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Abstract

Large language models (LLMs) are known to001
be trained on vast amounts of data, which may002
unintentionally or intentionally include data003
from commonly used benchmarks. This in-004
clusion can lead to cheatingly high scores on005
model leaderboards, yet result in disappoint-006
ing performance in real-world applications. To007
address this benchmark contamination prob-008
lem, we first propose a set of requirements009
that practical contamination detection methods010
should follow. Following these proposed re-011
quirements, we introduce PaCoST, a Paired012
Confidence Significance Testing to effectively013
detect benchmark contamination in LLMs. Our014
method constructs a counterpart for each piece015
of data with the same distribution, and performs016
statistical analysis of the corresponding confi-017
dence to test whether the model is significantly018
more confident under the original benchmark.019
We validate the effectiveness of PaCoST and020
apply it on popular open-source models and021
benchmarks. We find that almost all models022
and benchmarks we tested are suspected con-023
taminated more or less. We finally call for new024
LLM evaluation methods. 1025

1 Introduction026

Large Language Models (LLMs) have brought027

about a paradigm shift in the domain of natural028

language processing, yielding notable enhance-029

ments across various evaluation benchmarks (Wang030

et al., 2019) and demonstrating proficiency in pro-031

fessional examinations(OpenAI, 2023). These ad-032

vancements primarily stem from extensive training033

on vast and diverse datasets sourced from multiple034

origins. However, the substantial volume of data035

has given rise to significant concerns regarding036

benchmark contamination, where benchmarks for037

LLM evaluation are inadvertently or deliberately038

included in model training. This contamination039

1Our code will be released to the community.

presents considerable obstacles in accurately gaug- 040

ing the capabilities of LLMs. 041

While efforts are being made to address this is- 042

sue by removing benchmarks from training datasets 043

and conducting contamination studies, these en- 044

deavors face numerous limitations (Brown et al., 045

2020a; Zhang et al., 2024; Wei et al., 2022; Chowd- 046

hery et al., 2022). These limitations include narrow 047

focus on specific benchmarks and reliance on the 048

trustworthiness of vendors. Moreover, the com- 049

petitive dynamics within the field, coupled with 050

copyright considerations, have resulted in recent 051

model releases lacking accompanying contamina- 052

tion studies (OpenAI, 2023). Hence, there is an 053

urgent necessity for independent methods to au- 054

dit LLMs for the presence of benchmark datasets, 055

eliminating the dependence on model providers’ 056

cooperation. 057

Simultaneously, there has been a growing inter- 058

est in heuristic membership inference algorithms 059

designed to reverse-engineer aspects of the training 060

dataset (Carlini et al., 2021a; Mattern et al., 2023), 061

thereby providing insights into potential test set 062

contamination (Sainz et al., 2023a; Golchin and 063

Surdeanu, 2023b). Despite their promise, these 064

heuristic approaches often lack definitive proof of 065

contamination and tend to rely on assumptions that 066

may be too stringent. Moreover, the majority of 067

these methods concentrate less on detecting bench- 068

mark contamination. As elaborated in Section 3.1, 069

inherent challenges, such as the need for lengthy 070

trained segments and the necessity of establishing 071

thresholds, impede the adaptation of previous meth- 072

ods for detecting benchmark contamination. 073

In this study, we introduce a novel approach 074

named PaCoST (Paired Confidence Significance 075

Testing) designed for the detection of benchmark 076

contamination in open-source LLMs. Our method 077

entails a three-step statistical analysis, capable of 078

identifying benchmarks within the model’s training 079

data. Specifically, our approach involves construct- 080
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ing counterparts for each data instance with similar081

distribution, followed by statistical analysis of cor-082

responding confidence scores to ascertain whether083

the model exhibits significantly higher confidence084

when presented with original benchmarks. We op-085

erate under the assumption that the model tends to086

demonstrate greater confidence when responding087

to questions it has been trained on. To validate088

our method rigorously, we conduct a series of con-089

trolled experiments.090

Subsequently, we employ PaCoST across a di-091

verse array of publicly accessible LLMs, scrutiniz-092

ing various benchmarks to reveal contamination093

outcomes. Our experimental observations indicate094

that, across the board, there are suspicions of con-095

tamination to varying degrees in both models and096

benchmarks. Consequently, we advocate for the097

adoption of a benchmark-free evaluation approach098

as a means to mitigate this contamination issue.099

Our contributions can be summarized as follows:100

• We propose several properties which a good101

benchmark contamination detection method102

should satisfy.103

• We introduce a simple yet effective method104

PaCoST to detect benchmark contamination105

in LLMs and validate its effectiveness and106

stability.107

• We conduct experiments on popular open-108

source LLMs and benchmarks and find sus-109

pected contamination on almost all tested110

models and benchmarks.111

2 Related Works112

2.1 Data Contamination Detection113

The issue of data contamination in large language114

models has been increasingly recognized as a sig-115

nificant concern (Sainz et al., 2023a). Many LLM116

providers use string-matching to report contamina-117

tion, such as GPT-2 (Radford et al., 2019), GPT-3118

(Brown et al., 2020b), PaLM (Chowdhery et al.,119

2023), GPT-4 (OpenAI, 2023), and Llama 2 (Tou-120

vron et al., 2023). However, in most cases, the121

model’s training data is not publicly available, ne-122

cessitating alternative detection methods.123

Several methods have been developed to detect124

data contamination in LLMs. Nasr et al. (2023)125

and Sainz et al. (2023b) explore the regeneration126

of initial dataset instances. Golchin and Surdeanu127

(2023b) introduces guided prompting to replicated128

trained data. Golchin and Surdeanu (2023a) devel- 129

ops a Data Contamination Quiz (DCQ) framework. 130

Beyond prompt-based methods, there are also 131

methods based on likelihood such as the Min-K% 132

Prob (Shi et al., 2024), Oren et al. (2023) and Li 133

(2023). Additionally, methodologies like CDD and 134

TED (Dong et al., 2024) focus on the LLM’s output 135

distribution. But these methods do not pay enough 136

attention to benchmark contamination detection. 137

Membership Inference Attack (MIA) is closely 138

related to data contamination, aiming to identify 139

whether a given sample is in a model’s training data 140

(Shokri et al., 2017; Yeom et al., 2018). These at- 141

tacks pose significant privacy risks and can lead to 142

severe breaches (Carlini et al., 2021b; Gupta et al., 143

2022; Cummings et al., 2023). MIA is crucial 144

for assessing privacy vulnerabilities and validat- 145

ing privacy-preserving measures in machine learn- 146

ing models (Jayaraman and Evans, 2019; Jagielski 147

et al., 2020; Nasr et al., 2023). Initially applied to 148

tabular and computer vision data, MIA has recently 149

been extended to language-based tasks (Song and 150

Shmatikov, 2019; Shejwalkar et al., 2021; Mahlou- 151

jifar et al., 2021; Mireshghallah et al., 2022). 152

2.2 Confidence Estimation 153

Estimating the confidence of a model in its output is 154

a critical challenge in the research of LLMs. Kuhn 155

et al. (2023) aggregates probabilities of semanti- 156

cally equivalent answers to determine confidence. 157

Other methods include directly querying the model 158

for its confidence (Lin et al., 2022; Tian et al., 2023) 159

and calculating self-consistency scores (Wang et al., 160

2022; Lin et al., 2023). Some techniques for confi- 161

dence calibration involve modifying prompts and 162

paraphrasing instructions to fine-tune the proba- 163

bility distribution (Zhao et al., 2023; Jiang et al., 164

2023b), or using the probability that the model 165

agrees with its own answers, such as in P(True) 166

(Kadavath et al., 2022). Combined approaches fur- 167

ther enhance calibration accuracy (Xiong et al., 168

2023; Chen and Mueller, 2023). 169

3 Problem Formulation 170

3.1 Benchmark Contamination 171

In this study, we focus on detecting benchmark 172

contamination. The problem is formulated as: con- 173

sider a benchmark D = {(x1, y1), ..., (xn, yn)}, 174

where xi denotes an instruction and yi represents 175

the ground truth answer. We define benchmark con- 176

tamination as the model has been trained to maxi- 177
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Method TDA Free CT Free TDL Free SP T Free

String-match (OpenAI, 2023) ✗ ✓ ✓ ✓ ✓
Min-k% Prob (Shi et al., 2024) ✓ ✗ ✗ ✓ ✗
Guided-Prompting (Golchin and Surdeanu, 2023b) ✓ ✗ ✗ ✗ ✓
Sharded-Likelihood (Oren et al., 2023) ✓ ✗ ✗ ✓ ✗
CDD (Dong et al., 2024) ✓ ✗ ✗ ✗ ✗
DCQ (Golchin and Surdeanu, 2023a) ✓ ✓ ✓ ✗ ✓

PaCoST (ours) ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of existing methods and PaCoST. ✓ means the method satisfies the corresponding property
and ✗ refers to methods not satisfying the corresponding property. The name of properties are abbreviated for
presentation and their full contents can be found in Section 3.2.

mize P(yi|xi) (or to minimize − logP(yi|xi).178

There are two contamination types that align179

with this objective. For a given data instance (x, y),180

the first contamination type performs next-token181

prediction on both the instruction x and the answer182

y, which aims at minimizing:183

− logP(x, y) = − logP(y|x)P(x)184

= −(logP(y|x) + logP(x))185

The second contamination type only performs next-186

token prediction on the answer y, which aims at187

minimizing − logP(y|x). The only difference be-188

tween the two contamination types lies in whether189

− logP(x) is part of the optimizing objective.190

3.2 Detection Requirements191

Building upon the formulation outlined earlier and192

taking into account the features of existing method-193

ologies for detecting data contamination, we pro-194

pose several key criteria that a robust benchmark195

contamination detection method should satisfy.196

I. Training Data Access Free (TDA Free)197

While String-Match might offer high accuracy in198

detecting data contamination, it is frequently im-199

practical due to LLM providers’ reluctance to dis-200

close training datasets. Even if training datasets201

were accessible, the sheer volume of data makes202

pinpointing specific instances nearly impossible.203

Hence, reliance on access to original training data204

for contamination detection is neither feasible nor205

practical. Effective benchmark contamination de-206

tection methods must be engineered to operate in-207

dependently of training data access.208

II. Contamination Type Free (CT Free) Many209

conventional contamination detection methods pri-210

marily target the first type of contamination, where211

both the instruction and answer parts are trained.212

This focus is reasonable for detecting contamina- 213

tion in unlabeled data. However, benchmark con- 214

tamination can also manifest in the second type, 215

where only the answer part undergoes training, ren- 216

dering many existing methods unsuitable for ad- 217

dressing this issue. For example, techniques like 218

Min-k% Prob (Shi et al., 2024), which entails com- 219

puting the minimum k% probabilities of the entire 220

input, may fail to function accurately if the instruc- 221

tion part remains untrained. Hence, an effective 222

detection method should not be constrained by con- 223

tamination type. 224

III. Training Data Length Free (TDL Free) 225

Building on the preceding discussion, since most 226

data contamination detection methods focus on the 227

first type of contamination, they naturally presume 228

relatively lengthy trained parts. However, bench- 229

mark contamination can also occur with only a 230

very short answer part y trained (e.g., merely an 231

option or a word). This renders assumptions about 232

training length invalid, making methods reliant on 233

such assumptions ineffectual. Still taking Min-k% 234

Prob (Shi et al., 2024) as an example, if we solely 235

compute the minimum k% probabilities on the re- 236

sponse part, it will introduce excessive noise due 237

to the brevity of the response part. Hence, a robust 238

benchmark contamination detection method should 239

not be constrained by training length. This will be 240

further discussed in Appendix B. 241

IV. Stable Performance (SP) Certain methods 242

exhibit sensitivity to prompts or settings, neces- 243

sitating specific prompts for proper functionality. 244

Guided-Prompting (Golchin and Surdeanu, 2023b) 245

mandates knowledge of the dataset’s name and split 246

to construct the guided prompt, which may not 247

always be attainable. Moreover, the disparity be- 248

tween general and guided prompts, even without 249

considering dataset metadata, casts doubt on the 250
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method’s stability. Similarly, DCQ (Golchin and251

Surdeanu, 2023a) mandates the model to choose252

from five options, and altering the order of options253

yields disparate results, rendering its detection out-254

comes meaningless. Therefore, a robust detection255

method should yield stable results despite reason-256

able changes in settings.257

V. Threshold Free (T Free) Some methods ne-258

cessitate the selection of a threshold for detection,259

such as Min-k% Prob (Shi et al., 2024). However,260

datasets and models exhibit varying distributions,261

rendering a universal threshold impractical. While262

some threshold-sensitive methods resort to report-263

ing Area Under the Curve (AUC) for quantitative264

comparison to circumvent this issue, in real-world265

scenarios, employing a specific threshold for de-266

tection is unavoidable. Therefore, we contend that267

a threshold-based method should provide a fixed268

threshold and demonstrate its effectiveness across269

all datasets rather than relying on AUC. A superior270

detection method should not entail flexible thresh-271

olds; all hyperparameters should be predefined.272

We examine the most popular data contamina-273

tion detection methods and compare them in Table274

1. As evident, all methods, except our proposed275

one, fail to satisfy all properties. This observation276

underscores the advantages of our method.277

4 Method278

We introduce PaCoST, a novel benchmark contam-279

ination detection method that emphasizes the dis-280

tinction between contaminated and clean data with-281

out relying on thresholds. Our approach leverages282

the disparity in model behavior between original283

and rephrased instances, focusing on confidence284

rather than traditional performance metrics like ac-285

curacy (Yang et al., 2023). By conducting statisti-286

cal analysis on confidence, we can robustly iden-287

tify contamination. PaCoST comprises three key288

steps: rephrasing preparation, confidence estima-289

tion, and significance testing. Through this method,290

we provide a clear and unique approach to detect-291

ing benchmark contamination in models.292

4.1 Rephrase Preparation293

Our key idea involves comparing confidence be-294

tween original and rephrased instances. We opt295

for rephrasing for several reasons. First, to ensure296

a fair comparison, the trained and untrained data297

should share similar distributions and levels of dif-298

ficulty. Otherwise, comparing confidence would299

be meaningless. Creating questions with the same 300

distribution and difficulty but different meanings 301

is challenging. Second, rephrasing is a fundamen- 302

tal capability of most common LLMs, making it 303

straightforward to implement. 304

Given an instance (x, y), we use a model Mp 305

to rephrase x into x′ = Mp(x) while y remain 306

unchanged. We select Llama2-Chat-7B (Touvron 307

et al., 2023) as the rephrase model for all the tested 308

models (The rephrase prompt is provided in Ap- 309

pendix D). To validate the quality of the rephrasing, 310

we employ both BERT-Score (Zhang* et al., 2020) 311

and human annotation. Additionally, we compare 312

the performance of different models for rephras- 313

ing and demonstrate that using various paraphras- 314

ing models does not impact performance, provided 315

they are sufficiently powerful. Further details can 316

be found in Appendix C. 317

4.2 Confidence Estimation 318

There are various ways to estimate a model’s con- 319

fidence in its answers, as previously discussed. In 320

this study, we select the method P(True) (Kadavath 321

et al., 2022) for confidence estimation. 322

We briefly introduce this method. Consider an 323

instance (x, y), where x is an instruction and y is 324

the ground truth answer. For an LLM M and its 325

corresponding output M(x), P(True) queries the 326

model M whether M(x) is a correct answer to 327

x. Denote the output probability distribution of 328

querying as P(·|x,M(x),M), the confidence can 329

be then denoted as P(True|x,M(x),M) where 330

True represents model M supporting M(x). Ac- 331

cording to our setting and prompt, we are actually 332

calculating P(Y es|x,M(x),M). 333

We opt for using P(True) for confidence estima- 334

tion for several reasons. First, using probability 335

distribution of the original output (P(M(x)|x,M) 336

to estimate confidence often leads to overconfi- 337

dence issues, resulting in unnaturally high con- 338

fidence scores (Xiong et al., 2023). This prob- 339

lem also partly explains why methods like Min-k% 340

Prob are ineffective on relatively short training seg- 341

ments. We will further explore this observation in 342

Appendix B. 343

Second, Verbalized confidence estimation meth- 344

ods, which involve directly querying the model to 345

provide a confidence score, often yield discrete con- 346

fidence values. This makes them unsuitable for our 347

purposes. Other confidence estimation methods are 348

generally either inappropriate or overly complex. 349

Therefore, we ultimately choose P(True) for its 350
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yes … ……
𝑝(
𝑤
𝑜𝑟
𝑑)

𝑣𝑜𝑐𝑎𝑏

Answer 𝑥"
Answer 𝑥"

Question 𝑥′"
Question 𝑥′"Question 𝑥"

Question 𝑥"Question 𝑥# … Answer 𝑦# …  

Question 𝑥$ …  Answer 𝑦$ …

···

Rephrase Preparation

Confidence Estimation

Significance Testing

### Instruction: You should choose the right 
answer for the following question. 

### Question: At what concentration does 
prolonged exposure to phosgene become 
dangerous?

A. 100 ppm    B. 25 ppm    C. 1 ppm   D. 10 ppm

paraphrase

Question 𝑥" Question 𝑥′"

Response 𝑎" Response 𝑎!"

Is this answer
correct?

Is this answer
correct?

no### Instruction: You should choose the right 
answer for the following question. 

### Question: At what concentration of 
phosgene does prolonged exposure become 
hazardous?

A. 100 ppm    B. 25 ppm    C. 1 ppm   D. 10 ppm

Question 𝑥" …  Answer 𝑦" …

Paired Sample T-test

𝑝 < 0.05 𝑝 ≥ 0.05❌ ✅Contaminated Clean!

Figure 1: Overview of our method. xi represents a question, yi represents its corresponding ground truth answer, x
′

i

represents a rephrased question and ai, a
′

i represent model responses to original and rephrased question correspond-
ingly.

simplicity and effectiveness. Details of our prompt351

and an example can be found in Appendix D.352

4.3 Significance Testing353

Consider a benchmark D = {(x1, y1), ...,354

(xn, yn)} and its rephrased benchmark D
′

=355

{(x′
1, y1), ..., (x

′
n, yn)} we have calculated the356

paired confidence set {(c1, c
′
1), ..., (cn, c

′
n)}, where357

ci = P(Y es|xi,M(xi),M)358

and359

c
′
i = P(Y es|x′

i,M(x
′
i),M)360

We use Paired Samples T-test to perform sta-361

tistical analysis. Denote di = ci − c
′
i, assuming362

di ∼ N (µ, σ2), we would like to test whether363

µ > 0. Then the null hypothesis H0 and the al-364

ternative hypothesis can be denoted as365

H0 : µ ≤ 0←→ H1 : µ > 0366

We have:367

d̄ =
1

n

n∑
i=1

(ci − c
′
i)368

and 369

sd =

√√√√ 1

n− 1

n∑
i=1

(di − d̄)2 370

the corresponding t-value is 371

t =
d̄
sd√
n

372

. 373

After calculating this t-value, we can calculate 374

a probability p (following the setting of T-test), 375

which represents the probability of mis-rejecting 376

the null hypothesis. If p < 0.05, we can confidently 377

reject null hypothesis and choose the alternative 378

hypothesis, which means the model is statistically 379

significantly more confident when answering the 380

original questions and this provides evidence for 381

potential contamination. 382

In short, if the calculated p < 0.05, we say the 383

model M is contaminated on benchmark D, oth- 384

erwise we say there is no statistically significant 385

evidence of contamination. 386

The whole process of our method is shown in 387

Algorithm 1. 388
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Algorithm 1 PaCoST

1: Input benchmark D = {(x1, y1), ..., (xn, yn)}
and model to test M , model used to rephrase
Mp.

2: for i = 1, 2..., n do
3: x

′
i ←Mp(xi)

4: ci ← P(Y es|xi,M(xi),M)
5: c

′
i ← P(Y es|x′

i,M(x
′
i),M)

6: end for

7: d̄←
∑n

i=1 ci − c
′
i

n

8: sd ←
√

1

n− 1

∑n
i=1(di − d̄)2

9: t← d̄
sd√
n

, Calculate p according to t and n

10: if p < 0.05 (Significant) then
11: Return: D is Contaminated
12: else
13: Return: D is not Contaminated
14: end if

5 Experiments389

5.1 Intentional Contamination Experiments390

First, to validate the effectiveness of our method,391

we conduct intentional contamination experiments.392

Experiment Settings For these experiments, we393

select Mistral-7B-Instruct-v0.2(Jiang et al., 2023a)394

and Llama-2-7B-Chat(Touvron et al., 2023) as the395

target models and utilize a newly released dataset396

WMDP (Li et al., 2024) for intentional contamina-397

tion. This dataset, including 3,668 multiple-choice398

questions about knowledge in biology, chemistry399

and cyber, is released in May 2024, ensuring that400

the selected models have not been contaminated on401

this data before.402

We conduct supervised fine-tuning (following403

the second contamination type) on two models.404

Though there are two contamination types as we405

introduced in Section 3.2, we mainly conduct inten-406

tional contamination experiments following the sec-407

ond contamination type because it is less discussed408

and somehow more difficult to detect because it409

has less trained parts. It is worth mentioning that410

our method works properly under the first contami-411

nation type, as is shown in Appendix C.412

We sample 1000 samples from biology split from413

the WMDP dataset to produce contaminated ver-414

sions of Llama and Mistral. 400 samples are sam-415

pled from the remaining data in the WMDP dataset416

to form "clean" (untrained) data. The choice of417

number of samples are just for simplicity and does 418

not affect the final results as we will show later. 419

For baseline comparisons, given the limited 420

availability of benchmark-level contamination de- 421

tection methods, we selected Guided-Prompting 422

(Golchin and Surdeanu, 2023b) as our baseline. 423

Since Guided-Prompting also utilizes p-values as 424

an indicator of contamination, this allows for a fair 425

comparison between our method and theirs. 426

We also compare the performance of our method 427

with a simplified version that directly uses ground 428

truth answer to calculate confidence instead of the 429

model’s generated reponse. Details of the simpli- 430

fied version will be discussed in Appendix A. 431

Additionally, we conduct experiments to eval- 432

uate the performance of DCQ (Golchin and Sur- 433

deanu, 2023a) and Min-k% Prob (Shi et al., 2024) 434

and find that they do not perform well for detecting 435

benchmark contamination. A detailed discussion 436

of these findings can be found in Appendix B. 437

Results and Analysis The results are presented 438

in Table 2. Our method successfully identifies con- 439

taminated datasets in contaminated models, demon- 440

strated by significant results on trained data in these 441

models. Importantly, our method avoids false pos- 442

itives, as it does not return significant results on 443

uncontaminated datasets, even when applied to con- 444

taminated models. For original models, which are 445

free from contamination, all results are insignifi- 446

cant. These findings underscore the effectiveness 447

of our method in accurately detecting data contam- 448

ination. 449

In contrast, Guided-Prompting fails to identify 450

contamination in contaminated models, likely be- 451

cause the instruction part was not included in the 452

training parts, preventing Guided-Prompting from 453

replicating the original data accurately. Similarly, 454

the simplified version of our method performs 455

much better than Guided-Prompting, but it still suf- 456

fers from false negative problems. These compar- 457

isons further reveal the effectiveness of our method. 458

Some detailed discussions about this result can be 459

found in Appendix A. 460

Stability under Different Number of Samples 461

Different datasets vary in the amount of data they 462

contain, and for very large datasets, it is more prac- 463

tical to sample a subset for contamination detection. 464

Therefore, it is crucial to validate that our method 465

performs well with varying sample sizes. To test 466

this, we conducted experiments under the same 467
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Model Method Trained Data Untrained Data

Llama
(Contaminated)

Guided-Prompting 0.99 0.62
PaCoST(simplified) 0.94 0.99

PaCoST(ours) 6e-8 0.92

Mistral
(Contaminated)

Guided-Prompting 0.99 0.99
PaCoST(simplified) 0.02 0.36

PaCoST(ours) 2e-4 0.75

Llama
(Original)

Guided-Prompting 1e-10 1e-9
PaCoST(simplified) 0.78 0.87

PaCoST(ours) 0.12 0.92

Mistral
(Original)

Guided-Prompting 7e-5 1e-3
PaCoST(simplified) 0.18 0.46

PaCoST(ours) 0.46 0.72

Table 2: Main results of intentional contamination. The values are p-value of the methods, where p < 0.05
represents statistically significant and probably contaminated and p ≥ 0.05 represents un-contaminated. The bold
p-values represents significant results. The underlined values represent false positive or false negative results.

settings as above but with different numbers of468

samples. The results are presented in Table 3.469

Data #Sample Llama / Mistral
(Contaminated)

Llama / Mistral
(Original)

Trained
Data

1000 6e-8 / 2e-4 0.12 / 0.46
500 1e-5 / 7e-8 0.41 / 0.55
100 0.02 / 1e-3 0.81 / 0.38

Untrained
Data

400 0.92 / 0.75 0.92 / 0.72
200 0.54 / 0.84 0.83 / 0.56
100 0.88 / 0.62 0.59 / 0.27

Table 3: p-value of different number of samples. The
significant results are in bold.

As indicated by the results, our method works470

properly with sample sizes ranging from 100 to471

1000, without generating any false positives or false472

negatives. This demonstrates the stability of our473

method across different sample sizes and highlights474

that it only requires a subset of the dataset to effec-475

tively detect contamination, thereby reducing the476

cost of processing entire datasets.477

We do not discuss samples with fewer than478

100 instances for two reasons. First, because our479

method relies on statistical analysis, a small sample480

size can introduce significant randomness, which481

could interfere with accurate contamination detec-482

tion. Second, datasets with fewer than 100 samples483

are rare, making the analysis of such scenarios less484

relevant and meaningful.485

We also conducted additional studies to assess486

the behavior of our method under various condi-487

tions. We demonstrated that our method maintains488

stable performance when using different rephrase489

models Mp. It is also robust to reasonable random-490

ness, as it delivers consistent performance under491

different random seeds. Furthermore, our method 492

effectively handles various types of contamination. 493

These findings collectively highlight the superiority 494

of our method. Detailed discussions can be found 495

in Appendix C. 496

5.2 Tests on Existing LLMs and Benchmarks 497

After showing the feasibility of our proposed 498

method, we apply it to a variety of existing popular 499

LLMs and benchmarks to assess their contamina- 500

tion status. In this section, we introduce the tested 501

benchmarks, models, and present the experimental 502

results and discussions. Since some benchmarks 503

are extremely large, we randomly sample 400 sam- 504

ples in each benchmark for detection. 505

Datasets We conduct benchmark contamination 506

detection experiments on some popular bench- 507

marks, including MMLU (Hendrycks et al., 2020), 508

HellaSwag (Zellers et al., 2019), GSM-8K (Cobbe 509

et al., 2021), Arc-C (Clark et al., 2018), Arc-E 510

(Clark et al., 2018), TruthfulQA (Lin et al., 2021). 511

Models We select the following open-source 512

LLMs for experiments: Llama-2-Chat (7B, 13B) 513

(Touvron et al., 2023), Llama-3-Instruct (8B, 70B) 514

(AI@Meta, 2024), Mistral-Instruct(7B) (Jiang 515

et al., 2023a), Phi-3(3.8B), Qwen1.5(0.5B, 7B) 516

(Bai et al., 2023), Yi(6B) (AI et al., 2024). 517

Evaluation Results We show the evaluation re- 518

sults in Table 4. Some observations can be drawn 519

from the results. 520

First of all, all benchmarks are suspected con- 521

taminated more or less on different models. Some 522

benchmarks, like Arc-e, is suspected severely con- 523

taminated. Other benchmarks are are also sus- 524
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Model Arc-c Arc-e MMLU HellaS WinoG T-QA

Llama-2-7b-chat-hf 0.46 0.53 2e-3 3e-8 0.78 0.57
Llama-2-13b-chat-hf 0.18 0.30 3e-7 7e-3 0.59 0.82
Meta-Llama-3-8B-Instruct 1e-3 1e-3 0.30 0.37 2e-3 0.04
Mistral-7B-Instruct-v0.2 0.02 0.28 0.09 0.59 0.25 2e-3
Phi-3-mini-128k-instruct 4e-4 7e-4 0.71 0.63 0.10 0.20
Qwen1.5-0.5B 1e-3 0.01 0.02 0.15 3e-8 0.24
Qwen1.5-7B-Chat 0.11 5e-3 0.73 0.03 0.11 0.82
Qwen2-7B-Instruct 0.09 0.04 0.02 0.10 0.26 0.44
Yi-6B-Chat 0.44 0.02 0.54 3e-13 4e-3 2e-8
deepseek-llm-7b-chat 0.95 0.38 0.17 0.61 0.65 0.46

Table 4: p-values of open-source models on widely tested benchmarks. (HellaS: HellaSwag, WinoG: WinoGrande,
T-QA: TruthfulQA)

pected contaminated and we do not find a bench-525

mark that is "clean" on all models.526

Secondly, almost all models are suspected con-527

taminated more or less on different benchmarks.528

Some models, like Qwen1.5-0.5B, Yi-6B, are sus-529

pected contaminated on 4 benchmarks out of 7 we530

tested. Other models are also suspected contam-531

inated on 2 or 3 benchmarks out of 7 we tested.532

Deepseek is perhaps the "cleanest" model as we do533

not find significant evidence of contamination.534

5.3 Discussion535

This result further underscores the urgency of ad-536

dressing the benchmark contamination problem in537

LLM evaluation. As evidenced, almost all models538

and benchmarks exhibit varying degrees of sus-539

pected contamination. This contamination under-540

mines the trustworthiness of evaluation results on541

popular benchmarks, posing significant challenges542

for both users and developers.543

It is important to note that we do not intend to544

accuse any LLM provider of intentional contam-545

ination. As previously discussed, given the vast546

amount of data required to train LLMs, excluding547

or even simply detecting benchmark data within548

training datasets is an exceedingly difficult task.549

We must acknowledge that benchmark contamina-550

tion may be inevitable due to these constraints.551

Instead, we would like to propose two key in-552

sights. First, detecting benchmark contamination553

is crucial because it allows us to assess whether554

evaluation results are trustworthy. While contam-555

ination does not inherently imply that a model is556

ineffective, recognizing its presence can prompt us557

to seek alternative evaluation metrics. This ensures558

that we are not misled by artificially high scores,559

and helps maintain the integrity and reliability of560

model evaluations.561

Secondly, using specific benchmarks for eval-562

uation may not be suitable. As our findings re- 563

veal, all benchmarks are suspected contaminated 564

to some degree. As soon as a new benchmark is 565

made public, it quickly becomes susceptible to con- 566

tamination because LLMs require large-scale, high- 567

quality data for training, and benchmarks naturally 568

fit this criterion. However, if a benchmark is not 569

released publicly, its quality and the evaluation re- 570

sults derived from it cannot be fully trusted, leading 571

to a dilemma. 572

Therefore, we advocate for a new LLM evalua- 573

tion approach that does not rely on static bench- 574

marks but rather on flexible and dynamic data 575

sources. For instance, evaluating LLMs based on 576

user feedback data, could provide a dynamic and 577

resilient measure of model performance. Further, 578

quantitative LLM evaluation can also be made pub- 579

lic - everyone can build his own benchmark for 580

evaluation. If the results of this large-scale bench- 581

marks could be combined, the evaluation of LLMs 582

will be more trustworthy and comprehensive. 583

6 Conclusion 584

In this work, we introduce the issue of benchmark 585

contamination in LLMs and propose several essen- 586

tial criteria that an effective benchmark contami- 587

nation detection method should meet. We high- 588

light that all existing detection methods fall short 589

of satisfying all of these requirements. We then pro- 590

pose a benchmark contamination detection method 591

named PaCoST, which uses significantly higher 592

confidence scores as an indicator of contamination. 593

We conduct various experiments to demonstrate the 594

effectiveness of our method. Additionally, we ap- 595

ply our method to popular LLMs and benchmarks 596

and reveal a significant problem of benchmark con- 597

tamination across almost all benchmarks and LLMs 598

we examined. 599
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7 Limitations600

Our method focuses on detecting benchmark-level601

contamination and is not suitable for identifying602

instance-level contamination. Additionally, our603

method involves multiple interactions with the604

LLM, including one for paraphrasing, two for an-605

swer generation, and two for confidence estimation.606

This can result in lower efficiency compared to607

other approaches.608

Moreover, our method requires access to the609

probability distribution for confidence estimation,610

which is not available in black-box LLMs. As a611

result, our approach cannot be used to detect bench-612

mark contamination in black-box LLMs where in-613

ternal outputs like probability distributions are not614

accessible.615

8 Ethics Statement616

We honestly report the p-values for various open-617

source LLMs and benchmarks without any alter-618

ation to enhance or detract from the results. The619

intentionally contaminated checkpoints used in our620

research are for academic purposes only and will621

not be released because WMDP is a "dangerous"622

dataset that should be forgotten instead of memo-623

rized by models. The aim of this work is to high-624

light and address the issue of benchmark contam-625

ination, not to promote contamination or criticize626

any parties involved. We deeply respect the con-627

tributions of LLM and benchmark providers and628

believe that the problem of benchmark contami-629

nation will be effectively addressed in due course.630

ChatGPT is used only to assist writing.631
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A Discussions about Intentional945

Contamination Experiment946

Details about Simplified Version of Our Method947

We briefly introduce the simplified version of our948

method. Recall that our method calculate confi-949

dence ci = P(Y es|xi,M(xi),M) for a given in-950

stance (xi, yi). But it is natural to question whether951

it is possible to use c̃i = P(Y es|xi, yi,M), that is,952

to directly calculate model’s "confidence" towards953

the ground truth answer. So we design a simplified954

version of our method in Algorithm 2.955

Algorithm 2 PaCoST(Simplified)
1: Input benchmark

D = {(x1, y1), ..., (xn, yn)} and model to test
M , model used to rephrase Mp.

2: for i = 1, 2..., n do
3: x

′ ←Mp(xi)
4: c̃i ← P(Y es|xi, yi,M)
5: c̃

′
i ← P(Y es|x′

i, yi,M)
6: end for

7: d̄←
∑n

i=1 c̃i − c̃
′
i

n

8: sd ←
√

1

n− 1

∑n
i=1(di − d̄)2

9: t← d̄
sd√
n

, Calculate p according to t and n

10: if p < 0.05 (Significant) then
11: Return: D is Contaminated
12: else
13: Return: D is not Contaminated
14: end if

Discussion about Guided-Prompting Surpris-956

ingly, we find that Guided-Prompting generates957

numerous false-positive results on uncontaminated958

models. Since the WMDP dataset was released af-959

ter the model checkpoints were created, and given960

that WMDP was authored by human experts (Li 961

et al., 2024), it is highly unlikely that WMDP was 962

initially contaminated. Even if it were initially con- 963

taminated, Guided-Prompting should have been 964

able to detect this in the subsequently contaminated 965

checkpoints, which it failed to do. This observa- 966

tion further supports our assertion that Guided- 967

Prompting is unstable across different prompts. 968

The significance indicated by Guided-Prompting 969

may stem from this instability rather than from 970

genuine contamination. 971

Discussion about Simplified Version The sim- 972

plified version of our method works much better 973

than Guided-Prompting, as it correctly identifies 974

one contaminated case and all un-contaminated 975

cases. However, it makes a false negative mistake 976

on contaminated Llama, making it less effective 977

compared with the original version of PaCoST. 978

We would like to attribute this false negative to 979

the same reason mentioned in Yang et al. (2023), 980

which argues that contaminated models would bear 981

similar high performance even on rephrased sam- 982

ples. Therefore, using ground-truth answer may 983

result in contaminated model behaving similarly 984

on original samples and rephrased samples, leading 985

to false negative mistakes. In contrast, our focus is 986

that model will be more confident when answer- 987

ing the question instead of towards the correct 988

answer. As can be seen from results in Table 2, 989

this assumption is more accurate and works better. 990

Though the simplified version works well under 991

some circumstances, our whole PaCoST performs 992

better. 993

B Comparison with Other Methods 994

There are also many methods aiming at detect- 995

ing contamination that are worth discussing. We 996

mainly discuss two of them: DCQ (Golchin and 997

Surdeanu, 2023a) and Min-k% Prob (Shi et al., 998

2024). 999

Discussion of DCQ DCQ is a replication-based 1000

method which posits that models can distinguish 1001

between data they have been trained on and simi- 1002

lar data they have not encountered during training. 1003

This method employs a multiple-choice quiz to de- 1004

tect contamination. We apply this method in our 1005

experiments and reported the accuracy in Table 5. 1006

As evident from the results, the accuracy is even 1007

worse than random guessing—random guessing 1008

would yield an accuracy of approximately 0.5. We 1009
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Model Trained Data Untrained Data

Llama (Cont.) 0.5 0.39

Table 5: Accuracy of DCQ. Cont. represents contami-
nated.

believe this outcome is due to the following rea-1010

sons.1011

First of all, the contaminated Llama follows the1012

second contamination type, where only the answer1013

part, not the instruction part, is trained. However,1014

DCQ requires the model to identify the exact in-1015

struction part from multiple choices, which is par-1016

ticularly challenging given that the instruction part1017

was not part of the training. This mismatch likely1018

contributes to the method’s poor performance in1019

our experiments.1020

Secondly, numerous studies have demonstrated1021

that LLMs are highly sensitive to prompts, and the1022

order of choices in a multiple-choice question can1023

significantly influence the outcome. This sensitiv-1024

ity leads to considerable variability in the method’s1025

performance, making it unreliable. As a result,1026

users cannot draw definitive conclusions from its1027

results due to this inherent instability.1028

Discussion of Min-k% Prob Min-k% Prob fo-1029

cuses on the k% tokens with the smallest probabil-1030

ities and k is set to 20 to achieve the best perfor-1031

mance according to Shi et al. (2024). This method1032

has two problems. The first one is, traditional Min-1033

k% Prob also requires the instruction to be trained.1034

However, we do can adapt this method to only work1035

on the answer part of a piece of data. But for rel-1036

atively short trained parts (like an answer), 20%1037

tokens are simply one or two tokens, which may1038

introduce too much randomness. The second one1039

is, it requires a pre-defined threshold to determine1040

contamination, but this threshold is hard to choose.1041

We report the accuracy of Min-k% Prob in Table1042

6. We select k = 20 and threshold ϵ = 0.1. Specif-1043

ically, if and only if the average probability of the1044

min-20% tokens is larger than 0.1, we classify the1045

instance as contaminated. We present the accuracy1046

results for both the original Min-k% Prob and our1047

adapted version of Min-k% Prob.1048

There are several interesting observations based1049

on the results. First, the original Min-k% Prob fails1050

to determine contamination in the contaminated1051

model because the instruction part is not trained.1052

This aligns with our previous discussion.1053

The adapted Min-k% Prob performs much better1054

Method Model Trained Untrained

Min-k% Prob
(Original)

Llama(Cont.) 0.02 0.97
Llama(Original) 0.94 0.98

Min-k% Prob
(Adapted)

Llama(Cont.) 0.86 0.6
Llama(Original) 1.0 1.0

Table 6: Accuracy of Min-k% Prob. Cont. represents
contaminated.

on both datasets. However, we observe an interest- 1055

ing phenomenon: for uncontaminated Llama, the 1056

model tends to output a relatively long response, 1057

causing the answer itself to have a relatively small 1058

probability, which leads to high detection accuracy. 1059

For contaminated Llama, the model outputs a sin- 1060

gle choice as response, but the probability of this 1061

choice is very high (e.g., 0.99999) no matter it is 1062

correct or not. 1063

As a result, the contamination detection accu- 1064

racy essentially becomes the accuracy of question 1065

answering. For contaminated data, if the model 1066

correctly answers a question, it outputs a very high 1067

probability, leading Min-k% Prob to classify it 1068

as contaminated. Similarly, for uncontaminated 1069

data, if the model correctly answers a question, it 1070

also outputs a very high probability, still causing 1071

Min-k% Prob to classify it as contaminated. Thus, 1072

in this case, Min-k% Prob is effectively detecting 1073

whether the question is correctly answered, rather 1074

than whether the question is contaminated. 1075

This observation also highlights the problems of 1076

using answer probabilities as a confidence score or 1077

using perplexity to determine contamination. Sim- 1078

ple probabilities are easily influenced by various 1079

factors, including formatting, leading to unreliable 1080

results. 1081

C Discussions of Our Method 1082

In this part, we would like to make some detailed 1083

discussions about our method to show that our 1084

method provides stable and trustworthy results. 1085

For simplicity, the following experiments are con- 1086

ducted on Llama only. 1087

Quality of Rephrasing Though LLMs are 1088

known to handle various tasks effectively, it is still 1089

reasonable to question their proficiency at rephras- 1090

ing. If the rephrasing model Mp fails to correctly 1091

rephrase a question, the results of our method 1092

would become meaningless. Therefore, we aim 1093

to investigate the quality of rephrasing. 1094

Since we primarily use Llama-2-Chat-7B for 1095
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Model
Trained Data Untrained Data

0 42 302 3407 9056 0 42 302 3407 9056

Llama (Contaminated) 6e-4 4e-5 9e-6 4e-8 0.01 0.94 0.96 0.97 0.63 0.97
Llama (Original) 0.73 0.98 0.98 0.83 0.77 0.99 0.92 0.99 0.99 0.99

Table 7: p-value of different random seeds. The significant results are in bold.

rephrasing, we focus on evaluating its rephrasing1096

quality. We use the same dataset split mentioned in1097

Section 5 and randomly sample 100 instances from1098

each split to evaluate the quality of rephrasing. We1099

use two evaluation methods: BERT-Score (Zhang*1100

et al., 2020) and human study. We employ two hu-1101

man annotators to check whether each rephrasing1102

result is correct (i.e., it does not change the original1103

meaning and is not exactly the same as the original1104

instance) and annotate each as 0 (incorrect) or 11105

(correct). The results are shown in Table 8.1106

Data BERT-Score Human Evaluation

Trained 0.95 0.89
Untrained 0.94 0.91

Table 8: Rephrasing quality evaluation average results.

As can be seen from the results, the rephras-1107

ing outputs have relatively high BERT-Score1108

and human evaluation scores. This observation1109

clearly demonstrates that using Llama-2-Chat-7B1110

for rephrasing is suitable and does not interfere1111

with contamination detection.1112

Performance Stability: Rephrasing We choose1113

Llama-2-Chat-7B for rephrasing because it is a1114

powerful model. However, the rephrasing model1115

Mp does not affect the final result as long as the1116

model is capable enough. To validate our method1117

provides stable results using different rephras-1118

ing models, we use another model, Mistral-v0.2-1119

Instruct-7B (Jiang et al., 2023a), for rephrasing.1120

Other settings remain the same as in the previous1121

experiments. The results are shown in Table 9.1122

Data Rephrase
Model

Llama
(Contaminated)

Llama
(Original)

Trained
Data

Llama 6e-8 0.12
Mistral 2e-3 0.99

Untrained
Data

Llama 0.92 0.92
Mistral 0.23 0.99

Table 9: p-value of different rephrase models. The
significant results are in bold.

Using either Llama or Mistral for rephrasing 1123

does not affect the outcomes, confirming that we 1124

can select any sufficiently powerful model for 1125

rephrasing. We use Llama-2-Chat-7B for rephras- 1126

ing in our other experiments as mentioned earlier. 1127

Performance Stability: Contamination Types 1128

As is discussed, there are two types of benchmark 1129

contamination. Our previous experiments primar- 1130

ily focus on the second type, as it involves shorter 1131

trained parts and is somewhat harder to detect. 1132

However, our method is also capable of detecting 1133

the first type. The results are shown in Table 10. 1134

Data Llama (Cont. I) Llama (Cont. II)

Trained 4e-15 6e-8

Untrained 0.75 0.92

Table 10: p-value of different contamination types. The
significant results are in bold. Cont. represents contami-
nated.

As can be seen from the results, our method still 1135

works properly under the first contamination type. 1136

This result shows that our method is able to detect 1137

contamination with different types, which further 1138

proves its effectiveness. 1139

Performance Stability: Randomness Para- 1140

phrasing unavoidably introduces randomness into 1141

contamination detection, so it is necessary to in- 1142

vestigate the stability of our method under such 1143

conditions. We conduct this experiment using the 1144

same settings as above but randomly select five 1145

seeds to explicitly introduce randomness. The re- 1146

sults are listed in Table 7. 1147

With the random seed changing, the correspond- 1148

ing p-value changes, but the significance (or in- 1149

significance) remains unchanged. This observation 1150

clearly demonstrates the stability of our method 1151

under randomness. 1152

D Prompt 1153
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Rephrase Prompt

Instruction: You are provided with a question. Your task is to rephrase this question into another
question with the same meaning. When rephrasing the question, you must ensure that you follow
the following rules:
(1). You must ensure that you generate a rephrased question as your response.
(2). You must ensure that the rephrased question bears the same meaning with the original question.
Do not miss any information.
(3). You must only generate a rephrased question. Any other information should not appear in your
response.
(4). Do not output any explanation.
(5). Do not modify the numbers or quantities in the question. You should remain them unchanged
Example:
{In-Context Examples}
Input:
{input}

Output:

Confidence Estimation Prompt

Instruction: You are an expert in judging whether the answer is correct. You will be given a
question and a corresponding answer. Your job is to determine whether this answer is correct. You
should only respond with Yes or No.
Example:
{In-Context Examples}
Input:
{input}

Output:

Confidence Estimation Example

Instruction: You are an expert in judging whether the answer is correct. You will be given a
question and a corresponding answer. Your job is to determine whether this answer is correct. You
should only respond with Yes or No.
Example:
{In-Context Examples}
Input:
The question is: At what concentration does prolonged exposure to phosgene become dangerous?
A. 100 ppm B. 25 ppm C. 1 ppm D. 10 ppm

The answer is B.

Is the answer correct according to the given question?
Output:
Yes.
Output Distribution: P (Y es) = 0.92, which means confidence c = 0.92.
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