 25: Error-type 1 for experiment P F (3,2) for the LIDE dataset across all models.

MODEL 1M 50M
MAE RMSE MAE RMSE

UNet 0.020932 0.150926 0.011344 0.107390
FNO 0.028200 0.185887 0.018559 0.143982
ViT 0.048801 0.258494 0.024832 0.190005
ScOT 0.026681 0.173740 0.021259 0.176111
ResNet 0.038422 0.232738
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Table 26: Error-type 1 for experiment PDUV F (3,2) for the LIDE dataset across all models.

MODEL 1M 50M
MAE RMSE MAE RMSE

UNet 0.076998 0.245355 0.032054 0.131819
FNO 0.083239 0.250742 0.054791 0.189987
ViT 0.139224 0.378060 0.045292 0.149407
ScOT 0.063067 0.187791 0.040758 0.150562
ResNet 0.125493 0.324338

Table 27: Error-type 1 for experiment PDUV T (1,1) for the LIDE dataset across all models.

MODEL 1M 50M
MAE RMSE MAE RMSE

UNet 0.115898 0.324705 0.038253 0.148635
FNO 0.107092 0.362523 0.059970 0.210868
ViT 0.161391 0.521502 0.030712 0.114747
ScOT 0.087875 0.234057 0.031315 0.111389
ResNet 0.218120 0.561651

Table 28: Error-type 1 for experiment PDUV T (3,1) for the LIDE dataset across all models.

MODEL 1M 50M
MAE RMSE MAE RMSE

UNet 0.125620 0.351120 0.035482 0.132766
FNO 0.091418 0.317205 0.055380 0.185669
ViT 0.127357 0.388384 0.032883 0.121964
ScOT 0.080846 0.212856 0.030317 0.104845
ResNet 0.173521 0.413631
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E.2 ERROR-TYPE 1 METRICS FOR THE SIDA DATASET

In this section, we showcase the MAE and RMSE of type 1 for all of the experiments for the SIDA
dataset.

Table 29: Error-type 1 for experiment PDUV F (1,1) for the SIDA dataset across all models.

MODEL 1M 50M
MAE RMSE MAE RMSE

UNet 0.389026 0.737015 0.376080 0.723840
FNO 0.388798 0.742821 0.374010 0.724714
ViT 0.448837 0.765849 0.366726 0.693767
ScOT 0.386842 0.730874 0.368502 0.700724
ResNet 0.408657 0.770825

Table 30: Error-type 1 for experiment PDUV F (3,1) for the SIDA dataset across all models.

MODEL 1M 50M
MAE RMSE MAE RMSE

UNet 0.034015 0.093065 0.011980 0.046474
FNO 0.052038 0.117692 0.022379 0.063122
ViT 0.169615 0.374392 0.041611 0.099006
ScOT 0.072025 0.161001 0.022156 0.052946
ResNet 0.051773 0.148635

Table 31: Error-type 1 for experiment PDUV T (3,1) for the SIDA dataset across all models.

MODEL 1M 50M
MAE RMSE MAE RMSE

UNet 0.085495 0.200467 0.023461 0.068501
FNO 0.064166 0.146237 0.035258 0.094010
ViT 0.195112 0.452964 0.040185 0.101045
ScOT 0.080007 0.184152 0.026292 0.062866
ResNet 0.099948 0.246592
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Table 32: Error-type 1 for experiment PDUV[VoS] F (1,1) for the SIDA dataset across all models.

MODEL 1M 50M
MAE RMSE MAE RMSE

UNet 0.441329 0.816076 0.432100 0.814077
FNO 0.541915 0.963989 0.483547 0.881534
ViT 0.483162 0.840182 0.427463 0.781107
ScOT 0.528077 0.874120 0.222295 0.522612
ResNet 0.451940 0.815882

Table 33: Error-type 1 for experiment PDUV[VoS] F (3,1) for the SIDA dataset across all models.

MODEL 1M 50M
MAE RMSE MAE RMSE

UNet 0.168696 0.478806 0.143648 0.442353
FNO 0.250844 0.506633 0.248798 0.511349
ViT 0.272310 0.605585 0.169848 0.442154
ScOT 0.226147 0.553132 0.172184 0.451849
ResNet 0.153185 0.430725

Table 34: Error-type 1 for experiment PDUV[VoS] T (3,1) for the SIDA dataset across all models.

MODEL 1M 50M
MAE RMSE MAE RMSE

UNet 0.191591 0.513835 0.143940 0.423987
FNO 0.241415 0.506024 0.221999 0.449344
ViT 0.231530 0.563916 0.117042 0.387439
ScOT 0.179452 0.432399 0.155808 0.455810
ResNet 0.190392 0.499268

Table 35: Error-type 1 for experiment PDUV F (3,2) for the SIDA dataset across all models.

MODEL 1M 50M
MAE RMSE MAE RMSE

UNet 0.044712 0.103980 0.017345 0.050488
FNO 0.068911 0.145589 0.032252 0.080259
ViT 0.148939 0.302631 0.051340 0.117693
ScOT 0.080692 0.166986 0.027520 0.062177
ResNet 0.057433 0.160196
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Table 36: Error-type 1 for experiment PDUV[VoS] F (3,2) for the SIDA dataset across all models.

MODEL 1M 50M
MAE RMSE MAE RMSE

UNet 0.126315 0.361863 0.112709 0.372599
FNO 0.231908 0.456978 0.207058 0.467535
ViT 0.243364 0.495933 0.129287 0.352591
ScOT 0.167449 0.413125 0.144851 0.402093
ResNet 0.139206 0.384204

42



2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

F LARGE LANGUAGE MODEL (LLM) USAGE

Large Language Models (LLMs) were utilized to polish the writing and find suitable words in some
scenarios.
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