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Abstract

Safety is a critical component of autonomous systems and remains a challenge for
learning-based policies to be utilized in the real world. In this paper, we propose
Sim-to-Lab-to-Real to bridge the reality gap with a probabilistically guaranteed
safety-aware policy distribution. To improve safety, we apply a dual policy setup
where a performance policy is trained using the cumulative task reward and a
backup (safety) policy is trained by solving the safety Bellman Equation based
on Hamilton-Jacobi reachability analysis. In Sim-to-Lab transfer, we apply a
supervisory control scheme to shield unsafe actions during exploration; in Lab-
to-Real transfer, we leverage the Probably Approximately Correct (PAC)-Bayes
framework to provide lower bounds on the expected performance and safety of
policies in unseen environments. We empirically study the proposed framework
for ego-vision navigation in two types of indoor environments including a photo-
realistic one. We also demonstrate strong generalization performance through
hardware experiments in real indoor spaces with a quadrupedal robot.3

1 Introduction

Due to tight hardware constraints and high sample complexities, reinforcement learning with robots
is usually performed solely in simulated environments. However, robots’ performance often degrades
sharply in the real world. Domain randomization has helped bridge this Sim-to-Real gap by simulating
a wide range of scenarios [1, 2], but does not explicitly address safety of the robots. Although training
in simulation allows safety violations, without training to avoid unsafe behavior, robots tend to
exhibit similarly unsafe behavior in real environments. Another drawback of these techniques is that
they do not provide any generalization guarantee on robots’ performance or safety to different real
environments, which is necessary for deploying autonomous systems in safety-critical scenarios (e.g.,
households with children).

In this work, we explore a middle-level training stage between Sim and Real, which we call Lab,
that aims to further bridge the Sim-to-Real gap. The proposed Sim-to-Lab-to-Real framework is
motivated by the conventional engineering practice that before deploying autonomous systems in
the real world after training, human designers usually test systems in a more realistic but controlled
environment, such as a test track for autonomous cars. Our intuition is that (1) after training in diverse
conditions in simulation, the robot fine-tunes in more specific environments before deployment
in similar environments in the real world; (2) this second stage also provides guarantees on the
performance and safety of the system in Real deployment. Fig. 1 shows the pipeline.

∗Equal contributions in alphabetical order
†Equal contributions in advising
3See https://sites.google.com/princeton.edu/sim-to-lab-to-real for representative trials.
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Figure 1: Overview of the Sim-to-Lab-to-Real framework. Sim stage trains a latent-conditioned,
safety-aware dual policy in a wide variety of conditions. Then the Lab stage safely fine-tunes the
latent distribution in different and more specific settings, which are also closer to Real environments.

In the Lab training, the autonomous system needs to explore safely to further improve the performance.
Our approach builds upon a dual policy setup where a performance policy optimizes task reward and
a backup (safety) policy keeps robots away from unsafe regions. We then apply a least-restrictive
control law (or shielding) [3]: the backup policy only intervenes when the safety state-action value
function deems the proposed action from performance policy violates safety constraints in the future.
The backup policy is pre-trained in the Sim stage and ready to ensure safe exploration once Lab
training starts. Based on safe RL training using Hamilton-Jacobi (HJ) reachability-analysis developed
in [4, 5], our backup agent can learn from near failure with dense signals; even when the backup
policy updates itself in safety-critical conditions, the training does not rely on safety violations unlike
previous work that uses binary safety indicators [6, 7].

We also apply the Probably Approximately Correct (PAC)-Bayes Control framework [8] to provide
bounds on the expected performance and safety in unseen environments. The framework fits our setup
as its two training stages, prior and posterior, correspond to Sim and Lab. We train a distribution
of policies by conditioning the performance policy on latent variables sampled from a distribution.
After training a prior distribution in Sim stage, we fine-tune it in Lab and obtain a posterior policy
distribution and its associated generalization guarantee. Unlike other techniques from robust control
[9] and reachability analysis [10], PAC-Bayes Control does not assume knowledge of the uncertainty
affecting the system (e.g., bound on actuation noise) or the environment (e.g., minimum distance
between obstacles), and allow training policies with rich sensing like vision.

2 Related Work

Safe Exploration Recent methods [6, 7, 11, 12] address safe exploration in training with similar
shielding schemes as in this work. However, the major differences lie in how the safety state-action
value function, safety critic, is trained and how the backup action is generated. Previous work learn
the safety critic from only sparse (binary) safety labels. Srinivasan et al. [6] use this critic to filter
out unsafe actions until the performance policy resamples a safe one, while Thananjeyan et al. [7]
train the same critic but use action from the backup policy instead of resampling the performance
policy. One concurrent work [12] uses the same reachability-based RL to learn the backup agent. Our
method is distinct in that we propose the two-stage training to allow safer exploration and train the
reachability-based RL end-to-end from images without pre-training the visual encoder.

Generalization Theory and Guarantees In supervised learning, generalization theory provides
guarantees on the expected loss on new samples drawn from the unknown data distribution, after
training a model using a finite number of samples. Recent work based on PAC-Bayes generalization
theory [13] have provided non-vacuous bounds for neural networks in supervised learning [14]. [8]
apply the PAC-Bayes framework in policy learning settings and provide generalization guarantees for
control policies in unseen environments. Follow-up work has provided strong guarantees in different
robotics settings including for learning neural network policies for vision-based control [15, 16, 17].
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However, previous work has not adopted safety-related policy architectures nor considered safety
during training.

Safe Visual Navigation in Unseen Environments Typical approaches in robot navigation focus
on explicit mapping of the environment combined with long-horizon planning [18, 19]. Recently
there has been a line of work in applying Hamilton-Jacobi reachability analysis in visual navigation
to improve the safety of the agent. [20] solve for the reachability set at each step but relies on a
map generated using onboard camera. [21] propose supervising the visual policy using expert data
generated by solving the reachability set. Our work also leverages reachability analysis but does not
build a map of the environment nor relies on offline data generated by a different (expert) agent.

3 Problem Formulation and Preliminaries

We consider a robot with discrete-time dynamics given by st+1 = fE(st, at) with state s ∈ S ⊆ Rns ,
control input a ∈ A ⊆ Rna , and environment E ∈ E that the robot interacts with (e.g., an indoor
space with furniture including initial and goal locations of the robot). Below we introduce the
different conditions of the environments considered in the three stages.

Environment - Sim. In the Sim stage, we assume there is a set of training environments M′ ⊂ E
(e.g., synthetic indoor spaces with randomized arrangement of furniture), M′ := {E1, E2, · · · , EN ′}.
There is no assumption on how M′ is distributed in E .

Environment - Lab. In the Lab stage, we are concerned with more specific conditions, and there
can be different distributions of environments D1, D2, ... (e.g., office or home spaces, dimensions
of the obstacles), with which the policies trained in Sim can be fine-tuned. We assume no explicit
knowledge of each distribution Di; instead, we assume there is a set of Ni training environments
drawn i.i.d. from Di available for the robot to train in; we denote these training datasets by Mi :=
{E1, E2, · · · , ENi

} ∼ DNi
i . With a slight abuse of notations and for convenience, we consider a

single distribution when introducing the rest of formulation and the approach, and we denote the
concerned distribution D, the training set M, and the number of training environments N .

Environment - Real. In the Real stage, we assume the robot is deployed in environments from the
same distribution D but unseen during the Lab stage.

Next we introduce the rest of problem settings including the robot sensor, the policy, and robot’s task
involving the reward function and the failure set. These settings hold the same for all three stages,
except for the failure set which we do not require knowledge of at Real deployment.

Sensor. In all environments, we assume the robot has a sensor (e.g., RGB camera) that provides an
observation o = hE(s) using a sensor mapping h : S × E → O.

Task and Policy. Suppose the robot’s task can be defined by a reward function, and let RE(π) denote
the cumulative reward gained over a (finite) time horizon by a deterministic policy π : O → A when
deployed in an environment E. We assume the policy π belongs to a space Π of policies. We also
allow policies that map histories of observations to actions by augmenting the observation space to
keep track of observation sequences. We assume RE(π) ∈ [0, 1], but make no further assumptions
such as continuity or smoothness. We use ξs,πE : [0, T ]× E → S to denote the trajectory rollout from
state s using policy π in the environment E up to a time horizon T .

Failure set. We further assume there are environment-dependent failure sets FE ⊆ S , that the robot
is not allowed to enter. In training stages, we assume the robot has access to Lipschitz functions
g : S ×E → R such that FE is equal to the zero superlevel set of gE , namely, s ∈ FE ⇔ gE(s) ≥ 0.
For example, gE(s) can be the signed distance function to the nearest obstacle around state s. Thus,
gE(s) is called the safety margin function throughout the paper.

3.1 Goal

Our goal is to learn policies that provably generalize to unseen environments at the Real stage. This
is very challenging since we do not have explicit knowledge of the underlying distribution D. We
employ a slightly more general formulation where a distribution P over policies π ∈ Π instead of a
single policy is used. In addition to maximizing the policy reward, we want to minimize the number
of safety violations, i.e., the number of times that the robot enters failure sets. Our goal can then
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be formalized by the following optimization problem, which we would like to lower bound as the
guarantee:

R⋆ := sup
P∈P

RD(P ), where RD(P ) := E
E∼D

[
E

π∼P

[
RE(π)

]]
, (1)

RE(π) := RE(π)1
{
∀t ∈ [0, T ], ξs,πE (t) /∈ FE

}
, (2)

where RE(π) ∈ [0, 1] denotes the task reward that does not penalize safety violation, P denotes the
space of probability distributions on the policy space Π, and 1{·} is the indicator function. Here the
task reward can be either dense (e.g., normalized cumulative reward) or sparse (e.g., reaching the
target or not).

3.2 Generalization Bounds

Recently, PAC-Bayes generalization bounds have been applied to policy learning settings in order
to provide formal generalization guarantees in unseen environments. We briefly introduce this
framework here, as it will be used in our overall approach presented in Section 4. First it requires
training a prior policy distribution P0, which we do in the Sim stage with the set of environments M ′.
Then in the Lab stage, we fine-tune P0 with environments M to obtain the posterior distribution P .
Now, define the empirical reward of P as the average expected reward across training environments
in M:

RM(P ) :=
1

N

∑
E∈M

E
π∼P

[
RE(π)

]
. (3)

The following theorem can then be used to lower bound the true expected reward RD(P ).
Theorem 1 (PAC-Bayes Bound for Control Policies; adapted from [8]). Let P0 ∈ P be a prior
distribution. Then, for any P ∈ P , and any δ ∈ (0, 1), with probability at least 1− δ over sampled
environments M ∼ DN , the following inequality holds:

RD(P ) ≥ RPAC(P, P0) := RM(P )−
√
C(P, P0), where C(P, P0) :=

KL(P∥P0) + log( 2
√
N
δ )

2N
,

and KL(P ||Q) stands for Kullback-Leibler divergence between probability distribution P and Q.

Maximizing the lower bound RPAC can be viewed as maximizing the empirical reward RM(P ) along
with minimizing a regularizer C that prevents overfitting by penalizing the deviation of the posterior
P from the prior P0. By fine-tuning P0 to P and maximizing the bound in the Lab stage, we can
provide a generalization guarantee for trained policies in unseen environments in the Real stage.

4 Method

Figure 2: Architecture of the safety-
aware policy distribution.

Our proposed Sim-to-Lab-to-Real framework bridges the
reality gap with probabilistic guarantees by learning a
safety-aware policy distribution. Fig. 2 shows the archi-
tecture of the safety-aware policy distribution. It explicitly
handles safety by leveraging a shielding classifier, which
monitors the candidate actions from the performance pol-
icy and replaces them with backup actions when necessary.
We also condition the performance policy on a latent vari-
able to encode diverse strategies. We show how to jointly
train a dual policy conditioning on a latent distribution
in Sec. 4.1 (Sim-to-Lab). The details of Lab training and
derivations of generalization guarantees are provided in
Sec. 4.2 (Lab-to-Real).

For training, we use a proxy reward function rE : S ×A× E → R (e.g., dense reward in distance
to target) as a single-step surrogate for the task reward RE(π). At each step the robot also receives
a safety cost gE(s) (e.g., distance to nearest obstacle). We train the dual policy with modifications
of the Soft Actor-Critic (SAC) algorithm [22]. We denote the neural network (NN) weights of the
actor and critic θ and w. We use superscripts (·)p and (·)b to denote critics, actors, and actions from
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the performance or backup agent. The performance policy is conditioned on latent variable z ∈ Rnz

sampled from a multivariate Gaussian distribution with diagonal covariance as z ∼ N (µ,Σ), where
µ ∈ Rnz is the mean and Σ ∈ Rnz×nz is the diagonal covariance matrix. We further denote σ ∈ Rnz

the element-wise square-root of the diagonal of Σ, and define ψ = (µ, σ), Nψ := N (µ, diag(σ2)).

4.1 Pre-Training Diverse Dual Policy in Simulator

In this Sim stage, we use the dataset M′ that contains environments that are not necessarily similar
to those from the target environment distribution D. They contain randomized properties such as
random arrangement of furniture in indoor space and random camera tilting angle on the robot.

Safety through Reachability-Based Reinforcement Learning Failures are usually catastrophic in
safety-critical settings; thus worst-case safety, instead of an average safety over the trajectory, should
be considered. For training the backup policy, we incorporate reachability-based reinforcement
learning [4] and optimize the discounted safety Bellman equation (DSBE):

Qb(ot, at) := (1− γ)gE(st) + γmax
{
gE(st), min

at+1∈A
Qb(ot+1, at+1

)}
, (4)

where ot = hE(st) and γ is the discount factor. This discount factor represents how much the RL
agent cares about future outcomes: if γ is small, the RL agent is myopic and only cares about the
current “danger”, and as γ → 1, it recovers the infinite-horizon safety state-action value function. In
training, we initialize γ = 0.8 and gradually anneal γ → 1 as the backup policy improves.

Figure 3: Safe and diverse trajectories generated
by the safety-aware policy distribution. The inset
shows safety values Q(o, πb(o)) with the observa-
tion o taken when the heading angle fixed to the
one at time instant tsh.

The safety critic in (4) captures the maximum
cost gE along the trajectory starting from st
with action at even if the best control input
is applied at every instant afterward. Thus,
minat∈AQ(ot, at) > 0 indicates the robot is
predicted to hit an obstacle in the future. DSBE
allows the backup agent to learn the safety critic
from near failure, which significantly reduces
failure events during training. DSBE also up-
dates the backup agent with dense signals, which
is more suitable for the joint training of perfor-
mance and backup agents.

Shielding We leverage shielding to reduce the number of safety violations in both training and
deployment. Besides the backup policy πb, we also train a performance policy πp to maximize task
reward. Before a candidate action from the performance policy is applied, a shielding classifier ∆sh

checks if it is safe. We replace it with the action from the backup policy if and only if that candidate
action is predicted to cause safety violation in the future. The shielding criterion is summarized in
(5). This ensures minimum intervention by the backup policy while the performance policy guides
the robot towards the target [3, 23].

πsh(o) =

{
πp(o), ∆sh(o, πp, πb) = 1
πb(o), otherwise . (5)

The safety value function learned by DSBE represents the maximum cost along the trajectory in the
future if the learned policy is followed. Based on this, we propose Value-based Shielding with a
physically meaningful shielding threshold, i.e., it represents the margin to failure. Once the robot
receives the current observation o and uses performance policy to generate action ap, the backup
policy overrides the action if and only ifQb(o, ap) > vthr. In other words, the shielding discriminator
is defined as below

∆sh(o, πp, Qb) := 1
{
Qb(o, πp(o)) ≤ vthr

}
. (6)

Fig. 3 shows an example of shielding that prevents applying unsafe actions from the performance
policy (with shielding, the red dotted lines are replaced with green dotted lines in the inset). We
compare the safety critic based on DSBE with ones learned with sparse safety indicators [6, 7] in
Sec. 5 and Fig. 6; our approach affords much better safety during training and deployment.
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Algorithm 1 Joint training in simulator

Require: M′, πp, πb,Nψ0 := N (0, σI), ρ = 1, ϵ =
0, γ = γinit

1: Sample E ∼M ′ and z ∼ Nψ0 , reset environment
2: for t← 1 to num_prior_step do
3: With probability ρ, sample action at ∼

πb(·|ot); else sample at ∼ πp(·|ot, z)
4: With probability ϵ, apply shielding ash

t =
πsh(πb, ot, at)

5: Step environment rt, ot, st+1 ∼ P(·|st, ash
t )

6: Save (ot+1, ot, at, a
sh
t , z, rt) to replay buffer

7: Update πp with reward and πb with DSBE
8: Anneal ρ→ 0, ϵ→ 1, γb → 1
9: if timeout or failure then

10: Sample E ∼M′ and z ∼ Nψ0 , reset envi-
ronment

11: end if
12: end for
13: return πp, πb,Nψ0

Joint Training of Dual Policy. In Sim stage,
we fix the latent distribution to be a zero-mean
Gaussian distribution with diagonal covariance
Nψ0

, where ψ0 = (0, σ0). For each episode
during training, we sample a latent variable z ∼
Nψ0

and condition the performance policy on it
for the whole episode. The training procedure
is illustrated in Algorithm 1.

Since we train both policies with modifications
of the off-policy SAC algorithm, we can use
transitions with actions proposed by either pol-
icy. The transitions are stored in a shared replay
buffer. At every step during training, the robot
needs to select a policy to follow. We introduce
ρ, the probability that the robot chooses an ac-
tion from the backup policy. We initialize ρ to
1, which means initially all actions are sampled
from the backup policy. Intuitively, the backup
policy needs to be trained well before shielding
is used in training. We gradually anneal ρ→ 0. We then introduce another parameter ϵ, the probabil-
ity that the shielding is activated at the step. This parameter represents how much the backup policy
is trusted to shield the performance policy. We typically anneal ϵ from 0 to 1. The influence of ρ and
ϵ are further analyzed in Appendix A.5.

After the joint training, we obtain the dual policies πp and πb, and the latent distribution Nψ0 that
encodes diverse trajectories in the environments. We now fix the weights of the two policies, and
consider the latent variable z also part of parameterization of the dual policy. This gives rise to the
space of policies Π := {πpz , πb : O 7→ A | z ∈ Rnz}; hence, the latent distribution Nψ0 can be
equivalently viewed as a distribution on the space Π of policies. In the next section, we will consider
Nψ0

as a prior distribution P0 and “fine-tune” it by searching for a posterior distribution P = Nψ,
which comes with the generalization guarantee from PAC-Bayes Control.

4.2 Safely Fine-Tuning Policies in Lab

In Lab stage we consider more safety-critical environments such as test tracks for autonomous cars or
indoor lab space. After pre-training the performance and backup policies with shielding, the robot can
safely explore and fine-tune the prior policy distribution P0 in a new set of environments M sampled
from the unknown distribution D. Leveraging the PAC-Bayes Control framework, we can provide
“certificates” of generalization for the resulting posterior policy distribution P . The overall algorithm
is similar to Algorithm 1. To avoid safety violations, we always apply value-based shielding to the
proposed action (ϵ = 1) during Lab training.

The PAC-Bayes generalization bound RPAC associated with P from Eq. (1) consists of (1) RM(P ),
the empirical reward of P as the average expected reward across training environments in M (3),
which can be optimized using SAC; (2) a regularizer C(P, P0) that penalizes the posterior P from
deviating from the prior P0. Note that the only term in C(P, P0) that involves P is the KL divergence
term between P and P0. We modify the SAC formulation to include minimization of the KL
divergence term. We consider stochasticity of the policy from the latent distribution instead of the
policy network; this leads to removing the policy entropy regularization in SAC and adding a weighted
KL divergence term to the actor loss. In practice, we find the gradient of the KL divergence term
heavily dominates the noisy gradient of actor and critic, and thus we approximate the KL divergence
with an expectation on the posterior:

max
P

Eo,z
[
Ea∼πθ(·|o,z)

[
Qp(o, a)

]
− α log

P (z)

P0(z)

]
. (7)

where α ∈ R is a weighting coefficient to be tuned. After Lab training, we calculate the generalization
bound Rbound(P ) using the posterior P . Please refer to Appendix A.1 for more details about the
calculation. Overall, our approach provides generalization guarantees in novel environments from
the distribution D: as policies are randomly sampled from the posterior P and applied in test
environments, the expected success rate over all test environments is guaranteed to be at least
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Rbound(P ) (with probability 1 − δ over the sampling of training environments; δ = 0.01 for all
experiments).

5 Experiments

We aim to answer the following in experiments: does our proposed Sim-to-Lab-to-Real achieve (1)
lower safety violations during Lab training compared to other safe learning methods, (2) stronger
generalization guarantees on performance and safety compared to previous work in PAC-Bayes
Control, and (3) better empirical performance and safety during deployment compared to baselines?

(a) (b) (c) (d) 

Figure 4: Samples of environments used in experiments: (a) Sim training in Vanilla-Env; (b) Sim
training in Advanced-Env; (c) Advanced-Realistic training; (d) Real deployment with a quadrupedal
robot.

Environments. We evaluate the proposed methods by performing ego-vision navigation task in
two types of environment. Vanilla-Env consists of undecorated rooms of 2m× 2m with cylindrical
and rectangular obstacles of different dimensions and poses, and the robot needs to reach a green
door (Fig. 4a). A camera on the robot provides RGB images of 48× 48 pixels. Advanced-Env uses
the same room dimensions but places realistic furniture models from the 3D-FRONT dataset [24]
(Fig. 4b). The robot needs to reach some target location using distance and relative bearing to the
target. An onboard camera provides RGB images of 90× 160 pixels.

In Sim training, we randomize obstacle and furniture configurations, and also camera poses (tilt and
roll angles) in Advanced-Env to account for possible noise in real experiments. Sim training uses 100
environments in Vanilla-Env and 500 environments in Advanced-Env. After Sim training, we can
fine-tune the policies in different types of Lab environments listed below:

• Vanilla-Normal: shares the same environment parameters as ones in the Sim stage.
• Vanilla-Dynamics: increases the lower bound of forward and angular velocity.
• Vanilla-Task: the robot needs to enter the target region with heading within some range.
• Advanced-Dense: assigns a higher density of furniture in the rooms.
• Advanced-Realistic: uses realistic room layouts (Fig. 4c) and associated furniture configura-

tions from the 3D-FRONT dataset. We perform Lab-to-Real transfer with policies trained in
this Lab (Fig. 4d). More details about the dataset can be found in Appendix A.3.

Policy. We parameterize the performance and backup agents with NNs consisting of convolutional
(CONV) layers and fully connected (FC) layers. The actor and critic of each agent share the same
CONV layers. In Vanilla-Env, a single RGB image is fed to the CONV layers, and in Advanced-Env,
we stack 4 previous RGB images while skipping 3 frames between two images to encode the past
trajectory of the robot. More details of NN and training can be found in Appendix A.2.

Baselines. We consider two variants of Sim-to-Lab-to-Real: PAC Shield that trains a safety-aware
policy distribution and Shield that trains a single safety-aware policy without conditioning on latent
variables. We consider four types of baselines: (1) unconstrained RL that neglects safety violations
(Base), (2) reward shaping that adds penalty to reward when violating constraints (RP), (3) PAC-
Bayes control that trains a diverse policy distribution (PAC Base and PAC RP [8]), and (4) a
separate safety agent (SQRL [6] and Recovery RL [7]). The major distinction between Sim-to-Lab-
to-Real and PAC-Bayes control is that the latter does not handle the safety explicitly but only relies on
diverse policies and fine-tuning to prevent unsafe maneuver. Sim-to-Lab-to-Real differs from SQRL
and Recovery RL in that the latter train the safety critic with sparse safety indicators shown below,

Qb(ot, at) := IE(st) + γ
(
1− IE(st)

)
min

at+1∈A
Qb(ot+1, at+1

)
,

where IE(st) = 1{gE(st) > 0} is the indicator function of the safety violations.
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(a) Vanilla-Env (averaged over 5 seeds) (b) Advanced-Env (averaged over 3 seeds)

Figure 5: Comparison of safety violations during Lab training and unsuccessful trials at test time.

Results. We compare all the methods by (1) safety violations in Lab training and (2) success and
safety at deployment (Fig. 5). We calculate the ratio of number of safety violations to the number of
episodes collected during training. For deployment, we show the percentage of failed trials (solid
bars in Fig. 5) and unfinished trials (hatched bars). We summarize the main findings below:

1. Among all Lab training, our proposed Sim-to-Lab-to-Real (PAC Shield) achieves fewest safety
violations. This demonstrates the efficacy of using reachability-based safety critic for shielding
as it learns from near failure with dense cost signals (as opposed to risk-based safety critics).
Adding penalty in the reward function does not reduce safety violations significantly.

2. During deployment, Sim-to-Lab-to-Real achieves the lowest unsuccessful ratio of trajectories
(solid bars plus hatched bars) and the fewest safety violations (solid bars). This suggests that (1)
enforcing hard safety constraints explicitly improves the safety and (2) training a diverse and
safe policy distribution achieves better generalization performance to novel environments. We
show stronger generalization guarantees compared to PAC-Bayes baselines.

3. Sim-to-Lab-to-Real achieves the best performance and safety among baselines when the policies
are deployed on a quadrupedal robot navigating through real indoor environments. The empirical
performance and safety also validate the theoretical generalization guarantees.

(a) Lab: Vanilla-Normal

(b) Lab: Advanced-Realistic
Figure 6: 2D slices of safety critic
values when the robot is facing to
the right.

Reachability vs. Risk-Based Safety Critic. Sim-to-Lab-to-
Real and previous safe RL methods differ in (1) the metric
used to quantify safety and (2) training of the backup agent.
With reachability-based RL, we enforce the constraint that
the distance to obstacles should be no lower than a threshold.
In comparison, SQRL and Recovery RL define safety by the
risk of colliding with obstacles in the future and use binary
safety indicators. We argue that risk-based threshold can eas-
ily overfit to specific scenarios since the probability heavily
depends on the discount factor used. In addition, reachability
objective allows the backup agent to learn from near failure,
while the risk critic in SQRL and Recovery RL needs to learn
from complete failures, leading to more safety violations in
Lab training.

Fig. 6 shows 2D slices of the safety critic values in both en-
vironment settings. Reachability-based critics output thicker
unsafe regions next to obstacles, while risk critics fail to recog-
nize many unsafe regions or consider unsafe only when very
close to obstacles. Among different Lab setups, compared to
the baselines, our method reduces safety violations by 77%,
4%, 76%, 62%, and 23% in training and 38%, 26%, 54%, 34%, and 28% in deployment. Through
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experiments we also find the value threshold vthr used in shielding an important parameter; see
Appendix A.5 for more analysis.

Table 1: Results of PAC-Bayes guarantees and
physical experiments with Advanced-Realistic
Lab.

Advanced-Realistic

Method PAC Shield PAC Base SQRL
# Lab Environments 1000 1000 1000

Success Bound 0.701 0.297 -
True Expected Success 0.786 0.366 0.712

Real Robot Success 0.767 0.433 0.667

Safety Bound 0.708 0.304 -
True Expected Safety 0.794 0.367 0.713

Real Robot Safety 0.867 0.433 0.667

Generalization Guarantees. We evaluate the
PAC-Bayes generalization guarantees obtained
after Lab training, and the effect of adding
reachability-based shielding in the policy ar-
chitecture to the bounds. Table 1 shows the
bounds and test results on safety (not colliding
with obstacles) and success (safely reaching the
goal) in Advanced-Realistic Lab. The true ex-
pected success and safety are tested with envi-
ronments that are similar to the Lab training en-
vironments (of the same distribution) but unseen
before. We compare the bound trained using
PAC Shield with previous PAC-Bayes Control
method (PAC Base). With shielding, the bound improves from 0.366 to 0.786 for task completion
and from 0.367 to 0.794 for safety satisfaction. Thus, explicitly enforcing hard safety constraints
not only improves empirical outcomes but also provides stronger certification to policies in novel
environments. Due to space constraint, we show the bounds for other Labs in Appendix A.4.

Physical Experiments. To demonstrate empirical performance and safety in real environments
(Lab-to-Real transfer) and verify the generalization guarantees, we evaluate the policies in 10 real
indoor environments with diverse layouts (see Appendix A.4 for more details). We deploy a Ghost
Spirit quadrupedal robot equipped with a ZED 2 stereo camera at the front (Fig. 4d), matching the
same dynamics and observation model used in Advanced-Realistic Lab. Before each trial, the robot
is given the ground-truth distance and relative bearing to the goal at the initial location, and then it
uses the localization algorithm native to the camera to update the two quantities.

We run policies trained with PAC Shield (ours), PAC Base (PAC-Bayes baseline), and SQRL (best
overall among other baselines). Each policy is evaluated at one environment 3 times (30 trials total).
The results are shown in Table. 1. Our policy is able to achieve the best performance (0.767) and
safety (0.867), validating the theoretical guarantees from PAC-Bayes Control. The upper-right of Fig.
1 shows a trajectory when running policies trained with PAC Shield in a kitchen environment.

6 Conclusion
We propose the Sim-to-Lab-to-Real framework that combines Hamilton-Jacobi reachability analysis
and PAC-Bayes generalization guarantees to bridge the sim2real gap with a probabilistically guaran-
teed safety-aware policy distribution. We demonstrate significant reduction in safety violations in
training and stronger performance and safety during test time.

Discussion: Environment distribution. As elaborated in Sec. 3, the generalization guarantees
obtained through our framework assumes no distribution shift between Lab and Real in terms of
environments. To bridge the discrepancy, we model the real environments by using (1) photorealistic
dataset of indoor room layouts and furniture models and (2) dynamics from system identification of
the real robot and camera poses. Additionally, we note that previous works in PAC-Bayes Control
[8, 15, 16] have consistently shown real deployment validating the bounds. Even under a slight of
shift in distribution, we believe that a certificate of performance and safety is useful and provides
confidence for deploying the system.

Discussion: Large-scale Lab training. We acknowledge that one limitation of our framework is
that, in exchange for assuming close to nothing about the environment distribution and providing
statistical guarantees that hold in arbitrarily high confidence instead of in expectation only (e.g.,
conformal prediction [25]), we require at least a few hundred environments for “Lab” training to
achieve tight PAC-Bayes generalization guarantees, which means performing “Lab” training with
real conditions can be difficult for us researchers in university labs with limited resources. In this
work, we resort to performing “Lab” training in realistic simulated environments. Nonetheless,
we envision that our framework is well suited for industry practitioners who have access to either
extensive training facilities (e.g. Google’s robot “farms” [26] ), large-scale distributed systems (e.g.
Amazon’s warehouses [27]), or vast amounts of “Lab-like” data collection (e.g. Cruise and Waymo’s
thousands–millions of test driver miles [28]).
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A Appendix

A.1 Calculations of the PAC-Bayes Bound

After Lab training, we can calculate the generalization bound using the optimized posterior P . First,
note that the empirical reward RS(P ) involves an expectation over the posterior and thus cannot
be computed in closed form. Instead, it can be estimated by sampling a large number of policies
z1, ..., zL from P : R̂S(P ) := 1

NL

∑
E∈S

∑L
i=1R(π

p,b
zi ;E), and the error due to finite sampling can

be bounded using a sample convergence bound RS [29]. The final bound Rbound(P ) ≤ RD(P ) is
obtained from RS and C(P, P0) by a slight tightening of CPAC from Theorem 1 using the KL-inverse
function [8]. Please refer to Appendix A2 in [15] for detailed derivations.

A.2 NN architecture and training details

We show the training hyperparameters used in Sim and Lab training in Table. A1 and Table. A2. In
Vanilla-Env, the latent variable is appended to the output of the last CONV layer before FC layers. In

11



Advanced-Env, the stacked images are concatenated with the first 10 dimensions of the latent variable
by repeating each dimension to the image size. Rest of the dimensions is appended to the output of
the last CONV layer. The two auxiliary signals ℓE(s) and ∆E(s) are also appended to the output of
the last CONV layer.

Table A1: Hyperparameters for PAC Shield in Sim training. Same NN architecture
is used for performance and backup policies.

Environment Setting

Vanilla-Normal/Dynamics Vanilla-Task Advanced-Env

# training steps 500000 1000000 4000000
Replay buffer size 50000 (steps) 100000 (steps) 5000 (trajectories)

Optimize frequency 2000 2000 20000
# updater per optimize 1000 1000 1000

Value shielding threshold -0.05 -0.05 -0.05

Latent Distribution

Latent dimension (nz) 20 20 30
Augmented reward coefficient (β) 2 2 2

Prior standard deviation 2 2 2

Optimization

Optimizer Adam Adam Adam
Batch size (Performance) 128 128 128

Discount factor (Performance) 0.99 0.99 0.99
Learning rate (Performance) 0.0001 0.0001 0.0001

Batch size (Backup) 128 128 128
Discount factor (Backup) 0.8 → 0.999 0.8 → 0.999 0.8 → 0.99
Learning rate (Backup) 0.0001 0.0001 0.001

NN Architecture

Input channels 3 3 22a

CNN kernel size [5,3,3] [5,3,3] [7,5,3]
CNN stride [2,2,2] [2,2,2] [4,3,2]

CNN channel size [8,16,32] [8,16,32] [16,32,64]
MLP dimensions [130+nz

b ,128] [132+nz
b ,128] [248+nz

b ,256,256]

Hardware Resource

# CPU threads 8 8 16
GPU Nvidia V100 (16GB) Nvidia V100 (16GB) Nvidia A100 (40GB)

Runtime 8 hours 14 hours 12 hours
a We stack 4 previous RGB images while skipping 3 frames between two images and concatenate the stacked images

with the first 10 elements of the latent variable (each element is repeated to match the same shape of a channel in an
image).

b The input of the first linear layer is composed of the output from the convolutional layers, latent variables and
auxiliary signals, which is 128 + nz + 2 in Vanilla-Normal/Dynamics, 128 + nz + 4 in Vanilla-Task and
256 + (nz − 10) + 2 in Advanced-Env.

(a) Sim training (b) Lab training

Figure A1: Samples of robot observations in Advanced-Env: for better view here, the virtual
camera is placed at a higher location than the robot.
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Table A2: Hyperparameters for PAC Shield in Lab training.
Environment Setting

Vanilla-Env Advanced-Env

# training steps 500000 3000000
Replay buffer size 50000 (steps) 5000 (trajectories)

Optimize frequency 2000 20000
# updater per optimize 1000 1000

Value shielding threshold -0.05 -0.05
The number of environments (N ) 1000 1000

Optimization

Learning rate for latent mean 0.0001 0.0001
Learning rate for latent std 0.0001 0.0001

KL-divergence coefficient (α) 1 2
Optimizer Adam Adam

Batch size (Performance) 1024 128
Discount factor (Performance) 0.99 0.99
Learning rate (Performance) 0.0001 0.0001

PAC-Bayes Bound

The number of latent variables (L) 1000 1000
Precision (δ) 0.01 0.01

Hardware Resource

# CPU threads 8 8
GPU Nvidia V100 (16GB) Nvidia A100 (40GB)

Runtime 6 hours 16 hours

A.3 Environment Setup for Advanced-Env

In order to train the navigating agent in realistic environments before Real deployment, we use the
3D-FRONT dataset [24] that offers a larger number of synthetic indoor scenes with professionally
designed layouts and high-quality textured furniture. This is the richest dataset we find suitable to
indoor navigation task, as training with domain randomization and PAC-Bayes Control framework
often requires more than 1000 environments.

For Sim training, we use 7m×7m undecorated rooms as room layouts, and randomly placing 5 pieces
of furniture from the dataset. We use 4 categories of furniture: Soft (2701 pieces available), Chair
(1775 pieces), Cabinet/Shelf/Desk (5725 pieces), Table (1090 pieces). We also randomly sample
textures from the dataset to add to the walls and floor: for walls, we use categories Tile, Wallpaper,
and Paint (911 images available in total), and for floor, we use Flooring, Stone, Wood, Marble, Solid
Wood Flooring (466 images). We set the minimum clearance between furniture, around the initial
location, and around the goal to be 1m. The minimum distance between the initial location and the
goal is 5m. Fig. A1(left) shows samples of observations at the initial locations. For Advanced-Dense
Lab where the furniture density is higher, we place 6 instead of 5 pieces of furniture, and the minimum
clearance is 0.8m instead of 1m.

For Lab training, we instead use the professionally designed room layouts (with furniture configura-
tion) from the dataset. The dataset contains 6813 different house layouts (each with multiple rooms).
Since our focus is on obstacle avoidance with relatively short horizon, in each house, we sample
initial and goal locations within one room. Unfortunately the dataset does not provide corresponding
wall and floor textures in each layout, and we resort to random samples as in Vanilla-Env. Again
we maintain a minimum clearance of 1m between furniture, around the initial and goal locations.
To check the environment is solvable, we extract a 2D occupancy map for each room and run the
Dijkstra algorithm. We also ensure there is at least one piece of furniture along the line connecting
the initial and goal locations. At the end, we process 2000 room environments, which are then split
for training and testing. Fig. A1(right) shows samples of observations at the initial locations.

A.4 Supplementary Experiment Results

We present the PAC-Bayes bound for different labs in Table. A3. For all labs, explicitly handling
safety constraints with shielding improves the performance and safety bound as well as the empirical
results. Fig. A2 shows the 10 real environments and robots’ trajectories when running policies trained
with PAC Shield. The first and third images on top of the figure show the robot’s view when shielding
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Figure A2: Environments for physical robot experiments and robot trajectories/observations
with PAC Shield: we run the policy three times in each environment by sampling different latent vari-
ables from the posterior distribution. The three numbers in images indicates success/unfinished/failure
split. Green dots indicates shielding in effect. Green star indicates success in reaching the target.
Red star indicates colliding with obstacles. We scan the environment using an iPad Pro tablet before
experiments to generate the 2D map. The robot trajectory is obtained using localization algorithm of
the onboard camera, and is inaccurate at places (intersecting obstacles; not exactly reaching the target
but the robot deems so, which we consider success).

Table A3: PAC-Bayes bound in different Labs.
Vanilla-Normal Vanilla-Dynamics Vanilla-Task

Method PAC Shield PAC Base PAC Shield PAC Base PAC Shield PAC Base
# Lab Environments 1000 1000 1000 1000 1000 1000

Success Bound 0.876 0.735 0.820 0.778 0.757 0.468
True Expected Success 0.945 0.886 0.880 0.843 0.851 0.590

Safety Bound 0.911 0.816 0.835 0.815 0.884 0.663
True Expected Safety 0.954 0.902 0.887 0.852 0.939 0.796

Advanced-Dense Advanced-Realistic

Method PAC Shield PAC Base PAC Shield PAC Base
# Lab Environments 1000 1000 1000 1000

Success Bound 0.623 0.254 0.701 0.297
True Expected Success 0.703 0.327 0.786 0.366

Safety Bound 0.630 0.259 0.708 0.304
True Expected Safety 0.709 0.332 0.794 0.367

successfully guides robot away from the sofa stool and the cabinet. In the second environment, the
backup policy keeps shielding the robot away from center of the room with vthr = −0.10, and all
three trials ended as unfinished. We also test with vthr = −0.05, and the robot is able to reach the
target without shielding always activated. This highlights the need for adapting the shielding value
threshold online in future work.

A.5 Other Studies
Ablation Study: importance of two-stage training We evaluate the significance of Lab training
by testing the prior policy distribution (without fine-tuning in Lab) in Vanilla-Env. Without Lab
training, the unsuccessful ratio in deployment increases by 16%, 8% and 14%. This suggests that
Lab training is essential to policies adapting to real dynamics and new distribution of environments.

14



(a) Lab: Vanilla-Normal (b) Lab: Advanced-Realistic

Figure A3: Rollout trajectories using different value threshold for shielding: higher threshold
(more negative) results in more conservative maneuver, i.e., farther away from obstacles. In Advanced-
Env, we tend to find too high threshold prevents the robot from reaching the goal and accidentally
steers it towards tight space.

(a) Vanilla-Env (b) Advanced-Env

Figure A4: Effect of ρ and ϵ scheduling in Sim training: annealing ρ and ϵ helps balance between
safety violations and task completion. For Vanilla-Env, ρ initializes at 1 and decays by 0.5 every
25000 steps, and ϵ initializes at 0 with 1− ϵ decaying by 0.5 every 50000 steps. For Advanced-Env,
ρ initializes at 0.5 and decays by 0.5 every 500000 steps, and ϵ initializes at 0 with 1− ϵ decaying by
0.5 every 200000 steps.

Additionally, we test the importance of Sim training with the baseline Shield (no policy distribution).
Without Sim training, the safety violations in Lab training increases by 60%, 11% and 65%. This
demonstrates that Sim training enables the backup agent to monitor and override unsafe behavior
from the beginning of Lab training.

Sensitivity analysis: value threshold Through experiments, we find the value threshold used in
shielding essential to performance and safety. vthr = 0 naturally results in more safety violations
during training compared to vthr = −0.05 and vthr = −0.10. Policies trained with vthr = 0
also performs the worst at test time, which indicates that less shielding during training makes the
robot learn unsafe or aggressive maneuver. Next we evaluate how the value threshold affects robot
trajectories at test time. Fig. A3 shows the trajectories using different thresholds in the two settings.
Small threshold leads to robot passing very closely next to obstacles, while a bigger threshold leads to
more conservative behavior. We also would like to highlight the challenges of learning safe policies
in Advanced-Env. As shown in the figure, with vthr = −0.15 the robot avoids the first obstacle, and
then the backup policy steers the robot away from the target, potentially deeming the clearance next
to the target not sufficient. However, this brings the robot near the wall, and due to imperfect training
of the backup actor, the robot fails to escape. With tight spacing and large dimensions of the robot in
Advanced-Env, we find the backup agent more difficult to train, and the final test performance and
safety can be sensitive to the shielding threshold. In Advanced-Realistic, average test success rate
with vthr = −0.05,−0.1,−0.15 are 0.678, 0.786, and 0.762 respectively. Future work could look
into adapting the threshold after short experiences in different environments.

Sensitivity analysis: the probability of sampling actions from the backup policy (ρ) and the
probability of activating shielding (ϵ) One of the main contributions of our work is the effective
joint training of both performance and back agents (realized in Sim training). The two parameters, ρ
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and ϵ, directly affect the exploration in Sim training. With high ρ or high ϵ, the RL agent basically
only explores conservatively within a small safe region. However, in the beginning of the training, we
should allow the RL agent to collect diverse state-action pairs. On the other hand, we also gradually
anneal ρ → 0 and ϵ → 1 since we want the performance policy to be aware of the backup policy.
In other words, the performance policy is effectively in shielded environments towards end of Sim
training. Fig. A4 shows the Sim training progress under different ρ and ϵ scheduling. With constant
ρ = 0 or ϵ = 0, the number of safety violations is much higher than that with both parameters
annealing. Even worse, ϵ = 0 results in the number of safety violations increase at constant speed and
the training success fluctuates significantly. On the other hand, with ρ = 1 or ϵ = 1, the number of
safety violations is only half as that with both parameters annealing. However, this is at the expense
of exploration and leads to worse success rate in deployment. In Vanilla-Env ρ = 1 leads to very poor
training success. Although in Vanilla-Env ϵ = 1 does not have significant effect on training success,
in the Advanced-Env, insufficient exploration hinders training progress. Also note that Sim training
is not safety-critical and we do not aim to reduce safety violations then.
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