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ABSTRACT

Compressible multiphase flow is central to numerous engineering applications,
characterized by complex wave dynamics and challenging shock-interface inter-
actions. Despite their importance, they remain significantly missing from exist-
ing benchmarks in the Scientific Machine Learning (SciML) community, limiting
progress on generalization to impactful real-world scenarios. To address this issue,
we introduce two exemplary datasets from this class, Laser-Induced Droplet Ex-
plosion (LIDE) and Shock-Induced Droplet Aero-breakup (SIDA), providing re-
searchers with valuable references to establish reliable baselines and push bound-
aries of SciML. Due to the high computational cost of simulating these pro-
cesses with full fidelity, we explore data-driven surrogate models designed to effi-
ciently approximate the underlying physics at reduced cost. We benchmark these
datasets on diverse architectures—UNet, Fourier Neural Operator (FNO), Vision
Transformer (ViT), Scalable Operator Transformer (ScOT), and Residual Network
(ResNet)—trained autoregressively and compared across varying parameter counts.
A comprehensive set of ablations is carried out to analyze the performance of the
models. We identify key scenarios, such as incorporating temporal sequence in-
formation and conditioning, that enable the models to accurately capture the rich
and nonlinear physics embedded in the datasets. Code and datasets will be made
available upon request.

1 INTRODUCTION

Modern technical applications of fluid dynamics exhibit a plethora of flow scenarios involving com-
pressible and multiphase flows, which are characterized by discontinuities across shockwaves and
phase boundaries. Gaining insights into the underlying physics of compressible flows is a cor-
nerstone in many real-world systems. These include a wide range of scientific fields, spanning
from astrophysics to engineering applications such as coating, fuel injection, biomedical treatment
(Chaussy & Schmiedt, |1984)), analysis of cavitation phenomena (Maeda et al., | 2015)), and nanopar-
ticle synthesis (Riahi et al., 2023). Traditionally, domain experts have analyzed these phenomena
through simulations and experiments. The downside of these methods is that they demand highly
specialized facilities and substantial computational power.

Recent advancements in deep learning algorithms and data-driven modeling (Cai et al., 2021)), (Ho
et al.,[2020), (Lipman et al.||2022), (Kovachki et al.,[2023)), (Vaswani et al.,2017))), coupled with the
rapid growth of modern high-performance computing infrastructures, have accelerated discoveries
in Scientific Machine Learning (SciML), enabling robust and reliable surrogate models. However,
training these models requires large, multifaceted datasets that capture and correlate spatiotemporal
information.

To the best of our knowledge, while datasets exist for either compressible single-phase flows
(Takamoto et al.l [2022), (Herde et al., |2024) or incompressible multiphase flows (Shadkhah et al.,
2025), (Hassan et al., 2023), there is an absence of labeled datasets that capture the complexity of
both simultaneously. We address this scarcity by providing two high-fidelity datasets pertaining
to liquid droplet dynamics, called Laser-Induced Droplet Explosion (LIDE) and Shock-Induced
Droplet Aero-breakup (SIDA). This novel set of datasets involves intricate interactions of shocks
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Figure 1: Two time snapshots at t; = 30[s] and ¢ = 50[s] of the Density and Schlieren field of the
(a) LIDE and (b) SIDA dataset.

with interfaces-Richtmyer-Meshkov, Rayleigh-Taylor, and Kelvin-Helmholtz instabilities. It further
captures the evolution of multiscale vortical structures and wave dynamics. Therefore, it requires
profound domain expertise and computational resources, and our contribution lies in introducing
this valuable dataset, which paves the way for advancing research in the community. An illustration
of two field variables of each dataset is depicted in Figure[T} In LIDE 2019), an initial
high-pressure laser cavity is generated in a micro-droplet. Initiated shock-interface interactions lead
to droplet breakup and cavitation events. In SIDA (Kaiser et al., [2020), a shock wave hits a droplet
and initiates aero-breakup, where triggered interfacial instabilities generate small liquid fragments
through different scenarios.

We propose a many-to-many training strategy (Shadkhah et al.l 2025)) to benchmark our datasets on
a variety of neural architectures, ranging from convolution and spectral models to attention-based
approaches. Specifically, we consider UNet, Residual Network (ResNet), Fourier Neural Operator
(FNO), Vision Transformer (ViT), alongside Scalable Operator Transformer (ScOT). Furthermore,
we identify key parameters and fields with the goal of designing an extensive set of ablations to
experiment with the generalization capabilities of the models. Although training these models is
computationally intensive, once trained, these models are substantially faster when used as a forward
simulator. The key contributions of this work are:

 Datasets for Complex Flow Physics. A new high-fidelity dataset for complex flow physics
involving droplet dynamics and shock-interface interactions is generated and presented.

» Dataset Validation. Dataset fidelity is assessed and confirmed by high-resolution simula-
tions and independent experiments.

* Benchmarking. A comprehensive set of experiments is performed through side-by-side
comparison with different models to gain insights into generalization capabilities.

2 RELATED WORK

Existing benchmarks differ in scope and physical coverage. Among them, PDEBench
2022) offers a wide variety of datasets, including single-phase compressible Navier—Stokes
problems, BubbleML (Hassan et all,2023) and MPF-Bench (Shadkhah et al., 2023) extend to mul-
tiphase problems and contribute an impressive collection of bubble and droplet datasets; however,
both are limited to incompressible physics. It is noteworthy that Poseidon (Herde et al,[2024)) pro-
vides an extensive set of datasets to train foundation models, although it considers only single-phase
problems. However, there is no benchmark combining both compressible and multiphase physics
in the same setting. Our work addresses this gap by integrating these two characteristics and fur-
ther incorporates Symmetry, Dirichlet, and Neumann boundary conditions, thereby broadening the
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diversity of physical scenarios available for SciML research. A summary of the aforementioned
references is presented in Table

Table 1: Summary of related datasets.

Name Dimensions Compressible Multiphase
PDE Bench (Takamoto et al., [2022) 2 v X
Poseidon (Herde et al., [2024) 2 Ve X
BubbleML (Hassan et al., [2023) 2,3 X Ve
MPF-Bench (Shadkhah et al., [2025) 2,3 X v
Current study 2 v v

3 DATASETS

We focus on the class of compressible multiphase problems in this paper. Breakup of liquid droplets
is a significant example in this class, which can be induced by laser irradiation (LIDE) or a shock
(SIDA). These two transient problems are investigated intensely through experiments and numerical
simulations. The Robust Discrete Equation Method for Interface Capturing (RDEMIC) (Paula et al.,
2023) is used to generate targets through solving the two-dimensional (2D) axisymmetric compress-
ible Euler equations. Adopting an axisymmetric setup reduces computational cost compared to the
full three-dimensional treatment. The set of equations, without dissipative terms in vector notation,
reads

8tUl+V-Fl:Bl-Val+Sl, (1)

where subscript [ denotes the index of the phase, U; is the vector of conserved quantities, F; is the
flux tensor, By is the interaction tensor, and S; is a source term to account for cylindrical symmetry,

aq 0 —llji;lt 0
U-| @ | F- apru) B e P
o puy ooy @ ug + ogprl Dine, 1 r pruy
o B (B + p)ul int,1 W Ei +p

Above, g, pr, w, pi, Uy, and ) imply the volume fraction, mass density, velocity vector, pres-
sure, velocity component in the radial direction, and total energy of phase [, respectively. Interface
velocity vector and pressure are indicated by u;, and piy;, respectively; without considering the
surface tension, pin,; is the same for all phases; r denotes the distance from the symmetry axis and
I is the identity tensor. This method is implemented and validated extensively through the Finite
Volume solver, ALPACA (Hoppe et al.| 2022)). In cylindrical coordinate configuration, the domain
revolves around the z-axis (south, as shown in Figure 2, resulting in an axisymmetric problem. In
the following sections, a brief overview of each dataset is given. For more details, refer to Appendix

Al

3.1 LASER-INDUCED DROPLET EXPLOSION (LIDE)

Experimental investigations of LIDE provide a valuable insight into pure liquid states and pressure-
sensitive molecular dynamics in solutions (Stan et al.,2016a). When a laser pulse hits the transparent
liquid droplet, energy is deposited within nanoseconds, forming a high-pressure filament along the
laser trajectory. This induces shock and expansion waves, which are reflected and subsequently gen-
erate negative pressure waves inside the droplet. Consequently, the droplet undergoes deformation
and eventually ruptures if the tension is strong enough. Notably, the negative pressure at rupture is
related to the tensile strength that the liquid can sustain during decompression (Stan et al., 2016b).



Under review as a conference paper at ICLR 2026

This problem is also numerically addressed in literature (Paula et al., 2019). Taking advantage of
the symmetries, a droplet with radius Ry is located in the bottom left corner of a square domain with
length 3Ry, as shown in Figure Zh. The filament, heated by the laser beam along the centerline, is
also illustrated. The boundary conditions (BC) are Symmetry (west) and Zero-gradient (east and
north). The latter refers to a special case of Neumann BC, where the normal derivative of the field
variable at the boundary is set to zero. To explore the dynamics of the explosion, we vary the values
for filament pressure, ambient pressure, laser half-width, and the droplet radii along perpendicular
axes, which distinguishes spherical from ellipsoidal geometries. The aforementioned parameters are
subsequently used as conditioning parameters during training. More details on the initial condition
values and the validation of the dataset are described in Appendix [A.T]
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Figure 2: Initial setup for (a)LIDE and (b)SIDA.

3.2 SHOCK-INDUCED DROPLET AERO-BREAKUP (SIDA)

The droplet aero-breakup, which is caused by the sudden exposure of liquid droplets to external flow,
is relevant in practical applications of fuel injection and shock-tube flow (Liang et al., 2020). The
resulting shock—droplet interaction involves the evolution of reflected, transmitted, and diffracted
waves, along with droplet displacement, deformation, and the development of surface instabilities.
This high-speed phenomenon requires high spatiotemporal resolution to be accurately captured.
Surface tension has a strong impact on the droplet breakup mode, which is characterized by the
Weber number (Hinzel [1955)). This non-dimensional parameter accounts for the relative dominance
of aerodynamic force over surface tension. Furthermore, the external flow regime, from subsonic to
supersonic, is governed by the Mach number (Kaiser et al.,|[2020).

Initially, we simulate the SIDA dataset in a domain of size [48 Ry, 12R], which is shown in Figure
[2b. This large domain is essential to avoid undesirable boundary effects regarding wave dynamics.
However, a fixed subdomain with size [6 Ry, 3Ro] around the droplet is saved and later used in
training. This subdomain is chosen such that in the initial timestep, the shock wave is located at the
west end.

Boundary conditions include Dirichlet (west) and Zero-gradient (east and north). This dataset is
generated with various combinations of Mach and Weber numbers, which are later utilized as condi-
tioning parameters in model training (Meng & Colonius, |2018)), (Winter et al.,2019). More details
on the initial condition values and the validation of the dataset are described in Appendix

3.3 METADATA

Each datasetﬂ includes 128 trajectories, and the splitting for training/validation/inference is
86/10/32. In total, 6 fields are made available for each dataset, where density, pressure, X-
velocity, Y-velocity, and schlieren are common in both datasets. The remaining channel is

!'The uploaded supplementary material as a .zip file includes metadata.json files for each LIDE and SIDA
dataset. Also, sample video files are provided for visualization.
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the total energy for LIDE, and vorticity for SIDA. The spatiotemporal parameters used in
the numerical solver are presented in Table The datasets are stored as HDFS5 files, with
sizes of 75 GB and 12 GB for LIDE and SIDA, respectively, and the shapes for both are
[num_of _trajectories][num_of_timesteps][fields][X-resolution][ Y-resolution]. Each trajectory in
the dataset file is assigned a unique group name based on its corresponding conditioning parameters.

Table 2: Metadata for LIDE and SIDA datasets

Dataset Resolution End time [s] CFLE

[X, Y] Atgye [5] Atgolver [SE] Az [m]

LIDE [256, 256] 20 x 1079 035 1.00x10719 6.80x107'2 1.25x10°7
SIDA [256,128] 15 x 1076 050 025x107% 1.95x107% 1.17x107°

4 EXPERIMENTS

4.1 DESIGN OF EXPERIMENTS

This section outlines the Design of Experiments (DOE). Each experiment is assigned a unique tag
for easier identification and comparison. We use P’ for Pressure, D’ for Density, *U’ for X-
Velocity, >V’ for Y-Velocity, ’E’ for Energy, ’S’ for Schlieren, and *Vo’ for Vorticity. For example,
an experiment with a tag "PDUV[ES]_T_(3,2)’ implies the input channels are Pressure (P), Density
(D), X-Velocity (U), Y-Velocity (V), Energy (E), and Schlieren (S). ’[ES]’ shows that Energy and
Schlieren are counted as conditioning fields and are not predicted in the output. Furthermore, *T" in-
dicates that the conditioning parameters are included in the experiment. Finally, ’(3,2)’ corresponds
to 3 consecutive inputs and 2 consecutive predicted frames. The complete DOE table is provided in

the Appendix [B.1]

4.2 BASELINE MODELS

We investigate the performance of the datasets on a variety of neural architecture baselines, The
models under consideration are: UNet (Ronneberger et al.|2015)), ResNet (He et al.,[2016)), FNO (Li
et al.,2020), ViT (Dosovitskiy et al., [2020), and ScOT (Herde et al., 2024). Each model was trained
from scratch on two parameter categories, i.e., IM and 5S0M. However, ResNet is trained only with
IM model parameter count. For more details on model hyperparameters, refer to Appendix [B.2]

4.3 INVESTIGATION SCENARIOS

We analyze our results by categorizing the experiments into three distinct scenarios. Each scenario
addresses a certain learning problem, and experiments are grouped by altering only the learning
parameter while holding all other parameters fixed. We denote the grouped experiments by G’ in
all plots in section [5] (Results). The following subsections give a brief overview of these learning
problems.

4.3.1 TEMPORAL CONTEXT

Historic information, provided through additional temporal inputs (frames), has proved its efficacy
(Hassan et al., 2023)), (Shadkhah et al.l |2025). In some experiments, to facilitate the understanding
of the patterns, we incorporate multiple frames into the model. This provision is effective in learning
transient trajectories. For both datasets, we experiment with either 1 input or including a sequence
of 3 historic inputs. We also define a stride parameter during dataloading, which skips a fixed
number of timesteps. In the LIDE and SIDA datasets, strides of 10 and 5 timesteps are employed,
respectively.

2CFL refers to Courant-Friedrichs-Lewy criterion.
3This is the average solver timestep among all trajectories.
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4.3.2 CONDITIONING PARAMETERS

In many fluid dynamic problems, the physics are fundamentally characterized by non-dimensional
and domain parameters, which influence the system’s evolution. These provide crucial information
as they dictate the governing dynamics, leading to distinct flow regimes. Conditioning the model
with such parameters improves generalization (Kohl et all) [2023), (Peebles & Xie| [2023). The
conditioning parameters for the LIDE and SIDA datasets are mentioned in section [3| (Datasets).
These are injected into the models through the normalization layers (Herde et al., [2024). More
details on the implementation are provided in Appendix [B.3]

4.3.3 CONDITIONING FIELDS

In this experimental scenario, additional channels are appended to the inputs before passing them
to the model. These extra channels are called conditioning fields, which are derived quantities from
existing inputs. For the LIDE dataset, we incorporate energy and schlieren as the conditioning fields,
whereas for the SIDA dataset, vorticity and schlieren are used. We aim to test the hypothesis that
this type of conditioning guides the model towards generalization.

4.4 TRAINING AUTOREGRESSIVE MODELS

In this work, we use a many-to-many training style to train each of our baselines, My. The dataset
is a discrete spatiotemporal system, containing ¢ channels. For a particular trajectory, the mapping
is given by X; : Q2 x [0, 7] — R¢, where Q@ C R? and T represents the last timestep of the trajectory.

During training, we split each of the training trajectories into M windows. The length of each win-
dow is determined by the number of input and output sequences, denoted by /; and lo, respectively,
and s denotes the stride, which are all hyperparameters of the temporal context study as mentioned

in section [£.3.11

The input sequence of the m!"

window is given by X,,, = [Xn, ... Xop (1, xs)) € R!**¢ and the

corresponding target is Yo, = [Xoni((1,4+1)xs)] - - - Kont-((li+12) xs)] € R’2*¢_ The training loss
reads:
| M
MSE := — X)) — Youll?, 2
i mE::l 1Mo (X)) = Y| )

After each training epoch, the validation loss is computed by rolling out the model autoregressively
for 5 steps and then computing the Root Mean Square Error (RMSE).

4.5 INFERENCE METRICS

During inference, we start from the initial condition of each trajectory and rollout the model in an
autoregressive fashion to reach the final frame. The predictions across trajectories are accumulated
into a tensor, and the Mean Average Error (MAE) and Root Mean Square Error (RMSE) metrics
(Refer to Appendix[B.3)) are obtained by comparing the predictions against the target. These metrics,
henceforth, are referred to as error-type 1.

We define an error-type 2 by starting again from the initial frame and performing rollout until the
end of the sequence. We compute the per-frame RMSE error, yielding a tensor of shape (N, R, T,
C, spatial-dims), where N is the number of trajectories, R is the number of rollout steps, T is the
number of output timesteps, C is the number of output channels, and spatial-dims is the resolution
of the dataset. The error aggregation is performed in four stages:

1. In each trajectory, we first average the error over the temporal, channel, and spatial dimen-
sions, resulting in an overall tensor with shape (N, R).

2. We compute the cumulative summation along the rollout dimension, retaining the shape
(N, R).

3. We compute mean and standard deviation across trajectories (N), which results in a tensor
of shape (R).
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4. Finally, we reduce across the rollout dimension to obtain the overall mean and standard
deviation. We denote this metric as error-type 2. The reported metrics in the plots of
section 5 (Results) are error-type 2.

5 RESULTS

5.1 EFFECT OF SEQUENCE INFORMATION

Within the many-to-many autoregressive training framework, we evaluate three configurations of
sequence information: (1,1), (3,1), and (3,2), corresponding to one input—one prediction, three in-
puts—one prediction, and three inputs—two predictions, respectively. For both the LIDE and the
SIDA datasets, we observe a consistent performance improvement across all models trained with
three historic timesteps, with the single prediction models having a slight metric advantage over the
two consecutive predictions. A further gain in accuracy is obtained upon increasing the parameter
count, with UNet performing the best. These results for the SIDA are depicted in Figure [3] The
results for the LIDE are shown in Figure [12]in the Appendix

FNO-1M UNet-1M ScOT-1M ViT-1M ResNet-1M
1071 ]

Gl Gl Gl Gl Gl

FNO-50M UNet-50M ScOT-50M ViT-50M
100 ] } l } I [
10-! ] [ } ‘ ] {

Gl Gl Gl Gl

PDUV_F_(1,1) PDUV_F_(3,1) PDUV_F_(3,2)

Figure 3: Effect of sequence information for SIDA dataset. Error-type 2 is presented.

5.2 EFFECT OF CONDITIONING PARAMETERS

We conduct several studies to assess if including conditioning parameters has a pronounced influ-
ence on the inference metrics. For the LIDE dataset, we observe that the effect of embedding these
parameters into the baselines is evident, whereas metrics deteriorate for the SIDA dataset, as illus-
trated in Figure [ and [} respectively. It is worth noting that the characteristics of the conditioning
parameters in the SIDA dataset are different from those of the LIDE dataset. In the former, the
parameters are geometry-based, and for the latter, these are flow properties.

5.3 EFFECT OF CONDITIONING FIELDS

Considering the selected conditioning fields for each dataset according to the section[4.3.3] we con-
clude from Figure []that across all models and parameter counts, incorporating these fields degrades
the predictions, resulting in increased errors during inference. The same results are illustrated by
Figure[I3]in Appendix [C|for the LIDE dataset.

5.4 BASELINE MODEL PERFORMANCE STUDY

We investigate the MAE and RMSE of type 1 (section 4.5) in baseline models on an identical ex-
periment for each dataset. As a sample experiment, we present Table (3] which shows that a higher
parameter count improved the prediction accuracy across all models. UNet consistently achieves
superior performance compared to all the other baselines in both the 1M and 50M categories. Re-
maining tables are available in Appendix
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Figure 4: Effect of conditioning parameters for LIDE dataset. Error-type 2 is presented.
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Figure 5: Effect of conditioning parameters for SIDA dataset. Error-type 2 is presented.

FNO-1M UNet-1M ScOT1M VIT-1IM ResNet-1M

10!

]M il H] M HJI‘M jii “l f

Gl G2 G3 G4 Gl G2 G3 G4 Gl G2 G3 G4 Gl G2 G3 G4 Gl G2 G3 G4

FNO-50M UNet-50M ScOT-50M VIT-50M

i g g

Gl G2 G3 G4 Gl G2 G3 G4 Gl G2 G3 G4 Gl G2 G3 G4

PDUV_F_(1,1) PDUV_F_(3,1) m PDUV_T_(3,1) PDUV_F_(3,2)
PDUV[VoS]_F_(1,1) . PDUV[VoS]_F_(3,1) PDUV[VoS]_T_(3,1) PDUV[VoS]_F_(3,2)

Figure 6: Effect of conditioning fields for SIDA dataset. Error-type 2 is presented.

5.5 COMPARISON BETWEEN ERROR TYPES

We compare the two error types, defined in section 4.3} to correlate the metrics with the predicted
rollout. It is worth emphasizing that from our ablations, error-type 2 demonstrates better coherence
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Table 3: Error-type 1 for experiment PDUV _F_(3,1) for the LIDE dataset across all models.
M S0M

MODEL MAE RMSE MAE RMSE
UNet 0.058351  0.201772  0.029650  0.130409
FNO 0.114536  0.359660

ViT 0.184868  0.493885 0.047491  0.169020
ScOT 0.068976  0.210712 ~ 0.039000  0.147999

ResNet  [HOBIHSOZINOGESISON

with predicted rollouts in some cases. For example, as shown in Table EL UNet-50M achieves
higher accuracy according to error-type 2 compared to ViT-50M; UNet captures the droplet interface
more precisely, indicating better performance as a surrogate relative to ViT. The corresponding
plot is available in Figure 24]in Appendix D] In contrast, error-type 1 suggests that ViT predicts
better. This discrepancy highlights the importance of selecting an error metric that aligns with the
qualitative behavior observed in rollout plots [2023). Example rollout prediction plots,
during inference, for the LIDE and the SIDA datasets are shown in Appendix [D]

Table 4: Error-type 1 and 2 for the experiment PDUV_T_(3,1) for the LIDE dataset across models
with 50M parameters.

MODEL Error type 1l Error type 2

UNet 0.132766 0.938997
IO 01866 1411901
ViT 0.121964 0.997704
ScOT 0.104845 0.818168

6 CONCLUSION

This study presents two novel datasets in the domain of compressible multiphase fluid dynamics.
We benchmarked five baseline models on these datasets with varying parameter count. Our study
scenarios explore the influence of historic information, conditioning parameters and fields. Infer-
ence results of trained baseline models on both the LIDE and the SIDA datasets showed superior
prediction accuracy upon incorporating additional temporal context. Subsequently, introducing
additional channels as conditioning fields to the input degraded the prediction accuracy during
inference on both datasets. Furthermore, injecting conditional parameters into the baselines yielded
bifurcating results for the datasets. Despite poor performance on the SIDA dataset, models show
better accuracy on the LIDE dataset. Finally, we examined the interpretation of two error types
and their correlation with the rollout plots, which illustrates the importance of selecting a suitable
error metric in choosing an appropriate surrogate. In conclusion, it is essential to highlight that
representing the complex physics and patterns through the current datasets by surrogates still poses
a challenge. This observation motivates the integration of such datasets in the SciML community to
further the development of data-driven surrogates.

Limitations and Future works. Inclusion of a broader range of models, additional error types,
and analyzing different combinations of conditioning fields and parameters are future directions.
Advancing toward more effective conditioning algorithms is also an important investigation. Ul-
timately, these developments will enable rapid and efficient exploration of parameter spaces that
govern complex multiphase flow phenomena.
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7 REPRODUCIBILITY STATEMENT

We introduced two datasets in this paper, which are reproducible based on our description in the main
text (section [3)) and supplements in the Appendix (A). These explanations include the referenced
Finite Volume solver, numerical setup, and initial conditions. In addition, for reproducing model
evaluations, we provide trained model weights and the code that has the complete set of instructions
upon request.
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A  DATASETS

As mentioned in the main text, we solve the compressible multiphase Euler equations (Equation
with the RDEMIC, which captures the interface as a diffuse zone on a Cartesian grid. This method
combines the solutions of pairwise Riemann problems to obtain the finite-volume flux. By a modi-
fied partitioning of the Riemann solutions and a specific combination of fluxes and non-conservative
terms, the method is made practically applicable for high-resolution shock-interface problems (Paula
et al.|2023)). We use this method in ALPACA (Hoppe et al., [2022), which is a well-suited environ-
ment for compressible single-phase simulations and other multi-phase methods, although originally
developed as a level-set-based sharp-interface solver. Its standout features include a wide variety
of Riemann solvers, high-resolution reconstruction schemes, and a state-of-the-art multiresolution
algorithm for high computational efficiency. In both datasets in this study, the cell face fluxes are
reconstructed with the fifth-order WENO scheme (Jiang & Shu, |1996). Furthermore, a third-order
Runge-Kutta Total Variation Diminishing scheme is applied for time discretization (Gottlieb & Shu,
1998).

To close the governing equation (Equation [I)), an Equation of State (EOS) is used, which relates
pressure to density and internal energy. We adopt the stiffened-gas EOS to generate both datasets,
which reads

plp.€) = (v = 1)pe — i <= e(p,p) = PP, 3)

(y=Dp
with p being the pressure of the fluid, p the mass density, e the internal energy, v the model constant.
In addition, pgig accounts for a pre-compression of the fluid. To degenerate the aforementioned
equation to an ideal-gas EOS for air, we adopt v = 1.4 and pyig = 0. The total energy density,
E[%], is obtained by considering internal energy from Equation [3|and kinetic energy, as shown in

Equation [}

E = pe+1/2p(u? + u?) 4)
Here, u, and u, are the velocity components in the r and z directions, respectively. Schlieren [%]
is computed in the solver by Equation [5}

schlieren = Vp &)}

Additionally, vorticity [s~!] is defined in Equation@

vorticity = V x u (6)

A.1 THE LIDE DATASET

To simulate this problem, careful considerations must be taken into account. The filament along the
centerline, which is heated by a laser in a very short time, is pre-initialized with vapor instead of
liquid water. However, it is important to note that the density of the vapor in this zone remains equal
to that of liquid water, since the laser energy heats the liquid rapidly. Considering that different laser
pulse energies result in different pressures in the filament (pfjament), W€ cover a range from 108 to
10'° [Pa] in our dataset. Alongside the high-pressure, the ambient pressure (Pampient) Varies between
10° and 106 [Pa]. In addition, the laser half-width changes in the range of 2 x 10~7 to 1.5 x 10~©
[m]. The droplet radius along the r and z axes varies from 1 x 1075 t0 1.6 x 1075 [m]. A summary
of initial condition values is presented in Table 5]

Validation. We compare the evolution of the droplet diameter in the radial direction to validate
our dataset against experiments (Stan et al.| [2016b). According to experimental observations, the
droplet starts to expand upon the arrival of the radial shock wave, which is induced by high pressure
in the filament. Due to the wave interactions, a decrease in the expansion rate is observed, which
is again followed by an increase. This trend is depicted in Figure [7]and is in good agreement with
experiments.
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Table 5: Initial conditions for the LIDE dataset

Phase-1 pr[kgm™>]  {u,, u.,} [ms™']  p; [Pa]

1 (Ambient air) 0.74 0.0, 0.0 Pambient

2 (Liquid droplet) 998.2 0.0, 0.0 Pambient 2 > laser half—w¥dth
998.2 0.0,0.0 Pfilament 2 < laser half-width

In this problem, it is crucial to analyze and understand the wave interactions inside the droplet.
After rapid energy deposition along the centerline, the main shock spreads radially, approaching
the droplet surface. The corresponding reflection results in a curved negative-pressure wave, which
increases the tension. Shortly after, this wave collapses toward the z-axis and impacts the motion of
the droplet’s surface (Paula et al.,|2019). These phenomena are depicted step-by-step in Figure

701 LIDE dataset

—— Expected trend

684

66

Drop diameter [um]
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624

T T T
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Figure 7: Validation of the LIDE data compared to the expected trend (Stan et al.,|2016b).
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Figure 8: Visualization of droplet’s motion and deformation in the LIDE dataset.
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A.2 THE SIDA DATASET

To get a better understanding of this problem, both wave dynamics and droplet breakup modes are
studied extensively in the literature (Sharma et al.|[2021)), (Theofanous & Lil|2008). Breakup modes
are characterized by the Weber number (Hinzel [1955), which is defined as follows:

_ poudd

We (7

o
In this definition, po and us refer to post-shock density and velocity of the external flow, respectively.
Additionally, d is the droplet diameter and o denotes the surface tension coefficient. For droplet
aero-breakup, two major breakup modes are introduced: Rayleigh-Taylor Piercing (RTP) and shear-
induced entrainment (SIE). RTP is the main instability mode for small Weber numbers (starting at
We = 28), and SIE is the terminal instability mode for increasing Weber numbers (We > 10%)
(Theofanous & Li, 2008)). For this study, we cover the Weber number in the range [530, 40000],
which corresponds to the transition regions from RTP to SIE and also the SIE region itself.

After the shock impact, the post-shock flow plays a significant role in droplet deformation and
breakup. The post-shock flow regime is identified by the Mach number, which is a non-dimensional
parameter that relates flow velocity to the speed of sound. We compute the post-shock flow proper-
ties using the normal shock relation. These relations are given by (Anderson, |1990):

us = Mg - 1 ()

Ut rel = —Us €))

Ul = U1 rel + us (10)
2y (M2 - 1) <2+(71)M2)

To=Ty |1+ 2 11

: ( 741 G+ DM W

62:\/’)/’R1‘T2 (12)

FEUT
Mo el = @ (13)
U2 rel = Mf2,rel + C2 (14)
U2 = Us — U2 rel (15)
(v +1)M?

— gy et TS 16
p2 = p1 24 (v — M2 (16)

2y (M2 - 1)
= 14 ——2 7 17
P2 =p1 ( + o )

We use M for the shock and My for the post-shock flow Mach number. The flow states before
and after the shock wave are referred to with subscripts 1 and 2, respectively. Furthermore, T is the
temperature, c is the speed of sound, v = 2—” is the ratio of specific heat, and R is the specific gas
constant. We consider shock Mach numbers spanning from 1.2 to 3.5. Then, based on the selected
shock Mach number, we calculate ps, us, and ps for the west Dirichlet boundary condition. Next,
the surface tension coefficient is computed from the Weber number. A summary of initial condition
values is presented in Table [] It should be noted that the value 16.5Ry in the table, shows the
location of the shock wave in the initial setup (refer to Figure2).

Validation. We compare the SIDA dataset against numerical studies. Since we employ an axisym-
metric setup in our simulation, a full three-dimensional study is referenced for validation (Winter,
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Table 6: Initial conditions for the SIDA dataset

l prlkgm ™3] {uys,usy} [ms™']  p [Pa] pr [Pa]

1 (Ambient air) 2 0.0, uz P2 2 <16.5R,
12 0.0, 0.0 101325.0 2> 16.5R,

2 (Liquid droplet)  998.2 0.0, 0.0 101325.0

et al., 2019), (Meng & Colonius, 2018)). For this purpose, the non-dimensional time (t*) and dis-
placement of the center of mass (COM) in the droplet (Az*) are defined as

tr=t2 [ L2

) (18)
d Pdrop
and
z
Azt == 19
== (19)

where ? is the saved timestep, and pg,..p is density of the liquid droplet. Upon shock and post-shock
flow impact, the droplet COM accelerates. This trend is clearly observable in our dataset, which
aligns with results from the literature. In Figure [I0] the flattening of the droplet surface and the
hat-shaped deformation are shown. Noteworthy, the perturbations on the surface of the droplet are
related to shear-induced instabilities (Sharma et al., [ 2021]).

0.0304 e SIDA data
—— Expected trend
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Figure 9: Validation of SIDA data against numerical studies (Winter et al.|[2019),(Meng & Colonius,
2018).
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Figure 10: Visualization of droplet’s motion and deformation in the SIDA dataset.
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B EXPERIMENT DETAILS

B.1

DESIGN OF EXPERIMENTS

The complete set of experiments for the SIDA and the LIDE datasets is shown in Tables [/| and
respectively. We experiment with a variety of input, conditioning, and output channels, along with
the combinations of sequence info and conditioning parameters.

Table 7: SIDA (PDUV VoS) experiments with Tag identifiers.

# Expt Tag Input Channels Output Channels Cond? Seq Infofl

1 PDUV_F_(1.1) Pressure., Density ' Pressure', Density . F 15
X-velocity, Y-Velocity X-Velocity, Y-Velocity

) PDUV_F_(3.1) Pressure., Density . PI‘eSSl..lre, Densuy. P 3.1.5
X-velocity, Y-velocity Velocity_x, Velocity_y

3 PDUV_T_(3.1) Pressure', Density ‘ Pressure., Density ' T 3.1.5
X-velocity, Y-velocity X-velocity, Y-velocity
Pressure, Density Pressure, Density

4 PDUV[VoS]_F_(1,1) X-velocity, Y-velocity X-velocity, Y-velocity F 1,1,5
[Vorticity, Schlieren]
Pressure, Density Pressure, Density

5 PDUV[VoS]_F_(3,1) X-velocity, Y-velocity X-velocity, Y-velocity F 3, 1,5
[Vorticity, Schlieren]
Pressure, Density Pressure, Density

6 PDUV[VoS].-T_(3,1) X-velocity, Y-velocity X-velocity, Y-velocity T 3,1,5
[Vorticity, Schlieren]

7 PDUV_F.(322) Pressure., Density ' Pressure', Density . P 3.2.5
X-velocity, Y-velocity X-velocity, Y-velocity
Pressure, Density Pressure, Density

8 PDUV[VoS]_F_(3,2) X-velocity, Y-velocity X-velocity, Y-velocity F 3,2,5

[Vorticity, Schlieren]

“refers to the boolean flag indicating whether conditioning parameters are injected into the normalization

layer.

Srefers to the sequence information: [number of historic inputs, number of bundled predictions, stride be-
tween timesteps].
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Table 8: LIDE (PDUVES) experiments with Tag identifiers.

# Expt Tag Input Channels Output Channels Cond Seq Info
1 PF_(1,1) Pressure Pressure F 1,1, 10
2 PF_(3,1) Pressure Pressure F 3,1,10
3 P_T_(1,1) Pressure Pressure T 1,1, 10
4 P_T_(3,1) Pressure Pressure T 3,1,10
5 PDUV F_(1.1) Pressure., Density ' Pressure., Density . 11,10
X-velocity, Y-velocity X-velocity, Y-velocity

6 PDUV_F.(3.1) Pressure., Density . Pressure., Density . 3.1, 10
X-velocity, Y-velocity X-velocity, Y-velocity

7 P[ESIF(LI) Pressure, Pressure F 11,10
[Energy, Schlieren]

8  P[ESI.F.(3,]) Pressure Pressure F 3,110
[Energy, Schlieren]
Pressure, Density Pressure, Density

9 PDUV[ES]_F_(1,1) X-velocity, Y-velocity X-velocity, Y-velocity F 1,1, 10
[Energy, Schlieren]
Pressure, Density Pressure, Density

10 PDUVIES]_F_(3,1) X-velocity, Y-velocity X-velocity, Y-velocity F 3,1, 10
[Energy, Schlieren]

11 P_F_(3,2) Pressure Pressure F 3,2,10

12 PDUV_F.(32) Pressure‘, Density . Pressure., Density ‘ F 3.2.10
X-velocity, Y-velocity X-velocity, Y-velocity

13 PDUV._T_(1.1) Pressure., Density ' Pressure., Density . T 1.1.10
X-velocity, Y-velocity X-velocity, Y-velocity

14 PDUV.T.(3.1) Pressure, Density Pressure, Density T 3.1, 10

X-velocity, Y-velocity

20
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B.2 BASELINE MODEL DETAILS

In this section, we provide a brief overview of all the models used as baselines. In all the models
described in this section, the LayerNorm (Ba et al.,2016)) is used as the default choice of normaliza-
tion layer, and the normalized grid X- and Y-coordinates are appended as additional channels with
the input channels.

1. UNet: We implement the UNet variant as described in|/Gupta & Brandstetter|(2022). UNets
follow a structure that first performs spatial downsampling and then spatial upsampling,
with each block composed of multiple convolutional layers. A distinctive feature of UNet
is the inclusion of skip connections that link activations from the downsampling path to
their corresponding upsampling layers. Table [9]shows the hyperparameters chosen for the
two model parameter categories. The number of latent channels corresponds to the feature
dimension produced after the first convolutional layer. Along the downsampling path, the
base latent channel dimension is adjusted according to a channel multiplier list, with each
element specifying the factor used to increase the number of channels at successive levels
of the model.

Table 9: UNet hyperparameters.
Hyperparameters 1M S0M

Latent channels 28 48
Channel Multiplier [1,4] [1,2,2,4]
Activation GELU GELU

2. Residual Network (ResNet): The baseline ResNet is implemented as described in |Gupta
& Brandstetter| (2022), where no up- or down-projection techniques have been used. The
input channels are projected to the latent channels by a convolutional layer and subse-
quently passed through four ResNet blocks. Each block consists of two 3x3 convolutional
layers, each followed by an activation function and a norm layer. The convolutional layers
employ a stride and padding of 1, preserving the spatial resolution of the feature maps. The
final output is then obtained by adding the original input to the convolutional output. Refer
to Table [I0] for the hyperparameters.

Table 10: ResNet hyperparameters.
Hyperparameters 1M

Latent channels 112
# residual blocks [1,1,1,1]
Activation GELU

3. Fourier Neural Operator (FNO): The FNO is designed to approximate mappings be-
tween function spaces by performing computations directly in the Fourier domain. Its
architecture can be divided into three main components: a lifting network, a sequence of
Fourier layers, and a decoder network. We adopt the implementation described in |Contrib-
utors| (2023) and use the hyperparameters as shown in Table[T1]for our experiments.

The lifting network first maps the input channels into a higher-dimensional latent space
using pointwise convolutions. The dimension of this latent space is described by the latent
channels. The core of the model is composed of Fourier layers that have spectral convolu-
tion with a point-wise linear convolution layer acting as a skip connection. The activation
is applied to the summation of the spectral convolutions and this convolutional skip layer.
In each spectral convolution, the input is transformed into the Fourier domain using Fast
Fourier Transform (FFT), where a specified number of modes are retained and updated with
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learned complex weights, and the result is projected back to the spatial domain through the
decoder network.

Table 11: FNO hyperparameters.

Hyperparameters 1M S50M
Latent channels 16 32
FNO Layers 4 6
Modes 16 45
Padding 8 8
Padding Type constant  constant
Activation in Fourier Layers =~ GELU GELU
Decoder layers 2 2
Decoder layers size 128 256
Decoder activation SiLU SiLU

4. Vision Transformer (ViT): A modified ViT (Dosovitskiy et al.| [2020) architecture was
adopted. The implementation follows the general ViT paradigm, splitting the image into
square patches of size 8, embedding and passing them through a transformer encoder, and
reconstructing the spatial output from the resulting latent representations with the addi-
tional capability to handle non-square inputs. The ViT model consists of a patch-based
embedding, an encoder, and a decoder. Passing the input through the embedding-encoder-
decoder pipeline results in a reconstruction of the original input shape. The Embedding
divides the image into non-overlapping patches, embeds them via a linear projection, and
adds positional encodings. For each patch, this results in a sequence of token vectors, each
with dimensions specified by the latent channels. The transformer encoder processes this
sequence using standard Multi-Head Self-Attention (MHSA) and feedforward layers, with
the hidden size denoted by the intermediate size variable. The number of the hidden lay-
ers determines the number of the encoder layers. The number of MHSA in each layer is
specified by the number of attention heads. This attention stage allows global spatial inter-
actions across the patch grid, enabling the model to learn long-range dependencies. Table
[12]shows the hyperparameters for the two learnable parameter categories.

Table 12: ViT hyperparameters.
Hyperparameters 1M S0M

Latent channels 128 504
Patch size 8 8

# hidden layers 2 12

# attention heads 4 14
intermediate size 512 1024
Activation GELU GELU

5. Scalable Operator Transformer (ScOT): The ScOT model is based on the Poseidon
framework (Herde et al.l 2024). At its core, ScOT adopts a hierarchical transformer ar-
chitecture inspired by vision transformers with a window-based approach. The input is
partitioned into a uniform grid of non-overlapping patches. We implement an additional
capability to process non-square inputs. Each patch undergoes an averaging operation us-
ing a shared spatial weight matrix, followed by a linear projection into a latent embedding
space, whose size is described by the latent channels. This procedure produces a piecewise-
constant latent function representation over the domain, which serves as the input to the
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transformer backbone. The motivation for this patch-based embedding is to reduce the
computational complexity associated with global attention while preserving essential local
information about the input field.

Once embedded, the representation is processed through a series of hierarchical SwinV2
Transformer blocks (Liu et al., 2021}, arranged in multiple stages that progressively down-
sample and subsequently upsample the latent feature maps, forming a UNet-like archi-
tecture. The number of blocks per stage is defined by the variable ’depths’ in Table
Each stage applies windowed MHSA, where attention computations are restricted to local
windows rather than the entire spatial domain, significantly reducing the quadratic cost of
global attention. The number of parallel MHSA per stage is determined by the number of
attention heads. To ensure information exchange across windows and avoid locality bias,
the attention windows are shifted between consecutive layers, enabling effective global
context modeling over multiple layers.

The hierarchical design incorporates patch merging operations during the encoder phase to
reduce spatial resolution and increase the feature dimension, thereby allowing deeper layers
to capture global structures. Conversely, the decoder phase employs patch expansion to
restore resolution, and skip connections in the form of ConvNext blocks (Liu et al.| 2022),
bridging the corresponding encoder and decoder stages. The number of blocks per stage in
the ConvNext blocks is specified by the hyperparameter "skip-connections’.

Table 13: ScOT hyperparameters.

Hyperparameters 1M 50M
Latent channels 27 150
Patch size 4 4
Depths [3,3,3] [4.4,4]

# attention heads [3,6,12] [6,12,24]
Skip connections [2,2,0] [3,3,0]

Window size 16 16
MLP ratio 2.0 4.0
Activation GELU GELU

B.3 CONDITIONING

In this section, we describe the formulation of the strategy used to integrate conditioning parameters
into the model (Herde et al., [2024). For an input € R?, and k being the conditioning parameters,
the conditional layer norm formulation is given by Equation 20} Figure [IT]illustrates this injection
of conditioning parameters into the layer norm. Here v and S are simple Multilayer Perceptrons
(MLPs).

X = Mx(x)
o2(z)+e€ +ALk),

d
Z Ly U:Qc(x) =
j=1

Layer Norm., ) g (x) = v(k) ©
(20
MX(x) =

d
> (o~ o)’

SN
SHE

B.4 TRAINING HYPERPARAMETERS

Table (14| shows the training hyperparameters that are common for all the models. Each model has
its own specific hyperparameters, which are described in Appendix [B.2] All models were trained
on NVIDIA RTX A6000 48GB GPU with bf16 mixed-precision, except for the FNO, which was
trained on fp32.
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Table 14: Training hyperparameters.

Hyperparameter Value

Number of Epochs 128

Batch Size 32

Optimizer AdamW

Weight Decay 0.000001
Learning Rate(LR) 0.00005

LR Scheduler Cosine
Warmup Ratio 0.0
Mix-precision bf16 (except FNO: fp32)

B.5 ERROR METRICS

In this study, we employ two commonly used error measures: the Root Mean Square Error (RMSE)
and the Mean Absolute Error (MAE).

The RMSE (Equation measures the square root of the mean squared difference between predic-
tions and ground-truth values, penalizing larger errors more strongly.

n

RMSE = %Z@_Yi)z Q1)

i=1

The MAE (Equation [22)) measures the average magnitude of the absolute prediction errors.

n

1
MAE:ﬁZ

i=1

Y, - Y; (22)

where Y; denotes the ground-truth values, Y; the corresponding model predictions, and n the total
number of samples.
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C RESULTS

The remaining plots for the dataset LIDE are depicted in this section. The corresponding result for
the analysis of including more historic inputs is given by Figure[T2]

FNO-1M UNet-1M ScOT-1M Vit-1M ResNet-1M

8 T TN

Gl G2 G3 G4 G5 Gl G2 G3 G4 G5 Gl G2 G3 G4 G5 Gl G2 G3 G4 G5 Gl G2 G3 G4 G5

FNO-50M UNet-50M ScOT-50M VIiT-50M

g [T

Gl G2 G3 G4 G5 Gl G2 G3 G4 G5 Gl G2 G3 G4 G5 Gl G2 G3 G4 G5

——

N >

~

= =
o =)
=) =
[
——

= PF (1,1) mm PF_(32) P_T_3,1) PDUV_F_(3,1) mmm P[ES]_F_(1,1) m=m PDUVI[ES]_F_(1,1)
P_F_(3,1) m PT_(1,1) B PDUV_F_(1,1) = PDUV_F_Q3,2) PI[ES]_F_(3,1) PDUVIES]_F_(3,1)

Figure 12: Effect of sequence information for the LIDE dataset. Error-type 2 is presented.

Moreover, the effect of the implementation of conditioning fields is shown in Figure[13]

FNO-1M UNet-1M ScOT-1M VIiT-1M ResNet-1M

]ll “] [IH ”H

10!

Gl G2 G3 G2 G3 G4 Gl G2 G3 G4 Gl G2 G3 G4 Gl G2 G3 G4

FNO-50M UNet-50M ScOT-50M ViT-50M

Il llmw i

Gl G2 G3 G4 Gl G2 G3 G4 Gl G2 G3 G4

10°

1071

1072

Gl G2 G3 G4

mm PF_(1,1) == PDUV_F_(1,1) P_F_(3,1) PDUV_F_@3,1)
mmm P[ES]_F_(1,1) msm PDUVIES]_F_(1,1) P[ES]_F_(3,1) PDUVI[ES]_F_(3,1)

Figure 13: Effect of conditioning fields for the SIDA dataset. Error-type 2 is presented.
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D INFERNCE ROLLOUT PLOTS

D.1 ROLLOUT PREDICTIONS FROM INITIAL CONDITIONS FOR THE LIDE DATASET

In the following, we present rollout predictions for various models—each with 50M parameters,
except for ResNet, which has only 1M parameter count. The trajectory shown in the Figures[T4] [T3]
and The trajectory corresponds to the following simulation parameters: filament pressure
9.3886 x 10” [Pa], ambient pressure 1.0382 x 10° [Pa], laser half-width 1.1727 x 106 [m], and
droplet radii 1.5966 x 10~° [m] and 1.2139 x 10~° [m] along z- and r-axis, respectively.
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UNet-50M

......

Figure 14: Rollout predictions for the LIDE-Experiment PDUV_F_(3,1) with UNet-50M.
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FNO-50M

Figure 15: Rollout predictions for the LIDE-Experiment PDUV _F_(3,1) with FNO-50M.
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VIT-50M
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Figure 16: Rollout predictions for the LIDE-Experiment PDUV_F_(3,1) with ViT-50M.
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Figure 17: Rollout predictions for the LIDE-Experiment PDUV_F_(3,1) with ScOT-50M.
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ResNet-IM
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Figure 18: Rollout predictions for the LIDE-Experiment PDUV_F_(3,1) with ResNet-1M.
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D.2 ROLLOUT PREDICTIONS FROM INITIAL CONDITIONS FOR THE SIDA DATASET

Here, we present rollout predictions for various models—each with 50M parameters, except for
ResNet, which has only 1M parameter count. The trajectory shown in the Figures [19] 20] 21]
and 23] corresponds to the following simulation parameters: The shock Mach number 3.26, the flow
Mach number 1.42, and the Weber number 13820.

Figure 19: Rollout predictions for the SIDA-Experiment PDUV _F_(3,1) with UNet-50M.
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1000

200

(b)

Figure 24: Comparison between UNet 50-M (a) and ViT 50-M (b) with target (for both at right) at
the last rollout step for experiment PDUV_T_(3,1).
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E TABLES

E.1 ERROR-TYPE 1 METRICS FOR THE LIDE DATASET

In this section, we showcase the MAE and RMSE of type 1 for all of the experiments for the LIDE
dataset.

Table 15: Error-type 1 for experiment P_F_(1,1) for the LIDE dataset across all models.
M 50M

MODEL
MAE  RMSE  MAE  RMSE

UNet 0.050158 ~ 0.320097  0.029947

FNO 0.038743  0.236019 | 0.034457  0.228853

ViT 0.064188  0.330116 | 0.035981  0.265581

ScOT 0.054083  0.350523  0.030053 | 0.252165

Reser  [HOOSHSSINNOAOITN

Table 16: Error-type 1 for experiment P_F_(3,1) for the LIDE dataset across all models.
M 50M

MODEL MAE RMSE MAE RMSE
UNet 0.018395 0.127369  0.010270  0.103838
FNO 0.026565  0.197309  0.018784  0.158807
ViT

ScOT 0.029390  0.209213  0.018250

ResNet  [H0/0584851710285421]

Table 17: Error-type 1 for experiment P_T_(1,1) for the LIDE dataset across all models.
M S0M

MODEL —(AE — RMSE ~ MAE _ RMSE
UNet 0.037299  0.207032  0.014883  0.088464
FNO 0.037581  0.219160 [F0:027419 0:175971"
ViT 0.044926 ~ 0.251087 0.010941  0.072258

ScOT 0.018686  0.094912
ResNet 0.053545
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Table 18: Error-type 1 for experiment P_T_(3,1) for the LIDE dataset across all models.
M 50M

MODEL MAE RMSE MAE RMSE
UNet 0.034113  0.156079  0.009274  0.063560
FNO 0.023229  0.142621

ViT 0.032176  0.172894  0.009436  0.061425

ScOT 0.165612 0.011976  0.072571
ResNet 0.040644

Table 19: Error-type 1 for experiment PDUV _F_(1,1) for the LIDE dataset across all models.
M 50M

MODEL MAE RMSE MAE RMSE
UNet 0.109131  0.368182  0.063505  0.257702
FNO 0.170194  0.476427

ViT 0.276362 0.069991  0.253188
ScOT 0.097253  0.320186  0.070541  0.270568

Reser  HOMRS2MINORAG05

Table 20: Error-type 1 for experiment PDUV _F_(3,1) for the LIDE dataset across all models.
1M 50M

MODEL

MAE RMSE MAE RMSE
UNet 0.058351  0.201772  0.029650  0.130409
FNO 0.114536  0.359660
ViT 0.184868  0.493885 0.047491 0.169020
ScOT 0.068976  0.210712  0.039000  0.147999

ResNer  [OBIHSOZINOGESISON

Table 21: Error-type 1 for experiment P[ES]_F_(1,1) for the LIDE dataset across all models.

M S0M
MAE RMSE MAE RMSE

UNet 0.183736  0.668131
FNO

ViT 0.193752  0.710904  0.094765  0.480033
ScOT 0.167247  0.723314  0.110193  0.490153
ResNet 0.221558  0.687037

MODEL
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Table 22: Error-type 1 for experiment P[ES]_F_(3,1) for the LIDE dataset across all models.
M 50M

MODEL MAE RMSE MAE RMSE
UNet 0.094715

FNO 0.098235  0.360389

ViT 0.077738  0.335093 0.061788  0.263886
ScOT 0.052584  0.238377  0.057491  0.223806

ResNet 0.078854  0.327747

Table 23: Error-type 1 for experiment PDUV[ES]_F_(1,1) for the LIDE dataset across all models.

1M S0M
MAE RMSE MAE RMSE

MODEL

UNet 0428511  0.925083 [10:520709" "1:213596 "

FNO 0445202 1.025386 ~ 0.415432  1.062686
ViT 101650342 111550077 0.178182  0.510104
ScOT 0491391  1.162120 0362049  1.046217

ResNet 0.345443  0.711238

Table 24: Error-type 1 for experiment PDUV[ES]_F_(3,1) for the LIDE dataset across all models.
1M 50M

MODEL

MAE RMSE MAE  RMSE
UNet 0326256  0.784144  0.210111  0.636456
PNO (103522897 OSTERI0271577] 0699626
ViT 0261794  0.678912  0.189450  0.541396
ScOT 0.258918  0.740610 | 0.238986 [10:754031"

ResNet  [HOI3743931 0.763712

Table 25: Error-type 1 for experiment P_F_(3,2) for the LIDE dataset across all models.
M 50M

MODEL MAE RMSE MAE RMSE
UNet 0.020932  0.150926  0.011344  0.107390
FNO 0.028200  0.185887  0.018559  0.143982
ViT

ScOT 0.026681 0.173740 = 0.021259

ResNet 0.038422  0.232738
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Table 26: Error-type 1 for experiment PDUV _F_(3,2) for the LIDE dataset across all models.
M 50M

MODEL MAE RMSE MAE RMSE
UNet 0.076998  0.245355 0.032054  0.131819
FNO 0.083239  0.250742

ViT 0.045292  0.149407
ScOT 0.063067  0.187791  0.040758  0.150562

ResNet  [H0M254930 0.324338

Table 27: Error-type 1 for experiment PDUV_T_(1,1) for the LIDE dataset across all models.
M 50M

MODEL MAE RMSE MAE RMSE
UNet 0.115898 0.324705 0.038253  0.148635
FNO 0.107092  0.362523

ViT 0.161391 0.030712  0.114747
ScOT 0.087875  0.234057 0.031315 0.111389

ResNer  [ORISI20NNOSGIGSIN

Table 28: Error-type 1 for experiment PDUV_T_(3,1) for the LIDE dataset across all models.
M 50M

MODEL MAE RMSE MAE RMSE
UNet 0.125620  0.351120 0.035482  0.132766
FNO 0.091418  0.317205

ViT 0.127357 0.032883  0.121964
ScOT 0.080846  0.212856  0.030317  0.104845

ResNer  [OHTSS2INOMISGRIN
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E.2 ERROR-TYPE 1 METRICS FOR THE SIDA DATASET

In this section, we showcase the MAE and RMSE of type 1 for all of the experiments for the SIDA
dataset.

Table 29: Error-type 1 for experiment PDUV _F_(1,1) for the SIDA dataset across all models.

1M S0M
MAE RMSE MAE RMSE

UNet 0389026  0.737015
FNO 0.388798  0.742821 = 0.374010
ViT 10448837 10.765849" 0366726  0.693767

ScOT 0.386842  0.730874  0.368502  0.700724

ResNet  0.408657 [0:7708250

MODEL

Table 30: Error-type 1 for experiment PDUV _F_(3,1) for the SIDA dataset across all models.
M 50M

MODEL MAE RMSE MAE RMSE
UNet 0.034015 0.093065 0.011980 0.046474
FNO 0.052038 0.117692  0.022379 0.063122
VI 0169615 0374392 0041611 0099006
ScOT 0.072025 0.161001 0.022156  0.052946

ResNet 0.051773  0.148635

Table 31: Error-type 1 for experiment PDUV_T_(3,1) for the SIDA dataset across all models.
1M 50M

MODEL

o MAE RMSE MAE RMSE
UNet 0.085495  0.200467  0.023461  0.068501
FNO 0.064166  0.146237 = 0.035258

ViT

ScOT 0.080007  0.184152  0.026292  0.062866

ResNet 0.099948  0.246592
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Table 32: Error-type 1 for experiment PDUV[VoS]_F_(1,1) for the SIDA dataset across all models.

M 50M
MAE RMSE MAE RMSE

UNet 0.441329  0.816076
FNO

ViT 0.483162 0.840182 | 0.427463 0.781107
ScOT 0.874120  0.222295  0.522612
ResNet 0.451940  0.815882

MODEL

Table 33: Error-type 1 for experiment PDUV[VoS]_F_(3,1) for the SIDA dataset across all models.
M 50M

MODEL MAE RMSE MAE RMSE
UNet 0.168696  0.478806  0.143648  0.442353
FNO 0.506633

ViT 0.169848  0.442154
ScOT 0.226147  0.553132  0.172184  0.451849

ResNet 0.153185  0.430725

Table 34: Error-type 1 for experiment PDUV[VoS]_T_(3,1) for the SIDA dataset across all models.
1M 50M

MODEL

MAE RMSE MAE  RMSE
UNet 0.191591 | 0.513835 0.143940  0.423987
FNO 0.506024
ViT 0.117042  0.387439
ScOT 0.179452  0.432399  0.155808 [H04558107

ResNet 0.190392 = 0.499268

Table 35: Error-type 1 for experiment PDUV _F_(3,2) for the SIDA dataset across all models.
M 50M

MODEL MAE RMSE MAE RMSE
UNet 0.044712  0.103980 0.017345  0.050488
FNO 0.068911  0.145589  0.032252  0.080259
ViT

ScOT 0.080692  0.166986  0.027520  0.062177

ResNet 0.057433  0.160196
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Table 36: Error-type 1 for experiment PDUV[VoS]_F_(3,2) for the SIDA dataset across all models.
M 50M

MODEL MAE RMSE MAE RMSE
UNet 0.126315 0.361863  0.112709  0.372599
FNO 0.456978

ViT 0.129287  0.352591
ScOT 0.167449  0.413125 0.144851  0.402093

ResNet 0.139206  0.384204
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F LARGE LANGUAGE MODEL (LLM) USAGE

Large Language Models (LLMs) were utilized to polish the writing and find suitable words in some
scenarios.
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